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1University of Eastern Finland, School of Computing, Joensuu, Finland
2Human Language Technology Deparment, Institute for Infocomm Research (I2R), A*STAR, Singapore

{fsedlak, tkinnu}@cs.joensuu.fi {vmhautamaki, kalee, hli}@i2r.a-star.edu.sg

ABSTRACT

State-of-the-art speaker verification systems consists of a number
of complementary subsystems whose outputs are fused, to arrive at
more accurate and reliable verification decision. In speaker verifi-
cation, fusion is typically implemented as a linear combination of
the subsystem scores. Parameters of the linear model are commonly
estimated using the logistic regression method, as implemented in
the popular FoCal toolkit. In this paper, we study simultaneous use
of classifier selection and fusion. We study four alternative fusion
strategies, three score warping techniques, and provide interesting
experimental bounds on optimal classifier subset selection. Detailed
experiments are carried out on the NIST 2008 and 2010 SRE cor-
pora.

Index Terms— Classifier selection, linear fusion

1. INTRODUCTION

Speaker verification is the task of accepting or rejecting an iden-
tity claim based on a person’s voice sample [1]. Modern speaker
verification systems utilize ensembles of base classifiers to arrive
at an accurate and reliable verification decision by classifier fusion.
The base classifiers might utilize, for instance, different speech pa-
rameterizations (e.g. spectral, prosodic, high-level), classifiers (e.g.
Gaussian mixture models [2], support vector machines [3]) or chan-
nel compensation techniques (e.g. joint factor analysis [4], nuisance
attribute projection [5]). For a given speech sample, each of the L
base classifiers produces a match score, si ∈ R, i = 1, 2, . . . , L,
that indicates the degree of belief for the target speaker hypothesis.

Having the set of base classifiers defined, the question remains
how to combine the base classifier sub-decisions. In this paper, we
restrict ourselves to score-level fusion f : R

L → R of the form
s = f(s1, s2, . . . , sL), where f is the fusion device that combines
the L base classifier scores into a single match score, s. The bi-
nary accept/reject decision is then carried out by comparing the fused
score to a pre-defined threshold, θ. In the system development phase,
one uses a labeled training set to train the fusion parameters and the
decision threshold. The trained fusion system f and threshold b are
then used for making speaker verification decisions on unseen data.
A natural goal, as in any pattern classification task, is to ensure good
generalization on that unseen data.

There are three main affecting factors to the generalization
performance, the choice of the fusion methodology (including
threshold setting), score range normalization, and the choice of
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the base classifiers themselves. Regarding the fusion methodology,
here we consider linear classifiers of the form fw,θ(s) = w

t
s + θ

where w = (w1, w2, . . . , wL)t is the vector of fusion weights,
s = (s1, s2, . . . , sL)t is the vector of base classifier scores and
θ is the decision threshold; the speaker is accepted if and only if
fw,θ(s) ≥ 0. The linear fusion scheme, when trained using the
linear logistic regression objective in the FoCal toolkit1, has been
found robust and forms a good reference method. One of the suc-
cessful elements of this method is warping of the fused scores into
log-likelihood ratios (LLRs) prior to fusion. It is possible also
to either precalibrate base classifier scores or postcalibrate fused
scores [6].

The third factor affecting generalization performance, the choice
of the base classifiers, is at least as critical as the fusion method.
Whilst there does not currently exist a principled recipe for choosing
the base classifiers, a general consensus is that the base classifiers
errors should not be correlated [7]. One way to achieve this is to train
base classifiers sequentially so that training of the current classifier
takes into account errors produced by the previous classifers. This
principle was applied to a fusion of two SVM-based classifiers with
FoCal as a fusion method [8].

This paper represents our recent efforts in designing robust fu-
sion strategies. During the latest NIST 2010 speaker recognition
evaluation (SRE) benchmarking, the authors faced up a practical
problem of fusing a dozen of spectral classifiers developed by in-
dependent sub-teams in our laboratories. One of the strategies con-
sidered, but not included in the SRE submission due to lack of time,
was to use classifier subset selection together with linear fusion. The
working hypothesis was that fusing a smaller number of (reliable)
classifiers with fewer degrees of freedom would lead to more sta-
ble fusion. From a practical point of view, classifier selection would
lead to computationally more feasible system as well. In addition to
classifier selection, we studied extensively different score warping
techniques and alternative ways to train linear fusion parameters, in-
cluding an attempt for direct minimization of the NIST’s decision
cost function. The purpose of this paper is to summarize and con-
clude the lessons learned from these experiments.

2. CLASSIFIER FUSION AND SUBSET SELECTION

2.1. Problem Setup

We assume that, during the development phase, one has access to
a development set D = {(si, yi), i = 1, 2, . . . , Ndev} of base
classifier score vectors si ∈ R

L, with yi ∈ {+1,−1} indicating
whether the corresponding speech sample originates from a tar-
get speaker (yi = +1) or from a non-target (yi = −1). Given

1http://sites.google.com/site/nikobrummer/focal
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the linear fusion classifier fw,θ(s) = w
t
s + θ with parameters

(w, θ), and an empirical cost function C((w, θ),D), optimal fusion
device is (wdev, θdev) = arg min(w,θ) C((w, θ),D). Given an-
other held-out dataset, T = {(si, yi), i = 1, 2, . . . , Neval}, actual
cost and minimum cost are computed as C((wdev, θdev), T ) and
minθ C((wdev, θ), T ), respectively. The difference of the actual
and the minimum costs is known as calibration error.

In this study, we adopt the decision cost function (DCF) used in
the NIST speaker recognition evaluations,

Cdet(θ) = CmissPmiss(θ)Ptar + CfaPfa(θ)(1 − Ptar), (1)

where Ptar is the prior probability of a target (true) speaker, Cmiss

is the cost of a miss and Cfa is the cost of a false alarm. These
application-dependent cost parameters can also be summarized as a
single quantity known as effective prior: P = logit−1(logit(Ptar)+
log(Cmiss/Cfa)). It is possible to minimize DCF directly (e.g. [9])
or to optimize a proxy cost such as Cwlr [6]. As usual, we treat
the fusion weights and the threshold independently; for each of the
fusion training methods (Section 2.3) the threshold is set to θ∗ =
arg minθ Cdet(θ) after fusion training.

2.2. Score Pre-Warping

Since the base classifier scores si may have different interpretations
(e.g. log-likelihood ratios or SVM inner products) and their scales
may vary a lot, it is important to equalize their global range to avoid
large-variance base classifier to dominate the fused score. We con-
sider three such score warping methods, mean and variance nor-
malization (MVN), Z-calibration (Z-cal) [6] and S-calibration (S-
cal) [6]. Each of these methods includes a training phase to set its
parameters.

The simplest method, MVN, normalizes the scores of each base
classifier to have zero mean and unit variance. The parameters are
the mean μi and standard deviation σi of the ith base classifier scores
(determined from the development set). A given score s is warped
according to s′ = (s − μi)/σi. Note that MVN is an unsuper-
vised method that does not require class labels. The S-cal and Z-
cal methods2, in turn, are trained discriminatively by utilizing the
target/nontarget key information of the development score vectors.
They both aim at converting arbitrary scores to well-calibrated log-
likelihood ratios (LLRs). The warping functions in S-cal and Z-cal
are defined as,

llrS−cal(s) = log
(logit−1α)(exs+y − 1) + 1

(logit−1β)(exs+y − 1) + 1
,

llrZ−cal(s) = (s − xmin)
ymax − ymin

xmax − xmin
+ ymin.

The parameters (slope x, offset y and saturation parameters α, β
for S-cal; linear map parameters xmin, ymin, xmax, ymax for Z-cal)
are trained through an iterative gradient-descent minimization of an
LLR-based cost function [6].

2.3. Training Methods for Linear Fusion

In this paper, we consider four methods for linear fusion training.
The first method, equal weights, performs simple averaging of the
subsystems scores to produce the fused score, f(s) = 1

L

∑L

i=1 si. It
has the advantage of notrequiring any training. The second method,

2http://www.dsp.sun.ac.za/˜nbrummer/focal/cllr/
calibration/.

Table 1: Selection of the three datasets used in this study. We focus
on the core-condition itv-tel subset with female trials.

Dataset Usage Data source # Verif. trials
Training Train fusion params., NIST 2008 263 t, 27315 f
set do classif. selection itv-tel subset
Devset Compare fusion and NIST 2008 283 t, 27195 f

warping methods and itv-tel subset
classif. selection

Evalset Validate results NIST 2010 801 t, 30254 f
itv-tel

gradient Cwlr optimization, uses an iterative discrete gradient de-
scent method (we utilize MATLAB’s fminunc function) to mini-
mize the following effective-prior weighted log-likelihood ratio ob-
jective [6],

Cwlr =
P

Nt

Nt∑
i=1

log
(
1 + e−w

t
si−θ

)
+

1 − P

Nf

Nf∑
j=1

log
(
1 + ew

t
sj+θ

)
,

(2)
where the two sums go through theNt target score vectors si and the
Nf non-target score vectors sj , respectively. Here, P is the effective
prior defined in subsection 2.1. In an initial stage of the study, we
noticed that, for our base classifier scores, weight optimization in the
FoCal toolkit did not always converge. Changing the optimization
package solved the convergence problem.

The third method studied in this paper, gradient MinDCF opti-
mization, is an attempt to minimize MinDCF (1) directly at a given
operating point, rather than using the “soft” integration of all errors
in (2). To mimic (2), we rewrite (1) as,

Cdet =
CmissPtar

Nt

Nt∑
i=1

g(−w
t
si−θ)+

Cfa(1 − Ptar)

Nf

Nf∑
j=1

g(wt
sj+θ),

where g(x) is the unit step function, g(x) = 1 for x ≥ 0 and g(x) =
0 elsewhere. To optimize (3), we use an iterative EM-like scheme as
follows. We start with equal weights and find optimum θ as θ∗ =
arg minθ Cdet(θ). Having θ∗ fixed, we optimize the weights in (3)
using MATLAB’s fminunc optimizer. The process is continued
until convergence.

Finally, greedy MinDCF optimization is another method of di-
rect MinDCF optimization. The weights are first initialized to be
equal and then optimized one-by-one, in a greedy manner, by line
search on −1 ≤ wi ≤ 1. This method was used in our submission
to the NIST 2010 SRE and is included here as a reference.

2.4. Classifier Subset Selection

Up to this point, we have defined a standard fusion framework,
assuming a full ensemble of L classifiers. Now, instead of opti-
mizing the weights in the L-dimensional space, we are in a search
of a globally optimum selection of K ≤ L classifiers, with K
being unknown. For a fixed K, brute force requires search of(

L

K

)
= L!

K!(L−K)!
possible classifier combinations, for which the

fusion weights and decision threshold must be trained (note, how-
ever, that the score warping parameters need to be trained once
only). Since K is also unknown, brute force requires evaluation
of the entire powerset of 2L − 1 classifier fusions. This strategy,
although not feasible in a realistic systems for large L, is chosen in
the present study. Since we evaluate all the combinations, we can
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Table 2: Twelve base classifiers are constructed based on the four
different cepstral features used in conjunction with four different
speaker modeling techniques.

Classifier Feature
Devset (2008) Evalset (2010)
EER MinDCF EER MinDCF
(%) (x1000) (%) (x1000)

1 GMM-UBM-JFA PLP 3.95 0.7095 4.99 0.5547
2 GMM-UBM-JFA PLP 4.24 0.6996 4.12 0.5267
3 GMM-UBM-JFA PLP 4.24 0.6600 3.75 0.6840
4 GMM-UBM-JFA LPCC 4.59 0.8735 5.74 0.7458
5 GMM-SVM-KL PLP 5.65 0.6374 5.49 0.6522
6 GMM-SVM-KL MFCC 4.99 0.5081 4.37 0.4955
7 GMM-SVM-KL LPCC 6.45 0.5774 5.37 0.5954
8 GMM-SVM-KL MLF 5.81 0.5590 4.74 0.5268
9 GMM-SVM-KL LPCC 4.24 0.7158 6.52 0.6448
10 GMM-SVM-KL SWLP 10.20 0.6897 5.87 0.5411
11 GMM-SVM-FT PLP 8.13 0.6198 6.12 0.5872
12 GMM-SVM-BHAT PLP 5.40 0.4798 3.03 0.3371

Table 3: Fusion of all 12 base classifiers on NIST SRE 2008 devset
(itv-tel, females). First three rows show the best base classifiers.

Fusion method Score EER MinDCF ActDCF ActDCF-
warping MinDCF

Best ActDCF – 4.99 0.5081 0.8445 0.3364
Best MinDCF – 5.40 0.4798 0.9364 0.4566
Best EER – 3.95 0.7095 0.9576 0.2481
Equal – 2.47 0.3809 0.4402 0.0593
weights MVN 2.47 0.3809 0.4261 0.0452

S-cal 2.20 0.3738 0.4304 0.0566
Z-cal 2.46 0.4310 0.4655 0.0345

Grad. Cwlr – 2.12 0.3477 0.3774 0.0297
MVN 2.12 0.3477 0.3774 0.0297
S-cal 2.12 0.3498 0.3795 0.0297
Z-cal 2.46 0.4016 0.4040 0.0024

Grad. – 2.47 0.4176 0.5257 0.1081
MinDCF MVN 2.36 0.4000 0.4925 0.0925

S-cal 1.77 0.3583 0.4664 0.1081
Z-cal 2.05 0.3876 0.4972 0.1096

Greedy – 2.83 0.4042 0.5822 0.1780
MinDCF MVN 2.14 0.3498 0.4876 0.1378

S-cal 3.32 0.3618 0.4699 0.1081
Z-cal 3.39 0.4860 0.5985 0.1125

be sure to have found the best possible classifier subset. Analogous
to observing the difference of ActDCF and MinDCF costs, we can
determine the best realizable classifier subset (found from training
set) and compare the result to the optimum oracle selection on the
evaluation set. In theory, classifier selection is simply a special
case of linear fusion fw,b(s) = w

t
s + b where the weights of the

excluded classifiers are set to zero. However, we have noted that
in practice, the logistic regression optimization has difficulties to
(completely) zero out the classifiers.

3. SPEECH CORPORA AND THE BASE CLASSIFIERS

We utilize the two most recent NIST SRE corpora, NIST 2008 and
NIST 2010, for our experiments (Table 1). Due to space limits, we
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Fig. 1: Comparison of fusion methods using the full set of L = 12
classifiers (S-cal warping). The best individual classifier, in terms of
ActDCF, is also displayed as a reference.

present all the results on the female3 trials of the interview-telephone
(int-tel) subcondition of the core tasks. The NIST 2008 trial list
was split into two disjoint parts (with no speaker overlap), the first
one used for training score warping, fusion weights and the decision
threshold. The other part of the NIST 2008 data and the NIST 2010
data serve for validation purposes.

We use four speaker classification techniques in combination
with four types of cepstral features in constructing the base clas-
sifiers. In particular, we used perceptual linear prediction (PLP),
linear predictive cepstral coefficient (LPCC),mel frequency cepstral
coefficients (MFCC), and the recently studied stabilized weighted
linear prediction (SWLP) [10] features in parameterizing the speech
utterances. Energy-based VAD was used to remove nonspeech
frames. Additional RASTA filtering, cepstral mean/variance nor-
malization (CMVN) and feature warping, were also applied.

Table 2 shows the twelve base classifiers based on four differ-
ent cepstral features used in conjunction with four different classi-
fiers. When two subsystems share the same classifier and features,
it means that the systems are two independent implementations. For
classifiers, we use the generative GMM-UBM-JFA [4] and the dis-
criminative GMM-SVM approaches [11]. They are based on the
universal background model (UBM) paradigm [2] and share similar
form of subspace channel compensation, though the training meth-
ods differ. We used previous NIST SREs data, including SRE 2004,
SRE 2005 and SRE 2006, to train the UBM and the session variabil-
ity subspace. Switchboard data was also used to train the speaker-
variability subspace for the JFA systems. Each base classifier has its
own score normalization prior to score pre-warping and fusion. To
this end, we use T-norm and Z-norm with SRE 2004 and SRE 2005
data as the background and cohort training data.

4. FUSION AND CLASSIFIER SELECTION RESULTS

We first compare the score warping and fusion training methods on
the full set of L = 12 base classifiers in Table 3. As a reference, the
first three rows display the best individual classifier per each con-
sidered cost function (EER, MinDCF, ActDCF). In addition, the last
column shows the calibration error, ActDCF − MinDCF.

As expected, fusion improves accuracy over the best single clas-
sifier systematically. Regarding score warping, Z-cal yields system-
atically higher errors compared to MVN and S-cal (although Z-cal
gives the smallest calibration errors in two cases). Comparing the
fusion training methods (see also Fig. 1), the best EER (1.77 %) is

3This is a more difficult set than male trials.
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Fig. 2: Effect of classifier pool size to accuracy (NIST 2008 devset).

achieved, perhaps surprisingly, using the gradient MinDCF method.
For MinDCF and ActDCF, however, gradient Cwlr leads to best re-
sult. Considering ActDCF and calibration error, the greedy MinDCF
method yields the worst results, losing even to equal weights fusion.

We next study the issue of classifier selection on the NIST 2008
devset. Based on Table 3 and Fig. 1, we only consider gradient Cwlr

method with S-cal. For a given subset sizeK ≤ L and performance
metric (EER, MinDCF, ActDCF), we consider three summary val-
ues out from all the

(
12
K

)
combinations in Fig. 2. The first one, best

real subset, refers to optimum non-cheating classifier subset selec-
tion done on the training set and evaluated on the devset. The second
value, best oracle subset, is computed by direct optimization on the
devset, by knowing the key file. Note that the oracle selection con-
siders only the subset selection – the fusion weights are still learnt
from the training set. The third value, worst oracle subset refers to
worst classifier subset selection on the devset and gives an idea how
bad the result can be with unlucky classifier selection.

Is there any practical advantage of using a subset of classifiers
instead of the full ensemble? Observing the middle (blue) lines in
Fig. 2, especially for ActDCF, the answer seems no. The (green)
oracle lines, however, reveal that there does exist a classifier subset
which has potential to outperform full ensemble – only the prediction
of that subset fails. Another interesting observation is that, for all
three performance metrics, the empirical bounds on best and worst
performance approach each other for increased subset size. This
implies that, at least with these base classifiers, using a high number
of classifiers leads to more stable fusion system, which is intuitively
reasonable. Averaging “similar” spectral system scores, which are
still independent, helps in reducing uncertainty of the fused score
[12].

Table 4 summarizes the main results on NIST 2008 and NIST
2010 data, indicating best individual classifier, fusion of all clas-
sifiers, best non-cheating subset fusion and the best oracle subset.
The subsets are searched from all the 212 − 1 = 4095 possible fu-
sion combinations. The indices of the included classifiers are also
shown. As seen, the optimum subsets include K = 5 classifiers (it
is a coincidence that the real and oracle subset sizes are equal). It
is interesting to note that only one classifier (no 6) is common to
the real and oracle sets. The DET curve for the NIST 2010 data in
Fig. 3 agrees with the results in Fig. 2. That is, although the real
subset selection fails to improve over the full ensemble, the oracle
suggests that there is room for improvement, especially at low false
alarm rates.

5. CONCLUSION

The results confirm the view that combination of S-cal and linear fu-
sion training with logistic regression training performs well. Fusion,
in general, leads to remarkable improvements over the best individ-
ual classifier. We found that increasing classifier pool size yields
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Fig. 3: Results on the NIST SRE 2010 evalset.

Table 4: Comparing different classifier subset selections. The best
individual classifier is selected according to ActDCF.

Fusion Included EER MinDCF ActDCF
classifiers (%) (x1000) (x1000)

Best individual 12 5.40 0.4798 0.5144
Devset Full ensemble all 2.12 0.3498 0.3795
(2008) Best real subset {1,2,3,4,6} 2.51 0.3689 0.5031

Best oracle subset {5,6,7,9,11} 3.18 0.3124 0.3124
Best individual 2 4.12 0.5267 0.5561

Evalset Full ensemble all 2.58 0.3089 0.3661
(2010) Best real subset {1,2,3,4,6} 2.45 0.3644 0.7019

Best oracle subset {1,4,6,8,10} 2.22 0.2715 0.2740

more reliable fusion as compared to using a subset. Although classi-
fier subset selection did not improve accuracy over the full ensemble,
the oracle result indicated potential of the method. It would be there-
fore interesting to study if the well-fusing classifier subsets could be
better predicted either at the development phase, or during runtime.
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