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Abstract. This paper describes the design and implementation of a practical 
automatic speaker recognition system for the CSLP speaker recognition 
evaluation (SRE). The speaker recognition system is built upon four subsystems 
using speaker information from acoustic spectral features. In addition to the 
conventional spectral features, a novel temporal discrete cosine transform 
(TDCT) feature is introduced in order to capture long-term speech dynamic. 
The speaker information is modeled using two complementary speaker 
modeling techniques, namely, Gaussian mixture model (GMM) and support 
vector machine (SVM). The resulting subsystems are then integrated at the 
score level through a multilayer perceptron (MLP) neural network. Evaluation 
results confirm that the feature selection, classifier design, and fusion strategy 
are successful, giving rise to an effective speaker recognition system. 

1   Introduction 

Speaker recognition is the process of automatically establishing personal identity 
information by analyzing speech utterances [1]. The goal of speaker recognition is to 
identify people by voice. This paper describes and evaluates an automatic speaker 
recognition system that addresses two different tasks, namely, speaker verification 
and speaker identification. Speaker verification is the task of validating a claimed 
identity, whereas speaker identification refers to the task of determining who is 
speaking [1, 2]. Speaker recognition technology has been found important in various 
applications, such as, public security, anti-terrorism, justice, and telephone banking. 

As part of the 5th International Symposium on Chinese Spoken Language 
Processing (ISCSLP 2006), a special session on speaker recognition is organized by 
the Chinese Corpus Consortium (CCC) [3]. The CSLP speaker recognition evaluation 
(SRE) aims to provide a common platform for researchers to evaluate their speaker 
recognition systems. The focus of the CSLP SRE is on Chinese speech, as opposed to 
some other well-known SRE events, e.g., those carried out by National Institute of 
Standards and Technology (NIST) [4], which focus on English speech. The CSLP 



 The IIR Submission to CSLP 2006 Speaker Recognition Evaluation 495 

2006 SRE includes text-dependent and text-independent speaker recognition tasks 
under single-channel and cross-channel training-testing conditions. In this paper we 
focus on the text-independent speaker verification and identification tasks. 

The development and evaluation sets provided for the text-independent tasks of the 
CSLP 2006 SRE are derived from the CCC-VPR2C2005-1000 corpus (CCC 2-
channel corpus for voiceprint recognition 2005–1000 speakers) [3]. The development 
set contains telephone speech utterances from 300 male speakers, while the evaluation 
set involves 700 male speakers. The speakers in the two datasets do not overlap. In 
both datasets, the duration of training samples is guaranteed to be approximately 
longer than 30 seconds, however, the test segments are much shorter. 

Table 1. CSLP 2006 SRE evaluation categories 

  Text independent Text-dependent 

Single channel ×  
Speaker verification 

Cross channel ×  

Single channel ×  
Speaker identification 

Cross channel ×  

 

Fig. 1. An automatic speaker recognition system built upon four subsystems. Three different 
features (MFCC, LPCC, and TDCT) and two different speaker modeling techniques (SVM and 
GMM) are employed in the subsystems. 

This paper describes the design and implementation of a practical automatic 
speaker recognition system for the CSLP 2006 SRE. The Speech and Dialogue 
Processing Group of Institute for Infocomm Research (IIR) participates in four (see 
checked boxes in Table 1) out of the six evaluation categories (see shaded boxes in 
Table 1) of this year SRE event. Our submission is built upon four subsystems using 
speaker information from acoustic spectral features [2, 5, 6, 7], as illustrated in Fig. 1. 
The speaker information represented in various forms is modeled using Gaussian 
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mixture model (GMM) [7, 8] and support vector machine (SVM) [9, 10]. Feature 
extraction and speaker modeling techniques employed in the subsystems are 
described in Section 2 and Section 3, respectively. The specifications of the 
subsystems, together with the system integration issue, are then detailed in Section 4. 
In Section 5, the evaluation results are presented. Finally, Section 6 concludes the 
paper. 

2   Feature Extraction 

As the front-end of the automatic speaker recognition system, the function of the 
feature extraction is to parameterize an input speech signal into a sequence of feature 
vectors [2]. The purpose of such transformation is to obtain a new representation of 
the speech signal, which is more compact and allows a tractable statistical modeling. 
Our speaker recognition system uses two basic sets of acoustic spectral features, 
namely, the mel-frequency cepstral coefficients (MFCC) and the linear prediction 
cepstral coefficients (LPCC) [2, 5, 7]. A third set of features is derived from the 
MFCC features by taking the discrete cosine transform (DCT) along the time axis, 
hence the name temporal DCT (TDCT) features [6]. 

2.1   Mel-Frequency Cepstral Coefficients 

Prior to feature extraction, the input speech signal is pre-emphasized using a first 
order finite impulse response filter (FIR) with its zero located at 0.97z = . The pre-
emphasis filter enhances the high frequencies of the speech signal, which are 
generally reduced by the speech production process [7].  

MFCC feature extraction begins by applying a discrete short-time Fourier 
transform (STFT) on the pre-emphasized speech signal, using a 30 ms Hamming 
window with 10 ms overlap between frames. The magnitude spectrum of each speech 
frame, in the frequency range of 0 to 4000 Hz, is then weighted by a set of 27 mel-
scale filters [5]. The mel-scale filter bank emulates the critical band filters of human 
hearing mechanism. Finally, a 27-point DCT is applied on the log energy of the mel-
scale filter bank outputs giving rise to 27 cepstral coefficients. The first coefficient is 
discarded, and the subsequent 12 coefficients are taken to form a cepstral vector. 
Delta and delta-delta features are computed over a 1±  frame span and appended to 
the cepstral vector, forming a 36-dimensional MFCC feature vector. The delta and 
delta-delta features contain the dynamic information about the way the cepstral 
features vary in time. 

2.2   Linear Prediction Cepstral Coefficients 

In addition to the MFCC feature, the input speech signal is also parameterized in 
terms of LPCC, which we believe is able to provide complementary information to 
the MFCC features. Similar to that of the MFCC feature, the LPCC feature is 
extracted from the pre-emphasized speech signal using a 30 ms Hamming window 
with 10 ms overlap between frames. For each of the speech frame, an 18th order 
linear prediction analysis is performed using the autocorrelation method. Finally, 18 
cepstral coefficients are derived from the LP coefficients. Dynamic information of the 
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features is added by appending delta features, resulting in a 36-dimensional LPCC 
feature vector. Note that we do not include delta-delta features. Preliminary 
experiment on the NIST 2001 SRE dataset shows that a better performance can be 
achieved with the current setting. 

2.3   Temporal Discrete Cosine Transform 

In MFCC features, the delta and delta-delta features capture short-term dynamic 
information in the interval ranging from 50 to 100 ms. However, this interval is 
insufficient for longer term “high-level” features like prosodic gestures, and syllable 
usage. TDCT encodes the long-term dynamic of the cepstral features by taking the 
DCT over several frames [6]. Fig. 2 illustrates the TDCT features computation 
procedure. Each cepstral coefficient is considered as an independent signal which is 
windowed in blocks of length B. DCT is applied on each block, and the lowest L DCT 
coefficients, which contain most of the energy, are retained. Suppose we have M 
coefficients in the MFCC feature vector, the DCT coefficients can be stacked to form 
a long vector of dimensionality M L×  . The next TDCT vector is computed by 
advancing the block by one frame. Experimental results show that a block size of B = 
8 frames, and L = 3 for the DCT, give the best performance on the NIST 2001 SRE 
dataset [6]. The resulting TDCT feature vector has a dimension of 36×3 = 108, and 
corresponds to a total time span of 250ms. 
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Fig. 2. Illustration of the TDCT features computation [6] 

2.4   Voice Activity Detection 

An energy-based voice activity detector (VAD) is applied after feature extraction. The 
VAD decides which feature vectors correspond to speech portions of the signal and 
which correspond to non-speech portions (i.e., silence and background noise). In 
particular, we use a GMM with 64 components to model the energy distribution of the 
speech frames pertaining to each of the two classes. The GMMs are trained 
beforehand using the development set of the NIST 2001 SRE corpus. The decision is 
then made through a likelihood ratio test, whereby speech frames with their energy 
having a higher likelihood with the speech GMM are retained, while those having a 
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higher likelihood with the non-speech GMM are discarded. Recall that a TDCT 
feature vector is derived from a block of B MFCC feature vectors. If most of the 
MFCC facture vectors in a certain block belong to speech portion, then the TDCT 
feature vector derived from that specific block can be determined to be corresponding 
to speech portion. In our implementation, a TDCT feature vector is retained if more 
than 40% of the MFCC feature vectors in the block belong to speech portion. Finally, 
mean subtraction and variance normalization are applied to the outputs of the VAD to 
produce zero mean, unit variance MFCC, LPCC, and TDCT features.  

3   Speaker Modeling and Pattern Matching 

Given a speech utterance represented in terms of spectral feature vectors, as described 
in the previous section, the next step is to model the speaker specific information 
embedded in the given set of feature vectors. Two different approaches to speaker 
modeling and verification, as listed below, are employed in our system. 

3.1   GMM-UBM 

The GMM-UBM subsystems in Fig. 1 uses the standard set-up described in [7, 8]. A 
GMM is a weighted combination of a finite number of Gaussian distributions in the 
following form 

( ) ( )
1

|
K

k k
k

p w pλ
=

=∑x x , (1) 

where kw  is the mixture weight associated with the kth Gaussian component given by 
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In the above equations, each of the Gaussian densities is parameterized by a 1D ×  
mean vector kμ  and a D D× covariance matrix kΣ , where D  is the dimension of the 
feature vector x . The mixture weights of all the K mixture components are by 
definition 0≥  and have to satisfy the constraint 

1
1

K

kk
w

=
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parameters of the mixture density, i.e., { }, ,k k kwλ = μ Σ  for 1,2, ,k K= … , represent a 
speaker model in the feature space of x . 

For a given test segment { }1 2, , , NX = x x x… , the average log likelihood of the 
speaker model λ  for the test segment, assuming that the feature vectors nx  are 
independent, is given by 

( ) ( )
1

1
log | log |

N

n
n

p X p
N

λ λ
=

= ∑ x . (3) 

Notice that log-likelihood value is divided by N, which essentially normalizes out 
the duration effects of test segments with different length. The final score is then 
taken as a log likelihood ratio, as follows 
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( ) ( )UBMlog  LR log | log |p X p Xλ λ= − , (4) 

where UBMλ  is the universal background model (UBM) that represents a background 
set of speaker models. For computational simplicity, we use fast GMM-UBM scoring 
algorithm [8] using only the top 20 mixture components. It should be emphasized that 
the fast scoring algorithm makes sense only if the target model is adapted from the 
background model, as explained below. 

In the training phase, speech segments from several background speakers are 
combined to train a UBM, thereby allowing the UBM to represent the speaker-
independent distribution of features. The parameters of the UBM UBMλ  are estimated 
by maximum likelihood estimation, using the expectation-maximization (EM) 
algorithm. A speaker model λ  is then derived by adapting the parameters of the 
UBM UBMλ  using the speech segment from the speaker by means of maximum a 
posteriori (MAP) training [8]. For numerical reasons, the covariance matrices 
pertaining to the Gaussian components are assumed to be diagonal. 

3.2   Spectral SVM 

SVM is a two-class classifier. For a given set of training samples with positive and 
negative labels, the SVM models the hyperplane that separates the two classes of 
samples. In the context of speaker verification, SVM models the boundary between a 
speaker and a set of background speakers that represent the population of impostors 
expected during recognition. The idea is different from the GMM-UBM, which 
models the distribution of the two classes. Furthermore, SVMs are non-probabilistic 
and use a different training philosophy compared to GMM. With a proper fusion 
strategy, both classifiers would complement each other in speaker recognition task 
[10]. 

The spectral SVM classifier in Fig. 1 closely follows the work reported in [9, 10], 
which greatly relies on polynomial expansion and the generalized linear discriminant 
sequence (GLDS) kernel. The central element of the GLDS kernel is a kernel inner 
product matrix defined as follows 

( ) ( ){ }TE≡R b x b x , (5) 

where ( )b x  denotes the polynomial expansion of the feature vector x. For example, 
the second-order polynomial expansion of a two-dimensional vector [ ]1 2,

T
x x≡x  is 

given by ( ) 2 2
1 2 1 1 2 21, , , , ,

T
x x x x x x⎡ ⎤= ⎣ ⎦b x . For computational simplicity, it is 

customary to assumed that the matrix R  is diagonal, i.e., [ ]diag≈ =R r Λ , where 
the vector r  is given by 
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1
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M
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m
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In the above equation, { } 1

M

m m=
x  denotes a pool of M  feature vectors from all the non-

target background speakers, and [ ].diag  denotes the operation forming a diagonal 
matrix from a column vector and vice versa. 
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During enrollment, all the utterances in the background and the utterance for the 
current speaker under training are represented in terms of average expanded feature 
vectors in the following form  

( )
1

1 N

av n
nN =

⎡ ⎤= ⎢ ⎥
⎣ ⎦
∑b b x , (7) 

where N denotes the length of any specific utterance. These average expanded feature 
vectors are then normalized in the form 1 2

av
−Λ b , assigned with appropriate label (i.e., 

+1 for target speaker, -1 for other competing speakers in the background), and finally 
used for SVM training. The output of the training is a set of support vectors ib , 
weights iα , and a bias d. A speaker model w  is then obtained by collapsing all the 
support vectors, as follows 
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where [ ], 0, , 0
T

d=d …  and l  denotes the number of support vectors resulted from 
the discriminative training. In the verification phase, for a given test segment 

{ }1 2, , , NX = x x x… , and a hypothesized speaker w , the classifier score is obtained 
as the inner product between the speaker model w  and the average expanded feature 
vector avb  pertaining to the test segment X, as follows 

score T
av= w b . (9) 

4   System Specifications 

Given the approaches described in Section 2 and Section 3, four separate subsystems 
are constructed forming an ensemble of classifiers, as illustrated in Fig. 1. The four 
classifiers are (i) MFCC GMM-UBM, (ii) TDCT GMM-UBM, (iii) MFCC SVM, and 
(iv) LPCC SVM. For a given speech utterance, pattern matching is performed in the 
individual classifier, and a final score is obtained by combining the scores from all the 
subsystems. The specifications of the subsystems and fusion strategy are described 
below. The specifications presented below are obtained through numerous 
experiments carried using the development set of the CSLP SRE corpus, and some 
other corpora like CCC-VPR2C2005-6000 (CCC 2-channel corpus for voiceprint 
recognition 2005 – 6000 speakers) and NIST SRE corpus [4]. 

4.1   GMM-UBM 

We have two separate GMM-UBM subsystems. The first one is based on MFCC, 
whereas the second one uses the new TDCT features described in Section 2.3. The 
UBMs are trained from the development set of the CSLP SRE corpus, which is 
guaranteed to be disjoint with the evaluation set [3]. 

Separate UBMs are used for the single-channel and cross-channel tasks. For single-
channel task, we derive a 768-component UBM by training independently two 
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channel-dependent UBMs of size 512 and 256 components, respectively, for landline 
and cellular channel types. The final UBM model is obtained by aggregating the 
Gaussian components of the two UBMs, and normalizing the mixture weights so that 
they sum to one. It should be noted that, channel-dependent UBM is not applicable 
here because channel-type information is not available for the evaluation data. On the 
other hand, a different composition is used for cross-channel task. In particular, the 
UBM has 768 components (1024 components for TDCT GMM-UBM) with 512 
components trained from the landline data, and the remaining 256 components (512 
components for TDCT GMM-UBM) trained from cellular data. The speaker models 
are then obtained by adapting the UBM parameters towards the speaker’s training 
data using MAP adaptation principle. Therefore, the speaker models have the same 
number of Gaussian components with the UBM. 

4.2   Spectral SVM 

Two different sets of acoustic spectral features, namely MFCC and LPCC, are used 
thereby forming two separate SVM subsystems. The background or anti-speaker data 
consist of 4000 utterances extracted from CCC-VPR2C2005-6000. The evaluation set 
(for text-independent verification and identification tasks) of the CSLP SRE is 
derived from the CCC-VPR2C2005-1000, which is a subset of the CCC-VPR2C2005-
6000 corpus. The CCC-VPR2C2005-1000 subset is discarded from the CCC-
VPR2C2005-6000 beforehand so that the 4000 utterances used as the background 
would not overlap with the evaluation data. 

Similar background data is used for the single-channel and cross-channel tasks. For 
each utterance in the background and for the target speaker, an average expanded 
feature vector is created. All monomials up to order 3 are used, resulting in a feature 
space expansion from 36 to 9139 in dimension. These average expanded feature 
vectors are used in the SVM training. The commonly available SVMTorch [11] is 
used for this purpose. The result of the training is a vector w  of dimension 9139 
which represents the desired target speaker model. 

Test normalization (T-norm) method [12] is used to normalize the score. A 
collection of 500 cohort models are derived from development set of the CSLP SRE 
corpus. Scores from the cohort models are used to normalize a hypothesized speaker 
score for a given test segment. Score normalization is accomplished by subtracting the 
mean and dividing by the standard deviation of the scores produced by the cohort 
models in response to a given test segment. In order to obtain an accurate estimation 
of the mean and standard deviation parameters, the population of the cohort models 
has to be large enough. Furthermore, cohort models have to closely resemble the 
target speaker models. We believe that it is the best to establish the cohort models 
from the development set of the CSLP 2006 SRE. 

4.3   Subsystems Integration 

For a given speech utterance and a hypothesized speaker, pattern matching is 
performed separately in the four classifiers, giving rise to a 4-dimensional score 
vector. A final score is then derived from the score vector through a multilayer 
perceptron (MLP) neural network. The scores from all the subsystems are normalized 
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to zero mean and unit variance before passing to the neural network. The MLP has 
100 hidden neurons and one output neuron with sigmoid activation function. 
Conjugate gradient algorithm is used for the neural network training.  

The development set of the CSLP SRE corpus is used to train two neural networks 
for score fusion, one for the single-channel verification and identification tasks, and 
the other one for cross-channel verification and identification tasks.  

For speaker verification, the threshold (for the true/false decision) is set at a point 
whereby the following detection cost function (DCF) is minimized: 

( )DET Miss Miss Target FalseAlarm FalseAlarm Target1C C P P C P P= × × + × × − , (10) 

where MissP  and FalseAlarmP  are miss and false-alarm probabilities, respectively, and the 
parameters Miss 10C = , FalseAlarm 1C = , and Target 0.05P =  are as indicated in the 
evaluation plan [3]. 

The speaker identification task is handled through a ranking and pruning 
procedure. First, a MLP score is derived for each pair of test sample and model. For 
each test sample, we rank the corresponding trial models with their MLP scores in 
descending order. Second, we extract all the pairs of test sample and its top-best 
matching model, rank them in descending order. The top 50% of the pairs are selected 
as the genuine test trials. 

5   Evaluation Results 

Fig. 3 and Fig. 4 depict the detection error tradeoff (DET) curves of the individual 
subsystems for the single-channel and cross-channel verification tasks, respectively. 
As mentioned earlier, these subsystems are fused at the score level using a neural 
network classifier. The neural networks are trained using the provided development 
set. The results of fusion are shown in Fig. 3 and Fig. 4 as well. The characteristics of 
the development set matches well with that of the evaluation set thereby giving a 
satisfactory fusion result when the trained neural networks are used for the evaluation 
dataset. The final decision thresholds for the verification tasks are also determined 
using the development set. On the other hand, the thresholds for the identification 
tasks is set according to 1:1 in-set and out-of-set ratio stated in the evaluation plan [3]. 
That is, the speaker identification tasks are performed in an open set manner. 

Table 2 summarizes the performance of our submission to the CSLP 2006 SRE 
based on the actual DCF value and the identification correctness rate [3] for 
verification and identification tasks, respectively. As expected, channel mismatch 
makes the recognition tasks more difficult. The degradation in performance can be 
observed from both the DCF value and the identification correctness rate. 

Table 3 summarizes the equal-error rates (EERs) and the minimum DCF values for 
the individual and fused scores. Clearly, the subsystems fuse in a complementary way 
reducing error rates substantially. Taking the LPCC SVM as baseline, the fused 
systems give relative EER improvements of 52% and 22% for single-channel and 
cross-channel conditions, respectively. On the other hand, the relative improvements 
in minimum DCF for single-channel and cross-channel verification tasks are 57% and 
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Fig. 3. DET curves for single-channel verification task 

 

Fig. 4. DET curves for cross-channel verification task 

18%, respectively. The gains in performance are due both to the different features 
(MFCC, LPCC, and TDCT) and the different speaker modeling techniques (SVM and 
GMM). From the DET curves, it can be noted that SVM and GMM complement each 
other at different threshold values. In particular, SVM performs best at high threshold 
values (i.e., upper left corner), while GMM dominates at low threshold values (i.e.,  
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Table 2. Performance of IIR submission to the 2006 CSLP SRE based on the DCF value and 
the identification correctness rate. 

 Actual DCF 
value (×100)

Identification 
Correctness Rate 

Single-Channel Verification Task 0.90  
Cross-Channel Verification Task 6.42  
Single-Channel Identification Task  97.16% 
Cross-Channel Identification Task  86.45% 

Table 3. Comparison of EER and minimum DCF for IIR individual subsystems/final system in 
speaker verification tasks 

Single-channel verification task Cross-channel verification task 
System 

EER (%) Min DCF (×100)  EER (%) Min DCF (×100)  

MFCC GMM-UBM 2.54 3.44 7.70 10.22 

MFCC SVM 2.31 2.31 6.71 8.10 

TDCT GMM-UBM 2.85 3.89 6.69 8.68 

LPCC SVM 1.81 2.09 7.03 7.79 

Fusion 0.86 0.90 5.50 6.42 

lower left corner). It can also be observed that SVM performs best with LPCC 
features. On the other hand, GMM performs best with MFCC and TDCT features for 
single and cross-channel tasks, respectively, mainly due to the difference in the 
UBMs. Further research into optimizing features for each of the modeling techniques 
should be carried out. 

6   Conclusions 

A description of a speaker recognition system has been presented as it was developed 
for the CSLP 2006 SRE. Our submission was built upon three different acoustic 
spectral features and two different speaker modeling techniques giving rise to four 
subsystems, namely, MFCC GMM-UBM, TDCT GMM-UBM, MFCC SVM, and 
LPCC SVM. These subsystems were combined at the score level through a MLP 
neural network in a complementary way. The fused system achieved an EER of 
0.86% and 5.50% for single-channel and cross-channel verification tasks, 
respectively. Promising results were also obtained for identification tasks, where 
identification rates of 97.16% and 86.45% were obtained under single-channel and 
cross-channel conditions, respectively. The SRE results confirm a successful design 
and implementation of speaker recognition system. Nevertheless, continuous effort 
that makes use of the common platform provided by the CSLP SRE event should be 
carried out. 
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