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Abstract
In voice conversion, frame-level mean and variance normal-
ization is typically used for fundamental frequency (F0) trans-
formation, which is text-independent and requires no parallel
training data. Some advanced methods transform pitch con-
tours instead, but require either parallel training data or syllabic
annotations. We propose a method which retains the simplic-
ity and text-independence of the frame-level conversion while
yielding high-quality conversion. We achieve these goals by
(1) introducing a text-independent tri-frame alignment method,
(2) including delta features of F0 into Gaussian mixture model
(GMM) conversion and (3) reducing the well-known GMM
oversmoothing effect by F0 histogram equalization. Our ob-
jective and subjective experiments on the CMU Arctic corpus
indicate improvements over both the mean/variance normaliza-
tion and the baseline GMM conversion.
Index Terms: Voice conversion, F0 transformation, GMM, his-
togram equalization, text-independence

1. Introduction
Voice conversion [10] is the task of converting one’s voice
(source) so that it sounds as if spoken by another person (tar-
get). Voice conversion systems operate on two independent
phases, training and conversion phases. In the training phase, a
conversion function between the vocal spaces of the two speak-
ers is established by using a set of training utterances. In the
conversion phase, an unseen utterance is presented to the sys-
tem; the parameters of this utterance are then converted using
the learned conversion function and passed to a vocoder which
reconstructs an audible speech signal. For the conversion func-
tion, the de facto method is Gaussian mixture modeling (GMM)
of the joint probability of the source and target features [6].

The context of the present work is prosody transformation
in voice conversion, in particular transformation of the fun-
damental frequency or F0, the acoustic correlate of the vocal
folds’ vibration frequency. While conversion of the spectrum
has been extensively studied [11, 14], the number of F0 trans-
formation studies in voice conversion is surprisingly small (see
Table 1). The most common approach, given in the first row of
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Table 1, is to transform the mean and variance of the (log-)F0
distribution of the source speaker to match the target speaker’s
mean and variance. This is implemented by a straightforward
linear transformation of the frame-level (or instantaneous) F0
values. Extensions of this approach, but still operating on in-
stantaneous F0, include higher-order polynomial [1], GMM-
based mapping [5] and piecewise linear transformation based
on hand-labaled intonational target points [3].

Transformation methods for the instantaneous F0 are sim-
ple and work well for speakers with “similar” intonation. For
speakers with drastically different intonation patterns, however,
it might be advantageous to convert the F0 contours (intona-
tion contours) instead [1,4,5,9]. In these methods, the prosodic
segments (e.g. syllables or entire utterances) are represented ei-
ther as variable-length sequences processed by dynamic time
warping (DTW) [1] or, alternatively, by parameterizing each
prosodic segment as a fixed-dimensional vector [4, 9] which is
computationally more feasible. For an extensive objective and
subjective comparison of five different F0 transformation meth-
ods, including instantaneous and contour-based methods, refer
to [5].

Even though the contour-based conversion may outperform
the instantaneous conversion methods [5], care must be taken:
since the intonation contour depends on both lexical factors
(e.g. interrogative vs declarative sentence) and various paralin-
guistic factors (e.g. language and speaker’s mood), it is difficult
to isolate only the speaker-dependent component for conversion
purposes. Consequently, if the training data and the utterance
under conversion do not match in the lexical and paralinguistic
attributes, the converted utterance is expected to sound unnat-
ural. Additionally, some of the methods require syllable-level
annotation, and, importantly, majority of them requires a paral-
lel training corpus. That is, corpus where the source and target
speaker read the same utterances. Note that this is not the case
for the baseline mean and variance conversion method which
enjoys complete text-independency. In [9], a non-parallel train-
ing via maximum likelihood linear regression (MLLR) conver-
sion was proposed but the method still requires syllable annota-
tion.

In this paper, we propose a system for F0 transformation
that is completely text-independent: it requires neither parallel
training data nor any phonetic or syllable-level transcriptions as
hinted in Table 1. The method is thus more practical for adapt-
ing a voice conversion system to new speakers and languages or
for cross-language conversion [12]. To achieve these require-
ments, we combine three independent ideas. Firstly, a new
method is proposed for improving frame alignment for non-
parallel data; secondly, delta features of F0 are incorporated



Table 1: Approaches for F0 modification in voice conversion. The methods have been grouped according to the conversion domain and
whether they require parallel training or any additional data (DCT = discrete cosine transform, CART = classification and regression
tree, HEQ = histogram equalization).

Approach Conversion domain Parallel data required? Additional data
Mean/var conversion [5] Frame-level No -
Polynomial conversion [1, 5] Frame-level Yes -
GMM conversion [5] Frame-level Yes -
Intonation marks + piecewise linear mapping [3] Frame-level Yes Intonation marks
Contour codebook + DTW [1, 5] Utterance contour Yes -
Weighted contour codebook [5, 16] Local contour Yes -
Syllable features + MLLR adaptation [9] Local contour No Syllable marks
Syllable DCT codebook + CART [4] Local contour Yes Syllable marks
Multi-space prob. distrib. HMM + ∆F0 [17] Utterance contour Yes -
Tri-frame GMM + ∆F0 + HEQ [Proposed] Frame-level No -

with GMM-based conversion to improve naturalness; thirdly,
histogram equalization (HEQ) is used for converting the entire
F0 distribution and reducing the well-known over-smoothing
problem in GMM-based conversion [15].

2. Baseline F0 Transformation
The simplest F0 conversion is to equalize the means and vari-
ances of the source and target F0 distributions. Denoting the F0
value of a single frame of the source speaker by x, the converted
value x′ is obtained as,

x′ =
σy

σx
(x− µx) + µy, (1)

where µx and µy are the means and σx and σy are the stan-
dard deviations of the training data for the source and the target
speakers, respectively. This method only changes the global F0
level and dynamic range while retaining the shape of the source
contour. Note that the source and target speaker distributions are
modeled independently of each other. Another approach, origi-
nally developed for spectral conversion [6] but also applied for
prosody conversion [5], is to model the joint distribution of the
source and target feature vectors by a GMM. The conversion
function is given by,

x′ = F (x) =

K∑

k=1

pk(x)·
[
µy

k +Σyx
k (Σxx

k )−1(x−µx
k)

]
, (2)

where pk(x) = αk ·N(x, µx
k,Σxx

k )/
∑K

l=1 αl·N(x, µx
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l )
is the posterior probability of vector x belonging to the kth
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k
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k

]
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k Σxy
k

Σyx
k Σyy

k

]
are the

mean vectors and covariance matrices for the kth Gaussian of
the joint distribution. For this method we are required to have
paired source and target training vectors. The pairing can be
established via parallel training or, as in this paper, by a text-
independent frame-alignment procedure.

3. Proposed F0 Transformation System
The proposed F0 transformation system (Fig. 1) consists of
three independent sub-components. Firstly, we relax the re-
quirement of parallel training data by using a text-independent
frame alignment procedure. Secondly, we incorporate delta co-
efficients into the conversion to improve naturalness, and fi-
nally, we address the GMM oversmoothing problem [15] by a

histogram-based post-processing technique.

Speech
analysis

Speech
analysis

Frame alignment using tri-frame

MFCCs

F0 & MFCC F0 & MFCC

GMM training

Aligned F0 pairs

Source speech Target speech

Source
speaker’s

F0

Train HEQ 

mapping
Converted
source F0

Target

speaker’s
F0

Speech
analysis

Testing
speech

F0

Converted F0
Speech

synthesis

GMM conversion

function

HEQ mapping
function

GMM
conversion

function

HEQ mapping
function

Converted

F0

Spectrum

Converted
speech

Training phase

Conversion phase

Figure 1: Proposed text-independent F0 transformation system.

3.1. Tri-Frame Alignment for Non-Parallel Data

The most common approaches for voice conversion rely on par-
allel training data for the source and the target speakers which
is not feasible in some applications. Although automatic speech
recognition (ASR) techniques could be used for pairing frames
for non-parallel training data, this is both complex and subject
to ASR errors. In this study, we adopt a text-independent frame
alignment proposed in [2] for spectral features, where the con-
version function and frame alignment are jointly optimized in
an iterative manner. We enhance the method by using cepstral
mean and variance normalization (CMVN) for speaker normal-



ization and by using contextual information to help in align-
ment. Contextual features are routinely used in speech and
speaker recognition applications to improve robustness, there-
fore we expand the cepstral vectors (12 MFCCs without en-
ergy + ∆) by their left and right acoustic contexts. We dub
this method as tri-frame alignment. The procedure is carried
out only for voiced frames since F0 is undefined for unvoiced
segments. A source MFCC vector is paired up with its nearest
neighbor (target MFCC vector) in Euclidean distance sense.

3.2. Delta Features of F0 for Naturalness

It appears that contextual features are useful not only for ro-
bust frame alignment but also for the naturalness of the con-
verted prosody. In the baseline GMM-based conversion (2),
each frame is converted independently from each other but here
we advocate the inclusion of the local time derivative features
or delta parameters of F0. The delta features have been used for
spectrum conversion [14] with excellent results and, recently, in
F0 transformation as well [17]. We are, however, unaware of the
approach being used in a non-parallel training scenario which is
the theme of the current paper. We follow the same approach as
in [14] which we shortly summarize in the following.

To use delta features, the F0 values are appended with
their delta coefficients, followed by joint density GMM train-
ing as in the conventional method [11]. In the conversion
phase, given the source speaker’s F0 sequence appended with
the deltas, X = (x1,x2, . . . ,xN ), and the joint GMM den-
sity model λ, the optimized GMM mixture sequence m =
(m1, . . . , mN ) can be determined by maximizing the likeli-
hood p(X|m, λ). Having the optimized sequence, the con-
verted F0 values are determined by maximizing the (log-) like-
lihood p(X′|X,m, λ) with respect to X′. The solution is given
by X

′
= (WTD−1

m W)−1WTD−1
m Um, where W is the ma-

trix for computing the static and delta features [14] and

Um =
[
U1(mk1),U2(mk2), . . . ,UN (mkN )

]

D−1
m = diag

[
D(mk1)

−1,D(mk2)
−1, . . . ,D(mkN )−1]

Un(mk) = µy
k + Σyx

k (Σxx
k )−1(xt − µx

k)

D(mk) = Σyy
k −Σyx

k (Σxx
k )−1Σxy

k .

3.3. Postprocessing by Histogram Equalization

Originally used in image processing to automatically balance
image contrast, histogram equalization (HEQ) is a method for
converting the histogram of any random variable to match a
given distribution. Due to the statistical averaging in GMM-
based conversion, the converted F0 contours tend to be over-
smoothed [15]. In this study, we apply HEQ to reduce over-
smoothing effect. Specifically, we apply HEQ as a post-
processing method after the GMM-based conversion to equalize
the converted and target F0 distribution.

For the source speaker’s F0 sequence X =
{x1, x2, ..., xN}, we first sort X and find the mini-
mum (xmin) and the maximum (xmax). The range
[xmin, xmax] is then divided into L bins uniformly:
xmin = a1 < a2 < ... < aL+1 = xmax with intervals
Ai = [ai, ai+1). Based on these bins, histogram and the
corresponding cumulative distribution function (CDF) are then
constructed as

px(i) =
ni

N
and fx(i) =

i∑
j=1

nj

N
,

where ni is the count of values in bin Ai. Using the same
method, we find the bins Bi, the CDF gy(i) and the histogram
(Bi, gy(i)) from the target speaker’s training data Y . With
equal increments of CDF fx(i) and gy(i), a mapping (Ai, Bi)
can be established. In the conversion phase, the converted F0
value after the GMM-based conversion, x, is further converted
using the mapping

x′ =
bi+1 − bi

ai+1 − ai
(x− ai) + bi, (3)

where ai is the nearest bin to x and bi is the corresponding
target speaker’s bin. Note that HEQ is both nonparametric and
nonlinear transformation.

4. Experiments
4.1. Experimental Setup

We conduct voice conversion experiments on the CMU Arctic
corpus [8]. Subsets of RMS, AWB (Scottish English accent)
and SLT speakers are used. Each subset consists of 70 utter-
ances from which 50 are used for training and 20 for conversion.
We conduct RMS to AWB (RMS→AWB) and AWB to SLT
(AWB→SLT) conversions. RMS→AWB is male-to-male, stan-
dard English to accented English conversion, and AWB→SLT
is male-to-female, accented English to standard English conver-
sion. We utilize the robust pitch tracking algorithm (RAPT) [13]
and STRAIGHT [7] for speech analysis and synthesis.

Both objective and subjective evaluation are conducted to
assess the performance of the proposed approach. For the objec-
tive evaluation, Pearson’s correlation coefficient (−1 ≤ r ≤ 1)
is used to measure similarity of the target and the converted
F0 contours over all voiced frames. High r indicates similar-
ity of the two contours, ideal value being the maximum r = 1.
Since the converted F0 contour is not time-aligned with the tar-
get F0 contour, dynamic time warping (DTW) alignment using
MFCCs is performed prior to correlation computation.

For the GMM-based conversion, we use K = 4 Gaussians
and for the HEQ-based post-processing we use L = 30 his-
togram bins which were set in preliminary experiments. In com-
parison, K = 8 Gaussians were used for 90 training utterances
in [4].

4.2. Objective Evaluation Results

We first compare the proposed tri-frame alignment to mono-
frame alignment using only one frame context. The results in
Table 2 indicate that tri-frame slightly increases the correlations
for both conversions. We next study the effects of adding F0
deltas and the HEQ-based postprocessing by using the tri-frame
based alignment. The results in Table 3 indicate the importance
of delta coefficients. The HEQ post-processing also increases
the correlation for both conversions.

Table 2: Results for mono- and tri-frame based alignment in
GMM conversion (no F0 deltas).

RMS→AWB AWB→SLT
Alignment correlation correlation
Mono-frame 0.623 0.576
Tri-frame 0.626 0.594

As a summary, Table 4 contrasts the full proposed system
to the two baseline methods (mean/var conversion and mono-



Table 3: Results for GMM with deltas and/or HEQ.
RMS→AWB AWB→SLT

∆F0 HEQ correlation correlation
No No 0.626 0.594
No Yes 0.639 0.594
Yes No 0.647 0.612
Yes Yes 0.655 0.618

Table 4: Comparison of the baseline and the proposed methods.

RMS→AWB AWB→SLT
Method correlation correlation
Baseline 1: Mean/var 0.638 0.584
Baseline 2: Mono-frame GMM 0.623 0.576
Tri-frame GMM+∆F0 + HEQ 0.655 0.618

frame GMM). The proposed system gives highest correlations.
Overall, the correlations are not perfect but can be considered
high, given the requirement of text-independence.

4.3. Subjective Evaluation

For the subjective evaluation part we conducted a number of
ABX tests. We first presented the target utterance as a refer-
ence (X), then the subject listened to two versions of speech, A
and B, which had been converted using two alternative meth-
ods. Subjects were asked to choose whether A or B sounded
more similar to the target, or choose “equal” in the case (s)he
could not hear any difference. The order of the listening trials
and the method pairs were randomized. The subjects were re-
cruited from our colleagues and fellow students and they were
naive to the given task; we did not tell ask them to pay special
attention to prosody.

We compare the proposed method with the same baseline
methods as in Table 4. In each test, 10 listeners participated and
10 sentence pairs were used. Tables 6 and 5 indicate and con-
firm that the proposed method yields better F0 transformation
compared to both of the baseline methods.

Table 5: ABX results comparing tri-frame GMM+∆F0+HEQ
with mean/var conversion method.

Tri-frame GMM
+∆F0+HEQ Mean/var Equal

RMS→AWB 52% 17% 31%
AWB→SLT 47% 21% 32%

Table 6: ABX results comparing tri-frame GMM+∆F0+HEQ
with mono-frame GMM.

Tri-frame GMM Mono-frame
+∆F0+HEQ GMM Equal

RMS→AWB 55% 18% 27%
AWB→SLT 53% 17% 30%

5. Conclusions
We proposed a text-independent F0 transformation system
which does not require parallel training data. Our objective
evaluation indicated that F0 deltas helps to create better mim-
ics of the target F0 contours. The proposed system improved

both the mean/var and the baseline GMM conversion methods
in both objective and subjective evaluations.
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