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Abstract

Automatic speaker verification (ASV) systems are highly-vul
nerable againgpoofing attackslso known as imposture. With
recent developments in speech synthesis and voice coomersi
technology, it has become important to detect synthesized o
voice-converted speech for the security of ASV systems. In
this paper, we compare five different classifiers used inkgyea
recognition to detect synthetic speech. Experimentalltesu
conducted on the ASVspoof 2015 dataset show that support
vector machines with generalized linear discriminant &ern
(GLDS-SVM) yield the best performance on the development
set with the EER 0f).12 % whereas Gaussian mixture model
(GMM) trained using maximum likelihood (ML) criterion with
the EER 0f3.01 % is superior for the evaluation set.

Index Terms: spoof detection, speaker recognition

1. Introduction

Automatic speaker verificatioffASV) aims at recognizing
speakers using their voices and is gradually gaining poipyla

as a biometric person authentication technique alongsitte w
the more traditional face and fingerprint biometrics. Hogrev
similar to these biometricspoofing the situation of an impos-

tor speaker masquerading as another to gain unauthorized ac
cess, is a security problem| [1].

Speaker recognition systems can be deliberately spoofed
by replay [2], impersonatiori [3,l 4], speech synthes|s [5] an
voice conversion[[6,]7]. Replay attack, repetition of a pre-
recorded speech signal of the target speaker is one of tie eas
est ways to spoof recognizefs [2, 8]. Impersonation, in,tigrn
a difficult attack since it requires special skills for mitkiing
a target speakel [3]. Speech synthesis involves artificial p
duction of a target speaker’s voice given a text input wherea
voice conversion refers to modification of the speech sighal
source speaker as if it was spoken by the target speakeierzarl
speech synthesis and voice conversion attacks have rdceive
only limited attention, possibly due to low synthesis qtyadir
lack of standard evaluation datasets. However, recentl-deve
opments in voice conversion and speech synthesis technolog
and mass-market adoption of speaker verification techgplog
have drawn increased attention to spoofing attacks [9, 10]. |
[6l[7,[11,[12] 1B], it has been independently reported that cu
rent systems are highly vulnerable to spoofing attacks based
speech synthesis and voice conversion.

Speaker recognition systems should be integrated with ap-
propriate spoofingcountermeasureso determine whether a
speech signal is natural or synthetic/converted, in oraegafe-
guard recognizers against attacks. There are a few stutlies w
concentrate on the detection of natural and synthetichrted
speech signals. For example, In][14], the authors compared
three different feature sets and reported EER$.60% and
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3.93% for GMM-based and unit selection based converted
speech detection, respectively. [n|[15], four differentssef
features including standard mel-frequency cepstral coeffis
(MFCCs) were compared in synthetic speech detection task us
ing Gaussian mixture model (GMM) classifier, yielding EER of
10.98% with MFCCs whereas tailored group delay features re-
duced EER further down th25%. In [16], EER 0f2.7% to dis-
criminate converted speech and natural speech was repbrted
a more recent study [17], an i-vector system performinglsgrea
verification and spoof detection jointly against voice aangion
attacks was proposed with promising results.

Previous studies on spoof detection mostly utilize stan-
dard GMM trained using maximum likelihood (ML) criterion
[18] classifier and focus on the feature extraction baseden t
prior knowledge about the synthesis system to improve detec
tion performance. However, robugeneralizedcountermea-
sures are desired to detect various types of attacks wittelim
prior knowledge about the vocoder and synthesis techniques
Thus, a thorough analysis on classifiers is necessary for the
anti-spoofing research. In this paper, we make first attempts
towards this goal by comparing five different classifierssiynm-
thetic/converted speech detection used in speaker anddgeg
recognition. Besides comparison of different classifievs,
study their parameters as well for generalization of caumea-
sures for various attacks.

2. Synthetic Speech Detection

Given a speech signa$;, spoofing detection — here, determin-
ing whetherS is a natural or synthetic/converted speech — can
be cast as a hypothesis test,

¢ Ho: S'is natural speech
¢ Hi: S is synthetic/transformed speech

Therefore, likelihood ratio test can be applied to decideiben
Hy and H,. Suppose thaX = {xi, ...xr} are the feature
vectors extracted fron§, then the logarithmic likelihood ratio
score is given by

A(X) = log p(X|Am,) — log p(X[An, ). &
In @), Amo and X1 are the acoustic models to characterize the
hypotheses. The parameters of these models are estimated us
ing training data for natural and synthetic/converted speé
this section, the classifiers used for synthetic/convestezbch
detection are briefly described.

2.1. Gaussian Mixture Models

Gaussian mixture model (GMM) is a widely used generative
model in speech processing [18]. It represents each class
as a weighted sum af/ multivariate Gaussiang(x|\)



M wipi(x), wherew; is theith mixture weight anch; (x)
is a D-variate Gaussian density function with mean vegipr
and covariance matri¥;. The model parameters are denoted
Expectation-maximization (EM) algorithrn [118.119] is used
to estimate the parameters of each class independentlyaXxa m
imum likelihood (ML) criterion. In the test phase, given the
models, Anat and Agynen, and feature vectors of the test utter-
anceY = {y1, ...yr}, the detection score is computed as,

A(Y) = E(Y|)\nat) - E(Y|)\synth)7 (2)

whereL(Y|\) = (1/T) X°/_, log p(y:|\) is the average log-
likelihood of Y given GMM modelX. Anac andAsynen are the
GMM s for natural and synthetic classes, respectively.

Another common parameter estimation for GMMs is maxi-
mum aposteriori (MAP) adaptation of ainiversal background
model (UBM) trained on a large amount of speech data from
many speakers, popularly known as GMM-UBM [20]. The
UBM represents a general distribution of the acoustic featu
space while the target models,.. and Asynen, are obtained
via MAP adaptation of the UBM. The mean vectors of the tar-
get models are obtained @5 = o Fi(x) + (1 — o)™,
Here,a; = ni/(n; + r) is the adaptation coefficient, is the
probabilistic count andz; (x) is the first order sufficient statis-
tics for theith Gaussian and is arelevance factar r = 0
corresponds to standard ML parameter estimation with one EM
iteration using the UBM as initial model. Asincreases, the
Gaussians that are closer to the training data are adapted an
the remaining components remain unchanged. In the recogni-
tion phase, detection score is computed udihg (2) as above.

2.2. GMM supervectors

Support vector machinggVM) [21] is a well-known discrimi-
native classifier used extensively in speaker and langusmper
nition [22]. It models the decision boundary between two
classes as a separating hyperplane optimized to maximéze th
margin of separation. In speaker recognition, SVM is gdhera
combined with the GMM GMM supervector [23]. First, the

set of feature vectors extracted from a speech signal ig+epr
sented with a single high-dimensional vector obtained by co
catenation of mean vectors of MAP-adapted GMM. Those su-
pervectors are normalized using the covariance and thehtgeig
of UBM and then used as input features to SVM back-end.

In synthetic speech detection with GMM supervectors, one
class consists of the training supervectors of natural cdpee
(labeled +1) and the other class consists of those of syn-
thetic/converted speech (labeled). SVM training yields a
set of support vectorsh;, their weightsa; and a bias term
d. All these outputs are collapsed into a single model vector
w = YL ait;b; + d wheret; € {+1,-1} are the ideal
outputs (class labels of each support vectdr} [dO ... ()]T
and L is the total number of support vectors.

In the test phase of GMM-supervector approach, the de-
tection score between the test superveti@and SVM model
vectorw is computed as the inner produet’ b.

2.3. GLDS-SVM

In generalized linear discriminant sequence kerr&V/M
(GLDS-SVM) system [[22], feature vectors are mapped to
higher dimensional space by a polynomial expansion up to a
certain maximum degree:. For a D—dimensional feature
vector, the dimensionality of expanded vectors(%;’") =

(D 4+ m)!/(D!m!). Given a set of feature vectorX =

{x1, ...x7}, it is represented by average expanded vectors
b = L 37, b(x:) whereb(x,) denotes the expansion of the

feature vectox;.

Training the linear SVM model with GLDS kernel us-
ing expanded feature vectors and scoring are performed as in
GMM-SVM. The advantage of GLDS-SVM over GMM-SVM
in synthetic speech detection is that it doesn’t requiretemfzal
data or model (i.e. UBM in GMM-SVM) to compute high-
dimensional supervectors.

2.4. l-vector System

The so-called I-vector technique has become a modetfacto
standard in speaker recognition [24]. Recently, it has hesed
for speaker verification and spoof detection jointly agewasgce
conversion attacks in [17]. It extracts a low-dimensioregter,
w, called an i-vector, from a speech sigrtal A GMM mean
supervector is factorized g8 = m + Tw, wherey is the
GMM mean supervectorT is a low-rank rectangular matrix
andw is a low-dimensional i-vector with a prior distribution
N(0,1). The T matrix is trained using the EM algorithm and
serves as i-vector extractor as detailed in [24].

The extracted i-vectors are pre-processed by applying
within-class covariance normalizatigWWCCN) [25] followed
by length normalization(LN) [26]. In speaker recognition,
WCCN normalizes within-speaker variatidn [24]. In syntbet
speech detection, in contrast, we use WCCN to normalize
within-class (natural or synthetic) variation caused bgraes
in speaker or synthesis methods, for instance. To this &ed, t
WCCN transformation matrix in [24], is computed from the
training data of each class (natural or synthetic) and ueed f
normalizing the i-vectors. Length normalization [26] ispied
to project i-vectors to the unit sphere.

When multiple training utterances are available in i-vecto
system, each class can be represented by its average grainin
i-vector aswnay = (1/J) Z‘j’:l w.., WhereJ is the total

nat?’
number of training utterances for natural class arg, is the i-
vector extracted from thgth training utterance. Average target
i-vector, Wsynen is Similarly computed for synthetic speech.
In the recognition step;osine similaritymeasure between
the i-vector extracted from a test utteranee,; and the target
i-vectorwyg is computed as [24]:

T
Wiot W
score(wtgt,wm) = W”V:;:m = W;I;;twtst- (3)
g S
where||wigt|| = ||wist|] = 1 due to LN. Given a test i-vector,

wist, the detection score is computed as:
SCOr€final = SCOLe(Wnat, Wist) — SCOre(Wsynth, Wist). (4)

where,wnat andweynen represent the average training i-vectors
for natural and synthetic speech classes, respectively- An
other method, when multiple training i-vectors are avddab

is score averaging over all training i-vectors of each class
[27], i.e. scorefts = (1/J) Z}]:1 score(wW .., Wist) Where
score(w? ., wist) is the cosine similarity defined if](3) be-
tween thejth training i-vector of natural classy’ ,, and the
testi-vectorws;. The final detection score is the difference be-
tween average score of natural class and that of synthess cl
as defined in{4).

Different from the aforementioned scoring methods in i-
vector system, another possible technique is to train an SVM
model using the training i-vectors of natural and synthetic
classes and then computing the detection score as dot produc
of SVM model vector and test i-vector.



3. Experimental Setup
3.1. Database

The experiments are conducted on ASVspoof 2015 database
which consists of three subsets without target speaker- over
lap: Training, DevelopmenandEvaluation The training sub-

set consists of natural and synthetic utterances to be wsed f
training the models for natural and synthetic classes. t&yiat
utterances are generated using one of three voice cormersio
(S1, S2 and S5) and two speech synthesis methods (S3 and
S4). The development set contains synthetic utterancesrgen
ated using the same five methods (S1-S5). The evaluation sub-
set, in turn, consists of synthetic utterances from the darae
methods used in training and development subsets but aéso fiv
new unknownmethods. More details about the database, voice
conversion/speech synthesis methods, recording conslitind
number of trials and speakers can be found_in [28].

3.2. Performance Measure

Equal error rate (EER) is used as the objective performarice c
terion. It corresponds to the error rate for the thresholdrath

the false alarm#:,) and the miss rateH.iss) are equal. The
reported EERs are computed using the Bosaris toalkit [29]. |
the experiments on development set, we provide EERs of each
speech synthesis/voice conversion methods (S1-S5) araythe
erage value of these five error rates. In the evaluation set, i
turn, we provide the average EERs for five known methods (S1-
S5) and unknown methods (S6-S10).

3.3. Feature Extraction

Standard MFCC features are used in the experiments. While
our companion paper [30] demonstrates that these may not be
the optimal features for synthetic speech detection tdsdy t
are the standard features in speaker verification and pretild

low error rates on ASVspoof 2015. In the experiments, 26 di-
mensional MFCCs and energy features with delta and double
delta coefficients are used as the acoustic features. 8edime
sional features by excluding the static energy coefficien} (

are used. Simple energy based voice activity detection (VAD
is used to detect and drop non-speech frames [31, p. 24].

3.4. Classifiers

In the experiments, we use five different methods: GMM-ML,
GMM-UBM, GMM-SVM, GLDS-SVM and i-vector approach.
GMMs with diagonal covariance are trained usit@EM it-
erations. Gender-independent UBM is trained using total of
9000 utterances from 50 male andl50 female speakers from
WSJO0 and WSJ1 databasesl|[32]. Thenatrix, for the i-vector
system, is trained using5704 utterances from 178 male and
177 female speakers selected from WSJO and WSJ1 corpora.
LIBSVM packagel[[33] is used to train SVM models for GMM-
SVM, GLDS-SVM and SVM back-end using i-vector systems.

4. Results

We first optimize the number of Gaussian components used to
train natural and synthetic speech models with GMM-ML clas-
sifier. Average EERs%) for different number of Gaussian
components are summarized in Table 1. The smallest average
EER (0.65%) is obtained with1024 Gaussians per class. EER
rapidly decreases for fewer Gaussians up to 128 components,
but slight changes occur afterwards. We fix it to 1024 in the
remaining experiments.

Table 1: Average EERs%) for different number of Gaussians
on development set using GMM-ML classifier.

| #Gauss.] EER %) || # Gauss.] EER %) |

4 11.05 128 1.23
8 8.27 256 0.91
16 3.25 512 0.73
32 251 1024 0.65
64 1.97 2048 0.68

4.1. GMM-UBM Results

In the GMM-UBM system, besides the number of Gaussians,
the other control parameter requiring optimization is take+
vance factory, for adapting the component means. In speaker
recognition, it is usually selected betwegn< r < 16. As

we are not aware of previous studies on the effeat of syn-
thetic speech detection, we study it in Table 2. Interesting

r = 0 yields the smallest EERs. This could possibly be be-
cause of the retained Gaussian components without adaptati
(r > 0 case) which are shared by the UBM and the target mod-
els. In speaker recognition, since the likelihood ratioatsen

the target speaker model and the UBM is used as the detec-
tion score, effects of retained Gaussians are compensathd i
score level. However, in synthetic speech detection, thecde
tion score is computed using natural and synthetic GMMs and
the retained components are different for each model. Fhere
fore unadapted components show negative impact on the score
level. Thus, adapting all the components=£ 0) according to
training data gives better performance.

Table 2: EERs §) on the development set for different values
of r used in MAP adaptation in GMM-UBM system.

[r [ S1 ] S2] S3] s4] S5 1] Avg. |
0 | 009 174| 0.00| 000 0.70 | 0.51
2 | 010|178 | 0.01| 0.00| 0.73 | 0.52
4 | 010| 1.80| 0.01| 0.00| 0.76 | 0.53
6 | 0.10| 1.84| 0.01 | 0.00| 0.79 | 0.55
8 (011|188 | 0.01| 0.00| 0.81| 0.56
10| 0.11 | 1.90 | 0.01 | 0.00 | 0.85| 0.57

4.2. GMM-SVM Results

GMM-SVM results with different number of Gaussians are
summarized in Tablgl3. Relevance factor= 0, is used for
computing the mean supervectors. Similar to GMM-ML, UBM
with 1024 Gaussians gives the smallest average EER. This is
probably because of the choice= 0. In our experiments it was
found that when large is used, fewer Gaussians gives higher
accuracy, as expected. For example, average EER8%

and 1.73% were obtained fol6 and 512 Gaussians, respec-
tively with » = 2. However, similar to GMM-UBM,r = 0
shows the best performance.

Table 3:EERs {) for each spoofing attack on the development
set using UBMs with different number of Gaussians in GMM-
SVM system.

[ #Gauss.] S1 [ S2 ] S3 | S4 ] S5 [ Avg. |
32 056 | 1.14 | 047 | 049 | 1.20 | 0.77
64 059 | 133|038 | 037 | 1.10| 0.75
128 0.34 | 099 | 0.24 | 0.26 | 0.75 | 0.52
256 0.24 | 089 | 0.18 | 0.18 | 0.53 | 0.41
512 031 | 0.73 | 015 | 0.20 | 0.52 | 0.38
1024 0.28 | 0.71 | 0.14 | 0.18 | 0.51 | 0.36




4.3. GLDS-SVM Results

In the experiments with GLDS-SVM, we evaluate three differ-
ent polynomial expansion orderg, = 1, m = 2 andm = 3
(see Tabld4). As expectedp = 1 provides poor perfor-
mance sincdst order expansion corresponds to time averag-
ing of MFCCs. The lowest EERs are obtained wised order
expansion is used. One may claim that further increasing the
polynomial expansion would improve accuracy. However, us-
ing a4th order expansion will yield GLDS supervectors of di-
mensionality1929501. Given that we havé6375 training ut-
terances, we found it computationally impractical to ti@Ms
using4th order expansion in our Linux server.

Table 4:EERs (%) on the development set for different expan-
sion orders {n) in GLDS-SVM system.

[(m] ST | S2] 53] S4 ] S5 | Ag. ]
T ] 1049 945 9.07 | 9.20 | 13.03 | 10.25
2 | 027 | 043 033|031 | 112 | 049
3] 002 |014]| 002|006 038 | 012

4.4. |-vector Results

In the experiments on the development set with i-vector sys-
tem, we first train UBMs with different number of Gaussians to
determine the best configuration for synthetic speech tietec
task. Length normalized00 dimensional i-vectors are used in
these preliminary experiments and the average EERs for dif-
ferent scoring methods described in Secfiod 2.4 are shown in
Table[®. UBM consisting of 512 Gaussians yields the small-
est EERs for i-vector and score averaging methods. However
for i-vector scoring based on SVM back-end, 128 Gaussians
give slightly smaller EER. In general, SVM back-end is supe-
rior to cosine scoring. Next, the number of Gaussians is fixed
to 512 and the i-vector dimensionality is varied. AveragdREE

of 16.38%, 10.04% and 9.60% are obtained using00, 400
and600 dimensional i-vectors, respectively, using cosine scor-
ing with i-vector averaging.

Table 5: Average EERs%) using UBMs with different num-
ber of Gaussians on development set with I-vector systefh (40
dimensional length-normalized i-vectors are used).

[ # Gauss.[ SVM [ I-vector Avg. | Score Avg. |

64 5.81 15.94 15.99
128 5.59 12.16 12.12
256 5.85 13.61 13.56
512 5.73 10.04 9.94
1024 6.94 12.17 12.06

The EERs when WCCN is applied to 600 dimensional
length-normalized i-vectors are given in Table 6. Applying
WCCN yields75% relative improvement over the baseline co-
sine scoring (EER reduced from60% to 2.37%). This could
be because the success of WCCN for normalizing the within-
class variations caused by changes in speech synthesgs/voi
conversion techniques. SVM shows considerably better per-
formance than that of cosine scoring without WCCN whereas
cosine scoring yields slightly better accuracy when WCCN is
applied.

In the last experiment on development set, we apply linear
score fusion for all the seven systems utilized in the expenits
(GMM-ML, GMM-UBM, GMM-SVM, GLDS-SVM and three
i-vector systems) with their optimum parameters. The Besar
toolkit [29] is used to train the fusion weights. The EER®gft
score fusion are shown in Talfle 7.

Table 6: Average EERs%) with/without WCCN on develop-
ment set using 600 dimensional length-normalized i-vector

[ WCCN | SVM [ I-vector Avg. [ Score Avg. |

— 4.84 9.60 9.60
v 2.61 2.37 2.40

Table 7:EERs f) for the development set after score fusion.
[SI ] S2 ] S3 ] S4 ] S5 Avg. |
[0.00] 0.09] 0.00] 0.00 ] 0.12 [ 0.04 ]

4.5, Results On Evaluation Set

The results on evaluation set with optimized parameters for
each classifier are given in Taljle 8. GLDS kernel using SVM
again yields the smallest EER for known attacks on evaloatio
set. However, for the unknown attacks, GMM-ML produces
the lowest EER. In general, generative models (GMM-ML and
GMM-UBM) outperform our discriminative classifiers (GMM-
SVM and GLDS-SVM) for unknown attacks. Since we have
enough amount of training data for natural and synthetiecipe
classes, GMM parameter estimation successfully capthees t
distribution of the classes in the feature space. When ifesitu
from an unseen acoustic class appear in the recognitiorephas
it will yield low likelihood ratio score given in{|1) becausei-
ther natural nor the synthetic class are emphasized in tive sc
level for the data from an unknown acoustic class. Another in
teresting observation from Taljle 8 is that, score fusionrawgs

the accuracy for known attacks in comparison to best indafid
system GLDS-SVM whereas its effects for unknown attacks are
controversial. The fusion weights, trained on the develepm
data, may inaccurately balance classifiers for unseerkattac

Table 8:Average EERs%) for known and unknown attacks on
evaluation set.

| Classifier | Known | Unknown | Avg. |
GMM-ML 0.50 5.52 3.01
GMM-UBM 0.40 6.61 3.50
GMM-SVM 0.26 6.98 3.62
GLDS-SVM 0.11 9.40 4.75
I-vector (SVM) 2.66 9.78 6.22
I-vector Avg. 2.46 9.41 5.94
I-vector Score Avg.| 2.45 9.41 5.93

[ Fused | 004 ] 738 371

5. Conclusion

We compared five different classifiers for synthetic speexh d
tection task using the ASVspoof 2015 dataset. Our experimen
tal results using standard MFCC features indicate thasilas
fiers used in speaker and language recognition give promis-
ing results on synthetic/converted speech detection. @n th
development set, discriminative methods (GLDS-SVM and
GMM-SVM) outperformed generative methods (GMM-ML
and GMM-UBM) but the opposite was observed in the evalu-
aton set, particularly for unknown attacks. Interestinghate-
of-the-art speaker recognition method, i-vector, yiehdshigh-

est EERs in both development and evaluation sets. Applying
WCCN vyields considerable improvement in the i-vector sys-
tem. Finally, we found that detection of synthetic speecd (S
and S4) was easier than that of converted speech (S1, S2 and
S5) independent from the classifier.
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