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Abstract
Speaker embeddings are continuous-value vector representa-
tions that allow easy comparison between voices of speakers
with simple geometric operations. Among others, i-vector and
x-vector have emerged as the mainstream methods for speaker
embedding. In this paper, we illustrate the use of modern com-
putation platform to harness the benefit of GPU acceleration
for i-vector extraction. In particular, we achieve an accelera-
tion of 3000 times in frame posterior computation compared to
real time and 25 times in training the i-vector extractor com-
pared to the CPU baseline from Kaldi toolkit. This significant
speed-up allows the exploration of ideas that were hitherto im-
possible. In particular, we show that it is beneficial to update
the universal background model (UBM) and re-compute frame
alignments while training the i-vector extractor. Additionally,
we are able to study different variations of i-vector extractors
more rigorously than before. In this process, we reveal some un-
documented details of Kaldi’s i-vector extractor and show that
it outperforms the standard formulation by a margin of 1 to 2%
when tested with VoxCeleb speaker verification protocol. All
of our findings are asserted by ensemble averaging the results
from multiple runs with random start.
Index Terms: speaker recognition, PyTorch, factor analysis,
total variability model

1. Introduction
A decade ago, the i-vector speaker embedding was intro-
duced [1]. Since its introduction, it has remained as a stan-
dard solution for speaker recognition until recent years when it
was excelled in many tasks by the deep neural network based
embeddings [2, 3]. The recent developments are a result of
the widespread interest among researchers to adopt deep learn-
ing techniques in their research. The most recent rise of deep
learning has been partially made possible by the year-by-year
increasing computation resources [4], and especially the use
of graphics processing units (GPUs) to harness the benefits of
massive parallelism even with consumer level devices.

While GPUs are heavily adopted in deep learning, they can
also be conveniently utilized for the traditional learning of gen-
erative models such as the total variability model [5] underly-
ing i-vector extraction. So far, this has been a largely unex-
ploited possibility despite the fact that full-fledged i-vector ex-
tractors tend to be slow to train. The slowness of training has of-
ten forced many researchers to limit their experimental valida-
tion, for example by limiting the number of training iterations,
or by relaying on the results from a single run with random
initialization. In addition, simplifications and approximations
of the model have been proposed to reduce the computational
load [6, 7, 8].

For the current work, we utilize GPU to accelerate i-vector
extraction and the total variability model training to alleviate the
above limitations. The obtained speed-up allows us to study i-

vector extractors in a more detailed manner than what has been
possible previously. For example, we can train i-vector extrac-
tors without any approximations for hundreds of iterations to
study the optimal number of iterations to maximize the speaker
recognition performance. In addition, we are able to obtain
more reliable comparisons between different variations of ex-
tractors by averaging the results of multiple runs with different
random initializations of the model. For instance, the extractor
training can differ in terms of whether model parameters are re-
estimated using minimum divergence criterion [9] and whether
the residual covariance matrix of the model is updated.

Further, we re-explore the idea of updating frame align-
ments during the training of i-vector extractor, which could po-
tentially enhance the model fit and the resulting speaker recog-
nition performance. The idea of updating the alignments was
originally presented in the context of eigenvoice modeling for
automatic speech recognition [10], but has received limited at-
tention in the context of i-vectors for speaker recognition. In
eigenvoice modeling, the alignment update is performed using
speaker-dependent supervectors, which is not suitable approach
for speaker recognition as it would tend to model out the speaker
information from the i-vectors. Instead, we update the global
UBM mean supervector to realign the training data.

In the experiments, we extensively utilize our GPU re-
implementation of Kaldi speech recognition toolkit’s [11]
i-vector extractor. The implementation in Kaldi has some spe-
cial traits, which, to the best of our knowledge, have not been
extensively documented. Most notably, in Kaldi’s implemen-
tation, the bias term is augmented to the total variability ma-
trix [5], which causes some changes to the minimum divergence
re-estimation step and which also eliminates the need of central-
izing Baum-Welch statistics [12]. As Kaldi is one of the most
popular tools used for the speaker recognition research, we con-
sider it worthwhile to document the main differences of the two
formulations in the following sections.

2. I-vector speaker embeddings
We compare two different formulations of the total variability
approach [5] of joint factor analysis [13] to extract i-vectors. In
the total variability model, all of the variability in utterances is
modeled using a single subspace only, without having separate
subspaces to model speaker and channel effects.

The first of the formulations is the original formulation [10,
14], which is commonly adopted in many available speaker
recognition toolkits [15, 16, 17]. The second formulation, im-
plemented in the Kaldi speech recognition toolkit, is inspired
by the subspace Gaussian mixture model [18]. This formula-
tion differs from the standard one as it augments the bias term
of the model to the factor loading matrix, which allows estimat-
ing the bias term and the factor loading matrix jointly.

Common to both formulations is the use of Baum-Welch
statistics as defined in [14]. In this work, we denote the occu-



pancy statistics, first order statistics, and the second order statis-
tics for the Gaussian component c (c = 1, 2, . . . , C) as nc, fc,
and Sc, respectively. To obtain unified presentation for the two
formulations, we hereafter assume that the first and second or-
der statistics are centered [19] for the standard formulation and
not centered for the augmented formulation.

2.1. Standard formulation
Following the standard formulation, we model the mean vector
of the cth Gaussian component of utterance u as

µc(u) = mc + Tcω(u), (1)

where mc is a bias term, matrix Tc is a projection matrix, and
ω(u) is a latent vector. The latent vector is shared among all
the components and we assume that the prior over latent vectors
is standard normal. Further, the covariance matrix of the cth
Gaussian is modeled as

Dc(u) = TcΦ(u)TT
c + Σc, (2)

where Φ(u) is the posterior covariance matrix of the latent
vector, and Σc is the residual covariance matrix for compo-
nent c [20].

The posterior covariance matrix Φ(u) and the mean vector
φ(u) for the latent vector are obtained as

Φ(u) =

(
I +

C∑
c=1

nc(u)T
T
c Σ−1

c Tc

)−1

, (3)

φ(u) = Φ(u)

(
p +

C∑
c=1

TT
c Σ−1

c fc(u)

)
, (4)

where p is the prior offset, which is 0 in the standard formula-
tion.

The model is trained iteratively using an EM-algorithm, for
which the update formulas for matrices Tc and Σc are given
in [10]. In the beginning of training, the matrices Tc are ini-
tialized with random values drawn from the standard normal
distribution. The initial bias terms mc and the residual covari-
ance matrices Σc are obtained as the means and covariances
from universal background model (UBM) [12]. As the training
progresses, the residual covariances get smaller as the first term
of right-hand side of (2) starts to explain parts of the covariance
structures of training utterances.

2.2. Augmented formulation
In the second formulation, we augment the bias terms mc into
the matrices Tc. This is done by assuming non-zero mean for
the prior over the first elements of the latent vectors. Then,
equation (1) becomes

µc(u) = Tcω(u), (5)

whereω ∼ N (p, I) with p =
[
p 0 · · · 0

]T, p ∈ R.
Assuming that the Baum-Welch statistics are not central-

ized, the equations (3) and (4) hold also for the augmented
formulation. The EM update equations presented in [10] re-
main the same as well1. It is worth to note that because of the
augmentation, the update of matrices Tc also updates the bias
terms, which reside in the first columns of matrices Tc.

The model initialization differs slightly from the standard
formulation. First, we set p = 100 (same as in the Kaldi im-
plementation) and then we fill the first columns of the randomly
initialized matrices Tc with the values from the mean vectors
of the UBM divided by p.

1Although the residual covariance update implemented in Kaldi
might seem different than in [10], they can be shown to be equivalent.

3. Training enhancements
The update step of the model training can have many varia-
tions. The most basic one is to only update matrices Tc, while
also updating residual covariances Σc gives a slight improve-
ment to the performance as we will demonstrate later. An-
other way to improve the model is to apply minimum divergence
re-estimation to make the empirical distribution of i-vectors
close to standard normal [9, 14]. The minimum divergence re-
estimation is not quite as straightforward for the augmented for-
mulation as for the standard one. To the best of our knowledge,
the procedure for the augmented formulation is not documented
elsewhere than in the source code comments of Kaldi, hence we
will provide the key details in the following. Finally, further
improvements can be obtained by realigning the training data
during the training using the updated models.

3.1. Minimum divergence re-estimation
For the minimum divergence re-estimation, we accumulate the
sums

h =
1

U

U∑
u=1

φ(u), (6)

H =
1

U

U∑
u=1

[
Φ(u) +φ(u)φ(u)T

]
, (7)

during the E-step. Then, a whitening matrix can be computed
via eigendecomposition (alternatively, via Cholesky decompo-
sition) of the covariance matrix G = H − hhT . That is, if
G = QΛQT is an eigendecomposition of G, then the whiten-
ing transform is obtained as P1 = Λ− 1

2 QT. Now, the up-
date Tupd

c = TcP
−1
1 , has an effect of whitening the training

i-vectors.
In the standard formulation, the above update is sufficient

for the minimum divergence estimation. In the augmented for-
mulation, however, we need to apply another transform P2 to
the matrices Tupd

c to conform to the prior offset assumption.
In specific, after transforming i-vectors with P1 and P2, they
should remain whitened and only the first element (prior offset)
of the projected mean vector P2P1h should be non-zero.

One option for a transform that can satisfy the requirements
set for P2 is a reflection about a hyperplane that goes through
the origin. This type of transform is known as the Householder
transform [21]. The Householder transform with a reflection
hyperplane that is orthogonal to an unit length vector a is de-
fined as

P2 = I− 2aaT. (8)
Now, the problem is to find a so that the projected mean vector
is a scalar multiple of a unit vector e1 =

[
1 0 · · · 0

]
.

That is,
P2P1h = be1, b ∈ R. (9)

It can be shown that one solution is

a = αh̃ + βe1, (10)

where h̃ is P1h normalized to unit length (h̃ = P1h/||P1h||)
and {

α = 1√
2(1−h̃[1])

β = −α,
(11)

where h̃[1] is the first element of h̃.
Now, the update Tupd

c = TcP
−1
1 P−1

2 whitens and centers
the training i-vectors with respect to the prior offset. Finally,
the prior offset p is updated as follows:

p = P2P1h. (12)



3.2. Realignment of training data
To compute the Baum-Welch statistics used in training, the
frames of training utterances are first aligned to the components
of the UBM by computing frame posterior probabilities. The
posteriors and the Baum-Welch statistics are typically held con-
stant during the training of i-vector extractor.

In [10], the frame alignments of the training utterances are
updated during the training of factor analysis model for auto-
matic speech recognition (ASR). The realignment is done per
speaker basis using adapted GMM means and covariances. In
the application of speaker recognition, however, this would be
counterproductive as it would reduce the amount of speaker in-
formation in the latent vectors. What we propose instead, is
updating the UBM means with the updated bias terms mc and
then using the updated UBM to realign the data, which can po-
tentially lead to a better model fit. To obtain the updated bias
terms from the augmented formulation, we simply take the first
columns of matrices Tc and multiply them with p.

In summary, the augmented model with posterior updates
is trained by iterating over the following five steps:

1. The computation of frame alignments and Baum-Welch
statistics using the current UBM [12, 14].

2. E-step: The computation of posterior means and covari-
ances for the latent vectors using (3) and (4) to accumu-
late the required terms for the M-step.

3. M-step: The update of matrices Tc followed by the up-
date of residual covariances Σc [10].

4. Minimum divergence re-estimation: The update of
matrices Tc using the transforms P1 and P2 followed
by the update of the prior offset p using (12).

5. If not the last iteration, the update of the mean vectors of
the UBM with the first columns of matrices Tupd

c multi-
plied by p.

After the model has been trained, the updated UBM is used in
the testing phase to compute the frame posteriors.

4. Experiments
4.1. Experimentation setup
We built the acoustic front-end of our systems on the basis of
Kaldi [11] i-vector recipe for VoxCeleb [22, 23]. That is, we
relied on Kaldi to extract MFCCs, to perform voice activity de-
tection (VAD), and to train the UBM. We used the same settings
as in the Kaldi recipe: The MFCC vectors are 72-dimensional
including delta and double-delta coefficients, and the UBM con-
sists of 2048 components with full covariance matrices.

Following the Kaldi recipe, the UBM was trained using all
of the data from the training parts of VoxCeleb1 and Voxceleb2
consisting of 1 277 344 utterances from 7325 speakers. The i-
vector extractors were trained using the 100 000 longest utter-
ances. To train the scoring back-end, the Kaldi recipe uses the
whole training data, while we utilized only the VoxCeleb1 pro-
portion to speed up the experimentation. Although this reduced
the number of training speakers from 7325 to 1211, we did not
observe degradation in speaker verification performance2.

After the i-vector extraction, we centered and length nor-
malized the i-vectors. In addition, if minimum divergence re-
estimation was not used, we also whitened the i-vectors be-
fore length normalization. Then, we reduced the dimensionality

2This might be explained by the fact that VoxCeleb1 has more reli-
able speaker labels than VoxCeleb2 [23].
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Figure 1: An overview of computational flow of frame align-
ment, i-vector extraction, and model training using a GPU. To
keep the GPU memory requirements constant, fixed size batches
of frames and utterances are used for frame alignment and
i-vector extraction, respectively.

of i-vectors from 400 to 200 using linear discriminant anal-
ysis (LDA) before subjecting them to probabilistic linear dis-
criminant analysis (PLDA) scoring [24]. For testing, we used
adopted the VoxCeleb1 speaker verification protocol, which
consists of 37 720 trials with an equal number of target and non-
target trials.

We ran the experiments on a server having Intel Xeon Gold
6152 CPU with 22 physical cores and NVIDIA Titan V GPU
with 12 GB of memory. The file I/O operations were performed
on a solid-state drive (SSD).

4.2. GPU implementation
In our implementations of frame alignment and i-vector extrac-
tion, we utilized PyTorch [25] for GPU computations, SciPy
ecosystem [26] for computations in CPU, and PyKaldi [27] for
reading files stored in Kaldi format. The implementations use
multiple CPU cores in parallel as data loaders, which load, pre-
process, and feed the data to the GPU (Figure 1). The data
loaders function in parallel with respect to the GPU to keep the
GPU utilized all the time.

For frame alignment, we use the same strategy as in Kaldi:
First, to reduce the computational load, we use a UBM with di-
agonal covariance matrices to select the top-20 Gaussian com-
ponents with the highest frame posteriors for each frame. Sec-
ond, we compute the posteriors with only the selected com-
ponents using a full covariance UBM. Finally, we discard the
posteriors that are less than 0.025 and we linearly scale the re-
maining posteriors so that their sum equals to one. As a result,
on average, only four Gaussian indices and the corresponding
posteriors are stored to disk per frame.

The Baum-Welch statistics used in i-vector extractor train-
ing are computed in CPU, while the rest of the computation is
done in GPU. The reason to compute statistics in CPU is as
follows: For i-vector extraction implementation, it is natural to
feed data in batches of utterances, and statistics provide a fixed
size representation of utterances unlike the acoustic features.
We opted not to compute statistics beforehand as the disk usage
would be excessive; instead we recompute them during each
iteration of i-vector extractor training.

With the settings laid out in Section 4.1, the GPU mem-
ory usage for alignment computation is about 2.5 GB and for i-
vector extractor training about 4 GB. The frame alignment can
be done about 3000 times faster than real time (including I/O
operations), and assuming that the alignments are ready in the
disk, i-vectors can be extracted 10 000 times faster than real
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Figure 2: System performance as function of number of it-
erations in i-vector extractor training. The frame alignments
are not updated during the training. The standard formulation
has four training variations, which are obtained by either per-
forming or not performing minimum divergence re-estimation
and either updating or not updating residual covariance ma-
trices. In the augmented formulation, the minimum divergence
re-estimation is always applied. Each curve is obtained as an
average of five runs with different random initial values of Tc.

time. By using the GPU re-implementation of Kaldi’s i-vector
extractor training, we were able to obtain 25-fold reduction in
the training times. This number was obtained by training both
our GPU implementation and Kaldi’s CPU implementation for
five iterations and measuring the elapsed times. The training
using Kaldi utilized all the available CPU cores in the server.

4.3. Speaker verification results
We began the experiments by comparing different variations of
i-vector extractors to select the best one for further experiments
with frame alignment updates. The results of the comparison
are shown in Figure 2. We observe the following: First, the
minimum divergence re-estimation to update the model hyper-
parameters results in 7.5 – 9% relative reduction in terms of
equal error rate (EER). Second, the update of residual covari-
ance matrices leads to 1.5 – 3% relative reduction of error rates.
Third, the augmented formulations obtain 1 – 2% lower error
rates (relative) than the standard formulations. Finally, we as-
sert that 22 iterations are enough to reach the optimal speaker
verification performance with the best performing extractors.
As our results are averages of five runs, individual runs may
converge faster than that. In addition, we confirmed that our as-
sertion is correct by training the augmented model once for 200
iterations.

Based on the first experiment, we continued to experiment
with the realignment of training data using the augmented for-
mulation with residual covariance matrix updates. We varied
the interval between the frame posterior updates ranging from
updating on every iteration to updating only on every seventh
iteration. We display the results in Figure 3. The findings
are two-fold: First, the more frequently the frame posteriors
are updated, the faster the performance improves. Second, up-
dating the posteriors, no matter how frequently, leads to about
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Figure 3: Performance of the augmented formulation for vary-
ing intervals of frame alignment updates. The more often the
alignments are updated, the faster the system performance im-
proves. Each curve is obtained as an average of five runs with
different random initializations.

1% lower error rates (relative) compared to training without up-
dates.

At best, we obtained an EER of 4.6%, which could be pos-
sibly made closer to 4.0% by carefully optimizing configura-
tions in various parts of the system. For comparison, the state-
of-the-art system, using x-vectors, obtains EER of 3.1% (re-
ported in the Kaldi recipe). This is an expected performance
difference between the i-vector and x-vector systems [28].

5. Discussion and conclusions
We have a couple of remarks from the practical aspect of the
study. First, we found that by using the modern deep learning
platforms, such as PyTorch, the implementation of GPU accel-
erated algorithms for generative models is almost as straight-
forward as it is with their non-GPU counterparts (e.g. NumPy).
The only concern is the limited amount of memory in GPUs.
This limitation can be often circumvented by relying on the
computational power of GPUs to recompute values that do not
fit into the memory.

The second remark concerns the update of the UBM means
using the bias terms mc of the model. For this purpose, we
only used the augmented formulation, but it can be done also
with the standard formulation by updating the means in the min-
imum divergence step using a formula mupd

c = mc+Tch [19].
However, we found that updating the means in this way did not
work well together with residual covariance updates.

In summary, the results of the study showed that the choice
of the training algorithm for i-vector extractor matters as the
relative change in equal error rate between the worst and the
best variations was 11.4%. For the optimal performance, our
recommendation is to use the augmented formulation including
the residual covariance updates and the updates of frame align-
ments. Additionally we found that the extractors reach their
maximum performance after 22 training iterations.
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