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Abstract
Usually the mel-frequency cepstral coefficients (MFCCs) are
derived via Hamming windowed DFT spectrum. In this paper,
we advocate to use a so-called multitaper method instead. Mul-
titaper methods form a spectrum estimate using multiple win-
dow functions and frequency-domain averaging. Multitapers
provide a robust spectrum estimate but have not received much
attention in speech processing. Our speaker recognition exper-
iment on NIST 2002 yields equal error rates (EERs) of 9.66 %
(clean data) and 16.41 % (-10 dB SNR) for the conventional
Hamming method and 8.13 % (clean data) and 14.63 % (-10 dB
SNR) using multitapers. Multitapering is a simple and robust
alternative to the Hamming window method.
Index Terms: speaker verification, multiple window method

1. Introduction
Current speech, speaker and language recognition applications
perform well under clinical laboratory setting but robust recog-
nition under variable environments, handsets and transmission
channels remains a constantly challenging problem. A ma-
jor source of problems are the spectral front-ends based on ei-
ther discrete Fourier transform (DFT) or linear prediction (LP).
The short-term spectrum is subject to many harmful variations.
Due to such variations, complex feature normalization, channel
compensation and score normalization are required [1].

In this paper, our focus is on the most popular speech
front-end, the mel-frequency cepstral coefficients (MFCCs) [2].
MFCC computation begins by multiplying a short-term frame
of speech by a tapered window function [3] and computing the
DFT of the windowed frame. The DFT magnitude spectrum is
then smoothed by using a psychoacoustically motivated filter-
bank, followed by logarithmic compression and, finally, dis-
crete cosine transform (DCT). The final feature vector is usu-
ally appended with the first and second order time derivatives
(∆ and ∆2 features) and further processed by cepstral mean
and variance normalization (CMVN) and other feature normal-
izations. In this paper our goal is to make the first step, compu-
tation of the base MFCCs, more robust.

From a statistical point of view, we imagine that, for every
short-term speech frame there exists a “true” random process
which generates that particular frame; an example would be a
digital filter driven with random inputs but with fixed filter co-
efficients. For speech signals, we imagine that there exists a
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speaker- and phoneme-dependent random process from which
the actual speech sounds are generated from. This abstract
viewpoint, in the context of automatic speaker recognition, is
well-modeled by the Gaussian mixture model (GMM) back-end
for cepstral features [4]. The means of GMM represent speaker-
dependent information and variances model uncertainty in the
observed vectors. In this paper, our goal is to reduce that uncer-
tainty by using better MFCC estimator. For different acoustic
realizations of the same phoneme spoken by the same speaker,
a good MFCC estimator would produce “similar” MFCC vec-
tors. In statistical terms, we wish to have an MFCC estimator
with small variance. Naturally, we should also require the esti-
mated cepstrum to be, on average, close to the true cepstrum and
therefore have small bias. These bias and variance [5] can quan-
titatively be analyzed, without any model of the speech produc-
tion mechanism itself, but by imposing a mathematical model
of the random process corresponding to a single speech frame
(e.g. Gaussian zero-mean stationary process as in [6]).

The bias and variance can intuitively be understood by
considering the degree of smoothness in a spectrum estimate.
Smooth spectrum, such as the DFT spectrum after MFCC fil-
terbank averaging or an all-pole spectrum [7, 8] with a small
number of poles, have a small variance because they produce
similar spectra for different instances of the same random pro-
cess. However, over-smoothing increases the bias because
of decreased spectral resolution. A good spectrum (and cep-
strum) estimate, therefore, should have low variance to be ro-
bust against noise and other nuisance factors but also retain low
enough bias to be accurate enough representation for the given
classification task.

What are the bias and variance of the typical MFCC estima-
tion procedure and could they be improved? We first note that
the Hamming-type of time-domain window reduces the spectral
leakage resulting from the convolution of the signal and win-
dow function spectra. The windowing, therefore, reduces the
bias. The variance, unfortunately, remains high [5]. One way
to reduce the variance of the MFCC estimator is to replace the
Hamming window DFT spectrum estimate by a so-called multi-
taper spectrum estimate [6,9,10]. The idea in multitapering, as
illustrated in Fig. 1, is to pass the analysis frame through differ-
ent window functions and form the final spectrum estimate as
a weighted average of the individual sub-spectra. The window
functions or tapers are designed so that the estimation errors in
the individual sub-spectra are approximately uncorrelated. Av-
eraging these uncorrelated spectra gives a low-variance spec-
trum estimate and, consequently, low-variance MFCC estimate
as well. The multitaper method is similar to the well-known
Welch’s method which forms a time-averaged spectrum over
multiple frames. Multitapers, however, focus only on one frame
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Figure 1: Multiple window method of spectrum estimation analyzes data using independent windows which lead to slightly different
magnitude spectra. The final spectrum is formed as a weighted average of the individual spectra. The averaging reduces the variance
of the spectrum estimate, therefore making the spectrum less sensitive to noise compared to the conventional single-window method.

and therefore make more efficient use of the limited data.
Although multitapering guarantees low variance spectrum

estimate, it has not gained much attention in speech process-
ing so far [11]. One reason could be that, since there exists a
number of different multitapers to choose from, it may not be
clear which suits well for modeling speech signals. It is our
goal, therefore, to carry out a comparative evaluation of dif-
ferent multitaper techniques and compare their performance to
conventional single-taper technique.

2. MFCC Computation via Multitapering
Let x = [x(0) . . . x(N − 1)]T denote one frame of speech.
The most popular spectrum estimate in speech processing, the
windowed periodogram, is given by

Ŝ(f) =

∣∣∣∣∣
N−1∑
t=0

w(t)x(t)e−i2πtf/N

∣∣∣∣∣

2

, (1)

where f ∈ {0, 1, . . . , N−1} denotes the discrete frequency in-
dex and w = [w(0) . . . w(N−1)]T is a time-domain window
function which usually is symmetric and decreases towards the
frame boundaries (e.g. Hamming). From a statistical perspec-
tive, the use of a Hamming-type of window reduces the bias
of the spectrum, i.e. how much the estimated spectral density
value Ŝ(f) differs from the true value S(f), on average. But
the estimated spectrum still has large variance. To reduce the
variance, multitaper spectrum estimator [5, 9, 12] can be used:

Ŝ(f) =

k∑
j=1

λ(j)

∣∣∣∣∣
N−1∑
t=0

wj(t)x(t)e−i2πtf/N

∣∣∣∣∣

2

. (2)

Here, k multitapers wj = [wj(0) . . . wj(N − 1)]T , j =
1, . . . , k, are used with corresponding weights λ(j). The mul-
titaper estimate is therefore obtained as a weighted average of
k individual sub-spectra (Fig. 1). The conventional single-
window method (1) is obtained as a special case when k = 1
and λ = 1.

A number of different tapers have been proposed in litera-
ture for spectrum estimation, such as Thomson [9], sine [10] and
multipeak tapers [12]. For cepstrum analysis, the sine tapers are
applied with optimal weighting in [13]. Each type of taper is
designed for some given type of (assumed) random process; as
an example, Thomson tapers are designed for flat spectra (white
noise) and multipeak tapers for peaked spectra (such as voiced
speech). In general, the tapers are designed so that the estima-
tion errors in the individual subspectra will be approximately
uncorrelated, which is the key to variance reduction. The de-
tails of finding the optimal tapers for a given process is out of
the scope of the current paper but for the interested reader we
mention that the solution is obtained from an eigenvalue prob-
lem where the eigenvectors and -values correspond to the tapers
and their weights, respectively. Additional constraints are often
added to the optimization problem to force the designed tapers
be robust against violated assumptions of the random process.
In practice, many multitapers work well even though designed
for another process. For instance, the Thomson window [9], de-
signed for white noise, perform well for any smooth spectrum.

3. Noise Robustness of Multitapering
Figure 2 demonstrates the use of multitaper spectrum estimation
for analysis of speech under additive factory noise corruption.
The left panel shows spectrum estimate using the conventional
single-taper (Hamming) method whereas the right panel shows
spectrum estimate using multipeak tapers with k = 6 tapers.
The upper lines (blue) correspond to clean speech and the lower
lines (red) to noisy speech. The single-taper spectrum contains
more details and shows large difference between the clean and
the noisy frame. The multitaper spectra, in turn, are smooth
and look visually more similar between the clean and the noisy
version. In short, the multitaper method has smaller variance.

To understand the bias and variance trade-off better, we
consider the variance and spectrum resolution of the single- and
multi-taper methods. For the windowed periodogram (1), the
variance is usually approximated as [5]

V [Ŝ(f)] ≈ S2(f). (3)
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Figure 2: Single- and multitaper methods under additive noise.
The spectra in each plot have been shifted for visualization.

The spectral resolution, that is, the frequency spacing under
which two frequency components cannot be separated, is ap-
proximately Bw = 1/N for the rectangle window but Bw =
2/N for the Hamming window. This suggests that, even though
Hamming window reduces the spectral bias, it has twice as poor
spectral resolution as the rectangular window. Note also that (3)
does not depend on the window length N and thus, more data
will not reduce the variance.

For the multiple window spectrum estimator (2), the spec-
tral resolution is approximately Bw = k/N [9] and the variance
can be approximated as

V [Ŝ(f)] ≈ 1

k
S2(f). (4)

This result is analogous to the known fact that variance of the
mean of sample of size k is inversely proportional to k. The for-
mula is approximately valid also for the Welch’s method with
50% overlap between the windows [5]. The formula (4) sug-
gests that, by increasing the number of tapers, we can reduce the
variance of the spectrum estimate, hence making the spectrum
more robust across random variations. The robustness, how-
ever, is traded off with spectrum resolution. We expect an op-
timal number of tapers to be a compromise between robustness
and resolution, as we shall demonstrate by speaker recognition
experiments in Section 5.

Note that the formulae (3) and (4) consider variance in spec-
tral and not MFCC domain which are generally different due to
the logarithmic compression and cosine transform. Neverthe-
less, if the estimated spectrum deviates from the true spectrum,
so will the resulting MFCC vector deviate from the true MFCC.
For a mathematical treatment of MFCC bias and variance, refer
to the recent studies [6, 14].

4. Speaker Verification Setup
We use the NIST 2002 speaker recognition evaluation (SRE)
corpus for the experiments. It contains 139 males and 191 fe-
males and there are 2982 genuine and 36,277 impostor trials.
For the baseline Hamming method, we compute the MFCCs as
it is usually done: Hamming windowing, DFT magnitude spec-
trum, 27 mel-frequency spaced filters, logarithm and discrete
cosine transform. We keep the lowest 18 MFCCs, excluding
c0 as usual. For the Thomson [9], multipeak [12] and sine-
weighted cepstrum estimator (SWCE) [13] methods, we pro-
ceed similarly but estimate the magnitude spectrum using the
multitaper spectrum estimator as described in Section 2. The
complete front-end includes RelAtive SpecTrAl (RASTA) filter
for the base MFCCs, ∆ and ∆2 coefficients, an energy-based
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Figure 3: Effect of the number of tapers to EER and MinDCF.

voice activity detector (VAD) and, finally, cepstral mean and
variance normalization (CMVN).

We utilize a standard Gaussian mixture model with univer-
sal background model (GMM-UBM) [4] as our system back-
end, with test normalization (Tnorm) [15] applied on the log
likelihood ratio scores. We have utilized the same system re-
cently in [8,16]. The data for UBM training and T-norm models
were drawn from the NIST 2001 corpus.

In comparison of the different MFCC estimation methods,
we consider both the equal error rate (EER) and the minimum
detection cost function value (MinDCF). EER is the error rate
for which the miss rate (Pmiss) and the false alarm rate (Pfa)
are equal. MinDCF, in turn, is used in the NIST speaker recog-
nition evaluations and defined to be the minimum of the error
functional 0.1×Pmiss +0.99×Pfa. In addition, we display se-
lected detection error tradeoff (DET) curves for the entire trade-
off of false alarm and miss rates.

For systematic study of the robustness of the four feature
sets, we consider their performance under additive factory noise
degradation (noise drawn from the NOISEX-92 corpus).The
UBM and target model training data are kept untouched, but the
noises are added to the test files with a given average segmental
signal-to-noise ratio (SNR). We consider five SNR levels: clean,
20, 10, 0, and -10 dB, where “clean” refers to the original NIST
samples. To focus on differences of the spectrum estimation
methods and not to accuracy of the energy VAD (whose accu-
racy degrades to near-unusable level at SNRs less than 0 dB),
we use VAD labels derived from the clean signal in all cases.

5. Speaker Recognition Results
We first study how the number of tapers affects the accuracy on
the original NIST data. We compare the EERs and MinDCFs
of the three multitaper techniques and also show the conven-
tional single-taper method (Hamming window) as a reference
in Fig. 3. Firstly, all the multitaper methods outperform the
single-taper method, even when the number of tapers is not set
to optimum; the error rates are lower than for the baseline for
4 ≤ k ≤ 12. Secondly, the multitaper methods show con-
vex error curves as hypothesized; too low an order increases
the variance whereas too high an order increases the bias of
the spectrum estimate. The optimum number of tapers, for this
dataset, is on the range 4 ≤ k ≤ 8.

We next study the performance of the methods under the
additive factory noise corruption. Based on Fig. 3, we fix the
number of tapers as k = 4 for Thomson and k = 8 for both
multipeak and SWCE. The results are shown in Table 1 and
Fig. 4. All methods significantly degrade with decreasing SNR
as expected. It is also clear that multitaper methods outperform



Table 1: System performance under factory noise corruption (18 MFCCs). For each row, the best EER and MinDCF are bolded.
Signal-to-noise Equal error rate (EER %) MinDCF
ratio (dB) Hamming Thomson Multipeak SWCE Hamming Thomson Multipeak SWCE

clean 9.66 8.13 8.23 8.35 4.03 3.33 3.25 3.37
20 10.23 8.40 8.34 8.74 4.13 3.43 3.45 3.47
10 10.45 8.57 8.92 8.69 4.15 3.60 3.53 3.54
0 11.54 10.29 10.28 10.45 5.02 4.46 4.24 4.30
-10 16.41 15.49 15.60 14.63 7.42 7.11 6.76 6.78

the baseline (Hamming) in both EER and MinDCF. From the
three multitaper methods Thomson works best on clean data
whereas multipeak and SWCE perform better at lower SNRs.
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Figure 4: Performance of single- and multitaper methods under
additive factory noise (0 dB SNR).

6. Conclusions
In this paper we have promoted to use multitapers for robust
MFCC extraction. Our speaker verification results indicate that
multitapers, independent of the chosen taper type, clearly out-
perform conventional single-window technique. We observed
this on both clean and noisy data, suggesting insensitivity to
both the type and number of tapers (which was optimized on
clean data). Due to their (slightly) better performance on the
noisier conditions, we recommend to use either the multipeak
or the SWCE tapers instead of Thomson. A good choice for the
number of tapers is 4 to 8. In conclusion, multitapers are sim-
ple and robust alternative for the conventional single-window
methods.
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