
Neural i-vectors

Ville Vestman1, Kong Aik Lee2, Tomi H. Kinnunen1

1Computational Speech Group, University of Eastern Finland, Finland
2Biometrics Research Laboratories, NEC Corporation, Japan

vvestman@cs.uef.fi, kongaik.lee@nec.com, tkinnu@cs.uef.fi

Abstract
Deep speaker embeddings have been demonstrated to

outperform their generative counterparts, i-vectors, in recent
speaker verification evaluations. To combine the benefits of
high performance and generative interpretation, we investigate
the use of deep embedding extractor and i-vector extractor in
succession. To bundle the deep embedding extractor with an i-
vector extractor, we adopt aggregation layers inspired by the
Gaussian mixture model (GMM) to the embedding extractor
networks. The inclusion of GMM-like layer allows the discrim-
inatively trained network to be used as a provider of sufficient
statistics for the i-vector extractor to extract what we call neu-
ral i-vectors. We compare the deep embeddings to the proposed
neural i-vectors on the Speakers in the Wild (SITW) and the
Speaker Recognition Evaluation (SRE) 2018 and 2019 datasets.
On the core-core condition of SITW, our deep embeddings ob-
tain performance comparative to the state-of-the-art. The neural
i-vectors obtain about 50% worse performance than the deep
embeddings, but on the other hand outperform the previous i-
vector approaches reported in the literature by a clear margin.

1. Introduction
Automatic speaker verification (ASV) systems extract speaker-
related information from a pair of speech recordings (enroll-
ment and test) to decide whether the speakers in the two record-
ings are the same. This is done by computing similarity score
between speaker-related features in the two recordings. While
the base features have remained the same for decades [1], ex-
traction and comparison of speaker traits from these features has
coevolved with advances in machine learning. Much of ASV
research has focused on modeling low-level speech feature dis-
tributions via Gaussian mixture models (GMMs) [2, 3, 4, 5].
Common to models such as GMM with universal background
model (GMM-UBM) [3], joint factor analysis (JFA) [4] and i-
vector [5] is the use of GMM to model acoustic features within
recording(s).

What has changed throughout the years, however, is how
speaker comparison is carried out. In the classic GMM
pipelines [2, 3], features in the enrollment utterance(s) are used
to train a speaker-dependent GMM, and comparison consists of
evaluating the likelihoods of the target speaker model and the
UBM to form an average log-likelihood ratio over all frames. In
contrast to these frame-based approaches, the modern approach
is to first represent the enrollment and test utterances as vectors
of the same dimensionality. They can then be compared using a
simple inner product, or a trainable classifier [6]. How these
vectors are defined (and called) has changed throughout the
years. The early approaches, driven by the success of GMMs,
used high-dimensional GMM supervectors [7] with inner prod-
uct scoring, typically implemented using support vector ma-

chines (SVMs). Through base work in [4], this was followed up
by the highly-successful i-vector framework [5] where GMM
supervectors are presented as points in a low-dimensional la-
tent subspace. Following trends in deep learning, the focus has
recently shifted towards deep neural network (DNN) based fea-
tures [8], called nowadays embeddings. The idea to represent
utterances as vectors, however, is the same as before, with the
same back-end classifiers [9] used with GMM- and neural net-
work based embeddings.

As the title suggests, we focus on i-vector extraction along
the lines of classic GMM-based pipelines, but with a ‘neural
twist’. The general idea, of course, is not new. The three
building blocks of any GMM-based method are (a) a frame-
level feature extractor (e.g. MFCC extractor), (b) a dictio-
nary (e.g. a UBM), and (c) a posterior estimator (e.g. feature
vector alignment to dictionary components), each of which has
been successfully replaced in prior work by their neural ver-
sions [10, 11]. In contrast to these studies that have focused
either on replacing one or two of the components only, or using
GMM-inspired components [12, 13, 14] to implement neural
embedding extractors, we obtain all the three as ‘side-products’
from a neural network and proceed with conventional i-vector
extractor training on top of them. Noting that (a), (b) and (c)
are the only needed building blocks of any GMM-based em-
bedding — be it a GMM-UBM [3], JFA [4], GMM-supervector
[7], or i-vector [5] — this opens up a pathway to re-address any
of the classic pipelines, still respecting the undeniable perfor-
mance gains demonstrated by the recent neural approaches.

Our focus on i-vectors is arbitrary and the goal of our work
is not to improve upon state-of-the-art in deep neural network
based speaker embeddings. Instead, we aim to demonstrate that
classic GMM-based ASV pipelines may not be inferior because
of their model structures per se, but in the adoption of generic
(nondiscriminative) elements. Classic frame-based GMM ap-
proaches have certain, nearly forgotten advantages, such as the
ability to provide ‘partial’ scores at a fine temporal scale — the
frame level. This might be particularly useful in speaker diariza-
tion (not addressed here) and speaker recognition from short
utterances. Even if DNN embeddings appear to perform well
in short duration ASV tasks [15], we argue that using GMMs
retains all the benefits of generative modeling, such as the pos-
sibility to do sampling and obtaining uncertainty estimates for
features and speaker embeddings. These add up to transparency
and explainability demanded with increasing frequency from
any machine learning system.

2. Modern speaker embedding extractors
Deep neural networks used for extracting speaker discrimina-
tive embeddings typically consist of three main parts (see Fig-
ure 1). The first part of the network operates on frame-level

features as an input in order to construct discriminative features
from short time contexts, ranging from 100 milliseconds up to
a few seconds. The frame-level layers are followed by the sec-
ond main component, temporal aggregation layer, which con-
verts the variable length input feature vector sequence to a fixed-
dimensional representation. Finally, the last part of the network,
which consists of one or two feedforward layers and the output
layer, acts as a classifier for speaker identities. The speaker
embeddings are usually extracted from the first fully connected
layer after the aggregation layer [8].

Each of the three main parts can be implemented in mul-
tiple different ways. The frame-level component is often im-
plemented as 1D convolutional neural network (CNN) [16], 2D
CNN [17], or as some variant of time-delay neural network [18].
In 1D CNN, the convolution kernel slides over the temporal di-
mension (frames), whereas in 2D convolution, the kernel slides
over both time and frequency dimensions.

There are two commonly used approaches for temporal ag-
gregation. In the first approach [8], relatively high-dimensional
features are obtained from CNN/TDNN, which are then aggre-
gated by computing the (sample) mean and the standard devi-
ation of the feature vectors over time. The output of the ag-
gregation layer is then formed by concatenating the mean and
standard deviation vectors. The second approach [12] of ag-
gregation assumes relatively low-dimensional features (akin to
conventional hand-crafted acoustic features) from CNN/TDNN
but assigns them into multiple clusters (see Figure 2). Here, the
aggregation is performed for each cluster separately, resulting in
locally aggregated descriptor vectors. Finally, the locally aggre-
gated descriptors are concatenated to form a higher-dimensional
residual vector. This approach is analogous to the process how
GMM mean supervectors are formed in the GMM-UBM frame-
work.

3. Cluster-wise temporal aggregation
We focus on cluster-wise temporal aggregation methods as they
offer a natural pathway to utilize GMM-based speaker verifi-
cation approaches, such as the i-vector approach, together with
discriminatively trained features. In the following, we consider
two recent aggregation methods known as learnable dictionary
encoder (LDE) [19, 12] and NetVLAD [20, 13], where VLAD is
an acronym for “vector of locally aggregated descriptors”. As
we will show below, both can be regarded as discriminatively
trained GMM-supervector [7] encoders with specific assump-
tions.

Let us first recall the formula for posterior computation of
a Gaussian mixture component given a feature vector xt (time
index t = 1, . . . , T). By letting θ = {µc,Σc, wc}Cc=1 be a
GMM of C components with mean vectors µc, covariance ma-
trices Σc, and component weights wc, we can compute the pos-
teriors as follows:

γc,t = P (c|xt) =
wcN (xt|µc,Σc)∑C
l=1 wlN (xt|µl,Σl)

, c = 1, . . . , C.

(1)
By denoting

βc = log

(
wc√

(2π)D|Σc|

)
, (2)

where D is the dimension of feature vectors, we can expand (1)
to form

γc,t =
exp

[
− 1

2
(xt − µc)

TΣ−1
c (xt − µc) + βc

]∑C
l=1 exp

[
− 1

2
(xt − µl)TΣ−1

l (xt − µl) + βl
] .

(3)

Table 1: Comparison of LDE and NetVLAD.

Computation step LDE NetVLAD

Posterior computation Eq. (4) Eq. (7)
Cluster-wise representations Eq. (5) Eq. (8)
Supervector normalization — Length-norm

3.1. Learnable dictionary encoder

Equation (3) holds for any GMM with unrestricted covariance
matrices. In the following, we consider special cases, where the
covariance matrices are restricted to have specific forms. First,
by assuming isotropic covariance matrices (i.e., Σc = scI, with
sc > 0), (3) becomes

γc,t =
exp

[
− 1

2
sc‖xt − µc‖2 + βc

]∑C
l=1 exp

[
− 1

2
sl‖xt − µl‖2 + βl

] , (4)

where ‖ · ‖ denotes the Euclidean norm. This is the formula-
tion used for posterior computation in [18] with LDE. Earlier
works on LDE [19, 12], did not include the bias terms βc. Both
the parameters sc that define the isotropic covariance matrices,
and the bias terms βc as well as the cluster centroids µc are
learnable parameters of the LDE layer.

After computing the posteriors, the construction of the out-
put of LDE layer is a two step process. First, the input features
are temporally aggregated with respect to each cluster. This is
done by computing the weighted meansmc of residualsµc−xt

around the cluster centroids for each cluster c:

mc =

∑T
t=1 γc,t(µc − xt)∑T

t=1 γc,t
. (5)

The second step is to concatenate the cluster-wise representa-
tions to form a supervector m = (mT

1 ,m
T
2 , . . .m

T
T)

T, which
is the output of the LDE layer.

While the original formulation of LDE uses separate
isotropic covariance matrices for each component, it is straight-
forward to modify the LDE layer to operate with diagonal co-
variance matrices, or to use one shared diagonal or spherical
covariance matrix for all components. In our experiments, we
consider only the shared diagonal matrix formulation besides
the original formulation with non-shared spherical covariances
to limit the computational burden.

3.2. NetVLAD encoder

Let us next assume shared full covariance matrices (i.e., Σc =
Σ ∀c), which will lead to the NetVLAD formulation of poste-
rior computation. The shared covariance assumption simplifies
(3) to

γc,t =
exp

[
µT

c Σ−1xt + log(wc)− 1
2
µT

c Σ−1µc

]∑C
l=1 exp

[
µT

l Σ−1xt + log(wl)− 1
2
µT

l Σ−1µl

] ,
(6)

which allows us to write

γc,t =
exp

[
ωT

c xt + ψc

]∑C
l=1 exp

[
ωT

l xt + ψl

] , (7)

where

ωc = Σ−1µc and ψc = log(wc)−
1

2
µT

c Σ−1µc.

Equation (7) can be implemented as an affine transform fol-
lowed by softmax operation over clusters, which is exactly what
is done in NetVLAD layer to compute the posteriors. The
NetVLAD layer has ωc, ψc, and µc as its learnable parameters.

Utterance
processor

Multi-way
classification

Temporal
pooling

Frame
processor

𝑜1, 𝑜2, … , 𝑜𝑇

𝐱1, 𝐱2, … , 𝐱𝑇

Figure 1: An x-vector extractor consists of three functional blocks: a frame-level processor, a temporal pooling layer, and classifier.
X-vector embeddings are derived from the affine transformation after the pooling layer.

Utterance
processor

Multi-way
classification

Construct
res. vectors

Frame
processor

𝑜1, 𝑜2, … , 𝑜𝑇

𝜇𝑐 𝑐=1
𝐶Posterior

estimator

𝐱1, 𝐱2, … , 𝐱𝑇

𝛾𝑐,𝑡

Dictionary

Figure 2: The centrepiece of learnable dictionary encoder (LDE) and NetVLAD is the frame processor, frame posterior estimator and
dictionary that are trained jointly to minimize a classification loss.

Compute
suff. stats

i-vector
extraction

Neural i-vector
Frame

processor
𝑜1, 𝑜2, … , 𝑜𝑇

𝜇𝑐 𝑐=1
𝐶 , Σ

Posterior
estimator

𝛾𝑐,𝑡

𝐓𝑐 𝑐=1
𝐶

UBM

𝐱1, 𝐱2, … , 𝐱𝑇

Figure 3: The proposed neural i-vector relies on a deep structured front-end (shaded boxes) to extract sufficient statistics, which are
then used for generative embedding.

Compute
suff. stats

i-vector
extraction

𝑜1, 𝑜2, … , 𝑜𝑇 i-vector

𝜔𝑐 , 𝜇𝑐 , Σ𝑐 𝑐=1
𝐶

𝐓𝑐 𝑐=1
𝐶

Figure 4: An i-vector extractor is built upon a Universal Background Model (UBM) defined by the parameter set consists of weights,
mean vectors, and covariance matrices.

In terms of the number of learnable parameters, the correspon-
dence between NetVLAD and GMM with shared covariances
is not exact as covariance matrix Σ contains D(D + 1)/2 free
parameters, whereas a matrix containing all ωc vectors has CD
parameters.

In NetVLAD, the construction of the output supervec-
tor differs from LDE in two ways. First, NetVLAD length-
normalizes the component-wise outputs:

mc =

∑T
t=1 γc,t(µc − xt)∥∥∥∑T
t=1 γc,t(µc − xt)

∥∥∥ . (8)

The second difference is that the supervector m, obtained by
concatenating the cluster-wise outputs mc, is further length-
normalized to unit sphere.

The differences between LDE and NetVLAD are summa-
rized in Table 1. As LDE and NetVLAD differ in the posterior
computation as well as whether or not length-normalizations are
applied, it is challenging to identify the potential causes of the
performance difference between the two methods (if such dif-

ference is to exist). Therefore, we also study a hybrid approach
(referred as NetVLAD/LDE), in which the posterior computa-
tion follows the NetVLAD approach, while the rest of the steps
follow the LDE approach.

4. Utilizing aggregation statistics for
i-vector extraction

Deep speaker embedding [8] has been demonstrated to outper-
form the i-vector representation shown in Figure 4. The en-
hanced performance is attained by (1) training the network us-
ing large amount of training data via data augmentation, and
(2) discriminative training (e.g., multi-class cross entropy cost,
angular margin cost [21]). The drawback is lack of generative
interpretation. We propose to combine the benefits from both
sides, leading to the so-called neural i-vector shown in Fig-
ure 3. In the neural i-vector, we utilize the features, posterior
estimator, and the UBM that all have been trained discrimina-
tively using speaker labels. This differs from the DNN i-vector

presented in [11] as it requires senone labels and does not utilize
discriminatively trained features.

To extract neural i-vectors, we do not compute (5) or (8),
but instead compute the suffiecient statistics in a standard way
[22] as follows:

zc =

T∑
t=1

γc,t, (9)

fc =

T∑
t=1

γc,txt, (10)

Sc =

T∑
t=1

γc,txtx
T
t . (11)

Here the features and posteriors are extracted from the embed-
ding extractor network. The obtained statistics can be then eas-
ily used with any available i-vector code to train the i-vector
extractor and to extract the i-vectors.

5. Speaker verification experiments
5.1. Network architectures and training procedure

The network architectures designed for this study are all derived
from the standard x-vector architecture presented in [8]. Our
most elementary architecture differs from [8] in the following
ways:
• As in [16], we use non-dilated 1D CNN instead of

TDNN with dilations used in [8].
• As in [16], we use leaky rectified linear unit (LReLU)

activations (with slope of 0.01) instead of ReLUs.
• We have only one embedding layer (rather than two)

after the aggregation layer. In our preliminary experi-
ments, we did not find adding another layer to decrease
the resulting speaker verification equal error rates.

We extend our default network (referred as TDNN) by
adding squeeze-and-excitation (SE) modules [23] to the TDNN
layers. The SE module aims to improve the representative
power of hidden features by reweighting them using informa-
tion from global temporal statistics of features. Using the ter-
minology of [24], we adopt SE modules to perform temporal
squeeze and channel (feature) excitation. That is, the output fea-
tures of 1D CNN layer are weighted by factors computed from
temporally pooled (non-weighted) features. Our implementa-
tion of the SE module is depicted in Figure 5, while Figure 6
illustrates how the SE module is added to the TDNN layer. The
resulting TDNN-SE network architecture is presented in Table
2. Our SE module differs from the original in that it computes
standard deviations in addition to means during the squeeze
phase. In the excitation phase, we add batch normalization be-
tween the fully connected layers, as shown in Figure 5.

Inspired by the widely used ResNet architecture [25], our
next network variant includes residual modules. Our imple-
mentation of a residual module (referred as TDNN-RES-SE)
includes a fully connected layer, a 1D convolutional layer, and
a SE module, as depicted in Figure 7. The network architecture
is shown in Table 3. We replace neither the first nor the last
TDNN-SE layer with the residual modules, as residual mod-
ules require the number of input and output features to be the
same. The first layer has relatively low-dimensional MFCCs as
its input, while the output size of the last layer depends on the
aggregation method used. Networks with the mean and stan-
dard deviation pooling produce 1500-dimensional feature vec-
tors at the output of the last TDNN layer. Networks with LDE or

Table 2: The architecture of TDNN-SE network.

Layer type CNN kernel size Output dim.

1 TDNN-SE 5 512
2 TDNN-SE 5 512
3 TDNN-SE 7 512
4 TDNN-SE 1 512
5 TDNN-SE 1 1500
6 Aggregation — 3000
7 FC-LReLU-BN — 512
8 FC-softmax — #speakers

Table 3: The architecture of TDNN-RES-SE network. The out-
put sizes of the last TDNN-SE layer and the aggregation layer
depend on the aggregation method. If aggregation using means
and standard deviations is used, these sizes are 1500 and 3000,
but if LDE or NetVLAD is used, the sizes are 128 and 8192.

Layer type CNN kernel size Output dim.

1 TDNN-SE 5 512
2,3 TDNN-RES-SE 5 512
4,5 TDNN-RES-SE 7 512
6,7 TDNN-RES-SE 1 512
8 TDNN-SE 1 1500/128
9 Aggregation — 3000/8192
10 FC-LReLU-BN — 512
11 FC-softmax — #speakers

NetVLAD, in turn, produce TDNN outputs of 128-dimensions.
With LDE and NetVLAD, we use 64 clusters, resulting in 8192-
dimensional output vectors from the aggregation layer.

All our networks are implemented with PyTorch [26]. The
Kaldi toolkit [27] is used to extract speech activity labels and
60-dimensional MFCCs (without delta features), used as the in-
put features. PyKaldi [28] is used to load the features in Kaldi
format in Python and to perform cepstral mean normalization
(CMS) for the features.

For network training, we use four second long segments
selected from random positions of the training utterances. Dur-
ing training, we feed about 14 000 short segments from each
training speaker to the network in minibatches of size 64. Net-
work weights are updated to minimize cross-entropy loss using
stochastic gradient descend optimizer with weight decay param-
eter set to 0.001. We use a learning rate schedule that decreases
the learning rate from 0.05 to 0.0002 during the training.

5.2. Neural i-vector training details
We utilized the augmented form of i-vector extractor as de-
scribed in [29]1. In the augmented form, the UBM mean vec-
tors are augmented into the first column of the total variability
matrix T and they are thus updated after the each iteration of
extractor training, unlike in the standard formulation. For mod-
eling residual covariances in the total variability model, we used
a diagonal covariance matrix that was shared between all com-
ponents. To initialize the first column of T and the residual
covariance matrix, we used means and covariances computed
from the sufficient statistics (9), (10), and (11) of the training
data. We set the i-vector dimension to 512, which is the same
as the dimension of the network embeddings.

1The PyTorch re-implementation of Kaldi’s i-vector extractor used
in our study is available at https://github.com/vvestman/
pytorch-ivectors

https://github.com/vvestman/pytorch-ivectors
https://github.com/vvestman/pytorch-ivectors

𝒛1, 𝐳2, … , 𝐳𝑇

D-dimensional
input features

Mean & std
pooling

𝑤1, 𝑤2, … , 𝑤𝐷

Output weights

fc

D∗2 D/16

LReLU BN

fc

D

Sigmoid

D∗T

Figure 5: The squeeze-and-excitation (SE) module. The output weights are used to weight the input features as shown in Figs. 6 and 7.

SE

𝐲1, 𝐲2, … , 𝐲𝑇

Input features

1D conv

𝐱1, 𝐱2, … , 𝐱𝑇

Output features

LReLU BN

Figure 6: A TDNN module with squeeze-and-excitation (SE). This module is used to build the frame processor of TDNN-SE network.

SE

𝐲1, 𝐲2, … , 𝐲𝑇

Input features

1D convfc

𝐱1, 𝐱2, … , 𝐱𝑇

Output features

LReLU BN LReLU BN

Figure 7: A Residual module with squeeze-and-excitation (SE). This module is used to build the frame processor of TDNN-RES-SE
network. Compared to the module in Figure 6, this module adds a fully connected layer (fc) and a residual connection. The residual
connection adds input features to the features obtained from the SE operation.

5.3. Training data

To train the neural networks, i-vector extractors, and scoring
back-ends, we used 16 kHz speech data from VoxCeleb1 [30]
and VoxCeleb2 [17]. VoxCeleb data has been collected from
YouTube by automatic means. Like in [18], we concatenated all
the segments that were extracted from the same YouTube source
video, and used these concatenated segments as the training
data. We excluded all concatenated segments less than six sec-
onds long. After filtering out the short segments, we were left
with data extracted from 149 754 unique YouTube videos, con-
taining 7365 speakers. This data was then augmented five-fold
using Kaldi’s augmentation recipe, resulting in total of 748 770
concatenated segments. The augmentation creates copies of
data by reverberating speech or by adding noise, babble, or mu-
sic to the speech.

5.4. Evaluation data and metrics

We evaluated all the ASV systems on Speakers in the Wild
(SITW) [31] and NIST Speaker Recognition Evaluation (SRE)
2018 [32] and 2019 [33] data. From SITW, we selected core-
core (referred here as ‘core’) and core-multi (referred as ‘multi’)
conditions. In both, only a single speaker appears in each of the
enrollment segments, but in the multi condition, the test utter-
ances may contain speech from multiple speakers (unlike in the
core condition). The core condition evaluation contains 721 788
trials, out of which 3658 are target trials. The multi condition
contains 2 010 683 trials, out of which 10 045 are target trials.

The SRE 2018 and the SRE 2019 both consist of two sep-
arate evaluations. One is based on telephone speech data in
Call My Net 2 (CMN2) corpus, while the other one is based
on Video Annotation for Speech Technology (VAST) corpus.
In this study, we evaluated only the VAST portions of SREs as
VAST data is a better match to our VoxCeleb training data. The
SRE 2018 evaluation contains 31 815 trials, out of which 315
are target trials, while the SRE 2019 has 67 348 trials, out of
which 452 are target trials.

With SREs, we used the diarization labels provided by
NIST for the enrollment side to remove the unwanted portions
of speech from the enrollment. We did not perform diarization
of the test side for any of the datasets.

For each set of evaluation trials, we report equal error
rate (EER) and normalized minimum detection cost (minDCF).
See [34] for details of minDCF. We adopted the same minDCF
parameters as used in SRE 2018 and 2019 evaluations. That is,
we set the costs of miss and false alarm equal to one (Cmiss =
Cfa = 1), and the target prior Ptarget to 0.05.

5.5. Scoring back-end
We centered, whitened, and length-normalized (both discrim-
inative and generative) speaker embeddings before simplified
PLDA scoring [35]. We did not apply domain adaptation tech-
niques, but simply used the training data (VoxCeleb) to compute
centering vector and whitening matrix. Finally, we performed
adaptive symmetric score normalization (AS-norm) [36]. For
AS-norm, we randomly selected 2000 utterances from training
data and chose 200 highest scoring utterances for each enroll-
ment or test utterance to compute the normalization statistics.

5.6. Speaker verification results
Table 4 shows the results of our experiments with different sys-
tems on multiple speaker verification evaluations. The results
for the core condition of SITW are the most representative of
the basic accuracy of the ASV systems as it does not have multi-
speaker utterances requiring diarization. The other evaluations
provide supporting evidence, although the results may be im-
paired by the lack of diarization.

In general, we find that the differences between the results
of different deep embedding extractors are small. For example,
when migrating from TDNN to TDNN-SE and to TDNN-RES-
SE architectures, the results slightly improve on some evalua-
tions, but get slightly worse on others. Similarly, the differences
between the different aggregation methods are relatively minor,
which is quite intriguing considering the differences between

Table 4: Speaker verification results for the systems evaluated in this study. In addition to the deep speaker embedding systems, the
results are reported for four neural i-vector systems each of which are based on different variations of the aggregation layer.

SITW EVAL CORE SITW EVAL MULTI SRE18 EVAL VAST SRE19 EVAL VAST

EER Min Cost EER Min Cost EER Min Cost EER Min Cost

TDNN (mean & std) 2.21 0.135 3.46 0.183 12.69 0.472 5.97 0.223
TDNN-SE (mean & std) 2.02 0.125 4.03 0.188 12.70 0.473 5.97 0.212
TDNN-RES-SE (mean & std) 2.10 0.123 4.07 0.188 12.02 0.477 5.75 0.216
TDNN-RES-SE (LDE, isotropic) 2.02 0.122 4.04 0.185 12.70 0.497 5.53 0.212

CNeural i-vector 2.93 0.173 5.55 0.249 15.92 0.588 6.64 0.254
TDNN-RES-SE (LDE, shared diag.) 1.83 0.123 4.42 0.189 11.75 0.483 5.34 0.213

CNeural i-vector 2.81 0.168 5.40 0.246 15.87 0.522 6.43 0.256
TDNN-RES-SE (NetVLAD) 1.94 0.117 4.06 0.184 12.38 0.474 5.31 0.208

CNeural i-vector 3.09 0.175 5.73 0.261 16.51 0.588 6.00 0.290
TDNN-RES-SE (NetVLAD/LDE) 2.02 0.129 4.41 0.199 13.40 0.528 5.53 0.229

CNeural i-vector 3.06 0.188 5.65 0.262 15.56 0.596 5.97 0.253

Table 5: Review of recent single system results for SITW core-
core condition. Due to different experimental settings and im-
plementations, the results from different approaches are not di-
rectly comparable. Out of the i-vector systems, the proposed
neural i-vector obtains the lowest EER. The second lowest EER
was obtained by an i-vector system using a dereverberation sys-
tem (WPE) together with perceptual linear prediction (PLP)
and stacked bottleneck features (SBN). Other two included i-
vector systems use MFCCs and bottleneck features (BNF). Un-
der the divider line are the systems based on deep speaker em-
beddings. All systems use either MFCCs or filterbank coeffi-
cients (FBANK) as input features. All the embedding networks
use either TDNN, extended TDNN (E-TDNN), factorized TDNN
(F-TDNN), or ResNet34 based architectures. One system uses
additive angular margin (AAM) loss instead of standard cross-
entropy. The performance differences between the deep embed-
ding extractors are rather small, except for the last system utiliz-
ing tied mixture of factor analyzers (TMFA) layer that is trained
on 8 kHz Switchboard and SRE data.

System & study EER (%)

Neural i-vector [this study] 2.81
WPE PLP+SBN i-vector [37] 3.38
MFCC i-vector [37] 4.40
BNF i-vector [18] 5.77

TDNN-RES-SE (LDE) [this study] 1.83
FBANK E-TDNN [37] 1.70
MFCC E-TDNN [15] 1.7
MFCC F-TDNN [18] 1.86
FBANK ResNet34+LDE (AAM-softmax) [18] 2.11
FBANK ResNet34+TMFA (8 kHz) [14] 5.74

the standard mean and standard deviation aggregation and the
dictionary based methods.

Different variants of neural i-vectors perform almost
equally well to each other. The performance of neural i-vectors
is way behind the performance of their deep embedding coun-
terparts. On the other hand, the neural i-vectors perform sub-
stantially better than the other i-vector systems reported in lit-
erature as can be observed from Table 5. The table also shows
that our deep embeddings obtain a competitive results in com-
parison to the results reported in the other studies.

5.7. Visualizations of neural i-vectors
In Figure 8, we illustrate sampled neural i-vectors for 5 male
speakers in the SITW corpus. From each speaker we selected
six utterances and computed the posterior distributions [29, eqs.
(3) and (4)] of i-vectors. These distributions were used to sam-
ple 50 i-vectors per utterance. From the figure, we can observe
that different speakers are well separated and that the utterances
with short durations have higher uncertainty (i.e., more spread
clusters) than the utterances with long durations, as expected.

Finally, in Figure 9, we depict traces of posterior covari-
ances [29, eq. (3)] of i-vectors for SITW data. The traces reflect
the uncertainty in the i-vector estimation [39]. As expected, the
longer the duration, the less uncertain the i-vectors are.

14

17

18

19

46

50

20

232933

45

46 15

15

18

20
53

69

16

23

24

25

27

29

1419

23

29
30

35

Figure 8: T-SNE visualization [38] of random neural i-vectors
drawn from i-vector posterior distributions of 30 utterances
from 5 male speakers in SITW corpus. Different colors rep-
resent different speakers. Each of the 30 clusters consists of
50 random i-vectors drawn from the posterior distribution of
one i-vector. The numbers show durations of the utterances
in seconds after removing non-speech frames. The long utter-
ances have less uncertainty than the short ones, which can be
observed from the compactness of the clusters.

0 50 100 150 200
Utterance duration (s)

50

100

150

200

250

300

Tr
ac

e
of

 p
os

te
rio

r c
ov

ar
ia

nc
e

Figure 9: Trace of i-vector posterior covariance matrix as a
function of utterance duration for utterances in SITW core-core
condition.

6. Conclusion
At a broad outlook, the general developments in the field of

speaker recognition have involved innovative (and often suc-
cessful) re-use of previous generation tools to build up next gen-
eration recognizers: we have seen steady transition in state-of-
the-art from individually trained GMMs to GMM-UBM, GMM
supervectors, JFA and i-vectors (in this order). As a community,
we have been working on multi-layered (deep) models, formed
by stacking frame-level feature processors with utterance-level
presentations and speaker latent variable models. Until the re-
cent past, however, these pipelines have not been trained as
a whole, but constructed from individually-optimized compo-
nents. This is where the deep neural networks have come to a
rescue, and we are witnessing transition towards the next gen-
eration deep models. Nonetheless, deep neural network models
have seem to have interrupted the chain of GMM-based sys-
tems, particularly as they lack the concept of a universal back-
ground model. Some recent work has therefore looked into re-
placing the global temporal pooling operation of deep embed-
ding extractors with learnable dictionaries, similar to the UBM,
with demonstrated improvements.

In an attempt to bridge classic GMM-based technology and
the modern deep learning era, we have provided a unified com-
parison of alternative i-vector extractors that use different vari-
ants of deep neural networks to optimize the frame-level fea-
tures and the UBM. In particular, two recent deep neural net-
work architectures, LDE and NetVLAD, can be interpreted as
GMMs with specific assumptions. This interpretation enabled
us to re-consider classic GMM-based systems using discrimi-
natively obtained features and UBM. As a proof of concept, we
decided to focus on the i-vector system, but similar construction
is readily applicable to any ASV or diarization system that uses
GMMs.

Our results indicate that ‘neural i-vectors’ outperform all
the existing i-vector variants by a wide margin, indicating the
importance of using speaker-informative short-term features
and speaker-informative dictionary. Even if the corresponding
‘purely neural’ systems (used for obtaining the components of
our i-vector system) outperform the neural i-vector approach,
this was not the point of our study. The point, instead, is that
it is possible to view certain neural architectures as if having a
multi-modal aggregator (GMM) built in them. These identified

This work was partially supported by Academy of Finland (project
309629).

connections may open up fresh ideas in revoking techniques
such as uncertainty propagation, data augmentation (by sam-
pling features or speaker embeddings). Potential applications
that may benefit from fine-grained frame-by-frame speaker de-
cisions, such as speaker diarization, provide another potential
topic of future studies.

7. References
[1] S. Davis and P. Mermelstein, “Comparison of paramet-

ric representations for monosyllabic word recognition in
continuously spoken sentences,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 28, no. 4,
pp. 357–366, August 1980.

[2] Douglas A. Reynolds, “Speaker identification and verifi-
cation using Gaussian mixture speaker models,” Speech
Communication, vol. 17, pp. 91–108, August 1995.

[3] Douglas A. Reynolds, Thomas F. Quatieri, and Robert B.
Dunn, “Speaker verification using adapted gaussian mix-
ture models,” Digital Signal Processing, vol. 10, no. 1,
pp. 19 – 41, 2000.

[4] Patrick Kenny, Gilles Boulianne, Pierre Ouellet, and
Pierre Dumouchel, “Joint factor analysis versus eigen-
channels in speaker recognition,” IEEE Trans. Audio,
Speech & Language Processing, vol. 15, no. 4, pp. 1435–
1447, 2007.

[5] Najim Dehak, Patrick J. Kenny, Réda Dehak, Pierre Du-
mouchel, and Pierre Ouellet, “Front end factor analysis
for speaker verification,” IEEE Transactions on Audio,
Speech and Language Processing, 2010.

[6] Pavel Matějka, Ondřej Glembek, Fabio Castaldo, Md Ja-
hangir Alam, Oldřich Plchot, Patrick Kenny, Lukáš Bur-
get, and Jan Černocky, “Full-covariance UBM and heavy-
tailed PLDA in i-vector speaker verification,” in 2011
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2011, pp. 4828–4831.

[7] William M Campbell, Douglas E Sturim, and Douglas A
Reynolds, “Support vector machines using GMM super-
vectors for speaker verification,” IEEE signal processing
letters, vol. 13, no. 5, pp. 308–311, 2006.

[8] David Snyder, Daniel Garcia-Romero, Gregory Sell,
Daniel Povey, and Sanjeev Khudanpur, “X-vectors: Ro-
bust DNN embeddings for speaker recognition,” in 2018
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 5329–5333.

[9] Simon J. D. Prince and James H. Elder, “Probabilistic lin-
ear discriminant analysis for inferences about identity,” in
IEEE 11th International Conference on Computer Vision,
ICCV 2007, Rio de Janeiro, Brazil, October 14-20, 2007,
2007, pp. 1–8.

[10] Yao Tian, Meng Cai, Liang He, and Jia Liu, “Investiga-
tion of bottleneck features and multilingual deep neural
networks for speaker verification,” in Proc. Interspeech
2015, 2015.

[11] Yun Lei, Nicolas Scheffer, Luciana Ferrer, and Mitchell
McLaren, “A novel scheme for speaker recognition using
a phonetically-aware deep neural network,” in 2014 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2014, pp. 1695–1699.

[12] Weicheng Cai, Zexin Cai, Xiang Zhang, Xiaoqi Wang,
and Ming Li, “A novel learnable dictionary encoding layer

for end-to-end language identification,” in 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 5189–5193.

[13] Weidi Xie, Arsha Nagrani, Joon Son Chung, and An-
drew Zisserman, “Utterance-level aggregation for speaker
recognition in the wild,” in ICASSP 2019-2019 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2019, pp. 5791–5795.

[14] Nanxin Chen, Jesús Villalba, and Najim Dehak, “Tied
mixture of factor analyzers layer to combine frame level
representations in neural speaker embeddings,” Proc. In-
terspeech 2019, pp. 2948–2952, 2019.

[15] David Snyder, Daniel Garcia-Romero, Gregory Sell,
Alan McCree, Daniel Povey, and Sanjeev Khudanpur,
“Speaker recognition for multi-speaker conversations us-
ing x-vectors,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 5796–5800.

[16] Hossein Zeinali, Lukas Burget, Johan Rohdin, Themos
Stafylakis, and Jan Honza Cernocky, “How to improve
your speaker embeddings extractor in generic toolkits,” in
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2019, pp. 6141–6145.

[17] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman,
“VoxCeleb2: deep speaker recognition,” in Proc. Inter-
speech 2018, 2018, pp. 1086–1090.

[18] Jesús Villalba, Nanxin Chen, David Snyder, Daniel
Garcia-Romero, Alan McCree, Gregory Sell, Jonas
Borgstrom, Leibny Paola Garcı́a-Perera, Fred Richardson,
Réda Dehak, Pedro A. Torres-Carrasquillo, and Najim
Dehak, “State-of-the-art speaker recognition with neural
network embeddings in NIST SRE18 and Speakers in the
Wild evaluations,” Computer Speech & Language, vol.
60, 2020.

[19] Hang Zhang, Jia Xue, and Kristin Dana, “Deep ten: Tex-
ture encoding network,” in Proc. of the IEEE confer-
ence on computer vision and pattern recognition, 2017,
pp. 708–717.

[20] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas
Pajdla, and Josef Sivic, “NetVLAD: CNN architecture
for weakly supervised place recognition,” in Proc. of the
IEEE conference on computer vision and pattern recogni-
tion, 2016, pp. 5297–5307.

[21] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhik-
sha Raj, and Le Song, “Sphereface: Deep hypersphere
embedding for face recognition,” in Proc. of the IEEE
conference on computer vision and pattern recognition,
2017, pp. 212–220.

[22] Patrick Kenny, “A small footprint i-vector extractor,” in
Odyssey, 2012, vol. 2012, pp. 1–6.

[23] Jie Hu, Li Shen, and Gang Sun, “Squeeze-and-excitation
networks,” in Proc. of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 7132–7141.

[24] Abhijit Guha Roy, Nassir Navab, and Christian
Wachinger, “Concurrent spatial and channel ‘squeeze
& excitation’ in fully convolutional networks,” in
International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer, 2018, pp.
421–429.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in

Proc. of the IEEE conference on computer vision and pat-
tern recognition, 2016, pp. 770–778.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al., “Py-
torch: An imperative style, high-performance deep learn-
ing library,” in Advances in Neural Information Process-
ing Systems, 2019, pp. 8024–8035.

[27] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Hanne-
mann, Petr Motlicek, Yanmin Qian, Petr Schwarz, et al.,
“The Kaldi speech recognition toolkit,” in IEEE 2011
workshop on automatic speech recognition and under-
standing. IEEE Signal Processing Society, 2011.

[28] Dogan Can, Victor R Martinez, Pavlos Papadopoulos, and
Shrikanth S Narayanan, “Pykaldi: A python wrapper for
Kaldi,” in International Conf. on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 5889–5893.

[29] Ville Vestman, Kong Aik Lee, Tomi H. Kinnunen, and
Takafumi Koshinaka, “Unleashing the Unused Potential
of i-Vectors Enabled by GPU Acceleration,” in Proc. In-
terspeech 2019, 2019, pp. 351–355.

[30] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman,
“VoxCeleb: A large-scale speaker identification dataset,”
Proc. Interspeech 2017, pp. 2616–2620, 2017.

[31] Mitchell McLaren, Luciana Ferrer, Diego Castan, and
Aaron Lawson, “The speakers in the wild (SITW) speaker
recognition database.,” in Proc. Interspeech 2016, 2016,
pp. 818–822.

[32] NIST 2018 Speaker Recognition Evaluation Plan, 2018
(accessed January 24, 2020), https://www.nist.
gov/system/files/documents/2018/08/17/
sre18_eval_plan_2018-05-31_v6.pdf.

[33] NIST 2019 Speaker Recognition Evaluation Plan,
2019 (accessed January 24, 2020), https://www.
nist.gov/system/files/documents/2019/
08/16/2019_nist_multimedia_speaker_
recognition_evaluation_plan_v3.pdf.

[34] Seyed Omid Sadjadi, Craig Greenberg, Elliot Singer,
Douglas Reynolds, Lisa Mason, and Jaime Hernandez-
Cordero, “The 2018 NIST Speaker Recognition Evalu-
ation,” in Proc. Interspeech 2019, 2019, pp. 1483–1487.

[35] Daniel Garcia-Romero and Carol Y Espy-Wilson, “Analy-
sis of i-vector length normalization in speaker recognition
systems,” in Proc. Interspeech 2011, 2011.

[36] Sandro Cumani, Pier Domenico Batzu, Daniele Colibro,
Claudio Vair, Pietro Laface, and Vasileios Vasilakakis,
“Comparison of speaker recognition approaches for real
applications,” in Proc. Interspeech 2011, 2011.

[37] Pavel Matějka, Oldřich Plchot, Hossein Zeinali, Ladislav
Mošner, Anna Silnova, Lukáš Burget, Ondřej Novotný,
and Ondřej Glembek, “Analysis of BUT Submission in
Far-Field Scenarios of VOiCES 2019 Challenge,” in Proc.
Interspeech 2019, 2019, pp. 2448–2452.

[38] Laurens van der Maaten and Geoffrey Hinton, “Visualiz-
ing data using t-SNE,” Journal of machine learning re-
search, vol. 9, no. Nov, pp. 2579–2605, 2008.

[39] Amir Hossein Poorjam, Rahim Saeidi, Tomi Kinnunen,
and Ville Hautamäki, “Incorporating uncertainty as a
quality measure in i-vector based language recognition.,”
in Odyssey, 2016, pp. 74–80.

https://www.nist.gov/system/files/documents/2018/08/17/sre18_eval_plan_2018-05-31_v6.pdf
https://www.nist.gov/system/files/documents/2018/08/17/sre18_eval_plan_2018-05-31_v6.pdf
https://www.nist.gov/system/files/documents/2018/08/17/sre18_eval_plan_2018-05-31_v6.pdf
https://www.nist.gov/system/files/documents/2019/08/16/2019_nist_multimedia_speaker_recognition_evaluation_plan_v3.pdf
https://www.nist.gov/system/files/documents/2019/08/16/2019_nist_multimedia_speaker_recognition_evaluation_plan_v3.pdf
https://www.nist.gov/system/files/documents/2019/08/16/2019_nist_multimedia_speaker_recognition_evaluation_plan_v3.pdf
https://www.nist.gov/system/files/documents/2019/08/16/2019_nist_multimedia_speaker_recognition_evaluation_plan_v3.pdf

	 Introduction
	 Modern speaker embedding extractors
	 Cluster-wise temporal aggregation
	 Learnable dictionary encoder
	 NetVLAD encoder

	 Utilizing aggregation statistics for i-vector extraction
	 Speaker verification experiments
	 Network architectures and training procedure
	 Neural i-vector training details
	 Training data
	 Evaluation data and metrics
	 Scoring back-end
	 Speaker verification results
	 Visualizations of neural i-vectors

	 Conclusion
	 References

