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Abstract

Regularization of linear prediction based mel-frequenep-c
stral coefficient (MFCC) extraction in speaker verificatisn
considered. Commonly, MFCCs are extracted from the discret
Fourier transform (DFT) spectrum of speech frames. In our re
cent study, it was shown that replacing the DFT spectrum esti
mation step with the conventional and temporally weighted |
ear prediction (LP) and their regularized versions inaedbe
recognition performance considerably. In this paper, voeipe

a through analysis on the regularization of conventional an
temporally weighted LP methods. Experiments on the NIST
2002 corpus indicate that regularized all-pole method#dyie
large improvements on recognition accuracy under addiive
tory and babble noise conditions in terms of both equal error
rate (EER) and minimum detection cost function (MinDCF).

1. Introduction

Speaker verification aims to verify speaker’s identity fram
given speech signal [1]. A speaker verification system con-
sists of two modulesfeature extractior{front-end) ancpattern
matching(back-end). In pattern matching, features extracted
from a given speech input are compared to the claimed spsaker
model. Gaussian mixture models (GMMs) [2] and support vec-
tor machines (SVMs) are two popular back-ends, while mel-
frequency cepstral coefficients (MFCCs) are commonly used
as acoustic features. MFCCs are generally obtained from the
discrete Fourier transform (DFWhich is implemented with
fast Fourier transform (FFT)spectrum of windowed speech
frames.

Speaker verification accuracy under clinical and contdolle
conditions is high but decreases significantly under channe
mismatch and in the presence of additive noise. Channel mis-
match is the problem of having training and test speech ssmpl
from different types of channels or handsets, whereasigeldit
noise refers to other interfering sound sources being atlnled
the speech signal. In literature, several methods have fireen
posed to tackle channel mismatch and additive noise. These
include, for instance, speech enhancement prior to feaixte
traction and feature normalization using cepstral mearvarie
ance normalization (CMVN). In addition, intersession cemyp
sation of speaker models [3] and score normalization [4] are
commonly applied.

In [5], the present authors extracted MFCCs from para-
metric all-pole spectral models based on linear predictid?)
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[6] and its temporally weighted extensions [7]. This led to
increased speaker verification accuracy over the standafd F
method under additive noise contamination. A possibleaxpl
nation for this is that low-order all-pole models, due to Bera
number of free parameters in comparison to FFT, exhibit less
variations between clean and noisy utterances. Recem{i§],i

the authors showed that using the regularized all-pole eode
to estimate magnitude spectrum in the feature extraction im
proves the speaker verification accuracy significantly. hia t
field of pattern recognition, regularization techniques eom-
monly used for trading off between training and test errors t
enhance classifier generalization [9] but they have beerhmuc
less studied for feature extraction and speech paramatiernz
[10]. In this paper, we would like to provide a through anays
of the regularized all-pole models for speaker verificatioder
additive noise contamination.

Regularized_P (RLP) [10] is a parametric spectral model-
ing method motivated from a speech coding point of view for
tackling a known problem in that field, over-sharpening of fo
mants. RLP penalizes rapid changes in all-pole spectral en-
velopes, thereby producing smooth spectra without affgcti
formant positions. However, RLP has not been applied to any
recognition tasks to the best of our knowledge. Intuitivéhe
use of RLP isjustified in speaker verification because it kxsab
computing smooth spectral models and is therefore expéated
reduce mismatch between training and test utterances.e Sinc
clean speech was used in [10], the present study will address
the performance of RLP under additive noise contamination.
Moreover, in [10] only boxcar (rectangular) window was used
for autocorrelation domain windowing to compute the pgnalt
function. Therefore, we study the effects of different aote
relation windowing methods on recognition accuracy. Hnal
in addition to conventional LP, we extend regularizatiore
temporally weighted variants of LP, weighted LP (WLP) [5Han
stabilized weighted linear prediction (SWLP) [7].

2. Spectrum Estimation

2.1. Baseline FFT and LP Methods

MFCC features are generally obtained from the periodogram o
a Hamming-windowed speech frame given by
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wheref is the discrete frequency index,= [z(0) ... (N —

1)]" is a speech frame ang = [w(0) ... w(N — 1)]T is

the Hamming window. The signal(n) is assumed to be zero
outside of the interval(, N — 1].

LP analysis [6] is based on the assumption that a speech

samplex(n), can be predicted as a weighted sum opifsevi-

ous samplesi(n) = — > 7_, arx(n — k), wherez(n) is the
original speech samplé;(n) is the predicted sample andis

the predictor order. Usually, the predictor coefficiefus };_,

are obtained by minimizing the energy of the predictiondesi

ual,e(n) = z(n) — &(n) = z(n) + >_7_, axz(n — k). Inthe
autocorrelation method, the solution h)lf;t =lai, ..., ap)"
is given by

ag, = —Ry'rip, @)

whereRy;, is the Toeplitz autocorrelation matrix awmg, is the
autocorrelation vector. Given the predictor coefficients,the
LP spectrum is obtained by

1
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2.2. Temporally Weighted All-pole Models

In contrast to LP, weighted linear prediction (WLP) [11] de-
termines the predictor coefficients by minimizing a tempigra
weightedenergy of the prediction errof} = >~ €*(n)¥,, =

S (x(n) + S F_ bex(n — k))*¥,, wherel,, is a time-
domain weighting function. In matrix notation, the optimum
predictor coefficients of WLP are computed by

wlp
bopt -

~RyppTwip, (4)
whereb = [b1, ... , b,)T are the predictor coefficients,
Rup = >, x(n)x(n) Wy, rep = >, 2(n)x(n)¥, and
x(n) = [z(n— 1) z(n —2) ... z(n — p)]*. Note thatR.,,
andr.,, correspond tdR;, andri,, respectively, if and only if
¥,, = 1 for all n. The matrixR1p iS symmetric but in general
does not have Toeplitz structure.

Conventional autocorrelation LP guarantees that the cor-
responding all-pole model is stable, i.e., a filter whoseegol
are within the unit circle. For WLP, however, the stabilitfy o
the all-pole model is not guaranteed. The stability cooditi
of an all-pole model is essential in speech coding and synthe
sis applications. Besides the coding and synthesis apiplisa
it has been noted that stabilization improves speaker vaifi
tion performance as well [5]. Thus, stabilized WLP (SWLP)
was proposed in [7]. In SWLP, the weighted autocorrelation
matrix and the weighted autocorrelation vector are expess
asRewip = YTY andrsw, = Y7yo, respectively (the
original article [7] presents the problem in a slightly diff
ent form). The columns of the matriY Viy2 --- Yo
are calculated by,+1 = By, for0 < k& < p — 1, where
yo = [VUiz(1) ... vVUnz(N)O0 ... 0]F andB is a matrix
where all the elements are zero outside the subdiagonahand t
elements of the subdiagonal, for< : < N +p — 1, are

vV (3 (%) < (3
Biti,i = { Wir1/Wi, Wi < Winy

U, > ‘1/1+1
In [11] and [7], short-time energy (STE) was chosen as the
weighting function,¥,, = "M 2*(n — i), where M is the
length of the STE window.
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Figure 1: Effect of prediction order on prediction error and
penalty function (the use of the DAC sequence in regulddnat
is explained in subsection 2.4).

2.3. Regularized Linear Prediction

In regularization, a penalty measure is included in the
objective function and the predictor coefficients are
calculated by minimizing a modified cost function,

Y (@) + X8, erz(n — k))* + Ao(c), where (c)

is the penalty measure which is a function of the unknown
predictor coefficiente and X > 0 is a regularization constant
which controls the smoothness of the spectral envelope.

[10], the penalty measure was chosen as

1 U
2 J_,
wherel/|W (w)|? is a coarse approximation of the spectral en-

velope andC’ (e?*) is the frequency derivative of the RLP in-
verse filter,C(e’*) = S°F_ cre 7% with ¢¢ = 1. The
advantage of this penalty function is that a closed form non-
iterative solution exists and it is computationally effitie In
[10], the coarse spectral envelopdW (w)|* was derived from
windowed autocorrelation sequence, in which the penaltgfu

tion was shown to have the following form:

In

’ . 2
C (e'%)

dw (6)

#(c) = ¢c'DFDc. @
Herec = [ci, ... , cp]T are the predictor coefficient®) is

a diagonal matrix where each diagonal element is the corre-
sponding row number anB is a Toeplitz matrix correspond-
ing to the autocorrelation sequencg(m) = r(m)v(m),
wherer(m) is the original autocorrelation sequene¢m) =
ZT]:’:_OI z(n)x(n—m),m =0, ..., p—1,andv(m) is a win-

dow function. The matri¥ represents the denominator term,
W (w) in (6). The matriXF is equal to conventional Toeplitz au-
tocorrelation matrixR., when using boxcar (rectangular) win-
dow. The optimum predictor coefficients are now given by

rlp

Copt -

—(Ryp + ADFD) " 'ry, (8)

Figure 1 shows the effect of predictor ordej 6n the pre-
diction error and penalty functionp(c) of RLP which was
givenin (7). The error ang have been computed from a voiced
speech frame of a speech sample taken from the NIST 2002. As
seen from the figure, the prediction error reduces whém-
creases and LP yields smaller values than RLP. However, as
increases, the penalty function also rises resulting inothey
spectral models.
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Figure 2: Regularization of LP methodR (@ndr in the shaded
box are the corresponding autocorrelation matrix and vetio
tained from all-pole methods in use. Thandv in the lower
block are the autocorrelation sequence of the speech frathe a
window function which used for autocorrelation lag window-
ing, respectively.)

2.4. Extending Regularization for Other All-pole Models
and Autocorrelation Lag Windows

Regularization can be imposed on LP, WLP or SWLP methods
by using the corresponding autocorrelation matrix andorect
(Rip andrip; Ryip andryip; Rewip @ndrsyip). This procedure

is shown in Figure 2. A3 increases, the spectral envelope gets
smoother and a§ — 0, it reduces to conventional LP, WLP or
SWLP depending on the way the autocorrelation is computed.

We consider different window functions to compiema-
trix. The Blackman and boxcar windows are used to compute
F matrix in [12] and [10], respectively. We compare these
two windows and, additionally, also the Hamming window in
speaker verification. In [13, 14, 15], it was shown that the so
calleddoubleautocorrelation (DAC) sequence can be used for
robust estimation of spectral envelope in the presencedif ad
tive noise. Thus, besides the different window functions use
DAC sequencef(t) = S0 r(m)r(m—t),t =0,...,p—1,
to computeF'. Differently from [15], we use the firgt autocor-
relation coefficient$r(0) —r(p—1)) when computing the DAC
sequence.

Figure 3 shows the RLP spectra computed using differ-
ent windowed autocorrelation§m) of a voiced speech frame
taken from the NIST 2002 SRE corpus and its 0 dB noisy coun-
terpart. As seen from the figure, regularized methods give
a smoother spectrum compared to conventional FFT and LP
methods. Different window functions do not show large dif-
ferences on spectra but estimati#drom DAC does. Dynamic
range differences between original and noisy spectra fo€ DA
are smaller compared to conventional LP or RLP with boxcar,
Blackman and Hamming windows. We will demonstrate that
this leads to considerable improvements in speaker veidita
accuracy.

2.5. Dynamic Range of the Spectrum Estimators

To compare different spectrum estimators in terms of spectr
dynamics (SD), leSD(¢) = max;(20 x log,,(S(f,t))) —
ming (20 x log,,(S(f,t))) be theSD of tth speech frame in
decibels (dB). HereS(f,t) is the estimated magnitude spec-
trum of thetth speech frame anfl denotes the frequency bin.
Let SD,, be the average spectral dynamics for ik utter-
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Figure 3: Short-term spectra of a (a) clean speech frame take
from NIST 2002 SRE and (b) its factory noise corrupted (0 dB
SNR) counterpart. The spectra in each plot have been shifted

by 10 dB for better visualization.\(= 10~" is used for RLP
(DAC) and\ = 10~ * is used for the RLP with boxcar, Black-
man and Hamming windows.)

Table 1: SD..¢ (dB) and confidence intervals for female and

male speakers.

| Method Female Male
FFT 64.16+0.12 | 63.65+ 0.16
LP 45.44+ 0.14 | 45.044+0.16
RLP (Blackman)| 45.99+ 0.15 | 45.88+ 0.17
RLP (Boxcar) 44,89+ 0.14 | 44.634+0.16
RLP (Hamming) | 46.42+ 0.15 | 46.204+ 0.18
RLP (DAC) 42.084+ 0.17 | 41.83+0.22
WLP 43.10+ 0.14 | 43.324+0.15
RWLP (DAC) 41.04+0.18 | 41.164+ 0.22
SWLP 37.72+0.11 | 38.68+0.14
RSWLP (DAC) 36.42+0.14 | 37.26+ 0.19
ance,
1 &
SDivs = 7- ; SD(t), )

whereT,, is the number of frames for theth utterance. By
analyzingSDy,, over N utterances, its standard error of the
mean (SEM) [16] can be defined as

g

SEH = \/—V (10)
1 N 2
o2 = " > (SDivg — SDavg) (11)

where SD.,, is the average oSD},

avg

=1

over N utterances.

The 95 % confidence interval 08D.., is then computed as
SDave + 1.96 X Sgrr. Table | summarizes tHeD..,, (dB) and
confidence interval of each spectrum estimation methoddons

ered in this study for male and female speakers computed usin
1442 utterances per gender taken from the NIST 2002 corpus.
As seen from the Table, regularization systematically cedu
SD for all methods. For Blackman, boxcar and Hamming win-
dowed RLP, SD values are close to baseline LP method. How-
ever, when the DAC sequence is used for regularization SD re-
duction is larger than conventional methods.

3. Speaker Verification Setup

Speaker recognition experiments are carried out on the NIST
2002 SRE corpus which consists of conversational telephone
speech sampled at 8 kHz and transmitted over differentlaellu



networks. It involves330 target speakersl§9 males andl91
females) and9259 verification trials 2982 targets an®6277
impostors). For each target speaker, approximately twoitain
of training data is available whereas duration of the tetsrut
ances varies between 15 seconds and 45 seconds.

Gaussian mixture model with the universal background
model (GMM-UBM) [2] is used as the classifier. Test normal-
ization (Tnorm) [4] is applied on the log-likelihood scorfes
score normalization. Two gender-dependent background mod
els and cohort models for Tnorm wii2 Gaussians are trained
using the NIST 2001 SRE corpus.

Power spectral subtraction (as described in [17]) is used as
a pre-processing step in the signal domain to suppress\addit
noise. The MFCC features are extracted fradrms Hamming
windowed speech frames every ms. Magnitude spectrum es-
timation method differs depending on the method. Our biaseli
system uses the FFT magnitude spectrum of windowed frames.
For all-pole methods and their regularized versions, the pr
dictor coefficients and short-time spectra are computedeas d
scribed in Section Il. All the all-pole methods use= 20 as
in [5]. WLP and SWLP are computed as in [5] by utilizing the
STE window function withM/ = 20. The regularization factor
Ais 1077, 107*° and107*° in RLP, RWLP, and RSWLP, re-
spectively. For the Blackman, boxcar and Hamming windowed
RLP the regularization factox is fixed to10~%. The X value
for each method was optimized based on the smallest equal er-
ror rate criterion on clean data.

The spectra are processed through a 27-channel triangu-
lar filterbank and logarithmic filterbank outputs are coteer
into MFCCs using the discrete cosine transform (DCT). Af-
ter RASTA filtering the 12 MFCCs, their first and second or-
der time derivatives4 and AA) are appended. The last two
steps are energy-based voice activity detector (VAD) fedd
by cepstral mean and variance normalization (CMVN).

As the performance criteria, we consider both equal error
rate (EER) and minimum detection cost function (MinDCF).
EER is the threshold value at which false alarm rdtg ) and
miss rate Puiss) are equal and MinDCF is the minimum value
of a weighted cost function which is given Iyl X Pumiss +
0.99 x Ps,. Detection error tradeoff (DET) curves are also pre-
sented to show full behavior of the proposed methods.

For additive noise contamination, we usetory2 (which
we refer to as factory nois€) and babble noises from
NOISEX-92. Contaminating the utterances, we add noise sig-
naly with the same length as speech signatassy, = =+ Gy
in which G is a gain depends on the desired SNR level. The gain
G is a single value for the whole utterance and we have not con-
sidered any VAD decisions here. The resultag;., is then re-
sclaed to have the same scale:atn the noisy experiments, the
target speaker models, background models and Thorm cohort
models are trained using the original data and noise is added
to test samples with five different average segmental signal
to-noise-ratios (SNRs)SNR € {clean, 20, 10,0, —10} dB,
wherecleanrefers to the original NIST samples.

3.1. Optimization of the Regularization Parameteri

The control parameter of the RLP technique, regularizétion

tor A\, needs to be optimized before experimenting it on noisy
data. To this end, we compare the EERs and MinDCFs of
the RLP (DAC) with different values ok and also show the
baseline FFT method as a reference on the original NIST data

Lhttp://www.speech.cs.cmu.edu/comp.speech/Secti@ia/Boisex.html
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Figure 5: Effect of\ on different subsets. The bolded line is
obtained by ensemble averaging the subsets curves.

(Fig.4). As can be seen, = 10~ gives the smallest EER. For
the other regularized methods,is optimized in a similar way
and) = 107! for RWLP and RSWLP and = 10~ for the
RLP with boxcar, Blackman and Hamming windows are found
to be optimum (in the original papers [10, 12]= 3.28 x 103
and) = 4 x 10~2 were found to be optimum for the boxcar
and Blackman windows, respectively). In the rest of the expe
iments these values are used.

Optimizing A on one set of speakers or channel conditions
may not be generalized to another set of data. To see the ef-
fect of A on different data sets, we have splitted the NIST 2002
trials into six subsets with disjoint target speaker modeld
analyzed the effect of on each set. Figure 5 shows the behav-
ior of A on each se{Si, ..., S¢). Each subset contains 6430
trials (500 target and 5930 impostors) from 23 males and 31 fe
males. The location of EER and MinDCF exact minima for the
six trial subsets depends on the specific subset and may not be
a robust criterion for setting. Nevertheless, all the six subsets
— as clearly seen from their ensemble average — indicatep ste
rise ath ~ 107", It is expected that suchkaee poingenerally
exists, as very small values afwill reduce down to the unreg-
ularized baseline method (= 0), wheras too large values of
A tend to produce rigid spectra that are inflexible in capturin
any useful inter-speaker variabilities. While the locataf the
knee point will certainly depend on the chosen corpus arid tas
on the cellular speaker verification conditions considérec,

X\ ~ 1077 appears a good choice. In Figure 5, the solid line
is obtained by ensemble averaging the sub-groups curveis and
can clearly be seen that ensemble average curve has exact min
imum at the value of = 10~8. Therefore, optimizing\ on

one subset and applying it to another subset gives perfa@nan
close to the optimum.



Table 2: Effect of Autocorrelation domain window functiosed for computing th& matrix in RLP

SNR Equal error rate (%) MinDCFx100

(dB) | Boxcar Blackman Hamming DAQ Boxcar Blackman Hamming DAQ

clean| 7.57 7.52 7.37 7.38 3.07 3.02 3.03 3.03
> | 20 7.81 7.78 8.04 7.84 3.18 3.18 3.16 3.19
% 10 8.75 8.85 8.85 8.38 3.57 3.55 3.57 3.45
RS 0 10.29 10.02 10.16 9.41 417 4.16 4.16 3.81

-10 15.02 15.08 15.45 13.61| 6.10 6.15 6.06 5.81
o | 20 7.81 7.81 7.78 7.90 3.19 3.15 3.14 3.30
g 10 8.92 8.51 8.68 8.35 3.44 3.41 3.37 3.46
g 0 10.94 11.05 11.20 9.61 4.32 4.27 4.26 3.96

-10 20.12 20.92 20.73 16.93| 7.55 7.76 7.65 6.63

Table 3: Speaker recognition performance under additivgenhe DAC sequence is used for regularized methods). ivea noise
type and SNR level, all the differences are statisticaliysicant with 95% confidence according to McNemar’s test.

SNR Equal error rate (%) MinDCFx100

(dB) FFT LP RLP  WLP RWLP SWLP RSWLH FFT LP RLP WLP RWLP SWLP RSWLA

clean | 7.65 7.44 738 7.48 8.10 7.81 7.94 | 3.07 3.05 3.03 299 3.33 3.08 3.41
> | 20 8.08 7.83 7.84 781 7.75 8.22 7.85 325 322 319 312 3.14 321 3.24
g 10 9.32 8.50 8.38 8.79 832 9.11 8.50 3.64 356 345 357 332 3.62 3.45
s |0 1046 9.93 941 1034 9.62 10.06 959 | 413 421 381 4.19 3.92 4.17 3.92

-10 1535 1496 13.61 1519 13.86 1435 1332 | 6.63 6.14 581 6.19 6.03 5.94 5.87
o | 20 7.83 7.78 790 7.71 8.21 8.11 8.17 | 3114 312 330 3.09 3.35 3.19 3.44
2] 10 8.85 858 835 870 8.48 8.78 8.65 | 3.44 348 346 3.46 3.53 3.56 3.64
El0 11.62 11.23 9.61 1147 10.29 10.93 9.99 | 453 434 396 4.49 4.35 4.38 4.27

-10 21.27 20.35 16.93 21.02 18.40 19.69 17.64| 805 7.67 6.63 7.90 7.22 7.65 7.04

4. Speaker Verification Results

We first examine the effect of different window functions,
v(m), to computeF matrix in RLP method as described in
Section 2. The EER and MinDCF values for different window
functions are given in Table 2. As seen from the table, diffier
window functions do not show large differences on recogniti
accuracy as expected from Figure 3 and Table 1. However, us-
ing the DAC sequence to compukematrix improves recogni-
tion accuracy extensively.

Next, we analyze regularization of the temporally weighted
all-pole methods, RWLP and RSWLP, using the DAC sequence.
The results are given in Table 3. Figure 6 shows the DET plots
of each regularized and unregularized all-pole method im-co
parison to the baseline FFT method for babble noise at SNR
level of -10 dB. Recognition accuracy of all methods degsade
under additive noise as expected. The following obsematio
can be made:

¢ In cleancondition, LP, RLP and WLP methods slightly
outperform the baseline FFT technique.

Forfactory noisecontamination, RLP outperforms other
methods at low SNR levels (0 dB and -10 dB). RWLP
and RSWLP show minor improvements over all-pole
methods at high SNR levels (20 dB and 10 dB). In terms
of MinDCF, RLP outperforms the other methods at low
SNRs (0 dB and -10 dB) while RWLP wins at high SNRs
(10 dB and 20 dB)

For babble noise RLP achieves the smallest EER in
nearly all cases (WLP is slightly better at 20dB). In terms
of MinDCF, WLP gives smaller MinDCF values at high
SNR levels. In the noisier cases, RLP yields the smallest
values among the other methods.

4.1. Effect of Regularization on Different Conditions

It was shown in the previous section that improvement ongeco
nition accuracy by regularization is significant. Howewang
may argue that the improvement may depend on how the speech
samples are represented and transmitted, since NIST 2002 co
sists of various telephony data. To gain insight into theepet

tial impact of transmission type, we have broken down NIST
2002 verification trials into different subsets with redpte
transmission types. NIST 2002 corpus consists of telephone
speech recorded using four different transmission typeavG
(Global System for Mobile communications), TDMA (Time Di-
vision Multiple Access), CDMA (Code Division Multiple Ac-
cess), and LANDLINE as specified in the database.

We have compared baseline spectrum estimation methods
with regularized ones using original NIST data and under bab
ble noise condition (0 dB SNR). Table 4 summarizes the num-
ber of target and impostor trials for each transmissionesyst
Table 5 shows the EERs (%) for different transmission types u
der original and noisy conditions. In the clean case, bas&lP
gives the smallest EER value for the GSM data whereas WLP
is the best choice for the TDMA and LANDLINE conditions.
RSWLP outperforms the other methods for the CDMA. In the
noisy case, regularized methods are superior to the baselin
techniques for all transmission types. RLP shows promising
performance for GSM and LANDLINE data. For the TDMA
and CDMA conditions, the smallest EERs are obtained using
RWLP and RSWLP, respectively. In the noisy case, the reativ
improvements over the baseline methods are consideraithy hi
In general, the recognition performance of regularizechods
is better than the conventional ones in noisy case for aiktra
mission types.

Unfortunately, no transmission details are provided in the
database except for the fact that the first three of thesdatas
are wireless and the last one is the conventional wiredtméss
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Figure 6: DET plots for different spectrum estimators undér dB SNR babble noise (the DAC sequence is used for regatri

methods).

Table 4: Number of target and impostor trials of each sub-

condition for transmission types.

Number of Transmission type

trials GSM TDMA CDMA LAND Total

target 407 167 1312 383 2269

impostor 4092 1934 14583 7713 2832
[ Total | 4499 2101 15895 8096 30591

sion. However, one can assess the effect of different tresasm

127345). The work of Rahim Saeidi was funded by the Euro-
pean Community’s seventh framework programme (FP7/2007-

2013) under grant agreement no. 238803.
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A. MATLAB CODE FRAGMENT OF
STANDARD WINDOWED RLP

The following matlab code of the regularized LP spectruri: est
mator using windowed autocorrelation sequence studielisn t
paper. The inputs of the function are the speech signeggu-
larization factor\ and the window type "win” used to window
autocorrelation sequence. The function itself reducessithau
proposed in [10] when win="boxcar’ is used.

function
%
%
%
%
%

spectrum = rlp_win(x,lambda,win)

This function computes the RLP spectrum using
windowed autocorrelation sequence of a given

speech signal x and regularization factor lambda
NOTE: the function reduces to the method proposed in
Ekman et. al. 2008 when 'boxcar' is used as window.

p=20; % LP predictor order

nfft = 512;

frames = buffer(x,240,120, ‘nodelay’ );
frames bsxfun(@times,frames,hamming(240));

switch  (win)
case { 'boxcar }
wfunc = ones(p,1);
case { 'hamming’ }
wfunc = hamming(p);
case { 'blackman’ }
wfunc = blackman(p);
end

% Biased autocorrelation

fft(frames, nfft);

ifft(abs(X)."2);

R./size(frames,1);
zeros(p+1,size(R,2));

diag(1:p);

i = lisize(R,2)

r = R(2:p+1,i);

Autocorr = toeplitz(R(1:p,i));

% Windowed autocorrelation

F = toeplitz(R(1:p,i). *wfunc);
a2 = (Autocorrtlambda  * D+ FxD)\r;
a(,i) = [1;-a2];

cO% X

end

% Inverse filter spectrum
ifspec = 1./abs(fft(a,nfft))."2;
spectrum = ifspec(1:nfft/2+1,:);

B. MATLAB CODE FRAGMENT OF RLP
WITH DAC SEQUENCE

The matlab code of the proposed regularization of the d#-po
models using DAC sequence is given below. The inputs of the
function are the speech signabnd the regularization factor.

function spectrum = rlp_dac(x,lambda)

% This function computes the RLP spectrum using
% DAC sequence of a given speech signal x and
% regularization factor lambda

p=20; % LP predictor order

nfft = 512;

frames = buffer(x,240,120, ‘nodelay’ );

frames = bsxfun(@times,frames,hamming(240));

% Biased autocorrelation

fft(frames, nfft);

ifft(abs(X)."2);

R./size(frames,1);

zeros(p+1,size(R,2));

diag(1:p);

i = lisize(R,2)

r = R(2:p+1,i);

Autocorr = toeplitz(R(1:p,i));

% DAC sequence

Autocov = xcov(R(1:p,i),

Autocov = Autocov(p:2

F = toeplitz(Autocov(1:p));
a2 = (Autocorr+lambda
a(:,i)

end

= [L-a2];
% Inverse filter spectrum
ifspec = 1./abs(fft(a,nfft))."2;
spectrum = ifspec(1:nfft/2+1,:);
end

S O% X

‘coeff'
*p-1);

* Dx Fx D)\r;

);



