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Abstract

The i-vector representation and PLDA classifier have shown

state-of-the-art performance for speaker recognition systems.

The availability of more than one enrollment utterance for a

speaker allows a variety of configurations which can be used

to enhance robustness to noise. The well-known technique of

multicondition training can be utilized at different stages of the

system, including enrollment and classifier training. We also

study the effect of mismatched training, averaging and length

normalization. Our study indicates that multicondition training

of the PLDA model, and if possible the enrollment i-vectors are

the most important to achieve good performance in noisy eval-

uation data.

Index Terms: Speaker verification, i-vector, PLDA, multicon-

dition training

1. Introduction

The i-vector representation followed by probabilistic linear dis-

criminant analysis (i-vector PLDA framework) has become

state-of-the-art in speaker verification systems over the past few

years. There has been active research in improving the basic

i-vector-based system proposed in [1]. When speech utterances

are represented as i-vectors, the speaker verification problem is

simply to determine if the i-vectors have the same speaker in-

formation or not. In a typical speaker verification trial, there are

two i-vectors. One i-vector represents the enrollment utterance

of a given speaker, and the other represents a test utterance. If

the verification system determines that the speaker information

in the two i-vectors are the same, then both the utterances are

deemed to come from the given speaker.

In the recently concluded NIST Speaker Recognition Eval-

uation (SRE) 2012, a given target speaker had multiple utter-

ances (hence multiple i-vectors) available for enrollment. This

has led to several interesting possibilities of how to utilize these

multiple i-vectors effectively. In this paper, we study various

ways of utilizing the multiple enrollment i-vectors. The moti-

vation is to determine the effect of various system level config-

urations on the verification accuracy. We also experiment with

utilizing the enrollment i-vectors by emphasizing the amount of

speech present in them.

Recent studies have looked at various configurations to the

i-vector PLDA framework. These include studies on utterance

length, including the effect of short utterances [2], and mis-

matched or variable utterance duration [3, 4]. The effect of

noise on modern verification systems has been reported in [5].

Studies on the effect of using multiple speech sources, including

multicondition training have been studied in [6, 7]. An interest-

ing study with respect to the SRE 2012 evaluation and the pop-
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ulation used in PLDA training has been reported in [8]. Most

of these studies have looked at the effect of variations begin-

ning with the estimation of i-vector hyperparameters (i. e. the

i-vector extractor.) On the other hand, in this paper, our focus is

mostly on the enrollment stage and PLDA training; the i-vector

hyperparameters are unchanged.

We systematically study the various configurations possible

when utilizing multiple enrollment i-vectors. These include:

1. The use of original versus noisy training utterances

2. The effect of applying multicondition training

3. Averaging scores or scoring using averaged i-vectors

4. The effect of i-vector length normalization

5. The effect of taking weighted average of enrollment i-

vectors

In particular, we address the above questions using a cor-

pus consisting of millions of test trials with simulated addi-

tive noise [9]. In addition to state-of-the-art PLDA classifier,

a high-performance voice activity detector, (described in [10]),

is adopted for the experiments.

2. I-vector PLDA system

In this section, we give an overview of the i-vector PLDA sys-

tem utilized for the studies in this paper.

2.1. The i-vector representation

The i-vector representation [1] is a fixed-length representation

of speech utterances, which usually consist of variable number

of feature vectors. In this representation, the samples of the

utterance are transformed in successive steps into a vector in

R
D , where D is the i-vector dimension. Cepstral coefficients

extracted from the speech utterance are represented in terms

of zero- and first-order Baum-Welch statistics, with respect to

a universal background model (UBM.) The supervector repre-

senting these statistics are projected into a D-dimensional total

variability space (the matrix of basis vectors for this space is

the i-vector extractor.) Compared to the supervector, the total

variability space is of much lower dimension (typically between

400 to 600.) The UBM and the i-vector extractor are estimated

from appropriate training corpora. Methods to estimate the i-

vector extractor and the i-vectors are presented in [11, 12].

2.2. PLDA model

Probabilistic linear discriminant analysis (PLDA) has been ap-

plied successfully to specify a generative model of the i-vector

representation [13, 14]. A speaker- and recording-specific i-

vector ws,r can be represented as



ws,r = m+ Sxs +Cys,r + ǫs,r (1)

where the i-vector represents the rth recording of the sth

speaker. Here, m + Sxs is the speaker-dependent part, and

Cys,r + ǫs,r is a session dependent part. m is a global offset,

S is a set of basis vectors for the speaker subspace, represent-

ing the between-speaker variability, C represents the channel

subspace, representing the within-speaker variability and ǫ rep-

resents the remaining residual variability. The latent variables

xs and ys,r are assumed to have standard normal distributions,

and ǫ is assumed to follow a Gaussian distribution with zero

mean and diagonal covariance.

Given two i-vectors w1 and wt, the PLDA framework

forms the verification score s by determining the likelihood ra-

tio of them having the same or different xs in equation 1 [13]

s =
p(w1,wt|H1)

p(w1|H0)p(wt|H0)
(2)

where the hypothesis H1 indicates that both i-vectors come

from the same speaker, and H0 indicates they come from dif-

ferent speakers.

3. Experimental configuration

Practical speaker verification systems have to work in diverse

conditions, including noisy and reverberant environments. Our

experiments will focus on noisy conditions. Performance is re-

ported in terms of equal error rate (EER) and MinDCF, with cost

parameters (see [15]) Cmiss = 10, Cfa = 1 and Ptgt = 0.01.

3.1. I4U corpus

As part of the pre-evaluation activity for the NIST SRE 2012,

the I4U consortium1 developed a dataset based on previous

years’ NIST corpora. The presence of noisy test data encour-

ages the use of multicondition training [7, 16]. The I4U dataset

is thus designed with multicondition training in mind. With

the objective of performing system fusion and calibration, the

dataset consisted of a development part (I4U DevSet) and an

evaluation part (I4U EvalSet). Since our studies do not involve

system fusion, our experiments are done on the EvalSet portion.

In the EvalSet, the train data and the test data are drawn from

the SRE 2006, 2008 and 2010 corpora. The data had multiple

channels, including telephone, microphone and interview data,

as determined from the keys released by NIST. In addition to the

utterances used as-such from these corpora (henceforth termed

original utterances), noisy versions of each utterance were gen-

erated using FaNT2. For each train utterance, two noisy ver-

sions at 6 dB and 15 dB signal-to-noise ratio (SNR) were gen-

erated using HVAC (heating, ventilation and air-conditioning)

and crowd noise. The number of enrollment utterances for tar-

get speakers varied from 3 to 108, with an average of 19 per

speaker. Statistics about the I4U EvalSet are provided in Table

1. More details about the I4U dataset is provided in another

paper submitted to Interspeech 2013 [9].

3.2. i-vector PLDA system description

The i-vector PLDA system used for our studies uses a standard

Mel frequency cepstral coefficient (MFCC) front-end with 30

1The I4U consortium consists of nine universities and research in-
stitutes.

2FaNT - Filtering and Noise Adding Tool. Available:
http://dnt.kr.hsnr.de/download.html

Table 1: Statistics about data in the I4U EvalSet, used for the

experiments in this paper.

Male Female

Num. train spk. 763 1155

Num. test spk. 804 1102

Num. enroll seg. 29961 43119

Num. test seg. 21837 28548

Num. tgt. trials 15483 20763

Num. non-tgt. trials 16646148 32952177

ms frame size and 15 ms shift. The MFCCs were obtained us-

ing a 27-channel mel-frequency filterbank followed by RASTA

filtering, adding delta and double deltas, frame dropping using

VAD and utterance level cepstral mean and variance normal-

ization (CMVN), in this order. The 1024-mixture UBM was

trained with data from NIST 2004, 2005, 2006 and 2008 SRE,

whereas the i-vector extractor from NIST 2004, 2005, 2006,

Fisher and Switchboard data. The i-vector dimension was 600,

and gender-dependent hyperparameters were built. In our ex-

periments, as in [14], we assume that the residual term in the

PLDA formulation (Equation 1) has full covariance and hence

omit the channel subspace. The PLDA model consisted of 200

dimensions for the speaker subspace.

4. Studies on different configurations

The focus of our experiments is the on effect of using multiple

enrollment utterances (which contain both original and noisy

versions) on the i-vector PLDA framework. Another possibil-

ity of using noisy data is for training the UBM and the i-vector

extractor. However, training these hyperparameters is time con-

suming, and hence is not pursued in this study. Our experiments

focus on the enrollment phase and the PLDA training, which are

computationally inexpensive.

4.1. The use of original versus noisy data

Matched environment conditions between train and test data

usually result in improved classifier performance, when com-

pared to the mismatched case. In realistic scenarios, we cannot

assume prior information about the type of noise which will be

encountered. Classical speaker verification systems, such as the

GMM-UBM system, show much degradation in performance

when there is mismatch. So it is interesting to see the effect of

clean versus noisy training, in the i-vector PLDA framework.

The results of speaker verification experiments using vari-

ous cases of original and noisy data (for the female case) is tab-

ulated in Table 2. The first column gives the data used for target

speaker enrollment and PLDA training. In this set of experi-

ments, multiple enrollment i-vectors are averaged into a single

i-vector. Verification performance is reported for each SNR in

the test data.

From Table 2, it can be seen that matched environment con-

ditions do not necessarily give the best performance for the

i-vector PLDA system. From columns 1 and 2, we see that

even for noisy enrollment data, the (relatively) cleaner original

test data gives good verification accuracy. Similar observations

were made in [5]. But unlike in [5], observing the first row of

Table 2, we cannot conclude that if at least one of the utterances

in a trial is clean, performance will improve. The best perfor-

mance is obtained when all three environments (as shown in the

last row) is used for enrollment and PLDA training. This leads



Table 2: Effect of using original or noisy training utterances

for enrollment and PLDA training. Only female case is shown.

SNR-matched case is shown shaded. Performance is in terms

of EER (MinDCF.)

Enroll and PLDA Test data

Orig. 15 dB 6 dB

Orig. only 0.67 (0.26) 1.40 (0.59) 4.13 (1.79)

15 dB only 0.85 (0.38) 1.09 (0.43) 2.32 (0.90)

6 dB only 1.34 (0.68) 1.30 (0.52) 1.87 (0.73)

Orig.+15dB+6dB 0.73 (0.21) 0.92 (0.25) 1.41 (0.51)

us to the effect of multicondition training.

4.2. Multicondition training

For multicondition training, we have access to multiple versions

of the training data, which reflects possible distortions expected

during evaluation. For the I4U dataset, each enroll utterance

also has two noisy versions, at 6dB SNR and 15 dB SNR. Fol-

lowing [7], pooled multicondition training is done to estimate

the PLDA hyperparameters. Thus, this model assumes that all

of the N enrollment i-vectors ws,r 1 ≤ r ≤ N for a given

speaker are generated by the same hyperparameters in Equation

1.

The availability of multicondition training during enroll-

ment and/or PLDA training gives the four possibilities tabulated

in Table 3.

Table 3: Effect of multicondition training on enrollment, PLDA

training, or both. ‘MC’ stands for multicondition training. The

performance is in terms of EER (MinDCF.)

Enroll MC PLDA MC Male Female

No No 2.25 (0.87) 2.23 (0.92)

Yes No 1.58 (0.62) 2.06 (0.83)

No Yes 1.10 (0.37) 1.26 (0.53)

Yes Yes 1.06 (0.34) 1.3 (0.50)

As expected, multicondition training improves verification

performance. Multicondition during both enrollment and PLDA

training gives the best performance, although the difference be-

tween the rows 3 and 4 is not much. Hence, for the rest of the

experiments, the configuration in row 4 is used.

5. Averaging and length normalization

When multiple i-vectors w1,w2, . . .wN are available for en-

rollment, and wt is the test i-vector, the scoring function can be

expressed as follows:

s =
p(w1,w2, . . .wN ,wt|H1)

p(w1,w2, . . .wN |H0)p(wt|H0)
(3)

Although the PLDA model specified in [13] can directly score

multiple enrollment i-vectors as above, it is simpler to score the

averaged i-vector,

wavg =
1

N

N∑

i=1

wi (4)

where N is the number of enrollment i-vectors for a given tar-

get speaker. Another way to utilize the multiple enrollment i-

vectors is to score each of them individually, and average the
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Figure 1: Histogram (in log scale) of the amount of active

frames in all utterances of the I4U dataset.

scores,

scr =
1

N

N∑

i=1

score(wi,wtest) (5)

where score() is the PLDA scoring function.

Length normalization [17] is usually applied to i-vectors to

make them more Gaussian. It has been shown that this helps in

reducing mismatch between train and test i-vectors and results

in increased recognition accuracy without using the more com-

plicated heavy-tailed PLDA models [17, 18]. With averaging

i-vectors or scores, length normalization can be applied before

or after the averaging.

Table 4: Effect of averaging and length normalization (LN) in

terms of EER (MinDCF.)

Averaging LN Male Female

No length normalization

Avg. i-vec None 1.58 (0.58) 2.08 (0.75)

Avg. score None 1.71 (0.69) 2.22 (0.88)

With length normalization

Avg. i-vec Before 1.06 (0.34) 1.30 (0.50)

Avg. i-vec After 1.11 (0.43) 1.43 (0.71)

Avg. score Before 1.25 (0.48) 1.52 (0.66)

The effect of applying length normalization, i-vector aver-

aging or score averaging is tabulated in Table 4. As can be

seen, length normalization improves performance considerably.

Length normalizing the enrollment i-vectors and then averag-

ing them into a single enrollment i-vector seems to give the best

result.

6. Using weighted averages

Different enroll utterances typically have different lengths, and

the averaged enroll i-vector wavg in Equation 4 may not accu-

rately emphasize longer utterances (presumably the ones with

more speech content.) The histogram (in log scale) of the

amount of active frames in the I4U dataset is shown in Figure

1, and shows considerable variation in utterance duration.

To mitigate this, we also experiment with a weighted av-

erage i-vector, where the weights reflect the amount of speech

present in the utterance. The number of active frames for each

utterance, as determined in the VAD step [10] can be effectively

used for this purpose. Hence we replace Equation 4 with



wavg =

N∑

i=1

αiwi (6)

where the weight αi is determined as

αi =
ki∑
j
kj

1 ≤ i, j < N (7)

where ki is the number of active frames for enrollment ut-

terance i and j is the index for summation.

The VAD algorithm typically returns different numbers of

active frames for an original utterance and its two noisy ver-

sions. Since this may not reflect the amount of active speech

in the noisy utterance, we use the value from the original for

the corresponding noisy versions. Hence, for a given speaker,

the set consisting of an original enrollment utterance and its two

noisy versions get the same weight. This is done for each set,

with different sets being assigned different weights.

Table 5: Effect of weighted averaging of enrollment i-vectors.

Performance in terms of EER (MinDCF.)

Weighting used Male Female

No weights used (baseline) 1.06 (0.34) 1.30 (0.50)

Weight based on number of

active frames of original ut-

terances

1.16 (0.61) 1.39 (0.61)

The performance obtained with weighted average is pre-

sented Table 5. We see that the weighted averaging of the en-

rollment i-vectors did not bring performance improvement. Al-

though giving less emphasis to i-vectors derived from shorter

utterances makes intuitive sense, more sophisticated weighting

methods need to be analyzed.

7. Discussion

Several take-home messages stem from the above experiments

on the i-vector PLDA framework. First, mismatched train/test

conditions do not adversely affect the performance of the sys-

tem. For noisy training data, clean test utterances give better

accuracy than matched noisy test data. Secondly, pooled mul-

ticondition training, improves performance considerably, and

adds robustness. Our best results were obtained when both the

enrollment i-vectors and the PLDA system used multicondition

data. It is also interesting to note that the results slightly de-

graded only slightly when multicondition training was applied

to the PLDA model alone. Thirdly, the difference in verifi-

cation accuracy between averaging the enrollment i-vectors or

averaging their scores is relatively minor. I-vector length nor-

malization improves performance, and the point of applying the

length normalization (before or after i-vector averaging) is not

very critical. Thus, from a practical viewpoint, the most im-

portant system configuration needed to handle noisy data is to

use length normalized i-vectors, multicondition data for PLDA

training, and if possible also for enrollment.

8. Conclusions

In this paper, we experimented with several system-level con-

figurations for the i-vector PLDA speaker verification frame-

work. From our experiments, the importance of multicondition

training is seen as the most important configuration for good

performance. We also experimented with a heuristic weighted

averaging system for the enrollment i-vectors, which did not re-

sult in further improvement. Further studies will look at more

sophisticated weighting measures.
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