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Abstract 
This paper describes the derivation of a sequence kernel that 
transforms speech utterances into probabilistic vectors for 
classification in an expanded feature space. The sequence 
kernel is built upon a set of Gaussian basis functions, where 
half of the basis functions contain speaker specific 
information while the other half implicates the common 
characteristics of the competing background speakers. The 
idea is similar to that in the Gaussian mixture model –
universal background model (GMM-UBM) system, except 
that the Gaussian densities are treated individually in our 
proposed sequence kernel, as opposed to two mixtures of 
Gaussian densities in the GMM-UBM system. The motivation 
is to exploit the individual Gaussian components for better 
speaker discrimination. Experiments on NIST 2001 SRE 
corpus show convincing results for the probabilistic sequence 
kernel approach. 
Index Terms: speaker verification, sequence kernel, GMM-
UBM system 

1. Introduction 
Speaker verification is the process of validating a claimed 
identity by analyzing speech utterances [1]. In state-of-the-art 
systems, the verification process consists of extracting a 
sequence of short-term spectral feature vectors from the given 
speech utterance, matching the sequence of feature vectors 
against the claimed person’s model, normalizing the match 
score using a set of background speakers, and comparing the 
normalized score against a preset verification threshold. 

Two speaker modeling techniques that have shown 
excellent performance for text-independent speaker 
verification task are the Gaussian mixture model – universal 
background model (GMM-UBM) [2] system and the 
sequence kernel support vector machine (SVM) [3]. The 
GMM-UBM is a generative model in which the speaker’s 
feature distribution is represented as a probability density 
function adapted from a previously trained background 
model. On the other hand, SVM is a discriminative classifier 
that focuses on modeling the decision boundary between the 
target speaker and a set of background speakers. Since the 
two modeling techniques are based on different underlying 
assumptions and optimization criteria, they potentially 
provide complementary views of the same input feature space. 

In this paper, we propose a hybrid architecture, which 
integrates the GMM-UBM and the SVM strategies into a 
single model instead of just combining their output scores. In 
the proposed architecture, the GMM-UBM acts as a nonlinear 
mapper of the original spectral feature vectors into a higher 
dimensional feature space in which the speakers are expected 
to become better separated. The SVM, in turn, has the role of 
back-end classifier in the expanded feature space. More 
precisely, we derive a probabilistic sequence kernel for the 

SVM classifier by using the individual Gaussian components 
of the GMM-UBM as the nonlinear basis functions. A speech 
utterance having a varying number of feature vectors will be 
mapped into a single probabilistic vector, in which each 
element represents the probability of the Gaussian 
components, and used with the SVM classifier. 

A number of sequence kernels have been proposed for 
text-independent speaker verification [3, 4, 5]. Our kernel is 
similar to the generalized linear discriminant sequence 
(GLDS) kernel proposed in [3], with the major difference that 
GLDS uses a fixed form of polynomial expansion, whereas 
we use the speaker-dependent Gaussian basis functions, 
leading potentially to a better discrimination. This idea is 
motivated by the postulate that the Gaussian components of a 
well-trained GMM correspond to the underlying broad 
phonetic classes of that speaker [1, 2]. It is well-known that 
different phonetic classes have unequal discrimination power 
between speakers (e.g. nasals and vowels being more 
discriminative than fricatives) [6]. These observations 
motivate us to use speaker-dependent weighting of the 
Gaussian probabilities to enhance separation of that speaker 
from others. We use similar optimization technique as in the 
radial basis function (RBF) networks [7, 8] for this purpose. 
In the actual implementation of the sequence kernel, the 
weighting of the Gaussian components will be a 
straightforward normalization of the probabilistic vectors with 
correlation estimates. 

2. GMM-UBM verification system 
A GMM-UBM system consists of two probabilistic models: 
(i) a speaker-dependent GMM that contains the speaker’s 
voice characteristics, and (ii) a background model 
characterizing the feature distribution pertaining to a 
background set of speakers. In its standard setup [2], the 
UBM is trained by fitting a mixture of M  unimodal Gaussian 
densities 
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onto a collection of speech feature vectors extracted from the 
background speakers. In the above equation, ( )UBM|P j C  is 
the mixture weight for the jth Gaussian component 
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where jµ  denotes the mean vector, jΣ  denotes the 
covariance matrix, and D  is the dimension of the feature 
vector x . The speaker-dependent GMM ( )spk|p Cx  is then 
derived, for each speaker enrolled in the system, by adapting 
the parameters of the UBM using the speaker’s training 
speech through a form of maximum a posteriori (MAP) 
adaptation [2]. Finally, for a given test speech utterance Y  
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and a claim of identity, the decision to accept or reject 
whether Y  was spoken by a target speaker is made by 
comparing the likelihood of the target and background 
models, ( )spk|p Y C  and UBM( | )p Y C , against a preset 
verification threshold θ  in the following form  

 
( )spk

UBM

| , accept,
log

, reject.( | )
p Y C

p Y C
θ
θ

≥⎧
⎨<⎩

 (3) 

In [1, 2], it has been postulated that the individual 
Gaussian components of a well-trained GMM represent the 
underlying set of acoustic classes that characterize a person’s 
voice. In the log-likelihood ratio detection system in (3), the 
verification score is taken as the ratio between two likelihood 
scores, one from the speaker-dependent GMM and the other 
from the UBM, both computed by summing the activations of 
the individual Gaussian components for each feature vector. 
In this paper, we attempt to exploit the detailed phonetic 
information provided by individual acoustic classes in 
forming a verification decision. This is made possible by 
incorporating the Gaussian components as basis functions in a 
sequence kernel, as we shall see in the next section.  

3.     GMM-based probabilistic sequence 
kernel 

This section describes the derivation of a probabilistic 
sequence kernel for comparing two sequences of feature 
vectors via nonlinear mapping. We motivate the approach by 
following the concept of radial basis functions (RBF) 
network [7, 8], starting from basis functions selection to 
network weights optimization. 

3.1. Normalized Gaussian basis functions 
In the GMM-UBM verification system, the class-conditional 
densities of the target and background speakers are modeled 
using two GMMs with M mixtures. Assuming equal priors, 
we can pool the speaker-dependent GMM and the UBM to 
obtain a 2M-mixture GMM, in the following form 
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where ( )P j  are the mixture weights after renormalization 
such that all the weights sum to one (since we assume 

( ) ( )spk UBM 0.5P C P C= = ). Notice also the index j now ranges 
from 1 to 2M as there are 2M distinct components in the 
resulting mixture. In (4), we obtain a set of 2M  Gaussian 
basis functions ( )|p jx  that model the underlying acoustic 
classes characterizing the target and background speakers. 
Using Bayes’s theorem, the Gaussian basis functions can be 
written in normalized form as 
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Using this set of normalized Gaussian basis functions we form 
a generalized RBF network [7] as shown in Figure 1. Notice 
that we do not include a bias parameter in the network, as it 
can be seen as part of the verification threshold θ . 

3.2. Network weights optimization 
The output of the network in Figure 1 can be represented in a 
compact form, as follows 
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where [ ]1 2 2, , , T
Mw w w≡w …  is the network weights vector, 

and ( ) ( ) ( ) ( )[ ]1 2 2, , , T
n n n M nϕ ϕ ϕ≡φ x x x x…  is the vector of 

normalized Gaussian basis functions. We refer to ( )nφ x  as 
the probabilistic alignment vector, since each of its elements 

( )j nϕ x  indicates the probabilistic alignment of a given 
feature vector nx  into the jth Gaussian components. Given a 
set of labeled data, the network weights w  are determined by 
minimizing the sum-of-squares error function [7], as follows 
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where the speaker data 1 2, , ,
xNx x x…  are given a target value 

of 1, and the background data 1 2, , ,
zNz z z…  a target value of 0. 

Notice that we use xN  and zN  to denote the number of 
speaker and background feature vectors. It can be shown that 
the output ( )nf x  of the network trained using (7), 
approximates the probability ( )spk | nP C x  of an input feature 
vector nx  belonging to the class spkC . 

Since the error function in (7) is a quadratic function of 
the weights, the minimum spkw  can be found by solving the 
following set of linear equations  

 spk
T T=⎡ ⎤⎣ ⎦U U w U d , (8) 

where  

 ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, , , , ,
x z

T
N N≡ ⎡ ⎤⎣ ⎦U φ x φ x φ x φ z φ z φ z… …  (9) 

is the ( ) 2x zN N M+ ×  data matrix with each row represents 
the activations of the 2M basis functions ( )j nϕ x  in response 
to a given feature vector nx , and d  is the target vector 
consists of xN  ones followed by zN  zeros. Solving (8) for 

spkw , the least-squares solution is then given by 
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Figure 1: A network of normalized Gaussian basis 
functions constructed by pooling a speaker-dependent 
GMM together with a universal background model 
(UBM). Also see [7, pp. 179-182]. 
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There are always much more training vectors from 
background than from the target speaker, where z xN N� . In 
order to factor out the effect of data imbalance, we divide 
both sides of (10) by the prior probability estimate 

( )spkP C (/x xN N= )zN+  from the training data, as follows  
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3.3. Sequence kernel SVM 
Given a test sequence { }1 2, , ,

yNY = y y y… , and assuming 
that the feature vectors are independent [8], the output of the 
network averaged over the entire sequence is given by 
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Substituting (11) in (12), and after some algebraic 
manipulation, the output f can be written as a function of two 
sequences of feature vectors, X  and Y , as follows 
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Equation (13) gives a similarity measure between X  and Y  
by first expanding the feature vectors via nonlinear mapping 
and taking the average of the expanded feature vectors. The 
matrix ( )/T

x zN N+⎡ ⎤⎣ ⎦U U  in the right-hand-side of (13) is an 
estimate of the overall correlation matrix in the expanded 
feature space. It should be noted that the correlation matrix 
and the expanded feature space are speaker dependent since 
the basis functions are speaker dependent. For computational 
simplicity, we assume that the outputs of the Gaussian basis 
functions are uncorrelated, for which the correlation matrix 
can be assumed diagonal in the following form 
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where [ ]diag ⋅  denotes the operation of replacing the off-
diagonal elements of a matrix with zeros. Equation (13) can 
then be written in a simple form as 
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are referred to as the characteristic vectors for the training 
utterance X   and test utterance Y , respectively. In summary, 
for a given speech utterance, we represent it as a characteristic 
vector in an expanded feature space by first computing the 
probabilistic alignment for each feature vector, taking the 
average, and finally perform normalization using 1 2−Λ . The 
procedure is illustrated in Figure 2. 

Equation (15) indicates that the similarity between two 
speech utterances is given by the inner product of their 
characteristic vectors. Considering that we map all the speaker 
and background utterances into the expanded feature space. 
Instead of simple inner product, more general linear 
discriminant functions can be used to define a hyperplane that 
separates xρ  of the target speaker from those zρ  of the 
background speakers. Using support vector machine (SVM) 
classifier, such a hyperplane is described by a set of support 
vectors in the following form: 

 ( )
1

L
T

y l l l y
l

g t bα
=

= +∑ρ ρ ρ , (17) 

where L denotes the number of support vectors lρ , b  is the 
bias, and the term l ltα  indicates the weight of the support 
vector lρ  in characterizing the hyperplane. 

4. Probabilistic sequence kernel approach 
to speaker verification 

The probabilistic sequence kernel derived in the previous 
section can be used for speaker verification via the following 
steps: 

Step 1: Train a UBM with a model size of M  using speech 
utterances from the background speakers. 
Step 2: For a given training utterance, derive the speaker 
GMM using MAP. Steps 1 and 2 are the normal procedure 
employed in GMM-UBM system. 
Step 3: Pool the speaker GMM and UBM to obtain a set of 
2M  normalized Gaussian basis functions ( )jϕ x  as in (5). 
Recall that the speaker GMM and UBM are mixtures of M  
Gaussian components. 
Step 4: Reuse the training utterances in Step 1 (background 
utterances) and Step 2 (speaker utterance) to compute the 
normalization matrix Λ , as given by (14), and then transform 
each of the speaker and background utterances into 
characteristic vectors using (16). 
Step 5: Train a linear kernel SVM using the characteristic 
vectors, which have been assigned with appropriate label (i.e., 
+1 for speaker utterance, and -1 for background utterances). 
Step 6: For a given test utterance Y, we compute its 
characteristic vector yρ . The verification score is given by 
the SVM output as in (17). 

The purpose of MAP in Step 2 is to derive, using limited 
amount of training samples, a set of speaker-dependent basis 
functions from speaker-independent basis functions of the 
UBM. The resulting pool of basis functions is generative in 
the sense that it models the acoustic classes underlying the 
speaker and background speech utterances with unimodal 
Gaussian densities. The activations of these basis functions, in 
response to a given speech utterance, indicates the 
probabilities of the acoustic classes present in the speech 
utterance. In Step 5, the estimates of probabilities are used in 
the form of characteristic vectors to discriminate a target 
speaker from its competing set of background speakers. To 
this end, we obtain a hybrid form of speaker model that 

 
Figure 2: A GMM-based probabilistic sequence kernel. 
The input speech utterance X is transformed into a 
characteristic vector Xρ  for classification in an 
expanded feature space. 
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consists of (i) a set of generative basis functions as nonlinear 
feature expander, and (ii) a discriminative SVM classifier in 
the expanded feature space. 

Compared to the GLDS kernel [3], our probabilistic 
sequence kernel uses speaker-dependent Gaussian basis 
functions (parametric models), instead of fixed polynomial 
expansion for all speakers. This approach gives more 
flexibility and leads to a better performance, as we shall in the 
next section.  

5. Experiments 
We compare the performance of three speaker verification 
systems using one-speaker detection task specified in the 
2001 NIST speaker recognition evaluation (SRE) plan [9]. 
The corpus consists of two disjoint sets for development and 
evaluation, which are recorded under cellular telephone 
channel condition. In the evaluation set, there is 
approximately 2 minutes of training utterance provided for 
each of the 174 speakers to be enrolled in the system. The 
one-speaker detection task consists of 22,418 (2,038 genuine 
+ 20,380 imposter) trials. The length of the test utterance 
provided for each verification trial varies from few seconds up 
to one minute. Using a 30 ms Hamming window with 20 ms 
shifts, each utterance was converted into a sequence of 36-
order feature vectors, each consisting of 12 Mel-scale cepstral 
coefficients and their first and second derivatives. An energy-
based voice activity detector was used to remove feature 
vectors with insufficient frame energy. In addition, relative 
spectral (RASTA) filtering [1], cepstral mean subtraction, 
and variance normalization were also applied. 

In all experiments, we use the whole development set 
(138 speech samples from 60 speakers) as the background 
utterances. For the GMM-UBM system, we use the standard 
setup as reported in [2]. In particular, we train a 1024-mixture 
gender-independent UBM with diagonal covariance matrices. 
Speaker GMMs are trained by adapting only the mean vectors 
from the UBM using a relevance factor r of 16. For the GLDS 
SVM [3], monomials up to order 3 are used in the expansion, 
resulting in a feature space expansion from 36 to 9139. We 
also assume that the kernel inner product matrix is diagonal 
for computational simplicity. 

For our probabilistic sequence kernel SVM, we use 
gender-dependent UBMs with 512 mixtures. Furthermore, we 
reduce the relevance factor r to 4, and adapt the weights, 
mean vectors, and covariance matrices when deriving the 
speaker-dependent GMM. By adapting all the parameters with 
a smaller relevance factor, we increase the amount of adapted 
Gaussians so that the adapted GMM become more speaker-
dependent. This configuration resulted in a feature space 
expansion from 36 to 2×512. Despite a much lower 
dimension than that of the GLDS kernel, the probabilistic 
sequence kernel SVM performs significantly well. The 
commonly available SVMTorch [10] is used for training the 
SVM classifier. 

Figure 3 shows the detection error tradeoff (DET) curves 
for the three systems. The GLDS SVM slightly outperforms 
the GMM-UBM with an equal-error-rate (EER) of 8.49 %, 
compared to 8.78 % of the GMM-UBM. The probabilistic 
sequence kernel SVM exhibits the best performance with an 
EER of 8.10 %, due to its hybrid architecture that benefits 
from the properties of both generative and discriminative 
modeling techniques. Notice that the proposed method 
performs significantly better at the upper left corner (i.e., at 
high threshold values where false acceptance rate is low), 
which is favorable in applications where tighter security is 
required.  

6. Conclusion 
We have derived a hybrid architecture that consists of a set of 
generative Gaussian models at the front-end and a 
discriminative SVM classifier at the back-end. The Gaussian 
models are used as nonlinear feature expander in a sequence 
kernel, which transforms speech utterances into characteristic 
vectors in an expanded feature space. These characteristic 
vectors are then used with the SVM classifier to discriminate 
a target speaker from competing set of background speakers. 
The proposed architecture was evaluated using the 2001 NIST 
SRE corpus showing improvement over the GMM-UBM and 
GLDS SVM. 
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