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Abstract—In this paper, we present a novel system for joint
speaker identification and speech separation. For speaker identi-
fication a single-channel speaker identification algorithmis pro-
posed which provides an estimate of signal-to-signal ratio(SSR)
as a by-product. For speech separation, we propose a sinusoidal
model-based algorithm. The speech separation algorithm consists
of a double-talk/single-talk detector followed by a minimum
mean square error estimator of sinusoidal parameters for finding
optimal codevectors from pre-trained speaker codebooks. In
evaluating the proposed system, we start from a situation where
we have prior information of codebook indices, speaker identities
and SSR-level, and then, by relaxing these assumptions one by
one, we demonstrate the efficiency of the proposed fully blind
system. In contrast to previous studies that mostly focus on
automatic speech recognition (ASR) accuracy, here, we report the
objective and subjective results as well. The results show that the
proposed system performs as well as the best of the state-of-the-
art in terms of perceived quality while its performance in terms
of speaker identification and automatic speech recognitionresults
are generally lower. It outperforms the state-of-the-art in terms
of intelligibility showing that the ASR results are not conclusive.
The proposed method achieves on average, 52.3% ASR accuracy,
41.2 points in MUSHRA and 85.9% in speech intelligibility.

Index Terms—Single-channel speech separation, speaker iden-
tification, speech recognition, sinusoidal modeling, BSS EVAL.

I. I NTRODUCTION

Human beings have the amazing capability of perceiv-
ing individual speech sources from mixtures. For machines,
however, separating speech mixtures recorded by a single
microphone is still a rather difficult task. Designing reliable
and robust speech processing systems for adverse conditions
is a challenging problem since the observed signal is often
corrupted by other interfering signals, making the performance
significantly lower compared to that of clean conditions. In
extremely noisy environments, a high-quality speech separa-
tion algorithm is required as a pre-processing stage prior to
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Fig. 1. Block diagram showing how a single-channel speech separation
module can be used as a pre-processing stage to enhance the performance of
a target application.

the target application, such as hearing aids, automatic speech
recognition, speaker/language recognition and speech coding
(see Fig. 1). By being able to separate the desired sources
from the interfering ones in the mixture, one would expect a
better performance in all these applications.

A single-channel speech separation(SCSS) system aims at
recovering the underlying speaker signals from a mixed signal
[1]. At first glance, SCSS is similar to speech enhancement but
the goal in SCSS is to recoverall the underlying signals rather
than enhancing the desired speech signal by filtering out the
other components. In speech separation, the stronger signal can
shift its role to a weaker one at some time-frequency regions,
and, further, at different signal-to-signal ratios (SSRs)either
one of the signals may dominate the other one. Arguably,
one would be interested in separating either of the source
signals from their single-channel recorded mixture in certain
applications, including signal recovery at low signal-to-noise
ratios (SNRs), surveillance and tele-conferencing.

The current SCSS methods can be divided into two major
groups, computational auditory scene analysis (CASA) [2],
and model-driven methods [3]–[9]. CASA methods usemulti-
pitch estimation methods to extract pitch estimates of the
speakers directly from the mixture. The separation perfor-
mance of CASA-based methods, as a consequence, is predom-
inantly affected by the accuracy of the multi-pitch estimator,
especially when the pitch of one of the speakers is masked by
the other [10].

Model-driven methods use pre-trainedspeaker models
as a priori information to constrain the solution of the
ill-conditioned SCSS problem. In particular, source-specific
speaker models are incorporated to capture specific charac-
teristics of individual speakers at each frame. As a represen-
tative example of model-based methods, non-negative matrix
factorization (NMF), decomposes the short-time Fourier trans-
form (STFT) of a mixed signal into a product of two low-
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TABLE I
DIFFERENCES IN MAIN BLOCKS OF EXISTING MODEL-BASED SINGLE-CHANNEL SPEECH SEPARATION. THE PROPOSED ALGORITHMS USED IN THE

SYSTEM DIAGRAM IN FIG. 2 ARE HIGHLIGHTED WITH BOLD-FACED FONT.

SID and SSR estimation Spectral feature Speaker model Mixture estimator Signal reconstruction
Log max [8], [12]–[15] Ideal binary mask [2]

Iroquois [8], [12], [15] Gammatone filterbank (GTFB) Graphical model [8], [15] MMSE power estimator [16] Binary mask [13], [14]
Improved Iroquois [5] Mel-frequency band energy (MFBE) Factorial HMM [7], [14] Algonquin [8], [15] Wiener filter [5], [6], [16]
Closed loop [17] Log STFT [8], [12], [15] subband HMM [6] Maximum likelihood amplitude [9] Overlap-and-add [7]–[9]
Adapted SID in [18] Sinusoidal parameters [9] VQ [5], [9] Adapted MMSE in [19] Sq. root Wiener filter in sinusoid [20]

rank matrices, namely basis vectors and their corresponding
weights [3]. According to [4], NMF cannot always separate
speech mixtures when the sources overlap especially when the
speakers are of same gender.

The components of a typical model-based SCSS system and
algorithms are shown in Table I. SCSS first needs to estimate
the identity of underlying speakers and the gain in which
the frames are mixed.Iroquois [8] is a speaker identification
and gain estimation algorithm which uses speaker-specific
gain-normalized models to produce a short-list of candidate
speakers using the frames dominated by one of the speakers. A
modified version of theIroquoissystem which uses flooring of
the exponential argument in likelihood computation obtained
slight improvement [5]. Parallel speaker HMMs using Viterbi
decoding was used in [11] to identifyonly target speaker which
is not enough for model-based speech separation.

The next step is to select a representation of the speech
signal which is suitable for separation purpose. Because of
the promising results shown in [9], we selectedsinusoidal
features instead of the conventionally used logarithmic short-
time Fourier transform (STFT) features [7], [8], [14]. Dynamic
models are widely used for speaker modeling [7], [8], [14],
[15] due to their great capability to model the sequence of
features.

Mixture estimatoris a module for finding the best repre-
sentatives from speaker models to reconstruct mixed-speech
frames. It is conventionally performed using log-max model
[5], [7], [8], [14], [15], MMSE power estimator [16] or
Algonquin model [8], [15].

The codevectors found by the mixture estimation stage
are then passed toreconstructionstage which produces the
separated signals. In terms of how to reconstruct the separated
signals, separation methods are divided intoreconstruction
[7]–[9] and mask methods [5], [6], [13], [14], [20]. In the
former approach, the codevectors found in the mixture esti-
mation stage are directly used for reconstructing the separated
signals. The mask methods, as the name suggests, produce
a mask based on the codevectors selected from the speaker
models.

The contribution of the current study, as highlighted in
Table I and illustrated in Fig. 2, is a novel joint speaker
identification and speech separation system. Some of the build-
ing blocks were studied individually previously. In addition
to the system design, the novel contributions in this paper
include extension of the SID module [18] for SSR estimation
and generalization of the MMSE mixture estimator in the
amplitude domain [19] to sinusoidal features. Considering
the high computational complexity of the Iroquois system,
a speaker identification (SID) algorithm first proposed in
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Fig. 2. Block diagram of the proposed joint speaker identification and speech
separation system.

[17] and improved in [18], is utilized in this paper and
adopted to the speech separation challenge. Since we look
for SCSS algorithm that works equally well also in terms of
perceived signal quality basis, the minimum mean square error
(MMSE) amplitude spectrum estimation in [19] is adapted
for the sinusoidal parametrization. Despite the better upper-
bound achieved by dynamic models, we choose static vector
quantization (VQ) speaker model which is not limited by
the vocabulary and grammar size unlike dynamic models.
Moreover, VQ-based models also provide faster decoding. In
this work, we use mask-based reconstruction because it leads
to promising results in the sinusoidal feature domain [20].
For speaker recognition stage, we use mel-frequency cepstral
coefficients (MFCCs) as features and Gaussian mixture models
(GMMs) as speaker models and for separation stage we em-
ploy sinusoids as features and vector quantization as speaker
model.

In evaluating and comparing the proposed method with two
state-of-the-art systems [7], [8], we employ a wide range of
both subjective and objective quality measures, in addition to
standard ASR accuracy. These measures have been introduced
in diverse studies in literature but have never been reported
together on the speech separation challenge [21]. This has two
benefits. Firstly, assessing the separated signals by different
metrics rather than ASR has the advantage that the results are
expected to carry on to other applications beyond ASR, as
indicated in Fig. 1. Secondly, our analysis provides thorough
answers to which of the objective measures correlate best with
the subjective measures in SCSS application. The correspond-
ing sections describing each of the presented algorithms are
shown inside the blocks in Fig. 2.

II. SPEAKER IDENTIFICATION AND GAIN ESTIMATION

Speaker identification (SID) is the task of recognizing
speaker identity based on the observed speech signal [22].
Typical speaker identification systems consist of the short-term
spectral feature extractor (front-end) and a pattern matching
module (back-end). In traditional SID, the basic assumption is
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that only one target speaker exists in the given signal whereas
in co-channelSID, the task is to identify two target speakers in
a given mixture. Research on co-channel speaker identification
has been done for more than one decade [23], yet the problem
remains largely unsolved.

Most of the current SCSS systems use the model-driven
Iroquoissystem [8] to identify the speakers in a mixed signal.
Recognition accuracy as high as 98% on the speech separation
corpus [21] has been reported forIroquois [8], which makes
it as a viable choice to be used in SCSS systems [7]. In
the Iroquois system, a short-list of the most likely speakers
are produced based on the frames of the mixed signal that
are dominated by one speaker. This short-list is then passed
to a max-based EM algorithmto find the SSR and the two
speakers’ identities. In subsequent subsections we introduce
an alternative approach with lighter computational load in
operation phase.

A. Recognition Approach

Generative modeling is widely used for speaker identifica-
tion [5], [8], [22]. Maximum likelihood (ML) trained GMMs
were used in [8]; however,maximum a posteriori(MAP)
derived GMMs [24] are much more accurate in speaker
verification and we follow this latter approach employing
conventional MFCCs as feature vectors. Letλ denote a GMM
of one speaker. Then the probability density function is

p(x|λ) =
M
∑

m=1

wmpm(x). (1)

The GMM density function is a weighted linear combi-
nation of M Gaussian densitiespm(x), where pm(x) ∼
N (x;µm,Σm). Here Σm is a diagonal covariance matrix
and the mixture weightswm further satisfy the constraints
∑M

m=1 wm = 1 andwm ≥ 0. The speaker-dependent GMMs
are adapted from a universal background model (UBM) [24].
The UBM is a GMM trained on a pool of feature vectors
(MFCCs), extracted from as many speakers as possible, to
serve asa priori information for the acoustic feature distri-
bution. When adapting the speaker-dependent GMMs, usually
only mean vectors are adapted while weights and covariances
are shared between all speakers [24].

In traditional speaker recognition, the UBM is trained from
a pool of data from different speakers. To characterize mixed
speech, in this study we propose to train the UBM (λUBM)
from mixed utterance pairs at different SSR levels. For the
ith speaker, the gain-dependent models,λig, are adapted from
the UBM using ith speaker speech files corrupted by other
speakers signal at SSR levelg. Using SSR-dependent speaker
models, the system captures speaker-specific information when
it is contaminated by other speakers. Our method is similar to
that of having an SSR-dependent bias in the GMM [8], but
we build separate GMMs for each SSR level to utilize the
advantages of GMM-UBM system [24]. Using SSR-dependent
speaker models enables us to find the most probable speakers
along with the most probable SSR level.

1) Frame level likelihood score:One approach to measure
the similarity between test utterance and pre-trained speaker
models is to calculate frame-level likelihood score. We define
the log-likelihood score for a feature vectorxt given theith
speaker model assit = maxg{sigt}, where

sigt = log p(xt|λig). (2)

For each frame we find the most probable speaker. Finding
the winner speaker for all of the feature vectors of test
utterance, we associate aFLLsid score for each speaker based
on the number of frames where the speaker is selected as
the winner. During recognition, the UBM is evaluated first
and then only the top-scoring Gaussians get evaluated in each
SSR-dependent speaker model. We defineFLLssr score as the
number of times that winner speaker came fromg-th SSR-
dependent model.

2) Kullback-Leibler divergence score:Another approach to
measure similarity of the test utterance with speaker models,
{λi}, is to train a model of the test utterance,λe, with
MAP adaptation and calculate the distance betweenλe and
the speaker models. We use theKullback-Leibler divergence
(KLD) as an approximate distance measure between the two
probability distributions [25]. Since this distance cannot be
evaluated in closed form for GMMs, we use the upper-bound
which has successfully been applied to speaker verification
[26]:

KLDig =
1

2

M
∑

m=1

wm(µme − µmig)
T
Σ

−1
m (µme−µmig). (3)

Here g ranges in a discrete set of pre-defined SSR levels,
µme is themth mean vector inλe andµmig is themth mean
vector inλig , whereaswm andΣm are the weights and the
covariances of the UBM, respectively. ConsideringD as the
number of speakers, we form anD ×G distance matrix and
associate aKLDsid score for each speaker as the smallest
KLD distance (3) over all SSR levels. The originalD × G
distance matrix is used as theKLDssr score.

3) Combined approach:To enable taking benefits from
different recognizers, we combine the two scores with equal
weights summation. This approach has shown to provide better
recognition accuracy than the individual recognizers [18]. Al-
though non-equal weights can be estimated from development
data [18], we found that using equal weights yields similar
accuracy. Note that we normalize the range of scores from
two recognizers before fusion.

B. Selecting the optimal SID and SSR Pair

The joint speaker identification and separation module pro-
duces short-lists of speaker identities and the SSR candi-
dates. In our preliminary speaker identification experiments,
we found that the dominant speaker wasalways correctly
identified and the second speaker also ends up most of the
time in the top-3 list. Thus, rather than selecting the top-
scoring speaker or the most likely SSR level, we propose the
following procedure to select the best pair of speakers and
SSR level.

Let SID1 denote the estimated identity for the first speaker.
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Fig. 3. Demonstration of the reduced search space for speaker-SSR
combination. There areD(D−1)/2×G possible combination forD speakers
andG SSR levels, which is reduced to2× 3 combinations by the proposed
joint speaker identification and gain estimation algorithm.

Assume that the estimated top-2 identities for the second
speaker are SID2 = {SID(1)

2 ,SID(2)
2 }. Additionally, we define

SSR = {SSR(i)1 ,SSR(i)2 ,SSR(i)3 } as the short-list for SSR
candidates consisting of three most likely SSR levels for
combination of speakers SID1 and SID(i)2 with i ∈ {1, 2}.
The search space is shown graphically in Fig. 3. The speaker
identity and SSR candidates in the reduced search space are
further passed to the separation module which attempts to
reconstruct the mixed signal as combinations of both the two
top-scoring speakers and the three SSR candidates. A pair of
speakers that minimize the average mixture estimation error
Eq. (21) in one of the identified SSR-levels (Fig. 3) is selected
as the best combination.

III. S INGLE-CHANNEL SPEECHSEPARATION SYSTEM

Let sz(n) denote thenth sample of the observed mixed
signal withN samples composed ofK additive source signals
as,

sz(n) =

K
∑

k=1

gksk(n), n = 0, . . . , N − 1. (4)

Here, sk(n) is the kth speaker signal in the mixture, and
gk is its gain. Note that the speaker gains,g1 and g2, are
assumed to be fixed over the entire signal length denoted by
N . This assumption, although somewhat unrealistic, is made
in most current speech separation systems [21]. For the sake
of simplicity and tractability, we consider the caseK = 2, a
mixture of two speakers. We further defineρ =

g2
1

g2
2
= 10

SSR
10

where SSR is the signal-to-signal ratio in decibels. Similar
to [27] we assume that the two signals have equal power
before gain scaling, i.e.,

∑N−1
n=0 s21(n) =

∑N−1
n=0 s22(n) = G2

0.
By defining gz =

∑N−1
n=0 s2z(n) and considerings1(n) and

s2(n) as two independent processes, for large enoughN ,
E[s1(n)s2(n)] = 0 and g2z = G2

0(g
2
1 + g22) [27]. The mixed

signal can now be represented as below

sz(n) =
gz
√
ρ

G0

√
1 + ρ

s1(n) +
gz

G0

√
1 + ρ

s2(n). (5)

The speaker signalss1(n) and s2(n) as well as their mixing
SSR level (ρ) are unknown whilegz andsz(n) are given and
G0 is arbitrary for gain scaling.

A. Sinusoidal Signal Representation

The selected features used for separation need to meet at
least two requirements: (i) high re-synthesized signal quality,
and (ii) low number of features for computational and statis-
tical reasons (curse of dimensionality [28]). A vast majority

of the previous separation methods are based on short-time
Fourier transform (STFT) features of uniform resolution which
poorly match the logarithmic frequency sensitivity of auditory
system [12]. In this paper, we choosesinusoidalmodeling
which satisfies both of the aforementioned requirements and
leads to improved signal quality compared to the STFT
approaches in terms of both objective and subjective measures
[9]. Furthermore, in [29], it was shown that applying a
sinusoidal coder as speaker model results in a better quan-
tization performance compared to STFT features, in having
less outliers [29].

The proposed separation system transforms the underlying
speaker signals into a parametric feature set composed of
amplitude, frequency and phase vectors of sinusoidal. The
sinusoidal parameter estimation is described as follows [9]; On
the training data, the STFT magnitude spectrum is calculated
using Hann window of 32 msec with hop size of 8 msec.
According to the conclusion in [30], replacing the uniform
resolution STFT representation with a warped frequency scale,
improves the disjointness of the transformed mixtures, and
consequently facilitates the separation task since sourcesignals
with higher sparsity have less overlap in their mixture. To
take the logarithmic sensitivity of the human auditory system
into account, we divide the frequency range to frequency
bands whose center frequencies are equally distributed on
the mel-scale. The frequency bands are non-overlapping and
each corresponds to a set of STFT bands. At each band the
spectral peak with the largest amplitude is selected. Defining
Sk(ω)e

jφk(ω) = DFTF {sk(n)} as the complex spectrum for
thekth speaker, with DFTF as theF -point DFT operator, and
Sk(ω) as its amplitude andφk(ω) as its phase component, the
objective in the sinusoidal parameter estimation used hereis
to find the set of sinusoids with the following constraints [9]:

ωk,i = arg max
ω∈Ωi

Sk(ω), (6)

Ak,ie
jφk,i = Sk(ωk,i)e

jφk(ωk,i), (7)

whereΩi is a set composed of all discrete frequencies within
the ith band andi ∈ [1, L] with L the number of frequency
bands (sinusoidal model order), andAk,i, ωk,i, φk,i as the am-
plitude, frequency and phase for theith sinusoid, respectively,
andargmax(·) returns the argument whereSk(ω) attains its
maximum value. It should be noted that asL approaches to
F , each frequency subband include one DFT point.

Assume that thekth speaker time-domain signal is denoted
by {sk(n)}N−1

n=0 where k ∈ [1, 2], n as the time sample
index andN as the window length in samples. Forn =
0, · · · , N − 1, at each frame, we representsk(n) as [31]

sk(n) =

L
∑

i=1

Ak,i cos(nωk,i + φk,i) + ek(n), (8)

where ek(n) is the estimation error,i is an index that
refers to theith sinusoidal component. The sinusoidal com-
ponents are characterized by the triple set[αk,ωk,φk]
denoting the amplitude, frequency and phase. We define
αk = [Ak,1Ak,2 · · ·Ak,L]

T , ωk = [ωk,1ωk,2 · · ·ωk,L]
T , φk =

[φk,1φk,2 · · ·φk,L]
T as thekth speaker’s amplitude, frequency
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and phase vectors, respectively, each of sizeL × 1, and L
being the sinusoidal model order. We further define

C(αk,ωk,φk) =

∣

∣

∣

∣

∣

DFTF

{

(

L
∑

i=1

Ak,i cos(nωk,i + φk,i)
)

w(n)

}∣

∣

∣

∣

∣

(9)
whereC(αk,ωk,φk) is the amplitude spectrum of thekth
source represented by the triple[αk,ωk,φk] of size 3L × 1,
andw(n) is a window function. For a single speaker, the in-
terference effects by sinusoids, taken per frequency subbands,
are negligible as the frequencies are rather well separatedwith
respect to each other. Then, from Fourier transformation, the
power spectrum for the harmonic-part for thekth source is
well approximated byPk(ω) ≈

∑L

i=1 A
2
k,iW (ω − ωk,i) where

W (ω) is the power response of the Fourier transform for
window function,w(n). The magnitude of the STFT is then
approximated bySk(ω)≈

∑L
i=1 Ak,iW (ω − ωk,i) as in [32].

Taking the highest peak of the amplitude spectrum in (6)
is equivalent to choosing the maximum likelihood estimate
for frequency of single sinusoid in white Gaussian noise
per band [33, ch. 13]. In case of no peak detection in a
frequency band, we assign an insignificant value of 0.001 for
the amplitude and assign the band’s center frequency as the
frequency of the sinusoid. According to our previous studies
[9], [29], this choice would not change the perceived quality
of the reconstructed speech but helps to avoid the complicated
variable dimension VQ by preserving the fixed dimensionality
of the sinusoids.

B. Speaker Codebooks

Split-VQ codebooks composed of sinusoidal amplitude and
frequency vectors are used as speaker models [9], [29]. In
the split-VQ codebooks, each amplitude vector have several
corresponding frequency vectors. The training stage to obtain
split-VQ codebooks is composed of two steps; First the
amplitudes of sinusoids are coded, then as the second stage,
frequency codevectors are found by using vector quantization
on frequency candidates assigned to each amplitude codeword
found in the first step. For more details see [29]. At the end of
the training stage, the codebook entries composed of amplitude
and frequency parts are both of the same dimensionality as the
sinusoidal model order (L). The split-VQ used in this paper
can be replaced by any other sinusoidal coder already available
in the speech coding literature, e.g., [34]. The importanceof
the quantization step is explained in detail in Subsection IV-
C.3.

C. Double-Talk Detection

A mixed speech signal can be classified into single-talk (one
speaker), double-talk (speech mixture), and noise-only regions.
This information can be used to simplify the computationally
expensive separation task since we only need to process the
mixed frames with the separation system. To detect double-
talk regions with two speakers present, we employ a MAP
detector proposed recently in [35]. The proposed method is
based on multiple hypothesis test and can be implemented
in both speaker-dependent and speaker-independent scenarios.

We consider here the speaker-dependent scenario since the
information for speaker identities are given by SID module
(Section II). We use three candidate models for describing the
mixed signal, namely,

M0: None of the speakers are active (non-speech)
M1: One of the speakers is active (single-talk)
M2: Both of the speakers are active (double-talk)

We use the decision making amongM0, M1, and M2 to
narrow down the separation problem only for the mixed
frames. For the single-speaker frames, the observed signalis
directly re-synthesized according to the corresponding speaker
models. For more details of the method, refer to [35].

D. Sinusoidal MMSE Estimator for Mixture Amplitude

In model-driven speech separation we estimate the codevec-
tors in the speaker models whose combination best matches
the mixed signal. This is accomplished by employing amixture
estimator. In the following, we present the MMSE mixture
estimator for the SCSS problem. We defineSz(ω)e

jφz(ω) =
DFTF {sz(n)} as the complex spectrum for the mixture.
Beginning from the relationship between the mixed signal and
the underlying signals in time-domain given in (4), we have

Sz(ω) =
√

g21S
2
1(ω) + g22S

2
2(ω) + 2g1g2S1(ω)S2(ω) cos θ(ω),

(10)
where we defineS1(ω), S2(ω) andSz(ω) are the frequency
components of the magnitude spectrum for the first speaker,
the second speaker and the mixed signal, respectively. We also
defineθ(ω) = φ1(ω)−φ2(ω) as the phase difference between
thekth frequency bin of the underlying spectra. Dividing both
sides of (10) byg21S

2
1(ω) 6= 0, we arrive at

S2
z (ω)

g21S
2
1(ω)

= 1+
g22S

2
2(ω)

g21S
2
1(ω)

+
2g1g2S1(ω)S2(ω)

g21S
2
1(ω)

cos θ(ω). (11)

By defining S̃z(ω) , lnS2
z (ω) and S̃i(ω) , lnS2

i (ω) for
i = {1, 2} and using (11) we get

S̃z(ω) = ln
g2zρ

G2
0(1 + ρ)

+ S̃1(ω) + ln

(

1 +
1

ρ
eS̃2(ω)−S̃1(ω)

)

+ ln

(

1 +
cos θ(ω)

cosh (− ln ρ+S̃2(ω)−S̃1(ω)
2 )

)

. (12)

A similar expression can be derived by dividing both sides of
(10) byS2

2(ω) 6= 0. The derivation presented here is similar to
[36], for representing the relationship among the log-spectra
of the noisy signal for speech enhancement, but adopted here
for speech mixture of two speakers.

In the following, we derive a closed-form representation for
the MMSE mixture estimation in sinusoids. Integrating out
the mixture phase modeled with uniform distribution [37], the
mixture magnitude spectrum domain is given by

Ŝz(ω) =
1

2π

∫ π

−π

e0.5S̃z(ω)dθ(ω). (13)

where Ŝz(ω) is the sinusoidal MMSE estimate for mixture
magnitude spectrum averaging outθ(ω) when we replace the
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Ŝz(ω) = f(C(α1,ω1,φz), C(α2,ω2,φz), ρ) =

[ √
ρ√

1 + ρ
C(α1,ω1,φz) +

1√
1 + ρ

C(α2,ω2,φz)

]

gzE(γρ(ω))
πG0

, (14)

kth speaker signal spectrum with its estimated spectrum rep-
resented by its sinusoidal features denoted byC(αk,ωk,φz)
whereαk andωk are calculated using (5) and (6). It is impor-
tant to note that, as we have no access to each speaker’s phase
value{φk}2k=1 in its corresponding sinusoidal representation,
we setφk = φz . This choice is in line with the fact that the
phase of the noisy observation is the MMSE phase estimate
for the clean speech [38]. Furthermore, the authors in [32]
showed that the choice of the phase spectrum sampled at
frequencies of sinusoids as the estimated phase of sinusoids is
sufficient for estimating the sinusoidal parameters in MMSE
sense. Following a similar approach as in [19], (13) simplifies
to (14) shown at the top of the page, wheref(·) is the MMSE
mixture approximation andγρ(ω) = 2√

ξρ(ω)+ 1√
ξρ(ω)

and we

define SSRprior , ξρ(ω) =
√
ρC(α1,ω1,φz)/C(α2,ω2,φz)

andE(·) is the complete Elliptic integral of the second kind.
This integral can be approximated by the following series:

E(η) = π

{

1−
∞
∑

m=1

[

m
∏

v=1

(

2v − 1

2v

)2
]

η2m

(2m− 1)

}

. (15)

The Elliptic series denoted byE(·) can also be written as

E(γ(ω)) = π

2
2F1(−0.5, 0.5; 1; γ2(ω)) (16)

where 2F1(a, b; c; t) is Gauss’ hypergeometric function with
t as an argument replaced byγ2(ω). Provided that|t| ≤ 1,
E(γ(ω)) will converge absolutely, and sinceγ(ω) ≤ 1,
convergence is indeed guaranteed. Note that the values of
2F1(·) can be found from a look-up table since it depends
on a single variable,γ(ω). This helps keep the complexity of
the mixture estimator low.

Previous separation systems used eithermax-model[14] or
Algonquin model[8] as their mixture estimator. A simplified
version of the max-model, MAX-vector quantization (MAX-
VQ) was used in [5], [7], [13]. In [8], both the Algonquin and
the max-model were studied and compared, and Algonquin
was found to perform slightly better. The max model and
Algonquin modeluse MMSE criterion in log-power and power
spectrum domain considering the phase as a random variable.
The proposed mixture estimator also takes this into accountin
amplitude domain. Furthermore, according to [15], specifying
the mixture estimation stage in the log spectral domain is
convenient because speech states can be represented efficiently
as a mixture of Gaussians in the log-spectrum. For reconstruc-
tion purposes, then, they use anti-logarithmic transformation.
In this paper, we solve the problem directly in the spectrum
amplitude domain matched with our signal reconstruction
stage (see subsection III-F), without the logarithmic mapping.

E. Estimating Optimal Codebook Indices

Here, we explain how to find the estimated mixture magni-
tude spectrum,̂Sz(ω) given in (14), at each frequency bin. To

implement the mixture estimator in (14), we need the spectra
of the two speakers,C(α1,ω1,φ1) and C(α2,ω2,φ2). In
the expression for MMSE estimate for mixture amplitude
in (14), the signal spectra of the underlying speakers were
considered to be given. However, in the experiments, we relax
this assumption by choosing their estimates asC(α1,ω1,φ1)
and C(α2,ω2,φ2) selected from the pre-trained codebooks
C1 andC2 of the two speakers. The estimates forC(α1,ω1)
andC(α2,ω2) are obtained from the codebooks of the two
speakers,C1 = {c(1)1 , c

(1)
2 , . . . , c

(1)
r , . . . , c

(1)
M } and C2 =

{c(2)1 , c
(2)
2 , . . . , c

(2)
q , . . . , c

(2)
M }, respectively, wherec(1)r and

c
(2)
q refer to therth andqth codevector in the codebooksC1

andC2, respectively. LetSz(ω)e
jφz(ω) = DFTF {sz(n)} to be

the discrete Fourier transform of the mixture. Each codebook
consists of a pair of amplitude and frequency ({α,ω}), and
M is the number of codevectors in the speaker models [29].

Let e
c(ω) be the full-band mixture estimation error in

complex spectrum domain defined as the error difference
between the complex spectrum of mixture,Sz(ω)e

jφz(ω) and
the estimated complex spectrum of the mixture,Ŝz(ω)e

jφ̂z(ω)

as follows:

e
c(ω) = Sz(ω)e

jφz(ω) − Ŝz(ω)e
jφ̂z(ω). (17)

At each frequency subbandi ∈ [1, L], we define the complex
subband frequency erroreci(ω) as

e
c
i (ω) = Az,ie

jφz,iW (ω − ωz,i)− Âz,ie
jφ̂z,iW (ω − ω̂z,i),

(18)
where we defineÂz,i, ω̂z,i, and φ̂z,i respectively as the
amplitude,frequency, and phase of the sinusoid that represent
the estimated mixture complex spectrum at theith frequency
subband. By setting the estimated mixture phase in (18) equal
to the mixture phase sampled atωz,i (φ̂z,i = φz,i), the absolute
error in subbands becomes

ei(ω) = |Az,iW (ω − ωz,i)− Âz,iW (ω − ω̂z,i)|, ω ∈ Ωi.
(19)

which has already been used as the MMSE criterion for
estimating the sinusoidal parameters [32]. Similar to [34],
the summation of the residual error in (18), in fact,
approximates the full band spectral distortion given by
∫ π

−π
|Sz(ω)− Ŝz(ω)|2dω. Minimization of the residual error

at each frequency subband takes advantage of the fact that the
error at narrow enough subbands can well be approximated as
white noise [39].

To estimate the amplitude and frequency vectors for
each of the underlying signals, mixture estimation is per-
formed. Let Âr,q

z,i , ω̂
r,q
z,i as the sinusoidal parameters rep-

resentative taken from theith frequency band in (14).
Using speaker codebooksC1 and C2, Eq. (14) becomes
f(C(α̂r, ω̂r,φz), C(α̂q, ω̂q,φz), ρ̂) at each frequency sub-
band i where {α̂r, ω̂r}Mr=1 and {α̂q, ω̂q}Mq=1 with ω ∈ Ωi

are the amplitude-frequency codevectors withr and q as the
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codebook indices selected fromC1 andC2, respectively. We
further define the mixture estimation difference indicatedby
er,q,i defined for frequency subbandsi ∈ [1, L] as,

er,q,i(ω) = |Az,iW (ω−ωz,i)− Âr,q
z,iW (ω− ω̂r,q

z,i )|, ω ∈ Ωi.
(20)

Finally, the mixture estimation is carried out by searchingfor
the optimal codevectors (pair of amplitude and frequency) of
the codebooks by minimizing

Jr,q =

L
∑

i=1

e2r,q,i(ω), (21)

whereer,q,i is the error vector composed ofer,q,i(ω) at all
frequency subbands withω ∈ Ωi andi ∈ [1, L]. We emphasize
that the speaker codebooks we use here are in the form of a
sinusoidal coder presented in [29], in which each codevector
entry is composed of two parts denoted as ({α,ω}), sinusoidal
amplitude and its corresponding frequencies which determines
where the amplitudes are located in the spectrum. To minimize
(21), we are required to do search on pairs of codevectors
(consisting of amplitudes and frequencies) to determine the
optimal pair for signal reconstruction, that is,

{r∗, q∗} = arg min
{r,q}∈C1×C2

Jr,q({α̂r, ω̂r}, {α̂q, ω̂q}). (22)

We note that the frequency vectorŝωr and ω̂q are not the
same as frequencies of sinusoids of mixtureωz, but selected
such that they together minimize the cost function in (22). Note
that, even after knowing the estimated SSR level and identities
of the speakers, exhaustive search of (22) requiresO(M2)
evaluations of the cost function in (22) forall frames, which
is impractical. Considerable time saving, still retaininghigh
separation quality, can be obtained by using an iterative search
as follows. We start with randomr, and keep it fixed while
optimizing with respect toq, then switching the roles. This
requires a total number ofO(M×I) evaluations of (22), where
we particularly setI = 3 iterations. This leads to practical
speed-up factor of 700:1 for a codebook sizeM = 2048.

F. Signal reconstruction

The Wiener filter is a classical speech enhancement method
that relies on the MMSE estimation to restore the underlying
clean signal. Previous studies utilized the Wiener filter [40]
operate in the STFT domain. Here we propose to use mag-
nitude ratio filters in the form of square root Wiener filters
[40]. According to our preliminary experiments in [20], the
reconstruction filters defined in the sinusoidal domain, improve
the separation quality as compared to their STFT counterparts.
From the definition of the parametric Wiener filter [40] we
have:

G(ω) =

(

P1(ω)

P1(ω) + P2(ω)

)β

(23)

wherePi(ω) with i ∈ {1, 2} are the power spectra of the
signals, which are approximated by the periodograms|Si(ω)|2,
and the parameterβ determines attenuation at different signal-
to-noise ratio levels. From the speech enhancement resultsin
[40], it is known that higher values ofβ result in more at-
tenuation of the interfering signal. However, this achievement

comes at the price of increased speech distortion. According to
our separation experiments, for signal reconstruction based on
the found sinusoidal parameters, throughout our experiments,
we usesquare rootWiener filters (β = 0.5) instead of the
conventional Wiener filters (β = 1).

For synthesizing the separated signals, we produce square
root Wiener filters based on sinusoidal feature and apply
them to the mixture to recover the unknown signals. Like
other separation methods reported in [21], we employ the
mixture phase,φz for re-synthesizing the separated outputs.
The estimated amplitude-frequency codevectors found in (22)
are used to reconstruct their corresponding amplitude spectrum
estimatesC(α̂r∗ , ω̂r∗ ,φz) and C(α̂q∗ , ω̂q∗ ,φz) which are
further used to produce square root Wiener filters as below

Ĝ1(ω) =
C(α̂r∗ , ω̂r∗ ,φz)

√

C2(α̂r∗ , ω̂r∗ ,φz) + C2(α̂q∗ , ω̂q∗ ,φz)
, (24)

Ĝ2(ω) =
C(α̂q∗ , ω̂q∗ ,φz)

√

C2(α̂r∗ , ω̂r∗ ,φz) + C2(α̂q∗ , ω̂q∗ ,φz)
. (25)

Accordingly, the separated output time domain signals are
given after takingF -point inverse DFT:

ŝ1(n) = DFT−1
F {Ĝ1(ω)Sz(ω)e

jφz(ω)} (26)

ŝ2(n) = DFT−1
F {Ĝ2(ω)Sz(ω)e

jφz(ω)}. (27)

IV. RESULTS

A. Dataset and System Setup

The proposed speech separation system is evaluated on the
speech separation corpus provided in [21]. This corpus consists
of 34,000 distinct utterances from 34 speakers (18 males and
16 females). The sentences follow a command-like structure
with a unique grammatical structure as six word commands
such as “bin white at p nine soon”. Each sentence in the
database is composed of verb, color, preposition, letter, digit
and coda. The keywords emphasized for speech intelligibility
or recognition task in challenge are the items in position 2,
4, and 5 referring to color, letter and digit, respectively.The
possible choices for color are green, blue, red, and white. The
possible letters are 25 English alphabet letters and the digits
are selected from 0 to 9.

For each speaker, 500 clean utterances are provided for
training purposes. The test data is a mixture of target and
masker speakers mixed at six SSR levels ranging from -9 dB to
6 dB. For each of the six test sets, 600 utterances are provided
of which 200 are for same gender (SG), 179 for different
gender (DG), and 221 for same talker (ST). The sentences
were originally sampled at 25 kHz. We decrease the sampling
rate to 16 kHz (some additional experiments are also carried
out at 8 kHz).

For speaker identification, we extract features from 30 ms
Hamming-windowed frames using a frame shift of 15 ms.
A 27-channel mel-frequency filterbank is applied on DFT
spectrum to extract 12-dimensional MFCCs, followed by ap-
pending∆ and ∆2 coefficients, and using an energy-based
voice activity detector for extracting the feature vectors. We
add the signals with an average frame-level SSR to construct
the universal background model (UBM) and the target speaker
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TABLE II
SPEAKER IDENTIFICATION ACCURACY (% CORRECT) WHERE BOTH

SPEAKERS ARE CORRECTLY FOUND.

SSR (dB) -9 -6 -3 0 3 6 Average
Iroquois [8] 96.5 98.1 98.2 99.0 99.1 98.4 98.2

Saeidiet. al. [18] 86.7 93.0 97.1 96.2 92.8 91.6 92.9
Proposed 87.5 93.2 97.2 96.2 92.9 91.7 93.2

GMMs. For each of the 34 target speakers, 50 randomly
chosen files from each speaker are mixed at SSR levels
g ∈ {−9,−6,−3, 0, 3, 6} dB with 50 random files from all
other speakers, which gives us about 180 hours of speech for
UBM training. The number of Gaussians is set toM=2048.

Each SSR-dependent GMM,λig , is trained by mixing 100
random files from theith speaker with 100 random files from
all other speakers which gives about 1.8 hours data for training.
The relevance factors in MAP adaptation were set toβ=16
for training the speaker models andβ=0 for training the test
utterance models, respectively. The choice ofβ=0 for the test
utterance was done due to short length of data for adaptation.

Table II shows the accuracy of the proposed speaker identifi-
cation module for finding both target and masker speakers. An
average accuracy of 93.2% is achieved using the proposed SID
module. ConsideringD speakers,M Gaussians andG SSR-
levels, the number of Gaussian evaluations for the speaker
recognition system areO(DMD) for the Iroquoissystem [8].
The proposed approach, on the other hand, has computational
complexity ofO(DGM) only. Therefore, the proposed SID
module is much faster in operation in exchange of reduced
accuracy.

For separation, we extract features by employing a Hann
window of length 32 ms and shift of 8 ms. We use split-VQ
based on sinusoidal parameters [29]. The source models are
divided into magnitude spectrum and frequency parts where
each entry is composed of a sinusoidal amplitude vector
and several sinusoidal frequency vectors as its candidates.
According to previous experiments, we set the sinusoidal
model order toL=100 for 16 kHz andL=50 for 8 kHz [9].
For speaker modeling, we use 11 bits for amplitude and 3
bits for frequency part in the sinusoidal coder. This results in
codebook size of 2048 in split-VQ for modeling sinusoidal
features. Studying the other features effect in the subsequent
subsections, the same codebook size of 2048 is also used for
speakers’ VQ models. The pre-trained speaker codebooks are
then used in the test phase to guide the speech separation.
The codebooks are used for both the mixture estimator and
the double-talk detector (Fig. 2). For the mixture estimator
given in (14), we used the first 5 terms of the elliptic series
in (15).

As our benchmark methods, we use the two systems in
[7] and [8] participated in the SCSS challenge. We report the
separation results on the outputs obtained by thesuper-human
speech recognition system [8] as top-performing separation
systems in the challenge. This system even outperforms human
listeners in some of the speech recognition tasks [21]. As
the second benchmark system, we use another top-performing
separation system, “speaker-adapted full system” proposed in

[7] (see Table II in [7]), whereIroquois [8] system was used
for estimating the speaker identity and the SSR level both in
[7] and [8].

We had access only to a limited number of separated clips1

for the system in [8], where the authors in [7] supplied their
separated signals on the whole GRID corpus. To this end, we
evaluate the performance of the proposed system in terms of
four experiments:

• Demonstrating how the mixture estimation is performed
in sinusoidal domain using the proposed MMSE mixture
amplitude estimator in (14) and studying its impact on
performance compared to the full band STFT case.

• Subcomponent comparison versus the existing state-of-
the-art.

• Comparing the proposed method versus benchmark in [7]
employing the whole corpus using perceptual evaluation
of speech quality scores (PESQ) and short-time objective
intelligibility measure (STOI).

• Comparing proposed method versus benchmarks in [7]
and [8] on limited number of clips using different objec-
tive and subjective measures.

B. Experiment 1: Case study for MMSE mixture amplitude
estimator in sinusoid

We select the mixture of two female speakers 7 and 11 from
GRID corpus test set mixed at SSR= 0 dB. We represent
speech signals using limited number of sinusoids where fre-
quencies and amplitudes are obtained using the peak picking
on the mel-scale as described in (6-7). We consider two
scenarios: i) ideal case, where the speaker spectra are known,
and ii) estimated by the optimal codebook entry, determined
as the result of the codebook search in (22). The results for
the ideal scenario and estimated from codebook are shown in
Fig. 4 on the right and the left panels, respectively. Figure4
(right) shows how the proposed sinusoidal MMSE mixture
amplitude estimator works by minimizing the error over the
harmonic lobes of the sinusoids, estimated per frequency sub-
bands, defined in (20). Subplot (a) shows the observed mixture
spectrum of two speakers and the mixture estimated using the
proposed MMSE estimator in (14). Subplot (b) displays the
mixture estimation error power in decibels for both STFT
and sinusoidal features. Subplots (c) and (d) illustrate the
original spectra of the two underlying speakers, as well as
the STFT and sinusoidal spectrum amplitude. Comparing the
MSE results of full-band and sinusoidal shown in subplot (b),
it is concluded that the proposed sinusoidal MMSE amplitude
estimator defined in (18) well approximates the full-band
mixture estimation error defined in (17). For visual clarity, we
use dB-scale for the spectral magnitudes but all computations
use the original spectral magnitude values. We have only
shown the frequencies in the range of [0 , 3800] Hz at a
sampling frequency of 8 kHz.

As a second scenario, we compare the results of mixture

1The clips are Clip 1: target sp6:bwba masker sp30:pgah6a (mixed at -3
dB), Clip 2: target sp14:lwax8s masker sp22:bgwf7n (mixed at 0 dB), Clip
3: target sp33:bwid1a masker sp33:lgii3s (mixed at -6 dB) and Clip 4: target
sp5:swah6n masker sp5:bbir4p (mixed at 0 dB) signal-to-signal ratio.



MOWLAEE et al.: JOINT SPEAKER IDENTIFICATION AND SINGLE-CHANNEL SPEECH SEPARATION 9

−150

−100

−50

0

A
m

pl
itu

de
 (

dB
)

 

 

−100

−50

0
E

rr
or

 (
dB

)
MSE STFT (dB) = −35.47  MSE sine (dB) =−44.08

 

 

−100

−50

0

A
m

pl
itu

de
 (

dB
)

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
−100

−50

0

A
m

pl
itu

de
 (

dB
)

 

 

Frequency (Hz)

S
1
(ω) C(α

1
,ω

1
,φ

z
) STFT codevector

−150

−100

−50

0

 

 

−100

−50

0

 

 

−100

−50

0
MSE STFT = −47.57 (dB)             MSE sine =−45.88 (dB)

 

 

Fullband amplitude estimator f(C(α
1
,ω

1
,φ

z
),C(α

2
,ω

2
,φ

z
),ρ)

Sinusoidal amplitude estimator f(S
1
(ω),S

2
(ω),ρ)

Mixture spectrum S
z
(ω)

S
2
(ω) C(α

2
,ω

2
,φ

z
) STFT codevector

S
1
(ω) C(α

1
,ω

1
,φ

1
)

Estmiation error [sinusoids] Estmiation error [fullband]

0 500 1000 1500 2000 2500 3000 3500 4000
−100

−50

0

 

 

Frequency (Hz)

S
2
(ω) C(α

2
,ω

2
,φ

2
)

(a) (a)

(d)

(c)

(b)

(c)

(d)

(b)

Fig. 4. Shown are the magnitude spectrum for (left) codebooksearch scenario (right) ideal scenario. The descriptions of each panel: (a) shows the original
and estimated mixture spectrum amplitude denoted bySz(ω) and f(C(α1,ω1,φz), C(α2,ω2,φz), ρ), respectively, (b) mixture estimation error power
e(ω) in decibels. The MSE value for full-band and sinusoidal cases are reported for the bottom plot, and (c) speaker one:S1(ω) andC(α1,ω1,φz), (d)
speaker two:S2(ω) andC(α2,ω2,φz).

estimation in full-band STFT domain and sinusoidal features
by performing codebook search on the STFT codebooks and
sinusoidal split-VQ codebooks, respectively. The resultsare
shown in the left panel of Fig. 4. The sinusoidal MMSE
amplitude estimator achieves a lower MSE compared to the
STFT case. The selected codevectors result also in a more
accurate amplitude spectrum representation than the STFT
scenario (see subplots (c) and (d) in the left panel).

C. Experiment 2: Analysis of the system sub-components:
features, frequency warping, mixture estimator, type of mask

In this subsection, we experimentally compare the choice
of each component in our full system to alternative state-of-
the-art components. To this end, we evaluate the separation
performance in terms of different attributes: i) joint feature
and mixture estimator, ii) feature selection independent of
speaker model, iii) quantization effect, and iv) differentfilters
for signal reconstruction. As our experiment setup, we selected
two speakers, 9 and 19, from the GRID corpus for mixing.
As our quality assessment measure, we chose PESQ and the
results are averaged over 50 utterances.

The following alternatives for the feature and mixture esti-
mator are considered:

• Features: Gammatone auditory scale filter bank (GTFB),
mel-frequency band energy (MFBE), STFT and si-
nusoidal feature. For GTFB features, we considered
128 log-energy of gammatone auditory scale filter-bank
whose filters are quasi-logarithmatically spaced, based
on the equivalent rectangular bandwidth (ERB)-scale [2].
The bandwidth increases with center frequency from
about 35 Hz at 100 Hz to around 670 Hz at 6000 Hz.
We select MFBE features as a commonly used auditory
scale features in variety of applications. Following the
setup in [30], to extract MFBE features, we designed the
filterbank in ERB scale and applied the filterbank to the
power spectrum of signal. In the reconstruction stage a

pseudo-inverse of the filterbank is utilized to minimize
the Euclidean norm, as suggested in [41]. The number
of filterbanks was set to 60 based on our preliminary
experiments.

• Mixture estimator: MMSE in log-power spectrum, power
spectrum, spectrum amplitude domain (proposed), si-
nusoidal estimator of [9], and subband perceptually
weighted transformation (SPWT). SPWT uses STFT
features and employs a perceptually weighted spectral
distortion in frequency subbands by imposing a weighting
to emphasize different frequency division in an uneven
manner in contrast to STFT case [42]. We used four
frequency subbands division in Mel-scale as it led to the
highest PESQ as reported in [42].

In the proposed system, the codebook indicesr and q are
jointly estimated from the mixed signal using (22). In turn,
if we estimater and q (the codevector indices in the two
codebooks) from the original spectra,S1(ω) andS2(ω), using

r∗ = arg min
cr∈C1

‖C(α1,ω1,φ1)− C(αr,ωr,φ1)‖22, (28)

q∗ = arg min
cq∈C2

‖C(α2,ω2,φ2)− C(αq,ωq,φ2)|‖22, (29)

whereαk,ωk are the amplitude-frequency feature set obtained
by applying sinusoidal feature extraction (5-6) on thekth
speaker signal,sk(n), we call the set-up as VQ-based up-
per bound. The VQ-based upper bound is the best possible
performance obtainable by the proposed model-driven speech
separation approach [43].

1) Studying the joint impact of feature and mixture estima-
tor: Here we evaluate the separation performance in terms
of two attributes (1) feature domain representation and (2)
mixture estimator selection. To this end, we select STFT, mel-
frequency band energy (MFBE), sinusoidal feature space while
the mixture estimators are MMSE in log-power spectrum,
power spectrum, and spectrum amplitude domain (proposed).
In addition, to locate the performance of the proposed algo-
rithm among the previously similar ones, we also report the
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Fig. 5. Comparing the separation performance of the proposed system in
terms of PESQ for different combination of mixture estimators MMSE esti-
mator in log-power, power, and amplitude domain (proposed)with different
features (STFT and sinusoidal). The performance of subbandperceptually
weighted transform in [42] and sinusoidal estimator in [9] are also included.

results obtained by ML sinusoidal estimator [9] and SPWT
[42]. The separation performance results are shown in Fig. 5.
We make the following observations:

• For a given speaker codebook, the closer the method
asymptotes to its VQ-based upper-bound performance,
the more accurate the mixture estimator is. we observe
that the differences between STFT- and sinusoidal-based
estimators are not significant.

• The impact of replacing STFT features with sinusoidal
features is observed by comparing the VQ-based upper-
bound performance obtained by the selected features in
Fig. 5. It is observed that sinusoidal features offer a
considerably higher upper-bound compared to the STFT.

• For the STFT features, the proposed MMSE amplitude
estimator results in improved separation performance
compared to both the MMSE log-power and the MMSE
power estimators for SSR> 0 decibels. For SSR< 0 all
the MMSE estimators achieve similar performance. The
same trend is also observed for the sinusoidal features.
In particular, when SSR increases, the performance of
the amplitude MMSE estimator approaches the VQ-based
upper-bound performance.

• The proposed MMSE amplitude estimator in sinusoid
achieves slightly better performance compared to the
sinusoidal estimator presented in [9] and SPWT.

From the PESQ results shown in Fig. 5, we conclude that the
impact of the selected feature is more pronounced than that
of different mixture estimators.

2) Studying the impact of the selected feature independent
of the speaker codebook:To assess the separation results for
different features without considering the effect of modeltype
(VQ) and its selected order, we present the separation results
for ideal binary mask (IBM) for different features. The ideal
binary mask is defined as the mask produced by keeping
all time-frequency cells where the target speaker dominates
the interfering one and removing those where the target is
masked by the interfering speaker [2]. The results are shown
in Figure 6. It is concluded that replacing STFT with auditory
transform or sinusoidal, improves the signal quality results
across all SSRs.

TABLE III
COMPARING THE SEPARATION PERFORMANCE INPESQFOR DIFFERENT

CHOICES OF MASK FUNCTION IN SIGNAL RECONSTRUCTION STAGE.

Source number Speaker 1 Speaker 2
Feature STFT Sinusoidal STFT Sinusoidal
Filter using (14) 1.77±0.09 2.36±0.09 1.76±0.14 2.11±0.13
Filter using (24-25) 2.01±0.09 2.66±0.10 1.91±0.20 2.42±0.17

3) Studying the effect of quantization:In model-based
speech separation, it is required to capture speaker character-
istics with a model. However, as in any modeling technique,
the quantization process in representing an actual speech event
with an average model, degrades the achievable separation
performance. The impact of the quantization step on the sep-
aration performance is evaluated throughout the experiments
by reporting the ”VQ-based upper-bound” performance shown
in Figure 7. In an oracle separation scenario, we conduct an
experiment to study the effect of replacing the quantized sinu-
soidal features in (24-25) with the unquantized features. For
quantized sinusoids we useC(αr,ωr,φ1) andC(αq,ωq,φ2)
with r ∈ C1 andq ∈ C2 while for the unquantized features, we
directly useC(α1,ω1,φ1) andC(α2,ω2,φ2). This experi-
ment demonstrates how accurately the quantized sinusoidal
features represent the original sinusoidal parameterization.
The small gap in PESQ between quantized and unquantized
sinusoidal features indicates that the employed split-VQ model
represents the sinusoidal parameters of signal accurately. The
reason why PESQ scores are increasing as the SSR evolves
is that the mixture information is utilized when reconstructing
the output signals.

4) Studying the impact of different filters for signal recon-
struction: First, we compare the two mask methods as follows:
i) employing the square root Wiener filterŝG1(ω) andĜ2(ω)
as defined in (24-25); ii) replacing the phase integrated out
mixture estimateŜz(ω) in (14), to the denominator of the
square root Wiener gain function in (24-25). To recover the
corresponding source estimates, each filter is then applied
to the mixed signal. The two filters differ only in terms
of their denominator; To recover the corresponding source
estimates, each gain function is then applied to the mixed
signal. The results are summarized in Table III. The results
obtained for both the STFT and sinusoidal features indicate
that improvement is achieved with square root Wiener gain
functions (Ĝ1(ω), Ĝ2(ω) in (24-25)) compared to masks with
phase integrated out (Ŝz(ω) in (14)). This is justified from the
improvement of 0.3 in PESQ for both speakers.

D. Experiment 3: PESQ and STOI evaluation on whole test
set

To study the performance of the proposed speech separation
system, we consider six different setups, covering cases from
all parameters known to all parameters estimated. These six
setups are shown in the legend of Fig. 8 as scenarios 1, 2
and 3 with their corresponding upper-bounds (which we call
known codebook index). Parameters that we consider include
codebook index, speaker identity and SSR level. The scenarios
are defined as:

• Scenario 1: known SID and SSR,
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Fig. 7. Showing the quantization effect on sinusoidal features in an oracle
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• Scenario 2: estimated SID and known SSR,
• Scenario 3: estimated SID and SSR.

In scenario 1, given the correct SID and SSR level, we
investigate the accuracy of the mixture estimation stage. Ad-
ditionally, we also consider degradations caused by erroneous
speaker identities and SSR estimation as in scenarios 2 and 3,
respectively.

For objective measurement, we use PESQ [44] as it corre-
lates well with subjective listening scores [46] and STOI [45]
since it showed higher correlation with speech intelligibility
compared to other existing objective intelligibility models.
Figure 8 shows the separation results in terms of PESQ and
STOI obtained for different scenarios. The results obtained
from mixture and scores calculated for the separated wave
files of [7] are also shown for comparative purposes.

Figure 8 suggests that the proposed method improves the
quality of the separated signals compared to the mixture.
According to the masking theorem [47], at low SSR levels,
energetic maskingoccurs and the separation system success-
fully performs in compensating this effect by separating the
underlying speakers for each frame. At high SSR levels,
informational maskingis more dominant and the mixed signal
itself is more intelligible than the separated signals obtained
by separation module. The mixed signal itself achieves higher
intelligibility score compared to the separated target signal
since the target speaker becomes more dominant. At high
SSR levels, the proposed method asymptotically reaches the
best possible performance denoted by VQ-based upper bound
performance.

The proposed method outperforms the method in [7] in
terms of PESQ at all SSR levels. It also improves the in-
telligibility of the target speaker significantly at low SSR
levels (lower than -3 dB). However, the speaker-adapted full
system in [7] achieves slightly higher intelligibility scores.
By comparing the results of the known (scenario 1) and
the estimated speaker identities (scenario 2), the resultsare
generally close to each other. The same conclusion holds also
for theknown and estimated SSR levels. This confirms that the
SID and SSR estimates were relatively accurate as suggested

by Table II.
Studying different scenarios, the proposed system performs

better for different gendercompared to thesame gender.
A similar observation was reported in [7]. This can be ex-
plained by the different time-frequency masking patterns and
physiological differences in the vocal characteristics ofmale
and female speakers. Thus, the underlying sources are less
overlapped compared to other scenarios.

E. Experiment 4: Performance evaluation on a subset of test
data

In the following, we compare the proposed method to
those proposed in [7], [8] for selected clips from test dataset
composed of same gender, different gender and same talker
scenarios. The separation results are summarized in Table IV.
For each of the measures in this experiment, the significance
level for each paired t-test (p-value) is shown in the last
column in Table IV. Thep-values determine whether the
results obtained by the proposed method are significantly
different than benchmark methods. The following observations
are made:

1) STOI [45]: The proposed method achieves better per-
formance compared to the baseline methods.

2) Cross-talk [48]: An ideal separation system would filter
out any trace of the interfering speaker signal in the mixture.
As a proof of concept, we use the amount ofcross-talk
[48] remaining in the separated output signal for comparing
different separation methods. From the cross-talk scores,we
conclude that the proposed SCSS method often introduces less
cross-talk compared to [7]. Although the differences are not
statistically significant, we observe that the proposed system
leads to relatively less or comparable amount of cross-talkin
most of the cases compared to [7] and [8], respectively.

3) PESQ [40]: The proposed system yields improved re-
sults over the method in [7].

4) SNRloss [50]: This measure was found appropriate in
predicting speech intelligibility in different noisy conditions,
in the sense of producing a higher correlation for predicting
sentence recognition in noisy conditions (r = −0.82 higher
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Fig. 8. (Top) perceptual evaluation of speech quality scores (PESQ), and (Bottom) short-time objective intelligibility measure (STOI) scores for target
and masker. According to [44], for normal subjective test material the PESQ values lie between 1.0 (bad) and 4.5 (no distortion). According to [45], the
intelligibility score lies between 0 (bad) and 100 (no distortion). All the results are reported on the speech separation challenge test data provided in [21]

TABLE IV
THREE SYSTEM COMPARISON WITH DIFFERENT METRICS ON FOUR CLIPSFROM GRID CORPUS. SYSTEMS ARES1: HERSHEY[8], S2: WEISS[7] AND

S3: PROPOSED AT16KHZ. METRICS ARESTOI [45], CROSS-TALK [48], PESQ [44], SIR [49], SAR [49], SDR [49], SNRLOSS MEASURES[50],
QUALITY SCORES[51]. EACH CLIP IS CHARACTERIZED BY ITS MIXING SSRLEVEL AND THE MIXING SCENARIO: DIFFERENT GENDER(DG), SAME

GENDER (SG)AND SAME TALKER (ST). IN EACH SUB-COLUMN, THE BEST RESULT IS HIGHLIGHTED WITHSHADED BOLD FONT.

Target Masker p-value
Clip 1 (SG -3dB)Clip 2 (DG 0dB) Clip 3 (ST -6dB) Clip 4 (ST 0dB) Clip 1 (SG -3dB)Clip 2 (DG 0dB) Clip 3 (ST -6dB) Clip 4 (ST 0dB) S3 vs. S3 vs.

Criterion S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2
STOI 0.77 0.70 0.79 0.80 0.82 0.83 0.74 0.51 0.74 0.85 0.48 0.75 0.83 0.83 0.84 0.82 0.70 0.74 0.21 0.43 0.68 0.13 0.49 0.65 <0.05 <0.05
Cross-talk11.5 13.3 8.0 10.3 11.9 5.8 4.3 2.3 5.9 4.4 9.4 6.3 10.1 5.9 10.4 10.3 10.5 10.3 13.8 17.3 11.1 12.4 10.1 10.1 >0.05 >0.05
PESQ 2.4 1.4 2.4 1.5 1.7 2.4 2.2 1.7 2.2 2.8 1.0 2.5 1.4 1.3 2.0 2.2 1.3 2.2 2.9 1.0 2.9 2.4 1.7 2.4 >0.05 <0.05
SNRloss 0.96 0.98 0.91 0.99 0.89 0.83 0.92 0.98 0.92 0.91 0.98 0.91 0.93 0.99 0.92 0.97 0.98 0.89 0.96 0.96 0.96 0.97 0.95 0.90 <0.05 <0.05

B
S

S
E

VA
L SIR 10.8 20.0 15.0 0.1 12.6 16.5 2.0 2.7 14.7 8.4 17.0 17.4 2.4 7.8 15.3 11.7 14.9 20.6 13.6 6.9 13.6 8.8 -8.7 16.7 <0.05 <0.05

SAR 7.9 1.4 3.9 43.2 -1.3 0.4 6.9 1.4 1.9 9.5 -3.3 2.6 7.7 -5.1 -0.8 9.2 -0.3 1.8 12.0 -6.6 5.6 8.3 -6.4 -0.9 <0.05 <0.05
SDR 5.8 0.1 1.1 1.0 0.0 0.2 2.6 0.2 0.2 6.1 0.1 0.8 2.8 0.1 0.2 8.0 0.1 1.0 8.7 0.0 1.8 4.2 0.0 0.3 <0.05 <0.05

P
E

A
S

S OPS 53 50 36 42 19 33 57 26 41 53 24 30 45 23 36 66 25 52 73 18 41 64 33 34 <0.05 <0.05
TPS 82 69 77 59 79 86 73 26 75 80 26 73 76 53 59 72 50 72 78 32 75 75 32 76 >0.05 <0.05
IPS 19 83 84 79 77 80 72 75 82 75 66 78 69 77 81 65 71 79 70 71 78 78 80 76 <0.05 <0.05
APS 60 37 36 90 14 26 63 16 33 58 13 20 61 11 31 72 14 43 76 9.0 36 63 18 29 <0.05 <0.05

than r = 0.77 for PESQ). From the SNRloss results we
observe that the proposed method consistently outperformsthe
competitive methods.

5) BSS EVAL metrics [49]:To enable comparison with
other source separation algorithms, we evaluate the separation
results in terms of the metrics proposed in blind source
separation evaluation toolkit (BSS EVAL) [49]. The following
observations are made:

• The proposed method achieves a better signal-to-
interference ratio (SIR) performance compared to both
benchmark methods. This improvement in SIR compared
to [8] is attained at the price of introducing more artifacts,
i.e. producing lower signal-to-artifact ratio (SAR). This
implies that a separation quality with less cross-talk is
feasible but introduces more artifacts. This is analogous to
the tradeoff between speech distortion minimization and
cross-talk suppression provided by the square root Wiener
filter based on sinusoids discussed in Section III-F. This
suggests that the proposed method is often better at
rejecting interference when recovering the target speaker.
Similar trade-off between SIR and SAR result was inde-
pendently reported in [49].

• The proposed method achieves better SAR and SDR
scores compared to [7] but lower than [8] which achieves
the highest SDR and SAR scores. The signal-to-distortion
(SDR) measure takes into account both interference and
noise level in the excerpts and, consequently, has no pref-
erence over interference signal or noise power; therefore,
the same level of each will degrade the SDR metric by
the same amount.

6) PEASS [51]: We report the separation results in terms
of the state-of-the-art objective metrics calledperceptual eval-
uation methods for audio source separation(PEASS) adopted
for the 2010 signal separation evaluation campaign (SiSEC)
[51]. We use the four quality scores proposed in PEASS toolkit
[51]: overall perceptual score (OPS), target-related perceptual
score (TPS), interference-related perceptual score (IPS)and
artifacts-related perceptual score (APS). OPS measures how
close the separated signal is to the clean signal, TPS measures
how close the target-related part of the enhanced signal is
to the clean reference signal, IPS measures the interference
cancellation in the separated signal, and finally, APS shows
how close the enhanced signal is to the clean one in terms of
having no artifacts. We make the following observations:
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• The APS results are in line with SAR results confirming
that [8] produces least artifacts. This might be because [8]
employs both dynamic speaker models and grammar con-
straints. Meanwhile, the proposed method attains higher
SAR and APS performance compared to [7].

• According to TPS results, both [8] and the proposed
method achieve higher performance compared to [7]. The
paired test outcome between the TPS scores of [8] and
the proposed method indicates insignificant difference.

• The system in [8] achieves the highest OPS scores among
the three systems. The proposed system achieves higher
performance compared to [7].

• The outcome of paired tests on IPS scores confirms
those obtained on SIR, indicating statistically significant
difference of the proposed method over others.

7) MUSHRA [52]: To assess the perceived quality obtained
by the different separation methods, as our first subjective
measure, we conduct subjective test using the so-called MUl-
tiple Stimuli with Hidden Reference and Anchor (MUSHRA)
listening test as described in [52]. The MUSHRA test is
a double blind test for the subjective assessment of inter-
mediate quality level benefits obtained by different methods
(via displaying all stimuli at the same time). The MUSHRA
test enables simultaneous comparison of different separation
methods directly.

We conducted the listening experiments in a silent room us-
ing high quality audio device with firewire interface for digital-
to-analog conversion and AKG K240 MKII headphones. To
ease the test procedure, we prepared a graphical user interface
(GUI) in MATLAB TM. Seven untrained listeners participated
in the test (none of the authors were included). The excerpts
consisted of the hidden reference (HR) showing the known
quality on the scale; it is used to check the consistency of
the responses of a subject. A high score is expected for HR.
We also include the mixed signal (without any separation) as
an anchor point to enable comparison of separated signal and
mixture qualities. This reflects how hard it was to perceive the
reference signal when listening to the mixture. The remaining
four excerpts are the separated signals obtained bysuper-
human speech recognition system [8], speaker-adapted full
system [7], and our proposed method configured for both 8
kHz and 16 kHz sampling frequencies. The excerpts were
randomly chosen and played for each subject2. The listeners
were asked to rank eight separated signals relative to a known
reference on a scale of 0 to 100.

The MUSHRA test results are reported in terms of the
mean opinion score (MOS) and 95% confidence intervals
[53] calculated according to the standard as described in
ITU-R BS.1534-1 [52]. Figure 9 shows the mean opinion
score (MOS) for comparing the separation results obtained
by different methods discussed in this paper. We observe
that the maximum and minimum scores were obtained at
hidden reference and speech mixture, respectively, as expected.
Furthermore, the proposed method at 16 kHz achieves better
performance compared to [7]. The difference between the

2The excerpts used in subjective tests are downloadable fromthe
webpage:http://www.audis-itn.eu/wiki/Demopage2

performance of the method studied in [8] and the proposed one
is not statistically significant. This result confirms the PESQ
score observation. The proposed method at 8 kHz also achieves
comparable result with [8] and [7].

8) Speech Intelligibility [54]: Following the principle and
standard described in [54], as our second subjective mea-
surement, we conducted a test to assess speech intelligibility
of the separated signals. We chose seven listeners (different
from those that participated in the MUSHRA test) and eight
segments to be played for each listener. We asked the listeners
to identify color, letter, and digit spoken during each of the
played segments. The listeners were required to enter their
results using a GUI in MATLABTM, which enabled listeners
to enter their results both accurately and comfortably. On
average, it took 15 minutes per listener to complete the test.

Figure 10 shows the results of the intelligibility test av-
eraged over all excerpts and listeners. We observe that the
proposed method at 16 kHz achieves higher speech intelligi-
bility compared to the methods in [7] and [8]. This result is in
agreement with our observations on both SNRloss and STOI.
The mixed signal also has the lowest score while the hidden
reference signal achieves the highest intelligibility score, as
expected.

9) ASR Results:Finally, we also configured an automatic
speech recognition system using mean subtraction, variance
normalization, and ARMA filtering (MVA) [55], which gave
an overall recognition accuracy of 52.3% [56]. Comparing
the result with those of the systems reported by the other
participants in the separation challenge [21, Table 1], we
observed that our system ranks on the range of median out
of all methods; located below [8] 78.4% but above [7] 48.0%.

V. D ISCUSSION

Both the objective and subjective results show that fairly
good separation quality and high interference rejection capa-
bility were achieved, in comparison to other methods in the
field. In particular, the subjective measurements indicatethat
the proposed system improves both quality and intelligibility
of the signal and achieves a performance comparable to the
systems in [7] and [8]. Although the performance of proposed
system in light of speaker identification and automatic speech
recognition is not better than the top-performing systems but
it is comparable with other algorithms in speech separation
challenge [21]. Our proposed separation system separates
the mixture frame-by-frame and is appropriate for low-delay
applications, such as speech coding.

The proposed system, like other current separation systems,
still has some limitations. The training samples used to train
the speaker models are noise-free and relatively long and the
evaluation corpus consists of only digitally added mixtures.
Additionally, the gains of the underlying speakers in the
mixture are assumed to be constant and we have a mixture
of two speakers only. We also neglected the environmental
or background noise effects, as well as the reverberation
problem. In practice, each one of these issues and their effect
on the overall separation performance should be carefully
studied. Future work should systematically address how these

http://www.audis-itn.eu/wiki/Demopage2
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Fig. 9. Results of the MUSHRA listening test for different separation
methods averaged over all excerpts and listeners. Error bars indicate 95%
confidence intervals.
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Fig. 10. Speech intelligibility test results. The calculated percentage of
correct keywords is averaged over all excerpts and all listeners. Error bars
indicate 95% confidence intervals.

simplifying, yet restrictive and impractical pre-assumptions
could be relaxed. As an example, [57] provides a new corpus
for noise-robust speech processing research where the goalis
to prepare realistic and natural reverberant environmentsusing
many simultaneous sound sources.

The improvement using the proposed MMSE sinusoidal
mixture estimator over our previous sinusoidal mixture estima-
tor can be elaborated as follows. The ML sinusoidal mixture
estimator presented in [9] ignores the cross-term components
between the underlying speakers’ spectra at each frame, as
well as their phase differences. In some situations, the inter-
ference sinusoidal components, play a critical role and can
change the position of spectral peaks completely. The proposed
sinusoidal MMSE estimator presented in this work, in turn,
considers the cross terms and integrates out the phase differ-
ence based on uniformity assumption of the speech phase. This
explains why the MMSE sinusoidal mixture estimator achieves
improved MSE compared to the sinusoidal mixture estimator
of [9]. Finally, similar to other sinusoidal modeling systems
like [31], the proposed method introduces some buzziness for
unvoiced segments. As a future work and room for improving
the performance, it is possible to consider more complex
modeling for speech and jointly estimating voicing states and
sinusoidal model parameters of the underlying signals.

The presented system showed high perceived quality and
intelligibility of the separated signals. The results obtained
in the speech intelligibility test can be interpreted as the
human speech recognition results obtained from the separated
signals. There are two possible reasons why the ASR results
are in disagreement with our signal quality scores. Firstly, the
word error rate metric of ASR does not correlate with those
used for assessing the signal quality. Secondly, evaluating the
separation performance using ASR systems depends on the
speech recognizer configuration, features, training of acoustic
and language models. It is not trivial to configure an ASR-
system optimized for STFT-like features, to work well on
sinusoidally coded speech. Therefore, improvement of the

automatic speech recognition performance of the proposed
system is left as a future work.

VI. CONCLUSION

We presented a novel joint speaker identification and
speech separation system for solving the single-channel speech
separation problem. For the separation part, we proposed
a double-talk/single-talk detector followed by a minimum
mean square error mixture estimator for mixture magnitude
spectrum operating in the sinusoidal domain. Importantly,
the proposed method does not require pitch estimates and
is based on sinusoidal parameters. We relaxed thea priori
knowledge of speaker identities and the underlying signal-
to-signal ratio (SSR) levels in the mixture by proposing a
novel speaker identification and SSR estimation method. The
proposed system was evaluated on the test dataset provided in
thespeech separation challenge. Compared to previous studies
that mostly report speech recognition accuracies, additionally,
we focused on reporting the signal quality performance ob-
tained by different separation methods. From the experimental
results of various objective and subjective measurements,we
conclude that the proposed method improves the signal quality
and the intelligibility of the separated signals compared to
the mixture and the tested state-of-the-art methods, whileit
does not meet the performance of state-of-the-art systems in
terms of speaker identification and automatic speech recog-
nition accuracy. In many cases, the method offered separated
signals with less cross-talk via a high interference rejection
capability. Considering different objective and subjective met-
rics, evaluated on three systems outputs, we conclude that
no single system can produce an output satisfying all the
evaluation metrics. By comparing the subjective results with
those obtained by objective metrics and performing statistical
significance analysis, we conclude that the ranking of the
systems changes according to the chosen objective metric. The
difference between our objective and subjective results, reveals
a mismatch between the performance evaluation in the back
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end and the parameter estimation stage in the separation stage,
when the separation system is used as a pre-processor for a
target application, e.g., automatic speech recognition.
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