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Abstract—In this paper, we present a novel system for joint
speaker identification and speech separation. For speakedénti-
fication a single-channel speaker identification algorithmis pro-
posed which provides an estimate of signal-to-signal ratigSSR)
as a by-product. For speech separation, we propose a sinudal
model-based algorithm. The speech separation algorithm cmists
of a double-talk/single-talk detector followed by a minimun
mean square error estimator of sinusoidal parameters for finling
optimal codevectors from pre-trained speaker codebooks. nl
evaluating the proposed system, we start from a situation wére
we have prior information of codebook indices, speaker idetities
and SSR-level, and then, by relaxing these assumptions ong b
one, we demonstrate the efficiency of the proposed fully bloh
system. In contrast to previous studies that mostly focus on
automatic speech recognition (ASR) accuracy, here, we repahe
objective and subjective results as well. The results shovhat the
proposed system performs as well as the best of the state-thfe-
art in terms of perceived quality while its performance in terms
of speaker identification and automatic speech recognitionesults
are generally lower. It outperforms the state-of-the-art n terms
of intelligibility showing that the ASR results are not condusive.
The proposed method achieves on average, 52.3% ASR accuracy
41.2 points in MUSHRA and 85.9% in speech intelligibility.

Index Terms—Single-channel speech separation, speaker iden-
tification, speech recognition, sinusoidal modeling, BSS \RL.
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Fig. 1. Block diagram showing how a single-channel speegars¢éion

module can be used as a pre-processing stage to enhanceftivenpace of
a target application.

the target application, such as hearing aids, automatiectpe
recognition, speaker/language recognition and speecimgod
(see Fig[ll). By being able to separate the desired sources
from the interfering ones in the mixture, one would expect a
better performance in all these applications.

A single-channel speech separati(®CSS) system aims at
recovering the underlying speaker signals from a mixedadign
[1]. At first glance, SCSS is similar to speech enhancement bu
the goal in SCSS is to recovall the underlying signals rather
than enhancing the desired speech signal by filtering out the
other components. In speech separation, the strongei sigma
shift its role to a weaker one at some time-frequency regions
and, further, at different signal-to-signal ratios (SSRiher
one of the signals may dominate the other one. Arguably,

~ Human beings have the amazing capability of perceiyne would be interested in separating either of the source
ing individual speech sources from mixtures. For machine§gnals from their single-channel recorded mixture in aiert

however, separating speech mixtures recorded by a sin
microphone is still a rather difficult task. Designing rélia

Et?plications, including signal recovery at low signalrmise
ratios (SNRs), surveillance and tele-conferencing.

and robust speech processing systems for adverse cosditionrhe current SCSS methods can be divided into two major

is a challenging problem since the observed signal is oft
corrupted by other interfering signals, making the perfance

§houps, computational auditory scene analysis (CASA) [2],
and model-driven methods|[3]+{9]. CASA methods nselti-

significantly lower compared to that of clean conditions. Igjich estimation methods to extract pitch estimates of the
extremely noisy environments, a high-quality speech $epakpeakers directly from the mixture. The separation perfor-

tion algorithm is required as a pre-processing stage poor hance of CASA-based methods, as a consequence, is predom-
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- the other[[10].

Model-driven methods use pre-trainsgeaker models
as a priori information to constrain the solution of the
ill-conditioned SCSS problem. In particular, source-$fiec
speaker models are incorporated to capture specific charac-
teristics of individual speakers at each frame. As a represe
tative example of model-based methods, non-negative xnatri
factorization (NMF), decomposes the short-time Fourigngr
form (STFT) of a mixed signal into a product of two low-
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TABLE |
DIFFERENCES IN MAIN BLOCKS OF EXISTING MODEEBASED SINGLE-CHANNEL SPEECH SEPARATIONTHE PROPOSED ALGORITHMS USED IN THE
SYSTEM DIAGRAM IN FIG.[2ARE HIGHLIGHTED WITH BOLD-FACED FONT.

SID and SSR estimatioh Spectral feature | Speaker model | Mixture estimator | Signal reconstruction
Log max [&], [12]-]15] Ideal binary mask [2]
Iroquois [8], [12], [15] Gammatone filterbank (GTFB) | Graphical model([8],[[15] MMSE power estimator [16] Binary mask [[13], [[14]
Improved Iroquois([b] | Mel-frequency band energy (MFBH) Factorial HMM [7], [14] Algonquin [8], [15] Wiener filter [B], [€], [16]
Closed loop([17] Log STFT [8], [12], [15] subband HMM [[6] Maximum likelihood amplitudel[9 Overlap-and-add_[7]=[9]
Adapted SID in [18] Sinusoidal parameters [[9] VvQ [5l, [9] Adapted MMSE in [19] Sq. root Wiener filter in sinusoid [20]
. ) ) . Mixed -
ran_k matrices, nam_ely basis vectors and their correspgndnwﬁch Speaker dentiication and ma'fm Reconstruction stage
weights [3]. According to[[4], NMF cannot always separate SSR estimator [Section I [Section I1L.D] [Section I1L.F]
speech mixtures when the sources overlap especially wigen th Estimatedi dentities 2 A l i
! [0}
speakers are of same gender. J 5 Se;razd
The components of a typical model-based SCSS system and Spoaker spoaker | T speech signals
. . . . C\C:
algorithms are shown in Tablé I. SCSS first needs to estimate Codebooks Codebooks
[Section 111.B] [Section 111.B]

the identity of underlying speakers and the gain in which
the frames ar_e ml_xedroquo_ls [8] is a speaker identification Fig. 2. Block diagram of the proposed joint speaker iderftifim and speech
and gain estimation algorithm which uses speaker-speciiparation system.
gain-normalized models to produce a short-list of canéidat
speakers using the frames dominated by one of the speakers. A
modified version of théroquoissystem which uses flooring of [17] and improved in [[18], is utilized in this paper and
the exponential argument in likelihood computation okedin adopted to the speech separation challenge. Since we look
slight improvement([5]. Parallel speaker HMMs using Viterbfor SCSS algorithm that works equally well also in terms of
decoding was used in [L1] to identiénly target speaker which perceived signal quality basis, the minimum mean squace err
is not enough for model-based speech separation. (MMSE) amplitude spectrum estimation in_[19] is adapted
The next step is to select a representation of the spedeh the sinusoidal parametrization. Despite the bettereapp
signal which is suitable for separation purpose. Because lisfund achieved by dynamic models, we choose static vector
the promising results shown in][9], we selectsihusoidal quantization (VQ) speaker model which is not limited by
features instead of the conventionally used logarithmirtsh the vocabulary and grammar size unlike dynamic models.
time Fourier transform (STFT) featurés [7]] [€].]14]. Dynm Moreover, VQ-based models also provide faster decoding. In
models are widely used for speaker modeling [7], [8]. [14}his work, we use mask-based reconstruction because & lead
[15] due to their great capability to model the sequence td promising results in the sinusoidal feature domainl [20].
features. For speaker recognition stage, we use mel-frequency eg¢pstr
Mixture estimatoris a module for finding the best repre-coefficients (MFCCs) as features and Gaussian mixture raodel
sentatives from speaker models to reconstruct mixed-bpe€eMMs) as speaker models and for separation stage we em-
frames. It is conventionally performed using log-max modg@lloy sinusoids as features and vector quantization as speak
[Bl, [71, [B], [14], [15], MMSE power estimator[[16] or model.
Algonquin model[[8], [15]. In evaluating and comparing the proposed method with two
The codevectors found by the mixture estimation stagéate-of-the-art systems![7]./[8], we employ a wide range of
are then passed teconstructionstage which produces theboth subjective and objective quality measures, in aduitin
separated signals. In terms of how to reconstruct the stgshrsstandard ASR accuracy. These measures have been introduced
signals, separation methods are divided inégonstruction in diverse studies in literature but have never been regorte
[7]-[9] and mask methods [[5], [[6], [[18], [[14], [[20]. In the together on the speech separation challenge [21]. ThisAwas t
former approach, the codevectors found in the mixture esfienefits. Firstly, assessing the separated signals byretitfe
mation stage are directly used for reconstructing the sépar metrics rather than ASR has the advantage that the reselts ar
signals. The mask methods, as the name suggests, prodixeected to carry on to other applications beyond ASR, as
a mask based on the codevectors selected from the spedidicated in Fig[]L. Secondly, our analysis provides thgiou
models. answers to which of the objective measures correlate bést wi
The contribution of the current study, as highlighted ithe subjective measures in SCSS application. The corrélspon
Table[] and illustrated in Figl]2, is a novel joint speakeing sections describing each of the presented algorithms ar
identification and speech separation system. Some of tia buphown inside the blocks in Figl 2.
ing blocks were studied individually previously. In addiii
to the system design, the novel contributions in this paperll. SPEAKERIDENTIFICATION AND GAIN ESTIMATION
include extension of the SID module [18] for SSR estimation Speaker identification (SID) is the task of recognizing

and generalization of the MMSE mixture estimator in thgpeaker identity based on the observed speech signal [22].
amplitude domain[[19] to sinusoidal features. ConS|dermq,pica| speaker identification systems consist of the stesrh

the high computational complexity of the Iroquois systemy,ectral feature extractor (front-end) and a pattern niragch

a speaker identification (SID) algorithm first proposed i odule (back-end). In traditional SID, the basic assunmpito
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that only one target speaker exists in the given signal vasere 1) Frame level likelihood scoreOne approach to measure
in co-channeBID, the task is to identify two target speakers ithe similarity between test utterance and pre-trainedkegyea
a given mixture. Research on co-channel speaker ideniificatmodels is to calculate frame-level likelihood score. We roefi

has been done for more than one decade [23], yet the probléma log-likelihood score for a feature vectey given theith

remains largely unsolved. speaker model as;; = max,{s;,}, where
Most of the current SCSS systems use the model-driven R \ 5
Iroquois system[[8] to identify the speakers in a mixed signal. sigt = log p(xe|Aig). @

Recognition accuracy as high as’®®n the speech separationFor each frame we find the most probable speaker. Finding

corpus [21] has been reported fisoquois [8], which makes the winner speaker for all of the feature vectors of test

it as a viable choice to be used in SCSS systems [7]. litterance, we associateFd.L,;; score for each speaker based

the Iroquois system, a short-list of the most likely speakersn the number of frames where the speaker is selected as

are produced based on the frames of the mixed signal tiia winner. During recognition, the UBM is evaluated first

are dominated by one speaker. This short-list is then passgl then only the top-scoring Gaussians get evaluated m eac

to a max-based EM algorithnto find the SSR and the two SSR-dependent speaker model. We deFhd.ss score as the

speakers’ identities. In subsequent subsections we inte@d number of times that winner speaker came frgrth SSR-

an alternative approach with lighter computational load ilependent model.

operation phase. 2) Kullback-Leibler divergence scoréinother approach to
measure similarity of the test utterance with speaker nsmdel
{\i}, is to train a model of the test utterancg,, with

A. Recognition Approach MAP adaptation and calculate the distance betwgerand

. L . ... the speaker models. We use tKallback-Leibler divergence
Generative modeling is widely used for speaker |dent|f|c:(1KLD) as an approximate distance measure between the two

tion [3], [83’ _[22]' M?]ximum IikeIi_hood (ML) traiqeq GMMs probability distributions[[25]. Since this distance cahie
were used in[[8]; howevermaximum a posterior(MAP) o4 ated in closed form for GMMSs, we use the upper-bound

der_i\{ed_GMMs [24] are mu<_:h more accurate in SpeakWhich has successfully been applied to speaker verification
verification and we follow this latter approach emploqu%].

conventional MFCCs as feature vectors. hadenote a GMM

of one speaker. Then the probability density function is M

1 _
KLD;y = 3 Z Wi (Bme — Nmig>sz1 (Bme — Pmig)- (3)
M m=1
PN = wnpm (x). (1) Here g ranges in a discrete set of pre-defined SSR levels,
m=1 Kme is themth mean vector i\, and p,,4 is themth mean

The GMM density function is a weighted linear combi-VeCtor In Aig, whereasuw,, and X, are the weights and the

nation of M Gaussian densities,,(x), Where p,,(x) ~ covariances of the UBM, respectively. Consideribgas the

) : . . number of speakers, we form dn distance matrix and
N(x; i, X ). Here X, is a diagonal covariance matrix P x G

. . . ., associate &LD,;; score for each speaker as the smallest
and the mixture weightsv,, further satisfy the constraints sid P

M = KLD distance [[B) over all SSR levels. The originBl x G
> m=1Wm = 1 andwy, > 0. The speaker-dependent GMMs istance matrix is used as tlh&.D<., Score.

are adapted from a universal background model (UEM) [24]. 3) Combined approach:To enable taking benefits from

The UBM is a GMM trained on a pool of feature vectors;. : . :
.~ “djfferent recognizers, we combine the two scores with equal
(MFCCs), extracted from as many speakers as possible, t0. . : .
“'weights summation. This approach has shown to providerbette

serve asa priori information for the acoustic feature distri- - L i
. : recognition accuracy than the individual recognizers [28]
bution. When adapting the speaker-dependent GMMs, usu . .
ugh non-equal weights can be estimated from development

only mean vectors are adapted while weights and covarianges [18], we found that using equal weights yields similar

are shared between all speakérs [24]. .
- - . : accuracy. Note that we normalize the range of scores from

In traditional speaker recognition, the UBM is trained fronﬁ‘wo recognizers before fusion
a pool of data from different speakers. To characterize thixe '
speech, in this study we propose to train the UBM#n) ] ) .
from mixed utterance pairs at different SSR levels. For tfe Selecting the optimal SID and SSR Pair
ith speaker, the gain-dependent modglg, are adapted from  The joint speaker identification and separation module pro-
the UBM usingith speaker speech files corrupted by othetuces short-lists of speaker identities and the SSR candi-
speakers signal at SSR lewelUsing SSR-dependent speakedates. In our preliminary speaker identification experitaen
models, the system captures speaker-specific informati@mw we found that the dominant speaker walsvays correctly
it is contaminated by other speakers. Our method is sindlaritdentified and the second speaker also ends up most of the
that of having an SSR-dependent bias in the GMM [8], btitme in the top-3 list. Thus, rather than selecting the top-
we build separate GMMs for each SSR level to utilize thecoring speaker or the most likely SSR level, we propose the
advantages of GMM-UBM systern [24]. Using SSR-dependefailowing procedure to select the best pair of speakers and
speaker models enables us to find the most probable speal&3R level.
along with the most probable SSR level. Let SID; denote the estimated identity for the first speaker.
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Speaker 1 identity of the previous separation methods are based on short-time

SID,
_____ Sy Fourier transform (STFT) features of uniform resolutionieth
SIp? poorly match the logarithmic frequency sensitivity of aody

system [[12]. In this paper, we chooséusoidal modeling

Fig. 3. Demonstration of the reduced search space for sp&@® which satisfies both of the aforementioned requirements and

combination. There ar®(D—1)/2x G possible combination foD speakers |eads to improved signal quality compared to the STFT

and G SSR levels, which is reduced fbx 3 combinations by the proposed . L. L

joint speaker identification and gain estimation algorithm approaches in terms of both objective and subjective measur
[Q]. Furthermore, in [[29], it was shown that applying a
sinusoidal coder as speaker model results in a better quan-

Assume that the estimated top-2 identities for the secofigation performance compared to STFT features, in having

speaker are SID= {SID{", SID{’}. Additionally, we define less outliers[[29].

SSR — {SSF@,SS ”,SSI%”} as the short-list for SSR  The proposed separation system transforms the underlying

candidates consisting of three most likely SSR levels f§Peaker signals into a parametric feature set composed of

combination of speakers S|Dand S“ii) with i € {1,2}. amplitude, frequency and phase vectors of sinusoidal. The

The search space is shown graphically in Eig. 3. The speaR¥fusoidal parameter estimation is described as follojy<Je

identity and SSR candidates in the reduced search space!Bfetraining data, the STFT magnitude spectrum is caladlate

further passed to the separation module which attempts 48ng Hann window of 32 msec with hop size of 8 msec.

reconstruct the mixed signal as combinations of both the f¥¢cording to the conclusion in_[30], replacing the uniform

top-scoring speakers and the three SSR candidates. A paif§siolution STFT representation with a warped frequenciesca

speakers that minimize the average mixture estimatiorr erf@Proves the disjointness of the transformed mixtures, and

Eq. (Z1) in one of the identified SSR-levels (Fiy. 3) is seldct consequently facilitates the separation task since s@igoals
as the best combination. with higher sparsity have less overlap in their mixture. To

take the logarithmic sensitivity of the human auditory syst

into account, we divide the frequency range to frequency

_ bands whose center frequencies are equally distributed on
_Let s:(n) denote thenth sample of the observed mixedihe mel-scale. The frequency bands are non-overlapping and

signal with ' samples composed @ additive source signals gach corresponds to a set of STFT bands. At each band the

as, spectral peak with the largest amplitude is selected. Defini

Si(w)el? (@) = DFTR{s.(n)} as the complex spectrum for

SSR,", SSR.”, SSR.”

SSR? , SSRY, SSR'?

IIl. SINGLE-CHANNEL SPEECHSEPARATION SYSTEM

K
Sz(")ZngSk(n), n=0,...,N—1. 4)
=1

the kth speaker, with DFF as theF-point DFT operator, and
Sk(w) as its amplitude andy, (w) as its phase component, the

Here, s,(n) is the kth speaker signal in the mixture, andPbjective in the sinusoidal parameter estimation used here

gr is its gain. Note that the speaker gaing, and g2, are

assumed to be fixed over the entire signal length denoted by
N. This assumption, although somewhat unrealistic, is made
in most current speech separation systems [21]. For the sake

of simplicity and tractability, we consider the cage= 2, a

to find the set of sinusoids with the following constraintk [9
(6)
()

Wei = arggle%fs'k(%

Apie?®i = Sp(wp)elPr@ri),

mixture of two speakers. We further defipe= % — 10 where(; is a set composed of all discrete frequencies within

where SSR is the signal-to-signal ratio in decibels. Simildhe ith band andi € [1, L] with L the number of frequency
to [27] we assume that the two signals have equal powRgnds (sinusoidal model order), and ;, wk.i, ¢x.; as the am-

before gain scaling, i.e} " s?(n) = >0 ' s3(n) = G2.

By defining g, = ij;ol s2(n) and considerings;(n) and
s2(n) as two independent processes, for large enongh
E[s1(n)s2(n)] = 0 and g2 = G%(¢? + ¢3) [27]. The mixed
signal can now be represented as below

_ 9=/P E
s:(n) = mﬁ(”) + C:O\/T—pSQ(n). (5)

The speaker signals, (n) and sa(n) as well as their mixing
SSR level p) are unknown whilgy, ands,(n) are given and
G| is arbitrary for gain scaling.

A. Sinusoidal Signal Representation

plitude, frequency and phase for tith sinusoid, respectively,
andargmax(-) returns the argument whe%, (w) attains its
maximum value. It should be noted that Asapproaches to
F, each frequency subband include one DFT point.
Assume that théth speaker time-domain signal is denoted
by {si(n)})-} where k € [1,2], n as the time sample
index and N as the window length in samples. Far =

0,---,N —1, at each frame, we represent(n) as [31]
L
si(n) = Z Ay i cos(nwg,i + dri) + ex(n), (8)
=1

where ei(n) is the estimation error; is an index that
refers to theith sinusoidal component. The sinusoidal com-

The selected features used for separation need to meep@tents are characterized by the triple dety,ws, ¢k
least two requirements: (i) high re-synthesized signalityya denoting the amplitude, frequency and phase. We define
and (ii) low number of features for computational and statigv, = [Ax 1Ak 2 Ak )T, wr = [Weiwk 2 wi )T, Pr =
tical reasons (curse of dimensionalify [28]). A vast mdjori [¢x 10k - - dx ] as thekth speaker's amplitude, frequency
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and phase vectors, respectively, each of dize 1, and . We consider here the speaker-dependent scenario since the
being the sinusoidal model order. We further define information for speaker identities are given by SID module

I (Section I1). We use three candidate models for describdieg t
DFTF{ ( Z Ay i cos(nwy; + ¢k7i))w(n)}
=1

mixed signal, namely,
©) Mjy: None of the speakers are active (non-speech)
: . M;: One of the speakers is active (single-talk
where C'(av, wi, é5) is the amplitude spectrum of theth Ml' Both of the sp eakers are activé (d%uble-tzalk)
source represented by the trigle, wy, ¢x] of size3L x 1, z o P ]
andw(n) is a window function. For a single speaker, the inV/e use the decision making amoigo, M., and M, to
terference effects by sinusoids, taken per frequency sutsha Narrow down the separation problem only for the mixed
are negligible as the frequencies are rather well sepawdtad frames. For the single-speaker frames, the observed signal
respect to each other. Then, from Fourier transformatioa, tdirectly re-synthesized according to the correspondirgsgr
power spectrum for the harmonic-part for théh source is models. For more details of the method, referltal [35].
well approximated byP, (w) ~ 3277, A2 ;W (w — wy,;) where
W(w) is the power response of the Fourier transform fq5 sinusoidal MMSE Estimator for Mixture Amplitude
window function,w(n). The magnitude of the STFT is then
approximated by, (w)~ S5 | Ay W (w — wy;) as in [32].

C(akawka ¢k) =

In model-driven speech separation we estimate the codevec-

Taking the highest peak of the amplitude spectrumlin ( resrr:ri]xgc]jeSiS?;\?k'?Li;ni(;d:;iovr;holissiggrl?blenritl(l)on ibeis;tlrjr;:tches
is equivalent to choosing the maximum likelihood estimate gnal. P y employing

) . o . : - estimator In the following, we present the MMSE mixture
for frequency of single sinusoid in white Gaussian noisé

i i Jbz(w) —
per band [[38, ch. 13]. In case of no peak detection in €stimator for the SCSS problem. We defifig(w)e’

frequency band, we assign an insignificant value of 0.001 f%:TF{SZ(n)} as the complex spectrum for the mixture.

the amplitude and assign the band’s center frequency as gginning f_rom t_he rela_tior_wship betw_een_ the mixed signal an
frequency of the sinusoid. According to our previous stsdietz € underlying signals in time-domain given I (4), we have
[Ql, [29], this choice would not change the perceived gyalit . 9 a2 2 a2

of the reconstructed speech but helps to avoid the compdcafgz (w) = \/9151 (@) + 9353(w) + 2019291 () 9(w) cos 6(w),

. . ) ; . X . . (10)
varlable_d|me_n3|on VQ by preserving the fixed dmensmyahtwhere we defines, (w), S»(w) and S, (w) are the frequency
of the sinusoids.

components of the magnitude spectrum for the first speaker,

the second speaker and the mixed signal, respectively. $te al
B. Speaker Codebooks defined(w) = ¢, (w) — ¢2(w) as the phase difference between

Split-VQ codebooks composed of sinusoidal amplitude arde kth frequency bin of the underlying spectra. Dividing both
frequency vectors are used as speaker models [[9], [29]. sidles of [ID) byy?S7(w) # 0, we arrive at
the split-VQ codebooks, each amplitude vector have several 2 a2
corresponding frequency vectors. The training stage taiobt 222 ) = 1+93522(w) +29192§1 (;J)SQ C)
split-VQ codebooks is composed of two steps; First thei”1 (w) St(w) 915t (W)
amplitudes of sinusoids are coded, then as the second stgge gefining 3. (w) 2 In S%(w) and S;(w) 2 InS?(w) for
frequency codevectors are found by using vector quandizati; — (1 2} and using[(Ill) we get
on frequency candidates assigned to each amplitude codewor
found in the first step. For more details seel [29]. At the end gﬁ (w)=In 92p + 3 (w) + In (1 n leéz(w)él(w)>
p

cosf(w). (11)

the training stage, the codebook entries composed ofardplit ~* ~  GZ(1 + p)

and frequency parts are both of the same dimensionalityeas th cos O(w)

sinusoidal model orderL(). The split-VQ used in this paper +In <1 + ot S ) (12)
can be replaced by any other sinusoidal coder already algila cosh (—=%; =)

in the speech coding literature, e.d..1[34]. The importaoice A similar expression can be derived by dividing both sides of
the quantization step is explained in detail in Subsectién | (1) by S2(w) # 0. The derivation presented here is similar to

cs. [36], for representing the relationship among the log-t@ec
of the noisy signal for speech enhancement, but adopted here
C. Double-Talk Detection for speech mixture of two speakers.

A mixed speech signal can be classified into single-talk (one!n the following, we derive a closed-form representation fo
speaker), double-talk (speech mixture), and noise-omjipres. the MMSE mixture est|mat|o_n in smusoujs. .Inte_gratmg out
This information can be used to simplify the computationalith® mixture phase modeled with uniform distribution/[3Tig t
expensive separation task since we only need to process TH¥{Ure magnitude spectrum domain is given by
mixed frames with the separation system. To detect double- . 1
talk regions with two speakers present, we employ a MAP 2(w) = %/
detector proposed recently ih |35]. The proposed method is
based on multiple hypothesis test and can be implementedere S‘z(w) is the sinusoidal MMSE estimate for mixture
in both speaker-dependent and speaker-independent Emenamagnitude spectrum averaging dftv) when we replace the

e0-55=(«) gh(w). (13)

—T
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5.0) = (Ol 1,02, Clan,wa. 8:).9) = | AVT=Clanwn,6.) + = Clanwn, 0] ZE4E), - 1a)

kth speaker signal spectrum with its estimated spectrum reémplement the mixture estimator if_(14), we need the spectra
resented by its sinusoidal features denoted’ iy, wy, ¢.) of the two speakersC(ay,wi, ¢1) and Clawg,ws, ¢2). In
whereay, andwy, are calculated using (5) and (6). It is importhe expression for MMSE estimate for mixture amplitude
tant to note that, as we have no access to each speaker’s pirag@4), the signal spectra of the underlying speakers were
value{¢,}7_, in its corresponding sinusoidal representatiortonsidered to be given. However, in the experiments, werela
we setg¢y, = ¢,. This choice is in line with the fact that thethis assumption by choosing their estimatesdex; , w1, ¢1)
phase of the noisy observation is the MMSE phase estimated C' (a2, w2, ¢2) selected from the pre-trained codebooks
for the clean speech [B8]. Furthermore, the authors in [32} andC, of the two speakers. The estimates dfa;, w1)
showed that the choice of the phase spectrum sampledaatl C(a.,w-) are obtained from the codebooks of the two
frequencies of sinusoids as the estimated phase of sirmisoidspeakers,C; = {c{”,c{”,.... ¢V, ... ¢V} and C, =

geeey 5

sufficient for estimating the sinusoidal parameters in MMS @ @ P P, respectively, wherec!” and
sense. Following a similar approach as[inl [1B]] (13) singsifi Cg2) refer to therth andgth codevector in the codebooky

to (I4) shown at the top of the page, whgrge) is the MMSE andC,, respectively. LesS, (w)e/?«) = DFTp{s,(n)} to be

mixture approximation and, (w) = —=——"—7— and We e discrete Fourier transform of the mixture. Each cod&boo

VEép(w) . . .
, A _ consists of a pair of amplitude and frequendyx(w}), and
define SSBior = &, (w) = ypClau, wi, ¢:)/Clas, wa, ¢:) M is the number of codevectors in the speaker models [29].

and&(-) is the complete Elliptic integral of the second kind. Let e be the full-band mixt imat )
This integral can be approximated by the following series: et e‘(w) be the full- anc: mixture estimation -error in
complex spectrum domain defined as the error difference

2B (2w —1\?]  p2m between the complex spectrum of mixtug,(w)e’?=(“) and
e(n)_ﬁ{1_zll‘[< >](2m—1)}' (15)

20 the estimated complex spectrum of the mixtue(w)e’¢=()
as follows:

m=1 Lv=1

The Elliptic series denoted hy(-) can also be written as

T (W) = 8. (w eI®=(w) _ S’Z W equz(w). 17
E(v(w)) = §2F1(—0.5,0.5;1;72(w)) (16) e(w) (w) (w) (17)

At each frequency subbaride [1, L], we define the complex
where ;I (a, b; c; t) is Gauss’ hypergeometric function withsubband frequency erre(w) as

t as an argument replaced by (w). Provided thatlt| < 1, } .

£(v(w)) will converge absolutely, and since(w) < 1, €f(w)=As i W(w —w.;) — Ao/ W (w — @),

convergence is indeed guaranteed. Note that the values of o . . (18)

,Fi(-) can be found from a look-up table since it depend¥here we defined.;, @.; and ¢.,; respectively as the

on a single variabley(w). This helps keep the complexity ofamplitude,frequency, and phase of the sinusoid that reptes

the mixture estimator low. the estimated mixture complex spectrum at ttfefrequency
Previous separation systems used eithax-mode[14] or subband. By setting the estimated mixture phasgih (18)lequa

Algonquin mode[8] as their mixture estimator. A simplified t0 the mixture phase sampled.at; (¢-,; = ¢- :), the absolute

version of the max-model, MAX-vector quantization (MAX-€rror in subbands becomes

VQ) was used in[[5],[17], [1_3]. In[[8], both the Algonquin and ei(w) = [A W (w — ws ) — AZ.iW(w —0.)], we .

the max-model were studied and compared, and Algonquin ’ ’ (19)

was found to perform slightly better. The max model andnich has already been used as the MMSE criterion for
Algonquin modeuse MMSE criterion in log-power and poweregtimating the sinusoidal parametefs][32]. Similar [fol [34]

spectrum domain considering the phase as a random variaglg. symmation of the residual error i [18), in fact,
The proposed mixture estimator also takes this into acoountynroximates the full band spectral distortion given by
amplitude domain. Furthermore, accordingltol[15], speey ™ g () — 3, (w)[2dw. Minimization of the residual error

the mixture estimation stage in the log spectral domain 3§ each frequency subband takes advantage of the fact that th
convenient because speech states can be represented#ffiCig ror at narrow enough subbands can well be approximated as
as a mixture of Gaussians in the log-spectrum. For recanstry hite noise [39].

tion purposes, then, they use anti-logarithmic transféiona 15 estimate the amplitude and frequency vectors for

In this paper, we solve the problem directly in the spectrughch of the underlying signals, mixture estimation is per-
amplitude domain matched with our signal reconstructiqgymed. Let A™7. o™ as the sinusoidal parameters rep-

z,00 2,1

stage (see subsection IlI-F), without the logarithmic magp esentative taken from theth frequency band in[{14).

o ] ) Using speaker codebook8&; and C,, Eq. [14) becomes

E. Estimating Optimal Codebook Indices F(Clér, @, ), Clbry, g, d2), p) at each frequency sub-
Here, we explain how to find the estimated mixture magriband i where {&,,w,}}L, and {é,, @, }0L, with w € Q;
tude spectrum$, (w) given in [14), at each frequency bin. Toare the amplitude-frequency codevectors witand ¢ as the
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codebook indices selected fro@ly and C,, respectively. We comes at the price of increased speech distortion. Accortdin
further define the mixture estimation difference indicabyd our separation experiments, for signal reconstructioedas
e, 4. defined for frequency subbands [1, L] as, the found sinusoidal parameters, throughout our expetisnen
o o we usesquare rootWiener filters 3 = 0.5) instead of the
ergi(@) = Az W (W —weq) = AZIW(w —070)], w E(Qi') conventional Wiener filtersq = 1)
20 - o
Finally, the mixture estimation is carried out by searcHiog For synthesizing the separated signals, we produce square

. : ; root Wiener filters based on sinusoidal feature and apply
the optimal codevectors (pair of amplitude and frequendy) fhem to the mixture to recover the unknown signals. Like
the codebooks by minimizing )

other separation methods reported n![21], we employ the

L ) mixture phaseg, for re-synthesizing the separated outputs.
Jrq = Z €rqi (@) (21)  The estimated amplitude-frequency codevectors foundZ (2
i=1 are used to reconstruct their corresponding amplitudetspac

wheree, ,; is the error vector composed ef ,;(w) at all estimatesC(&,,w,«, ¢.) and C(éy-, @y, Pp.) Which are

frequency subbands with € Q; andi € [1, L]. We emphasize further used to produce square root Wiener filters as below

that the speaker codebooks we use here are in the form of a A
C(aT* y Wy ¢z)

sinusoidal coder presented {n [29], in which each codevecto G, (w) = —— —— , (24)
entry is composed of two parts denoted fa,(w}), sinusoidal VO (b, @y ’sz) + C? (g, @q-, P:2)
amplitude and its corresponding frequencies which deteemi 4 () C(byg, wg, @2) (25)

where the amplitudes are located in the spectrum. To migmiz

T G o ) + Ol @1 62)
@), we are reqwr_ed to do search on pairs of COde.VECt rcs:cordingly, the separated output time domain signals are
(consisting of amplitudes and frequencies) to determiree t

optimal pair for signal reconstruction, that is, given after taking/-point inverse DFT:

(g =arg min Jyg({G @ (G, @), (22) $1(n) = DFT;l{CAyl(w)Sz(w)e@z (w)} (26)
{rayeCixCs 89(n) = DFT {Ga(w) S, (w)e??= ()}, (27)
We note that the frequency vectads. and w, are not the
same as frequencies of sinusoids of mixture but selected IV. RESULTS

such that they together minimize the cost functioid (22)teN A. Dataset and System Setup

that, even after knowing the estimated SSR level and idestit ) )
of the speakers, exhaustive search [Gfl (22) requiPéa/?) The proposed speech separation system is evaluated on the

evaluations of the cost function iA{22) fail frames which SP€€ch separation corpus provided.in [21]. This corpusistns
is impractical. Considerable time saving, still retaininigh of 34,000 distinct utterances from 34 speakers (18 males and

separation quality, can be obtained by using an iteratiaecse 1(_3 female_s). The sente_nces follow a com_mand—like structure
as follows. We start with random, and keep it fixed while With @ unique grammatical structure as six word commands
optimizing with respect tay, then switching the roles. ThisSUch as bin white at p nine sodn Each sentence in the

requires a total number @ (M x I') evaluations ofi{22), where database is composed of verb, color, preposition, letigi d
we particularly set/ = 3 iterations. This leads to practical@"d coda. The keywords emphasized for speech intelligibill

speed-up factor of 700:1 for a codebook size= 204S. or recognition task in challenge are the items in position 2,
4, and 5 referring to color, letter and digit, respectivdlijze

possible choices for color are green, blue, red, and whhe. T

F. Signal reconstruction : ) L
J , — . possible letters are 25 English alphabet letters and thigsdig
The Wiener filter is a classical speech enhancement methgd < jacted from 0 to 9.

that relies on the MMSE estimation to restore the underlying o each speaker, 500 clean utterances are provided for
clean signal. Previous stud.ies utilized the Wiener filted] [4 training purposes. The test data is a mixture of target and
operate in the STFT domain. Here we propose to use Magasier speakers mixed at six SSR levels ranging from -9 dB to
nitude ratio filters in the form of square root Wiener filterg g For each of the six test sets. 600 utterances are prbvide
[40]. According to our preliminary experiments in_[20], they¢ \yhich 200 are for same gender (SG), 179 for different

reconstruction filters defined in the sinusoidal domain rioxp gender (DG), and 221 for same talker (ST). The sentences
the separation quality as compared to their STFT countepajyere originally sampled at 25 kHz. We decrease the sampling
From the definition of the parametric Wiener filter [40] W& 416 1o 16 kHz (some additional experiments are also carried

have: Pi(w) 8 out at 8 kHz).
G(w) = (1—‘”) (23) For speaker identification, we extract features from 30 ms
Pi(w) + Py(w) Hamming-windowed frames using a frame shift of 15 ms.

where P;(w) with ¢ € {1,2} are the power spectra of theA 27-channel mel-frequency filterbank is applied on DFT
signals, which are approximated by the periodogrepgv)|?, spectrum to extract 12-dimensional MFCCs, followed by ap-
and the parametgt determines attenuation at different signalpending A and A? coefficients, and using an energy-based
to-noise ratio levels. From the speech enhancement raeultvoice activity detector for extracting the feature vectoige

[4Q], it is known that higher values of result in more at- add the signals with an average frame-level SSR to construct
tenuation of the interfering signal. However, this achieeat the universal background model (UBM) and the target speaker
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TABLE Il

SPEAKER IDENTIFICATION ACCURACY (% CORRECT) WHERE BOTH [7] (Se_e Ta_ble I1in[[¥]), wherédroquois [8] system was used
SPEAKERS ARE CORRECTLY FOUND for estimating the speaker identity and the SSR level both in
[7] and [&].
SSR (dB) 9 6 3 0 3 6 Awerage  \ye had access only to a limited number of separatediclips
Iroquois [&] 965 981 982 99.0 991 984 0982 ; i . .
Saeidiet. al.[18] 86.7 930 971 962 928 916 929 for the system in[[8], where the authors i [7] supplied their
Proposed 875 932 972 962 929 917 932 separated signals on the whole GRID corpus. To this end, we

evaluate the performance of the proposed system in terms of
four experiments:

« Demonstrating how the mixture estimation is performed
GMMs. For each of the 34 target speakers, 50 randomly in sinusoidal domain using the proposed MMSE mixture
chosen files from each speaker are mixed at SSR levels amplitude estimator i (14) and studying its impact on

g9 € {~9,-6,-3,0,3,6} dB with 50 random files from all performance compared to the full band STFT case.
other speakers, which gives us about 180 hours of speech fof Sybcomponent comparison versus the existing state-of-
UBM training. The number of Gaussians is setMt=2048. the-art.

Each SSR-dependent GMM,,, is trained by mixing 100, Comparing the proposed method versus benchmafk in [7]
random files from théth Speaker with 100 random files from emp|0ying the whole corpus using perceptua] evaluation

all other speakers which gives about 1.8 hours data foritigin of speech quality scores (PESQ) and short-time objective
The relevance factors in MAP adaptation were sep#di6 intelligibility measure (STOI).

for training the speaker models amek0 for training the test , Comparing proposed method versus benchmarkslin [7]
utterance models, respectively. The choiceseb for the test and [8] on limited number of clips using different objec-

utterance was done due to short length of data for adaptation tjve and subjective measures.

Tabledl shows the accuracy of the proposed speaker identifi-
cation module for finding both target and masker speakers. An ) ) )
average accuracy of 93.2% is achieved using the proposed §ipEXperiment 1: Case study for MMSE mixture amplitude
module. Considering) speakersM Gaussians and: SSR- €stimator in sinusoid
levels, the number of Gaussian evaluations for the speakelVe select the mixture of two female speakers 7 and 11 from
recognition system ar® (DM ) for the Iroquois system|[[8]. GRID corpus test set mixed at SSR 0 dB. We represent
The proposed approach, on the other hand, has computati@peech signals using limited number of sinusoids where fre-
complexity of O(DGM) only. Therefore, the proposed SIDquencies and amplitudes are obtained using the peak picking
module is much faster in operation in exchange of reduced the mel-scale as described in (6-7). We consider two
accuracy. scenarios: i) ideal case, where the speaker spectra arenknow

For separation, we extract features by employing a Haand ii) estimated by the optimal codebook entry, determined
window of length 32 ms and shift of 8 ms. We use split-V@s the result of the codebook search[in] (22). The results for
based on sinusoidal parameters|[29]. The source models e ideal scenario and estimated from codebook are shown in
divided into magnitude spectrum and frequency parts wheféig.[4 on the right and the left panels, respectively. Fidgdire
each entry is composed of a sinusoidal amplitude vect@ight) shows how the proposed sinusoidal MMSE mixture
and several sinusoidal frequency vectors as its candidatsplitude estimator works by minimizing the error over the
According to previous experiments, we set the sinusoida&rmonic lobes of the sinusoids, estimated per frequenoy su
model order toL=100 for 16 kHz andL=50 for 8 kHz [9]. bands, defined if.(20). Subplot (a) shows the observed naixtur
For speaker modeling, we use 11 bits for amplitude andspectrum of two speakers and the mixture estimated using the
bits for frequency part in the sinusoidal coder. This resirit proposed MMSE estimator if_(IL4). Subplot (b) displays the
codebook size of 2048 in split-VQ for modeling sinusoidahixture estimation error power in decibels for both STFT
features. Studying the other features effect in the sules@quand sinusoidal features. Subplots (c) and (d) illustrate th
subsections, the same codebook size of 2048 is also useddidginal spectra of the two underlying speakers, as well as
speakers’ VQ models. The pre-trained speaker codebooks tre STFT and sinusoidal spectrum amplitude. Comparing the
then used in the test phase to guide the speech separatM8E results of full-band and sinusoidal shown in subplot (b)
The codebooks are used for both the mixture estimator aib@s concluded that the proposed sinusoidal MMSE amplitude
the double-talk detector (Fi@l 2). For the mixture estimat@stimator defined in[{18) well approximates the full-band
given in [14), we used the first 5 terms of the elliptic seriemixture estimation error defined in{17). For visual clarite
in (I5). use dB-scale for the spectral magnitudes but all compusitio

As our benchmark methods, we use the two systemstuse the original spectral magnitude values. We have only

[7] and [E] participated in the SCSS challenge. We report tlsown the frequencies in the range of [0 , 3800] Hz at a
separation results on the outputs obtained bystifger-human sampling frequency of 8 kHz.
speech recognition systern| [8] as top-performing separatio As a second scenario, we compare the results of mixture
systems in the challenge. This system even outperformsiuma

listeners in some of the speech recognition tasks [21]. As.The clips are Clip 1: target sp6:bwba masker sp30:pgah6ae(imit -3
dB), Clip 2: target spl4:lwax8s masker sp22:bgwf7n (mixed aB), Clip

the Secqnd benchmark system, we use another tOp-pef_fOFmé. rget sp33:bwidla masker sp33:lgii3s (mixed at -6 dRj @lip 4: target
separation system, “speaker-adapted full system” prapose sp5:swah6n masker sp5:bbirdp (mixed at 0 dB) signal-toadigatio.
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Fig. 4. Shown are the magnitude spectrum for (left) codetsmscch scenario (right) ideal scenario. The descriptidresach panel: (a) shows the original
and estimated mixture spectrum amplitude denotedSbw) and f(C(a1, w1, ¢2), C(az, w2, ¢2), p), respectively, (b) mixture estimation error power
e(w) in decibels. The MSE value for full-band and sinusoidal sase reported for the bottom plot, and (c) speaker dhéw) and C (o1, w1, ¢2), (d)
speaker two:S2(w) and C'(a, w2, ¢2).

estimation in full-band STFT domain and sinusoidal feature  pseudo-inverse of the filterbank is utilized to minimize
by performing codebook search on the STFT codebooks and the Euclidean norm, as suggested linl[41]. The number
sinusoidal split-VQ codebooks, respectively. The resalts of filterbanks was set to 60 based on our preliminary
shown in the left panel of Fig]4. The sinusoidal MMSE  experiments.
amplitude estimator achieves a lower MSE compared to thes Mixture estimator: MMSE in log-power spectrum, power
STFT case. The selected codevectors result also in a more spectrum, spectrum amplitude domain (proposed), si-
accurate amplitude spectrum representation than the STFT nusoidal estimator of[[9], and subband perceptually
scenario (see subplots (c) and (d) in the left panel). weighted transformation (SPWT). SPWT uses STFT
features and employs a perceptually weighted spectral
distortion in frequency subbands by imposing a weighting
to emphasize different frequency division in an uneven
manner in contrast to STFT case [42]. We used four
In this subsection, we experimentally compare the choice frequency subbands division in Mel-scale as it led to the
of each component in our full system to alternative state-of  highest PESQ as reported [n [42].
the-art components. To this end, we evaluate the separaigishe proposed system, the codebook indiceand ¢ are
performance in terms of different attributes: i) joint f@& jsintly estimated from the mixed signal using122). In turn,
and mixture estimator, ii) feature selection independent g \ye estimater and ¢ (the codevector indices in the two

speaker model, iii) quantization effect, and iv) differdtiers codebooks) from the original specti$y (w) and.Ss(w), using
for signal reconstruction. As our experiment setup, wectete

two speakers, 9 and 19, from the GRID corpus for mixing. ™" = afgc{Tlei&HC(al,wl,cbl) - Clay,wr, ¢1)[5, (28)
As our quality assessment measure, we chose PESQ and the . 2
results gre a\)//eraged over 50 utterances. ¢ =g cflé&"c(a“"z’ $2) = Clag g, @2)llz, - (29)
The following_ alternatives for the feature and mixture eSt{Nhereak, wy, are the amplitude-frequency feature set obtained
mator are considered: by applying sinusoidal feature extraction (5-6) on thth
» Features: Gammatone auditory scale filter bank (GTFBpeaker signalsi(n), we call the set-up as VQ-based up-
mel-frequency band energy (MFBE), STFT and siper bound. The VQ-based upper bound is the best possible
nusoidal feature. For GTFB features, we considergmrformance obtainable by the proposed model-driven $peec
128 log-energy of gammatone auditory scale filter-bardeparation approach [43].
whose filters are quasi-logarithmatically spaced, basedl) Studying the joint impact of feature and mixture estima-
on the equivalent rectangular bandwidth (ERB)-sdale [2pbr: Here we evaluate the separation performance in terms
The bandwidth increases with center frequency frowf two attributes (1) feature domain representation and (2)
about 35 Hz at 100 Hz to around 670 Hz at 6000 Hmixture estimator selection. To this end, we select STFT; me
We select MFBE features as a commonly used auditoiequency band energy (MFBE), sinusoidal feature spackewhi
scale features in variety of applications. Following théhe mixture estimators are MMSE in log-power spectrum,
setup in[30], to extract MFBE features, we designed thgower spectrum, and spectrum amplitude domain (proposed).
filterbank in ERB scale and applied the filterbank to then addition, to locate the performance of the proposed algo-
power spectrum of signal. In the reconstruction stagerghm among the previously similar ones, we also report the

C. Experiment 2: Analysis of the system sub-components:
features, frequency warping, mixture estimator, type ofkma
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TABLE Il
COMPARING THE SEPARATION PERFORMANCE INESQFOR DIFFERENT
CHOICES OF MASK FUNCTION IN SIGNAL RECONSTRUCTION STAGE

- e -Upper—bound (sine)

- 8- MMSE amplitude (sine)

- &-MMSE power (sine)

-v-MMSE log—power (sine)

—e— Upper-bound (STFT) 2

—=— MMSE amplitude (STFTJ3
g
)

Source number Speaker 1 Speaker 2

Feature STFT Sinusoidal STFT Sinusoidal
Filter using [(1%) 1.77+0.09 | 2.36+0.09 | 1.76+0.14 | 2.114+0.13
Filter using (24-25)| 2.01+0.09 | 2.664+0.10 | 1.914+0.20 | 2.42+0.17

—— MMSE power (STFT)
—v— MMSE log—power (STFT
=0~ Unprocessed (mixed)
v SPWT [41]
e SPWT upper—bound [41] 1
o Sinusoidal estimator [10

3) Studying the effect of quantizationn model-based
o speech separation, it is required to capture speaker dbarac

o % Bou 8 istics with a model. However, as in any modeling technique,

. _ ' ~the quantization process in representing an actual speech e
forms of PESO for Aifferent combinaion of mixture esimaiMMSE esii Wit @n average model, degrades the achievable separation
mator in log-power, power, and amplitude domain (proposeih different Performance. The impact of the quantization step on the sep-
features (STFT and sinusoidal). The performance of sublmerdeptually aration performance is evaluated throughout the expetsnen
weighted transform in [42] and sinusoidal estimator[ih [83 also included. by reporting the "VQ-based upper—bound" performance shown

in Figure[T. In an oracle separation scenario, we conduct an
results obtained by ML sinusoidal estimator [9] and SPwW&xperiment to study the effect of replacing the quantized-si
[42]. The separation performance results are shown in[fig. ®idal features in (24-25) with the unquantized features. F
We make the following observations: quantized sinusoids we usg o, w,, ¢1) andC(ay, wy, P2)

. with » € C; andg € C, while for the unquantized features, we
o For a given speaker codebook, the closer the meth8ﬁiectly useC(a,wr, ¢1) and C(as, ws, ¢2). This experi-

asymplotes to its VQ-ba_sed uppe_r-bounq performanq.ﬁent demonstrates how accurately the quantized sinusoidal
the more accurate the mixture estimator Is. we obserye tures represent the original sinusoidal parametésizat
that the differences between STFT- and sinusoidal-basggle small gap in PESQ between quantized and unquantized
estimators are not S|g_n|f|cant. L ., sinusoidal features indicates that the employed split-\figleh

» The impact of replacing STFT features with S'nuso'de}bpresents the sinusoidal parameters of signal accurdtety

features is observed by comparing the VQ-based UPPRLason why PESQ scores are increasing as the SSR evolves

b?“”d performance obtained _by th_e selected featuresiérlhat the mixture information is utilized when reconstiug
Fig. 8. It is observed that sinusoidal features offer e output signals

considerably higher upper-bound compared to the STFT.4y gydying the impact of different filters for signal recon-

- For the STFT features, the proposed MMSE amplitudgction: First, we compare the two mask methods as follows:
estimator results in improved separation performané

e . N . by A
employing the square root Wiener filtets, andG
compared to both the MMSE log-power and the MMS p.oying a ) 2()

X : s defined in (24-25); ii) replacing the phase integrated out
power estimators for SSR 0 decibels. For SSRC0 all  iviyre estimateS, (w) in (I4), to the denominator of the

the MMSE estimators achieve similar performance. Tréequare root Wiener gain function in (24-25). To recover the
same trend is also observed for the sinusoidal featurggyresponding source estimates, each filter is then applied
In particular, when SSR increases, the performance @f the mixed signal. The two filters differ only in terms
the amplitude MMSE estimator approaches the VQ-basgfl heir denominator; To recover the corresponding source
upper-bound performance. ) _ . estimates, each gain function is then applied to the mixed
« The proposed MMSE amplitude estimator in sinusoidigna| The results are summarized in Tablé Ill. The results

a_ch|ev¢s sllghtly better performance compared 10 tiained for both the STFT and sinusoidal features indicate
sinusoidal estimator presented In) [9] and SPWT. that improvement is achieved with square root Wiener gain

From the PESQ results shown in Fig. 5, we conclude that th#gctions (71 (w), G2(w) in (24-25)) compared to masks with

impact of the selected feature is more pronounced than tig@se integrated ous((w) in (14)). This is justified from the

of different mixture estimators. improvement of 0.3 in PESQ for both speakers.

2) Studying the impact of the selected feature independent , .
of the speaker codebooRio assess the separation results fdp- EXPeriment 3: PESQ and STOI evaluation on whole test
different features without considering the effect of moyele  S€t
(VQ) and its selected order, we present the separationtsesul To study the performance of the proposed speech separation
for ideal binary mask (IBM) for different features. The itleasystem, we consider six different setups, covering cases fr
binary mask is defined as the mask produced by keepidlj parameters known to all parameters estimated. These six
all time-frequency cells where the target speaker dominagetups are shown in the legend of Fig. 8 as scenarios 1, 2
the interfering one and removing those where the targetdgd 3 with their corresponding upper-bounds (which we call
masked by the interfering speakéf [2]. The results are showmown codebook indgxParameters that we consider include
in Figure[®. It is concluded that replacing STFT with auditorcodebook index, speaker identity and SSR level. The saenari
transform or sinusoidal, improves the signal quality resulare defined as:
across all SSRs. « Scenario 1: known SID and SSR,
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Fig. 6.  Studying the feature impact independent of the deeidn. Fig. 7. Showing the quantization effect on sinusoidal fesggun an oracle
Showing the separation performance obtained by using idieary mask separation scenario.
for different features.

o Scenario 2: estimated SID and known SSR, by Table[Tl.
« Scenario 3: estimated SID and SSR. Studying different scenarios, the proposed system pegorm

better for different gendercompared to thesame gender

In scenario 1, given the correct SID and SSR level, W& simjlar observation was reported il [7]. This can be ex-
|n_v_est|gate the accuracy of the mlxtgre estimation stage. Aplained by the different time-frequency masking patteme a
ditionally, we also consider degradations caused by eawse yysiological differences in the vocal characteristicamafle
speaker identities and SSR estimation as in scenarios 2,and,}y female speakers. Thus, the underlying sources are less

respectively. _ overlapped compared to other scenarios.
For objective measurement, we use PESQ [44] as it corre-

lates well with subjective listening scores [46] and STICH][4
since it showed higher correlation with speech intellitiipi
compared to other existing objective intelligibility mdse
Figure[8 shows the separation results in terms of PESQ andn the following, we compare the proposed method to
STOI obtained for different scenarios. The results obthinghose proposed iri [7]/[8] for selected clips from test dettas
from mixture and scores calculated for the separated was@mposed of same gender, different gender and same talker
files of [7] are also shown for comparative purposes. scenarios. The separation results are summarized in T&ble |
Figure[8 suggests that the proposed method improves @ each of the measures in this experiment, the significance
quality of the separated signals compared to the mixtutevel for each paired t-testp{value) is shown in the last
According to the masking theorern [47], at low SSR levelsolumn in Table[1V. Thep-values determine whether the
energetic maskingccurs and the separation system successsults obtained by the proposed method are significantly
fully performs in compensating this effect by separating thdifferent than benchmark methods. The following obseovesi
underlying speakers for each frame. At high SSR levelgre made:
informational maskings more dominant and the mixed signal 1) STOI [45]: The proposed method achieves better per-
itself is more intelligible than the separated signals i@ formance compared to the baseline methods.
by separation module. The mixed signal itself achievesdrigh 2) Cross-talk [48]: An ideal separation system would filter
intelligibility score compared to the separated targenalg out any trace of the interfering speaker signal in the mixtur
since the target speaker becomes more dominant. At hige a proof of concept, we use the amount abss-talk
SSR levels, the proposed method asymptotically reaches [#8] remaining in the separated output signal for comparing
best possible performance denoted by VQ-based upper bodifterent separation methods. From the cross-talk scaves,
performance. conclude that the proposed SCSS method often introduces les
The proposed method outperforms the method[in [7] ieross-talk compared td|[7]. Although the differences areé no
terms of PESQ at all SSR levels. It also improves the istatistically significant, we observe that the proposedesys
telligibility of the target speaker significantly at low SSReads to relatively less or comparable amount of crossitalk
levels (lower than -3 dB). However, the speaker-adaptdd fahost of the cases compared to [7] ahd [8], respectively.
system in [[7] achieves slightly higher intelligibility sas. 3) PESQ [40]: The proposed system yields improved re-
By comparing the results of the known (scenario 1) argllts over the method in[[7].
the estimated speaker identities (scenario 2), the reamdts 4) SNRyss [60]: This measure was found appropriate in
generally close to each other. The same conclusion holds aisedicting speech intelligibility in different noisy coitidns,
for theknown and estimated SSR levdlkis confirms that the in the sense of producing a higher correlation for predictin
SID and SSR estimates were relatively accurate as suggesedtence recognition in noisy conditions£ —0.82 higher

E. Experiment 4: Performance evaluation on a subset of test
data
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Fig. 8. (Top) perceptual evaluation of speech quality ss{RESQ), and (Bottom) short-time objective intelligityilimeasure (STOI) scores for target
and masker. According to_[44], for normal subjective testeral the PESQ values lie between 1.0 (bad) and 4.5 (nortd@tp. According to [[45], the
intelligibility score lies between 0 (bad) and 100 (no digtm). All the results are reported on the speech separati@llenge test data provided [n [21]

TABLE IV

THREE SYSTEM COMPARISON WITH DIFFERENT METRICS ON FOUR CLIFFROM GRID CORPUS SYSTEMS ARES1: HERSHEY[8], S2: WEISS[7] AND
S3: RROPOSED AT16KHZ. METRICS ARESTOI [48],CROSSTALK [48], PESQI[44], SIR[[49], SAR[49], SDR[49], SNBss MEASURES[50],
QUALITY SCORES[51]. EACH CLIP IS CHARACTERIZED BY ITS MIXING SSRLEVEL AND THE MIXING SCENARIO: DIFFERENT GENDER(DG), SAME

GENDER(SG)AND SAME TALKER (ST). IN EACH SUB-COLUMN, THE BEST RESULT IS HIGHLIGHTED WITHSHADED BOLD FONT.

Target Masker p-value
Clip 1 (SG -3dB)Clip 2 (DG 0dB)|Clip 3 (ST -60dB)Clip 4 (ST 0dB)[Clip 1 (SG -3dBJClip 2 (DG 0dB)[Clip 3 (ST -6dB)Clip 4 (ST 0dB) S3 Vs]S3 vs.

Criterion S1 S2 S3|S1 S2 S3|S1 S2 S3|S1 S2 S3 Sl S2 S3|S1 S2 S3|S1 s2 S3|S1 S2 S3| S1 | s2

STOI 0.77 0.7C 0.79 |0.80 0.8z 0.83 [0.740.51 0.74 (0.850.48 0.75||0.83 0.8z 0.84 [0.820.70 0.74]0.21 0.4% 0.68 {0.13 0.4< 0.65 |<0.05(<0.05
Cross-talk11.5 13.2 8.0 |10.311.¢ 58 |43 283 59 |44 94 6.3|/10.159 104 (10.310.5 10.3 |13.817.2 11.1 |12.410.1 10.1 |>0.05>0.05
PESQ 24 14 24 (15 17 24 |22 17 22 |28 1.0 25(/14 13 20 |22 13 22 |29 10 29 |24 1.7 24 |>0.05<0.05
SNRoss [0.96 0.9¢ 0.91 |0.99 0.8¢ 0.83 |0.920.98 0.92 10.910.98 0.91({0.93 0.9¢ 0.92 ]0.97 0.9¢ 0.89 [0.960.96 0.96 |0.97 0.9t 0.90 | <0.05/<0.05

SIR 10.820.0 15.0 | 0.1 12.€ 16.5|20 2.7 147 |84 17.C 17.4|/2.4 7.8 153 |11.7 14.¢ 20.6 (13.6 6.9 13.6 | 8.8 -8.7 16.7 |<0.05<0.05

-
%;‘ SAR 79 14 39 |432-13 04|69 14 19 |95 -33 26( 77 -51 -08 |92 -03 18 |120-6.6 56 |83 -6.4 -0.9|<0.05<0.05
@ WIispr 58 01 11 |10 00 02)26 02 02]6.1 01 08}/28 01 02 |80 01 1.0 |87 00 18 |42 0.0 0.3 <0.05<0.05
»n |OPS 53 50 36 |42 19 33 |57 26 41 |53 24 30 ([45 23 36 |66 25 52 |73 18 41 |64 33 34 |<0.05<0.05
2 TPS 82 69 77 (59 79 86 |73 26 75 |80 26 73|76 53 59 |72 50 72 |78 32 75 |75 32 76 |>0.05<0.05
i IPS 19 83 84 |79 77 80 (72 75 82 |75 66 78 ||69 77 81 (65 71 79 |70 71 78 |78 80 76 |<0.05<0.05
& |APS 60 37 36 |90 14 26 |63 16 33 |58 13 20 |61 11 31 |72 14 43 |76 90 36 |63 18 29 |<0.05<0.05

than r = 0.77 for PESQ). From the SNR results we o The proposed method achieves better SAR and SDR

observe that the proposed method consistently outperftivens scores compared to][7] but lower than [8] which achieves
competitive methods. the highest SDR and SAR scores. The signal-to-distortion

5) BSS EVAL metrics_[49]:To enable comparison with
other source separation algorithms, we evaluate the depara
results in terms of the metrics proposed in blind source

(SDR) measure takes into account both interference and
noise level in the excerpts and, consequently, has no pref-
erence over interference signal or noise power; therefore,

separation evaluation toolkit (BSS EVAL) [49]. The follavg the same level of each will degrade the SDR metric by

observations are made:

the same amount.

The proposed method achieves a better signal-to-6) PEASSI[[51]: We report the separation results in terms
interference ratio (SIR) performance compared to botf the state-of-the-art objective metrics callgerceptual eval-
benchmark methods. This improvement in SIR compare@tion methods for audio source separatifEASS) adopted

to [8] is attained at the price of introducing more artifactsor the 2010 signal separation evaluation campaign (SiSEC)
i.e. producing lower signal-to-artifact ratio (SAR). Thig51]]. We use the four quality scores proposed in PEASS tbolki
implies that a separation quality with less cross-talk {&1]]: overall perceptual score (OPS), target-related gyereal
feasible but introduces more artifacts. This is analogousgcore (TPS), interference-related perceptual score (#PH)

the tradeoff between speech distortion minimization arattifacts-related perceptual score (APS). OPS measunas ho
cross-talk suppression provided by the square root Wierdose the separated signal is to the clean signal, TPS nesasur
filter based on sinusoids discussed in SediionlllI-F. Thimw close the target-related part of the enhanced signal is
suggests that the proposed method is often better tatthe clean reference signal, IPS measures the interferenc
rejecting interference when recovering the target speakeancellation in the separated signal, and finally, APS shows
Similar trade-off between SIR and SAR result was inddrow close the enhanced signal is to the clean one in terms of
pendently reported iri_[49]. having no artifacts. We make the following observations:
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o The APS results are in line with SAR results confirmingerformance of the method studied|in [8] and the proposed one
that [8] produces least artifacts. This might be becduse [8] not statistically significant. This result confirms the ST
employs both dynamic speaker models and grammar catore observation. The proposed method at 8 kHz also achieve
straints. Meanwhile, the proposed method attains highewmparable result with [8] and][7].

SAR and APS performance compared[tb [7]. 8) Speech Intelligibility [54]: Following the principle and

» According to TPS results, botti |[8] and the proposestandard described iri_[64], as our second subjective mea-
method achieve higher performance comparedito [7]. Tkarement, we conducted a test to assess speech inteligibil
paired test outcome between the TPS scores |of [8] aofithe separated signals. We chose seven listeners (differe
the proposed method indicates insignificant difference from those that participated in the MUSHRA test) and eight

« The system in[8] achieves the highest OPS scores amaggments to be played for each listener. We asked the listene
the three systems. The proposed system achieves higleeidentify color, letter, and digit spoken during each oé th
performance compared to![7]. played segments. The listeners were required to enter their

« The outcome of paired tests on IPS scores confirmssults using a GUI in MATLABM, which enabled listeners
those obtained on SIR, indicating statistically significarto enter their results both accurately and comfortably. On
difference of the proposed method over others. average, it took 15 minutes per listener to complete the test

7) MUSHRAI[[52]: To assess the perceived quality obtained Figure[I0 shows the results of the intelligibility test av-
by the different separation methods, as our first subjecti¢aged over all excerpts and listeners. We observe that the
measure, we conduct subjective test using the so-called MBIoposed method at 16 kHz achieves higher speech intelligi-
tiple Stimuli with Hidden Reference and Anchor (MUSHRA)ility compared to the methods ini[7] arid [8]. This resultns i
listening test as described i [52]. The MUSHRA test iggreement with our observations on both SiRand STOI.

a double blind test for the subjective assessment of intd1€ mixed signal also has the lowest score while the hidden
mediate quality level benefits obtained by different methodeference signal achieves the highest intelligibility recoas
(via displaying all stimuli at the same time). The MUSHRAEXpected. _ _ _
test enables simultaneous comparison of different séparat 9) ASR ResultsFinally, we also configured an automatic
methods directly. speech recognition system using mean subtraction, vaianc

We conducted the listening experiments in a silent room ugermalization, and ARMA filtering (MVA) [[55], which gave
ing high quality audio device with firewire interface for d- an overall recognition accuracy of 52.3% [56]. Comparing
to-analog conversion and AKG K240 MKII headphones. THe result with those of the systems reported by the other
ease the test procedure, we prepared a graphical useaggerparticipants in the separation challengel[21, Table 1], we
(GUI) in MATLAB ™. Seven untrained listeners participate@bserved that our system ranks on the range of median out
in the test (none of the authors were included). The excer@fsall methods; located belowl[8] 78.4% but above [7] 48.0%.
consisted of the hidden reference (HR) showing the known
quality on the scale; it is used to check the consistency of V. DISCUSSION
the responses of a subject. A high score is expected for HR. o o _
We also include the mixed signal (without any separation) asBOth the objective and subjective results show that fairly
an anchor point to enable comparison of separated signal &fd separation quality and high interference rejectiqraea
mixture qualities. This reflects how hard it was to perceh t Dility were achieved, in comparison to other methods in the
reference signal when listening to the mixture. The renmgjni fi€ld- In particular, the subjective measurements indicat
four excerpts are the separated signals obtainedsuper- the proposed system improves both quality and intelligybil
human speech recognition systeril [8], speaker-adapted Qi the S|gnal and achieves a performance comparable to the
system [[7], and our proposed method configured for bothsy¥stems in[[7] and 8]. Although the performance of proposed
kHz and 16 kHz sampling frequencies. The excerpts wesystem in light of speaker identification and automatic spee
randomly chosen and played for each suBjjethe listeners €cognition is not better than the top-performing systenrs b
were asked to rank eight separated signals relative to akndlylS comparable with other algorithms in speech separation
reference on a scale of 0 to 100. challenge [[211]. Our proposed separation system separates

The MUSHRA test results are reported in terms of th#€ mixture frame-by-frame and is appropriate for low-gela
mean opinion score (MOS) and ®5confidence intervals @Pplications, such as speech coding. _

[53] calculated according to the standard as described inl he Proposed system, like other current separation systems
ITU-R BS.1534-1 [[52]. Figurd]9 shows the mean opinioﬁti” has some limitations. The training samples used tmtra
score (MOS) for comparing the separation results obtainftf Speaker models are noise-free and relatively long aad th
by different methods discussed in this paper. We obserg¥aluation corpus consists of only digitally added mixgure
that the maximum and minimum scores were obtained Aflditionally, the gains of the underlying speakers in the
hidden reference and speech mixture, respectively, astege mixture are assumed to be constant and we have_ a mixture
Furthermore, the proposed method at 16 kHz achieves befEfWO speakers only. We also neglected the environmental

performance compared tG1[7]. The difference between tR& background noise effects, as well as the reverberation
problem. In practice, each one of these issues and theuteffe

2The excerpts used in subjective tests are downloadable ftioen on the overall separation performanpe should be Carefu"y
webpagé:http://www.audis-itn.eu/wiki/lDemopage2 studied. Future work should systematically address hoaethe
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Fig. 9. Results of the MUSHRA listening test for differentpaeation Fig. 10. Speech intelligibility test results. The calcathtpercentage of
methods averaged over all excerpts and listeners. Errar ibdicate 996 correct keywords is averaged over all excerpts and allneste Error bars
confidence intervals. indicate 95% confidence intervals.

simplifying, yet restrictive and impractical pre-assuiops automatic speech recognition performance of the proposed

could be relaxed. As an example, [57] provides a new corpsigstem is left as a future work.

for noise-robust speech processing research where thésgoal

to prepare realistic and natural reverberant environmesitsy VI. CONCLUSION

many simultaneous sound sources. o ) o
The improvement using the proposed MMSE sinusoidal We presentgd a novel joint .speaker. identification and

mixture estimator over our previous sinusoidal mixturéneat SPE€Ch separation system for solving the single-chansetsp

tor can be elaborated as follows. The ML sinusoidal mixtugéParation problem. For the separation part, we proposed

estimator presented ifil[9] ignores the cross-term compsnefi double-talk/single-talk detector followed by a minimum

between the underlying speakers’ spectra at each frame TN square error mixture estimator for mixture magnitude

well as their phase differences. In some situations, ther-intSPECrUm operating in the sinusoidal domain. Importantly,

ference sinusoidal components, play a critical role and cHif Proposed method does not require pitch estimates and

change the position of spectral peaks completely. The megho 'S Pased on sinusoidal parameters. We relaxedatfpiori

sinusoidal MMSE estimator presented in this work, in turinowledge of speaker identities and the underlying signal-

considers the cross terms and integrates out the phase diffg-Signal ratio (SSR) levels in the mixture by proposing a

ence based on uniformity assumption of the speech phase. Hinvel speaker identification and SSR estimation method. The

explains why the MMSE sinusoidal mixture estimator achsev®'0P0Sed system was evaluated on the test dataset provided i
improved MSE compared to the sinusoidal mixture estimat§teSPeech separation challengéompared to previous studies

of [9]. Finally, similar to other sinusoidal modeling syste that mostly report speech recognition accuracies, adilig

like [31], the proposed method introduces some buzziness Y& focused on reporting the signal quality performance ob-
unvoiced segments. As a future work and room for improvirgin€d by different separation methods. From the experiaten

the performance, it is possible to consider more compl&&SUlts of various objective and subjective measuremevs, -
modeling for speech and jointly estimating voicing stated a conclude that the proposed method improves the signaltguali

sinusoidal model parameters of the underlying signals. and the intelligibility of the separated signals compar_e(_j t
The presented system showed high perceived quality dhg mixture and the tested state-of-the-art methods, while _

intelligibility of the separated signals. The results abea 90€S NOt meet the performance of state-of-the-art systems i

in the speech intelligibility test can be interpreted as tHgrms of speaker identification and automatic speech recog-

human speech recognition results obtained from the segardiition accuracy. In many cases, the method offered separate
signals. There are two possible reasons why the ASR res(it@nals with less cross-talk via a high interference rgect
are in disagreement with our signal quality scores. Firstlg c_apab|I|ty. Considering different objective and subjestinet-
word error rate metric of ASR does not correlate with thod&S: evaluated on three systems outputs, we conclude that
used for assessing the signal quality. Secondly, evalyatie N° Single system can produce an output satisfying all the
separation performance using ASR systems depends on §l@gluation metrics. By comparing the subjective resultswi
speech recognizer configuration, features, training ofisip (H0S€ obtained by objective metrics and performing stedist

and language models. It is not trivial to configure an ASFE/gnificance analysis, we conclude that the ranking of the
system optimized for STFT-like features, to work well or$yStems changes according to the chosen objective melc. T

sinusoidally coded speech. Therefore, improvement of tHEference between our objective and subjective residigals
a mismatch between the performance evaluation in the back
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end and the parameter estimation stage in the separatipa sta4]

S. Roweis, “Factorial models and refiltering for spesefparation and

when the separation system is used as a pre-processor for_adenoising,” inEUROSPEECH2003, pp. 1009-1012.

target application, e.g., automatic speech recognition. [15]
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