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Abstract—In this work, we present a joint source-filter op-
timization approach for separating voiced speech into vocal
tract (VT) and voice source components. The presented method
is pitch-synchronous and thereby exhibits a high robustness
against vocal jitter, shimmer and other glottal variations while
covering various voice qualities. The voice source is modeled
using the Liljencrants-Fant (LF) model, which is integrated into
a time-varying auto-regressive speech production model with
exogenous input (ARX). The non-convex optimization problem
of finding the optimal model parameters is addressed by a
heuristic, evolutionary optimization method called differential
evolution. The optimization method is first validated in a series
of experiments with synthetic speech. Estimated glottal source
and VT parameters are the criteria used for comparison with
the iterative adaptive inverse filter (IAIF) method and the linear
prediction (LP) method under varying conditions such as jitter,
fundamental frequency (f0) as well as environmental and glottal
noise. The results show that the proposed method largely reduces
the bias and standard deviation of estimated VT coefficients
and glottal source parameters. Furthermore, the performance
of the source-filter separation is evaluated in experiments using
speech generated with a physical model of speech production. The
proposed method reliably estimates glottal flow waveforms and
lower formant frequencies. Results obtained for higher formant
frequencies indicate that research on more accurate voice source
models and their interaction with the VT is necessary to improve
the source-filter separation. The proposed optimization approach
promises to be a useful tool for future research addressing this
topic.

Index Terms—Global optimization, differential evolution, joint
source-filter optimization, glottal inverse filtering, time-varying
vocal tract estimation.

I. INTRODUCTION

Decomposition of speech into voice source and articulation
components is potentially useful in areas such as speech cod-
ing and analysis [1], parametric speech synthesis [2], remote
and/or non-invasive voice disorder diagnosis [3], restoration
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of pathological voices [4] or as front-end processing for
classification tasks such as speaker verification [5].

In conventional speech analysis schemes, voiced speech
is analyzed on a frame-by-frame basis. The speech output
is represented by a linear source-filter model as periodic
glottal volume velocity waveforms1 and their respective vocal
tract (VT) resonances, followed by a lip radiation filter [6].
The spectral tilt of the glottal source Gpjωq is typically
approximated using a second order low-pass filter having a
spectral slope of ´12 dB per octave [6]. The lip radiation
Lpjωq is typically represented by a single-order differentiator
with a spectral slope of `6 dB per octave. The filter Apjωq
models the resonances in the vocal tract, known as formants.
During speech production, the filter is continuously modified
by the speaker to shape the speech signal into a blended stream
of speech sounds. However, Apjωq is assumed to vary slowly
enough to be considered time-invariant for the duration of
an analysis frame, which is typically 20 to 30 milliseconds.
Speech may then be represented by

Spjωq “ Gpjωq ¨Apjωq ¨ Lpjωq. (1)

Because of their time-invariance, Gpjωq and Lpjωq may be
represented jointly by a single order filter with a net slope
of ´6 dB per octave. In many analysis methods, their joint
effect is then cancelled by a single order pre-emphasis (PE)
filter (`6 dB per octave). The PE filter effectively captures
the time-average of the spectral contributions of the glottal
source and the lip radiation.

Using this simple model of speech, the estimation of the
glottal signal may be achieved in a straight-forward manner
using glottal inverse filtering [7]. This involves filtering of the
speech signal with the inverse of an estimate of Apjωq. The
standard tool for obtaining this estimate is linear prediction,
which assumes that the vocal tract can be represented by an
all-pole filter and also that the input to the vocal tract filter
after PE is spectrally white [8].

While for most vowels Apjωq varies sufficiently slowly
to be considered time-invariant during an analysis frame,
this is often not the case for the glottal source Gpjωq.
According to the myoelastic-aerodynamic theory of voice
production, the voice source is mainly affected by the
sub-glottal air pressure, the tension of the vocal folds and
the physiological configuration of the speech production
organs [9]. Various combinations of these variables produce
diverse glottal waveforms that are perceived as different

1Shorter, common names for glottal volume velocity waveform are glottal
excitation, glottal source or glottal cycle.
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voice qualities (breathy, modal, pressed, etc.). For instance,
variations in the period and waveform of subsequent glottal
cycles are important acoustical cues often carrying prosodic
and idiosyncratic information. Some voice types, in particular
pathological voices — those produced by speakers with
impaired, partially or even completely excised vocal folds as
a result of laryngeal surgery — often exhibit considerable
undesired inter-glottal-cycle variations. These observations
imply that the glottal transfer function Gpjωq is indeed
different from the residual of the conventional LP model
described above and that the linear source-filter model is a
simplification in several aspects.

Firstly, the glottal source is quasi-periodic in the time
domain. This is reflected in the spectral domain by a
sampling at multiples of the fundamental frequency, f0.
Here, f0 “ 1{T0 is the rate of the vocal fold vibration, i.e.
the reciprocal of the fundamental period, T0. The formant
frequencies estimated using LP tend to be biased towards the
spectral peaks of nearby voice source harmonics. Thus, the
vocal tract estimator is dependent on the harmonic structure
of the glottal source, as can be observed in Fig. 1. This
known problem of LP has motivated the development of
pitch-synchronous LP (PSLP) methods [10].

Secondly, the spectral envelope of the actually observed
voice source deviates largely in some voice types from
the non-adaptive PE filter. This deviation may have several
causes. Different voice types exhibit various degrees of
spectral tilt. Also, during the glottal open phase, there exists
a non-linear feedback between the pressure in the vocal tract
and the glottal volume velocity waveform. As a result, the
glottal source waveform is modulated by the supraglottal
pressure and it exhibits ripples and a glottal formant that
is not accounted for by the myoelastic-aerodynamic theory
of voice production [9], [11]. Hence, if the glottal source
deviates considerably from the average represented by the
pre-emphasis filter, a bias is introduced into the estimated LP
coefficients. To address these problems, several methods were
proposed in the past. A representative example is the iterative
adaptive inverse filtering method [12], which iteratively
estimates the coefficients of two filters representing glottal
source and the VT.

Thirdly, the time-invariance of the PE filter inherently
poses a problem for glottal sources with high variability of
waveform shape between consecutive glottal cycles. Typical
LP analysis frames comprise several glottal cycles and
the variation in the glottal waveform shapes is averaged
throughout this duration. A longer analysis frame duration
would help to reduce these variations but would also impose a
reduced temporal resolution of the time-varying VT envelope.
An alternative approach for reducing the glottal source
variability is to restrict the LP analysis window to the zero-
input closed phase (CP) of the glottal cycle, as for example
in the closed-phase covariance linear prediction (CPLP)
method [13]. However, the performance of this method
depends on the duration of the closed phase. Although the
covariance method of linear prediction usually outperforms
the autocorrelation method for short segments, the former is
not guaranteed to yield a stable VT filter, i.e. that all its poles

Fig. 1. Section of a spectrogram of a synthetically generated vowel
transition generated using the method described in Section IV, overlaid with
the true formant center frequencies (solid black lines) used for synthesis and
their estimates using conventional linear prediction (solid white lines). The
estimates, in particular the one of the third formant, are biased towards a lower
frequency, and also exhibit a considerable variance in subsequent frames due
to the underlying harmonic signal structure.

are of magnitude less than unity [14].
Therefore, a more complete source-filter separation may be

achieved by a joint source-filter optimization (SFO) process,
where more descriptive models of the glottal source are
used to capture the glottal contribution. A variety of glottal
source models has been proposed in the past. Examples are
Rosenberg’s model [15], which simply models the opening
phase of the glottis, Klatt and Klatt’s model [16] and the more
complex, multi-parametric Liljencrants-Fant (LF) model [17]
or different variations of these. Most glottal source models
provide a parametric description of the time-domain waveform
of the glottal source. They differ mainly in their complexity,
i.e. the number of free model parameters which determine
their coverage of the space of real voice source waveforms.

For the estimation of glottal models, several joint SFO
methods have been proposed in the past. Lu [18] presented
a convex optimization approach for optimizing a single
parameter variant of the LF model for singing voice synthesis.
In [19], Fu et al. presented a method comprising a two stage
optimization, where the initial parameters for a second
stage using a more complex glottal model were found in a
primer convex optimization using a simplified glottal model.
Jinachitra [20] presented an iterative joint estimation approach
of the glottal source and vocal tract parameters using Kalman
filtering and expectation-maximization algorithm. Recently,
in [21], the LF model was optimized using a combinatorial
search over the entire parameter space consisting of both
the glottal parameters and the VT parameters. Degottex et
al. [22] presented a novel method that minimizes the error in
the phase spectrum using a single parameter voice model.

In general, it has proven difficult to estimate a non-trivial
voice source model with efficient optimization procedures.
Known SFO approaches typically represent a compromise
between the complexity of the voice model and the efficiency
of the optimization method employed. Voice models with
fewer parameters are easier to optimize, but fail to accurately
describe voice types observed in real speech. On the other
hand, using multi-parameter voice source models usually
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prohibits the usage of classical gradient-based optimization
methods due to the non-convex nature of the error surface.
Instead, computationally demanding methods such as
exhaustive combinatorial search of the parameter space were
used [21].

In this work, we propose a novel joint SFO approach,
in which the voice source is modeled using the multi-
parametric LF model. The proposed method is based on a
pitch-synchronous analysis-by-synthesis approach, whereby
a time-varying ARX model is used to generate candidate
solutions. A global, population-based, stochastic direct search
method called differential evolution (DE) is used to optimize
the voice source and the VT filter parameters [23], [24]. DE
has been shown to have a computational and performance
advantage in many applications scenarios [25] over similar
evolutionary computation methods such as particle swarm
optimization (PSO) [26]. DE has also been shown to be a
robust tool in the presence of parameter dependencies and
non-convex error surfaces, which makes it well-suited for
the optimization of multi-parametric models such as the
LF model. An objective function is constructed such that
reduction of the effect of inter-glottal-cycle resonances will
effectively increase the duration of the analysis window.
The efficiency of the DE method allowed us to carry out
extensive experiments on different speech signals. The
proposed optimization method converges reliably under a
variety of conditions such as environmental and glottal noise,
varying fundamental frequency, jitter and vowel transitions.
Finally, the method is employed in a source-filter separation
experiment on signals generated using a physical model of
speech.

II. SPEECH PRODUCTION MODEL AND JOINT
OPTIMIZATION

A. Speech Production Model

The estimates of the speech model are updated pitch-
synchronously so as to capture the inter-glottal-cycle variations
of the glottal source. Eq. (1) is therefore modified. The speech
signal originating from a particular glottal cycle k is modeled
as

Skpjωq “ e´jωtkGkpjωq ¨Akpjωq ¨ Lkpjωq, (2)

where the temporal location of the glottal cycle is determined
by the linear phase component ejωtk with a delay of tk in
seconds.

Crucially, Gkpjωq is mixed-phase with several zeros having
a magnitude greater than unity. This implies that no stable
inverse representation of Gkpjωq exists and a direct deconvo-
lution for obtaining the vocal tract transfer function Akpjωq
from Skpjωq is impossible. Therefore, the glottal source model
and vocal tract coefficients are jointly estimated using a global
optimization technique in an analysis-by-synthesis framework.

As such, this model of speech production is still a simplified
representation of real speech. First, errors in the model of the
glottal source may potentially influence the estimator. Further-
more, the anti-formants of nasal sounds that are represented
by zeros in the vocal tract transfer function are currently
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Fig. 2. Example of a glottal volume velocity waveform Vgptq (top) and its
time-derivative vgptq :“ BVgptq{Bt (bottom), as generated by the LF model
in Eq. (3).

not included in the modeling process. These issues may be
addressed in the future by extending respectively the voice
and vocal tract models.

B. The Liljencrants-Fant Voice Source Model

The glottal excitation can be considered as a mixture of
deterministic and non-deterministic components. The latter
category comprises those voice source components that are
not modeled deterministically, e.g. aspiration noise, formant
ripples and other phenomena due to the non-linear coupling
between vocal tract pressure and glottal volume velocity.
Hereafter, we refer to the non-deterministic components as
glottal noise.

The deterministic component originates from the periodic
lateral and medial motion of the vocal folds that opens and
closes the glottis. During the opening (to to tp) and closing
(tp to ta) phases of a glottal cycle, the transglottal pressure
drives an air flow Vgptq through the glottis resulting in a
volume velocity waveform (see top panel of Fig. 2). Due
to the vibratory dynamics of the vocal folds and the inertive
properties of the lower vocal tract, the glottal volume velocity
waveform typically exhibits an asymmetry in time such that
the closing phase is shorter than the opening phase [27], [28].

In this study, the voice source was modeled by the
Liljencrants-Fant (LF) model [17]. This model was chosen
due to its ability to represent a wide range of natural voice
variations [29]. The LF model is a piecewise-defined func-
tion serving as a parameterized representation of the time-
derivative of the glottal flow waveform described above (see
also bottom panel of Fig. 2). Its two segments are joined
at the instant of the minimum of the glottal flow derivative,
t “ te, which is the moment of the greatest excitation. The
first segment comprises the opening phase and parts of the
closing phase. It is presented as the product of a growing
exponential and a low frequency sinusoid. The remaining
part of the closing phase of the glottis from te until tc is
modeled by a decaying exponential. The time parameters to,
tp, te and tc correspond to the instants of glottal opening,
maximum glottal flow, minimum glottal flow derivative and
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glottal closure, respectively. Parameter ta is the effective return
phase and is proportional to the exponential decay of the
closing phase. The amplitude of the minimum glottal flow
derivative is represented by Ee. The parameters tEe, to, tp, te,
ta, tcu can easily be identified from the glottal waveform.

For synthesis purposes it is assumed that the instantaneous
fundamental frequency of the glottal cycle k is given by f0 and
the sampling rate is fs. The number of samples representing
glottal cycle k is defined by Ng “ rfs{f0s. Further, it is
assumed that the glottal source signal contains no energy above
the Nyquist frequency fN “ fs{2. The timing parameters of the
LF model are expressed in multiples of samples, Np “ tp ¨ fs,
Ne “ te ¨ fs, Na “ ta ¨ fs and Nc “ tc ¨ fs. The shape of a
single glottal cycle (see bottom panel of Fig. 2) is described
by the synthesis equations, with reference to No “ to ¨fs “ 0:

vgpnq “

$

’

’

’

’

&

’

’

’

’

%

E0e
αn sinpωgnq, No “ 0 ď n ď Ne

´ Ee
εNa

”

e´εpn´Neq

´e´εpNe´Ncq

ı

, Ne ď n ď Nc

0, Nc ď n ď Ng ´ 1.

(3)

The following relations and constraints apply:
şT0

0
vgpnqdt “ 0

ωg “ π
Np

εNa “ 1´ e´εpNc´Neq

E0 “ ´ Ee
eαNe sinpωgNeq

.

(4)

The condition defined on the first line of Eq. (4) ensures
that the glottal flow waveform returns to zero after each
glottal cycle and is typically enforced by iteratively optimizing
the damping parameter α of the exponential segment in
Eq. (4) [30].

C. Formulation of the Proposed Joint Source-Filter Model

In the proposed method, speech production as introduced
in Eq. (2), is modeled by a linear, time-varying, auto-
regressive (AR) model with exogenous input (ARX) [31]. The
glottal source of a particular glottal cycle k starting at tok is
provided by

vgkpnq “ vgpnq˙ sincpn´ tokq, (5)

where sinc represents the cardinal sine function sincp¨q “
sinpπ¨q{pπ¨q and ˙ stands for convolution. Note that using
the cardinal sine function, rather than the conventionally used
impulse train excitation [11], allows vgkpnq to be translated
continuously and independent of the discrete sampling grid.
The resulting speech of cycle k is then represented by the
difference equation

ŝ
k
pnq “ ´

p
ÿ

i“1

a
i,k
ŝ
k
pn´ iq ` vgkpnq. (6)

The parameter n is the discrete-time index defined in the range
0 ď n ď Ng and p refers to the order of the VT filter. The
coefficients a

i,k
of the ARX model are chosen to be real,

therefore its poles always appear in complex conjugate pairs.
Thus, p also corresponds to twice the number of formants

and should generally be chosen to be even. Eq. (6) may be
expressed with vector notation as

ŝ
k
pnq “ ´aJ

k
ŝ´
k
pnq ` vgkpnq (7)

with
a
k
“
“

a
1,k

a
2,k

. . . a
p,k

‰J

and

ŝ´
k
pnq “

“

ŝ
k
pn´1q ŝ

k
pn´2q . . . ŝ

k
pn´pq

‰J
.

The error, or residual, between the observed speech s
k
pnq and

the modeled speech ŝ
k
pnq is defined as

e
k
pnq “ s

k
pnq ´ ŝ

k
pnq. (8)

For convenience, the VT parameters are provided as formant
frequencies fF “ rfF1

. . . fFp{2s and formant bandwidths
bF “ rbF1 . . . bFp{2s. For synthesis, they are transformed
into the VT filter coefficients a

k
by expanding the pairs of

conjugate roots rrF, r˚Fs into a polynomial using the following
relationships [32]:

=prFmq “ ˘2πfFm{fs ; 1 ď m ď p{2 (9)

and
|rFm | “ e´πbFm {fs ; 1 ď m ď p{2. (10)

By defining the parameter vector θ
k
“ rEe tp te tc ta fF bFs,

the optimization problem can now be formulated as

min
θk

Jpθ
k
q “ min

θk

´

řNg
n“0 e

2
k
pnq

¯

“ min
θk

´

řNg
n“0

`

s
k
pnq ` aJ

k
ŝ
k
pnq ´ vgkpnq

˘2
¯

,

(11)

subject both to inequality constraints on the order of the
temporal LF parameters,

0 ă tp ă te ă tc ă T0, (12)

and to bound constraints on the temporal LF parameters,
formant frequencies fF and formant bandwidths bF as listed
in Table I and Table II.

The parameters of the LF model in Eq. (3) are not mutually
independent [33]. Different combinations of parameters may
describe very similar glottal source waveforms. As a result, the
error surface defined by Eq. (3) and Eq. (11) is generally non-
convex and may exhibit several local minima. Eq. (3) cannot
be differentiated with respect to all of the real-valued LF model
parameters. Hence, classical iterative gradient-based optimiza-
tion methods cannot be applied. Instead, we chose a global
optimization technique called differential evolution (DE) [34]
as a computational tool to solve this optimization problem.

III. METHODS

A. Differential Evolution

DE is a generic, population-based meta-heuristic optimi-
zation method belonging to the family of evolutionary algo-
rithms (EA). It was first introduced in [23] and quickly gained
large popularity in many engineering applications [24]. EAs
iteratively explore the parameter space by using a population
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TABLE I
LOWER AND UPPER BOUNDARY CONSTRAINTS OF THE CENTER

FREQUENCIES (FREQ) AND BANDWIDTHS (BW) OF FORMANTS F1 TO F3
IN HZ.

Boundary F1 F2 F3

Freqlow 450 1200 2500
Frequp 860 2400 3100
BWlow 30 30 50
BWup 70 80 200

TABLE II
BOUNDARY CONSTRAINTS OF THE LF PARAMETERS.

Boundary to tp te ta

lower 0.0 0.0 0.0 0.15
upper 10.0 60.0 90.0 10.0

of candidate solutions called parameter vectors or agents. Each
agent is a concrete instantiation of a complete parameter set.
A cost function J provides a criterion to determine the fitness
of each agent. First, an initial generation of agents acting as
parental population is populated with random values. In the
case of DE, the next generation of agents is prepared using
vector differences of randomly chosen agents from the previ-
ous generation. In particular, a randomly chosen base vector
is mutated with a scaled population-derived difference vector
constructed from two other agents, also randomly chosen from
the previous generation. Furthermore, a trial agent is formed
from the new mutation agent and the respective previous
generation’s agent. A crossover probability CR determines
the ratio of parameters being used from either vector. A
random number (jrand in Alg. 1) ensures that at least one
parameter from the mutation agent is utilized. If a parameter
is outside the boundary constraints, it is reflected back from
the bound by the amount of the violation [34]. The next
parental generation is formed by member-wise comparison of
the fitness function values of the current parental generation
with the new generation. The new offspring is either discarded
or it replaces the previous generation’s agent. Eventually, a
termination criterion is used to stop the optimization. This can
be, for example, a previously specified cost function value or
a maximum number of generations reached.

DE stands out from other EA algorithms in several aspects.
DE is rather simple and straightforward to implement, yet its
performance has been shown to be largely better than the also
popular particle swarm optimization (PSO) and its variants
over a wide variety of problems [25]. Another interesting as-
pect of DE is contour matching, which refers to the automatic
adaptation of the difference vector population to the error
function surface [34]. The mutation step size and its orientation
are automatically adapted to the objective function landscape.
Promising regions of the fitness landscape are investigated
automatically once they are detected and a predetermined
probability distribution for mutation, often introducing a bias,
is not required. Price et al. [34] also highlighted that con-
tour matching induces another important ingredient besides
selection. It promotes basin-to-basin transfers, where search
points may move from one basin of attraction, i.e., a local

Algorithm 1 Differential evolution
Step 1: Set control parameters crossover rate CR, difference
scale factor F, population size NP and max. number of
iterations, I max.
Step 2: Initialize the agents Xi,m of the population number
i “ 0 with random values and subject to the constraints,
where m “ r1, 2, . . . ,NPs, Xi,m “ rx1,i,m, . . . , xD,i,ms
and D is the dimension of the parameter vector.
Step 3:
while i ď I max do

for m “ 1 to NP do
Step 3.1: Mutation step

Create a donor vector Vi,m “ rv1,i,m, . . . , vD,i,ms:
Vi,m “ Xi,rm1

` F ¨ pXi,rm2
´Xi,rm3

q

using disjoint random indices rm1 , rm2 and rm3 ,
each different from m

Step 3.2: Crossover step
Create a trial vector Ui,m “ ru1,i,m, . . . , uD,i,ms:

uj,i,m “

#

vj,i,m, if rand[0,1] ď CR or j “ jrand

xj,i,m, otherwise,

where jrand “ rrand[0,D]s.
Step 3.3: Selection step

Evaluate performance and select next generation
member Xi`1,m:

Xi`1,m “

#

Ui,m, if JpUi,mq ď JpXi,mq

Xi,m, otherwise.

end for
Step 3.4: Increase the generation count i “ i` 1

end while

minimum, to another one. This considerably reduces both
the necessity to initialize the population with approximately
correct solutions and the probability of premature convergence
to a local minimum.

Another interesting aspect of DE with respect to the problem
of source-filter separation is its performance in the presence
of dependent parameters. Vincent [33] has shown that the
parameters of the LF model are not entirely independent and
several solutions describing similar voice source waveforms
may exist. As already pointed out in Section II-C, the resulting
error surface is not convex, but may exhibit local minima.
This was one of the reasons why in the previous studies,
simple, single-parameter voice source models were used for
the joint SFO. In [34] and [35], it was demonstrated that
choosing a high crossover rate CR in the range (0.9,1) for DE
is a successful strategy for tackling the problem of parameter
dependency. A large CR value ensures that the parameter space
is propagated not only in parallel to the parameter axes. This
reduces the likelihood to get trapped in local minima.

In summary, DE has only a few control parameters, namely
the crossover rate CR, the difference weight F and the pop-
ulation size NP, which makes its application straightforward
and easy. Furthermore, its algorithmic nature qualifies DE to
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Fig. 3. Synthetic modal glottal excitations (upper graph) and their respective
(middle graph) and joint (bottom graph) vocal tract resonances of a vowel
/a:/. The decaying VT resonances of the first glottal excitation (black solid
line), depicted in the middle graph, clearly overlap with the subsequent glottal
excitation, resulting in the commonly observed speech waveform shown in the
bottom graph. The abbreviations goik and gcik refer to the kth glottal opening
and glottal closing instances respectively.

benefit well from the current massive trend in hardware de-
velopment towards parallel computing environments [36]. The
values used for the joint SFO in this paper were determined
by empirical observations and set to CR “ 0.9, F “ 0.3 and
NP “ 120. The termination criterion used was a maximum
number of iterations of I max “ 600. A summary of the glottal
cycle optimization procedure is given in Algorithm 1.

B. Pitch-Synchronous Optimization

The aim is to use an analysis-by-synthesis approach to find
the set of model parameters θ˚

k
that minimizes (11) for a

particular glottal cycle k. The approximate solution found for
the previous glottal cycle, (θ˚

k´1
), is used to reduce the effect

of overlapping resonances.
The speech signal is first segmented into analysis frames,

s
k
pnq, the length of which correspond to the period between

successive glottal opening instants (to in Fig. 2). It is assumed
that the fundamental frequency and the location of each glottal
cycle is known a priori. Numerous methods exist that may
assist in finding these values (e.g. [37], [38]).

For the first iteration i “ 0, an initial population of M
candidate solutions θm

k,i“0
with m “ r1 .. M s is populated with

random values. The temporal LF model parameters in θm
k,i“0

adhere to the inequality constraints defined in Eq. (12). The
boundary constraints for the parameters are listed in Table I
and Table II. The values for the formant frequencies were
derived from [30] and the values for the formant bandwidths
were taken from [39].

Each iteration starts by calculating the cost of all population
members m. Therefore, the parameter set θm

k,i
is used to

synthesize ŝm
k
pnq as defined in Eq. (6). Note that the vocal

tract, represented by the first term on the right hand side of
Eq. (6), is an auto-regressive structure. Vector a

k
represents

the coefficients of a recursive all-pole filter using its past
output as its input. Depending on the bandwidths of the
formants, the decay times of this filter are often found to

be considerably longer than the fundamental period of the
voice. This results in an overlapping of the resonances across
subsequent glottal cycles, as illustrated in Fig. 3. A method
is therefore devised that helps to decrease the influence of
the resonances of previous cycles. First ŝ˚

k´1
pn` lq is defined

to be the synthetic speech generated by approximate solution
θ˚
k´1

found for glottal cycle k ´ 1. Here, l corresponds to the
number of samples between the beginnings of cycles k ´ 1
and k. ŝ˚

k´1
pn ` lq is then subtracted from s

k
pnq before the

optimization of glottal cycle k starts. Eq. (11) thus is rewritten
as

min
θk

Jpθ
k
q “ min

θk

´

řNg
n“0 pe

1pnqq
2
¯

“ min
θk

`
řNg
n“0

`

s
k
pnq ´ ŝ˚

k´1
pn` lq

`aJ
k
ŝ´
k
pnq ´ vgkpnq

˘2˘
,

(13)

where e1pnq stands for the modified residual shown in (13).
Subsequently, the DE algorithm heuristics and iterations

are applied until a fixed number of iterations is reached (see
Section III-A). Fig. 4 provides an example of the optimization
process.

IV. EXPERIMENTS

A proper evaluation of source-filter separation methods is
a difficult task due to the uncertainty regarding the correct
glottal source and VT. In fact, there exists no method that al-
lows measuring the glottal excitation directly from the human
larynx while preserving natural voice production. Therefore,
often synthetic speech is used in the evaluation of the perfor-
mance of estimation methods. This approach may be consid-
ered problematic though, if both the synthesized samples and
the evaluated method are based on the same hypothesis re-
garding the mechanisms of human speech production. Hence,
while such synthetic vowels may be used for the validation of
methodology, they are in principle insufficient for assessing the
accuracy of a method that uses the same source-filter model
as the one used for generating the experimental data. As an
alternative to such synthetic vowels, physical models of voice
production for the generation of synthetic speech samples were
used in [40]. For the experiments presented in this work we
chose such a model, which is described in Section II-B.

Following the above discussion, the proposed optimization
method is first validated in a series of experiments using
synthetic speech samples (Section IV-A). These experiments
aim at investigating the behavior of the proposed method un-
der varying environmental noise, fundamental frequency and
glottal jitter. In another experiment, the effect of mismodeling
the glottal source is investigated (Section IV-B). Eventually,
the performance of the proposed joint SFO is evaluated using
speech signals generated by the above mentioned physical
model of speech.

The proposed method is compared to two other widely used
methods for inverse filtering.

1) Iterative adaptive inverse filtering (IAIF): IAIF was first
introduced by Alku in [12] and has since found many
applications, for example in speech synthesis [2]. IAIF
uses an autoregressive error minimization method such
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Fig. 4. Optimization of a glottal cycle of synthetic speech generated by Eq. (16), embedded in additive environmental noise of 15 dB SNR level. The
thick, grey line in the right, top panel represents the original speech signal. The thin black line is the signal generated with the parameter set found by
the optimization, θ˚

k
. One may observe the resonances of the previous glottal cycle during the first 50 samples, which are canceled in the optimization

cost function (see Section III-B, Eq. (3)). The top left panel illustrates the respective minimum cost found in each iteration. The remaining panels display
scatterplots illustrating the evolution of the parameter set throughout the optimization process. The dots represent a subset of the NP population members as
they converge towards the ground truth values (solid lines). F1-F3 are the formant frequencies corresponding to parameters fF and |r1| to |r3| are the pole
radii determined by the bandwidth parameters b1 to b3 (see Eq. (10)). The temporal parameters are given in per cent of the glottal cycle duration.

as discrete all-pole model (DAP) [40] or LP to obtain
estimates of AR models of the voice source and the VT.
First, the voice source is estimated from a windowed
signal segment spanning several glottal cycles using a
low-order (order 1) all-pole model. After canceling the
estimated effect of the source, a preliminary, higher
order (order p) estimate of the vocal tract is obtained.
In a second iteration, a refined estimate of each model
is obtained by repetition of the first steps. The voice
source model is refined by using a higher order (order g)
AR model for its representation and by estimating it
after cancellation of the preliminary estimate of the VT
resonances from the first iteration. Again, the effect of
the voice source is canceled before estimating a refined
version of the VT model. In this paper, the choice
of parameters was based on the values used in [40].
In particular, we used the DAP estimation method, a
window length of 200ms, g “ 2 and p “ 10. The
windowed segments are positioned centric with respect
to a glottal cycle and shifted pitch-synchronously.

2) Linear prediction: Linear prediction is probably the most
widely used method for the estimation of vocal tract
coefficients [11]. In this paper, a pre-emphasis (b1 “

´0.98) filter is applied. The LP window length is chosen
to be 51.2ms and the LP model order is p “ 10. As with
the IAIF method, the windowed segments are positioned
in time so as to be centered on a glottal cycle and shifted
pitch-synchronously.

In the following, all signals are sampled at 10 kHz.

A. Methodology Validation using Synthetic Speech
A glottal source signal is controlled by the glottal opening

instant tok , the LF model parameters contained in θ
k

defined in
Section II-C and a glottal noise wσgpnq with standard deviation
σg added to the glottal source gpnq:

gpnq “
K
ÿ

k“0

vgkpnq ` w
σgpnq. (14)

A glottal cycle vgkpnq is generated using Eq. (5). The
aspiration noise wσgpnq is produced by a high-pass fil-
tered (fc“2 kHz) white Gaussian noise that was pitch-
synchronously amplitude modulated in order to create a per-
ceptionally coherent aspiration noise, as proposed in [41]. A
clean speech signal scpnq is then generated using

scpnq “ ´
p
ÿ

i“1

aipnqscpn´ iq ` gpnq. (15)
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Fig. 5. Absolute value of bias (top) and variance (bottom) of the estimation
errors regarding the formant frequencies (left) and the formant radii (right)
as measured over a range of environmental noise levels (I), fundamental
frequency (II) and jitter (III). The method based on LP (gray solid line)
is most affected by noise, whereas the bias and variance of the proposed
method (black solid line) outperforms the IAIF method (black dash-dot line).

Eventually, environmental noise wσepnq is added to scpnq in
order to emulate a real world speech recording environment.
The final synthetic speech signal is then represented by

spnq “ scpnq ` w
σepnq. (16)

The noise wσepnq has standard deviation σe and was chosen
to be a white Gaussian noise for mathematical convenience.
The energy of either Gaussian noise source was chosen so as
to obtain a particular signal-to-noise ratio (SNRg and SNRe).
The VT coefficients a

i
pnq are obtained by expanding the

polynomial roots determined by the formant frequencies fF
and formant bandwidths bF, contained in θ

k
, and interpolation

to generate a set of coefficients at each sample, n.
Using the synthesized speech as described above, the

accuracy of the proposed method is first assessed with respect
to variations in (a) environmental noise wσe , the (b) fun-
damental frequency and (c) glottal jitter. While focusing on
the effect of varying one particular variable, the respective
other variables were fixed to the following default values:
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Fig. 6. Relative error of the estimated LF model parameters tp and te
with respect to the instantaneous glottal period. The estimates of the IAIF
method are displayed using a dashed line, estimates of the proposed method
are displayed in a solid lines. The black color represents the error in tp,
whereas the gray color refers to the error in te.

f0 “ 108Hz, SNRg “ 80 dB, SNRe “ 80 dB and jitter
“ 0.3% of the fundamental period T0 “ 1{f0. This jitter value
was reported to be commonly found in normal phonation [42].
As test material, six samples of 2 s in duration were generated.
These samples cover the range of the combinations of three
vowel configurations (see Table III) and two voice types (see
Table IV). For an example of a vowel transition, see Fig. 1.
The LF parameters used for generating the glottal source are
specified in per cent of the duration of the glottal cycles
as listed in Table IV. In addition, the LF parameters obey
a normal distribution with standard deviation of 2% around
these nominal values, varying from glottal cycle to glottal
cycle, as described in [30]. The results for each experiment
and each test configuration were averaged from 100 glottal
cycles.

For an objective comparison, two types of errors related
to the VT and to the glottal source are reported. First, the
error on each formant frequency and formant radius relative
to the ground truth is computed and averaged over all voice
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Fig. 7. Absolute value of bias (top) and variance (bottom) of the estimation
errors regarding the formant frequencies (left) and the formant radii (right) as
measured over a range of glottal noise levels. Down to a certain SNR level,
the bias and variance of the proposed method (black solid line) show a good
performance compared to the method based on LP (gray solid line) and the
IAIF method (black dash-dot line) with respect to formant frequencies.

types, vowel configurations and the three formants. The glottal
source error is related to the shape of the extracted glottal
waveform. In particular, the errors related to the temporal
instants of the maximum of the glottal flow waveform and the
minimum of the glottal flow derivative waveform are reported,
i.e. tp and te. Similarly to the formant errors, the voice source
related errors are also averaged over all voice types and vowel
configurations. The LP method is excluded from this second
result, since the residual of the LP method is optimized to
be spectrally white and therefore is not meant to extract the
glottal waveform. The voice source-related values extracted by
the IAIF method were obtained using methods found in the
Aparat toolbox [43], [44].

(a) Environmental noise: In the first test, we assess the
influence of the presence of background noise on the reliability
of the proposed method. In Fig. 5 I, the absolute value of the
bias (upper panels) and standard deviation (lower panels) of
the estimated formant frequencies (left panels) and radii (right
panels) are displayed. As expected, the formant frequencies
and radii estimated by the proposed method exhibit a reduced
bias compared to the other two methods. Notably, it was
observed that the value of the lower formant frequencies
estimated using the proposed method exhibited a high accuracy
at all SNRs. For low SNR values, the estimate of the highest
formant occasionally got trapped in a local minimum, which
could not be prevented by an increased population size NP.
This resulted in sporadic outliers of the estimated third for-
mant. This explains the largely increased standard deviation of
the average formant frequency estimates for SNR values below
15 dB. The estimated formant radii exhibited a lower bias and
standard deviation throughout all SNR values compared to the
other methods.

The errors related to the glottal source temporal parameters
are displayed in Fig. 6 I. The error of the proposed method
is relatively small at high SNR values and steadily increases
for lower SNR values. In comparison, the error of the IAIF
method is generally higher and appears to be more affected
by the increasing noise level.

(b) Fundamental frequency (f0): For this experiment,
synthetic vowels with different fundamental frequencies were
generated. As pointed out in Section I, frame-based analysis
methods may be influenced by the harmonics of the funda-
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Fig. 8. Relative error of the estimated LF model parameters tp and te
with respect to the instantaneous glottal period. The estimates of the IAIF
method are displayed using a dashed line; estimates of the proposed method
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whereas the gray color refers to the error in te.

TABLE III
FORMANT FREQUENCIES AND BANDWIDTHS (BW) IN HZ USED FOR

SYNTHESIZING THE TEST MATERIAL FOR THE FIRST TWO EXPERIMENTS.

Vowel F1 (Bw) F2 (Bw) F3 (Bw)

/a:/ 800 (65) 1400 (68) 2600 (128)
/i/ 500 (63) 2300 (78) 3000 (129)

/a:/ /i/ repeated transition through above vowels

mental frequency of the voice source. At lower values of f0,
the estimated poles form a well-defined spectral envelope over
the densely distributed f0-harmonics. At higher values of f0,
the harmonics are sparser and thus represent single points of
attraction for the poles. Thus, with rising f0, it becomes more
likely that a pole models a harmonic instead of a formant. This
is what can be observed in Fig. 5 II. The error in the estimated
formant frequency is increasing with higher values of f0 for
the LP and the IAIF methods, while the proposed method is
unaffected up to a certain value. Above f0 “ 200Hz, the error
of the proposed method rises sharply due to the considerably
shortened analysis window.

The results with respect to the glottal source timing pa-
rameters are displayed in Fig. 6 II. Notably, the error of the
proposed method is less affected across different f0 values and
is also smaller compared to the error of the IAIF estimates.

(c) Glottal jitter: This experiment investigates the error
induced by different values of jitter in the fundamental period
of the voice source. Jitter is a measure of deviation from
perfect harmony, i.e. how much a particular glottal cycle
deviates from an averaged, instantaneous glottal period, T0.
Jitter is measured in percent, relative to T0.

The results are displayed in Fig. 5 III and Fig. 6 III. An
increased value of jitter does not influence the estimates of the
VT nor of the glottal parameters measured by the proposed
method. An increase of the standard deviation of the VT
measures of the IAIF method can be observed, whereas the LP
method also is not affected by jitter. The voice source related
errors (tp and te) are very similar in both methods (IAIF and
the proposed method), but IAIF is affected by higher values
of jitter. This is to be expected from a frame-based analysis
method.
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TABLE V
FORMANT FREQUENCY ESTIMATION RESULTS USING THE SPEECH SYNTHESIZED BY THE PHYSICAL MODEL. THE VALUES REPRESENT THE ABSOLUTE

VALUE OF THE BIAS (IN Hz) FOLLOWED BY THE ERROR STANDARD DEVIATION IN PARENTHESES.

Vowel Method pressed modal breathy

F1 F2 F3 F1 F2 F3 F1 F2 F3

/a/
LP 48.4 (0.7) 74.5 (1.2) 56.4 (4.9) 0.5 (1.4) 10.0 (4.8) 39.4 (24.9) 8.3 (14.7) 84.4 (53.5) 88.9 (58.4)

IAIF 21.7 (0.5) 31.3 (0.6) 18.1 (1.5) 10.0 (0.8) 10.2 (5.5) 46.0 (11.6) 39.5 (5.9) 43.7 (27.5) 124.5 (23.7)
DE 3.6 (0.4) 16.2 (1.2) 9.1 (9.2) 0.6 (0.5) 29.5 (4.7) 26.7 (19.7) 9.6 (4.9) 48.1 (22.7) 36.1 (29.7)

/i/
LP 41.0 (0.3) 45.9 (1.9) 74.1 (3.0) 6.7 (0.4) 28.5 (7.1) 12.0 (20.1) 23.6 (1.4) 70.0 (46.0) 100.1 (67.0)

IAIF 7.3 (0.4) 6.2 (0.7) 14.8 (0.8) 5.1 (0.9) 7.8 (2.9) 18.4 (11.7) 14.3 (5.2) 10.5 (13.7) 178.8 (39.1)
DE 1.0 (1.0) 14.9 (13.3) 25.9 (19.1) 3.7 (2.0) 20.8 (16.7) 40.6 (30.2) 2.3 (3.7) 53.6 (262.9) 94.9 (0.2)

LP 43.4 (5.0) 59.8 (13.0) 64.0 (8.9) 2.1 (3.7) 14.5 (11.3) 17.3 (28.7) 14.6 (12.4) 63.1 (57.1) 113.3 (67.8)
trans. /a/ IAIF 10.1 (13.3) 10.0 (25.6) 15.6 (8.2) 6.5 (9.3) 8.0 (23.5) 32.4 (10.6) 11.6 (23.7) 58.1 (45.6) 187.2 (56.7)

to /i/ DE 0.3 (5.1) 24.1 (16.2) 9.3 (22.5) 1.5 (2.3) 26.9 (15.6) 39.5 (33.3) 9.3 (9.3) 39.9 (32.1) 80.4 (49.7)

TABLE IV
LF PARAMETERS USED FOR SYNTHESIZING THE TEST MATERIAL FOR THE

FIRST TWO EXPERIMENTS IN PER CENT OF THE GLOTTAL CYCLE
DURATION.

Voice Type tp(%) te(%) ta(%) Ee

Modal 41.21 54.93 0.42 40.03
Harsh 25.01 29.89 0.99 39.98

B. Glottal Source Distortion

This experiment addresses two issues. On one hand, glot-
tal noise is largely composed of aspiration noise carrying
idiosyncratic and semantic cues. On the other hand, glottal
noise represents a distortion in the glottal source, because
it is not captured in the LF model that represents only the
deterministic voice source components (see Section II-B).
Hence, this experiment can be seen as validation against glottal
noise and voice source miss-modeling.

The results were computed in the same manner as in the
previous experiment. The errors of the estimated VT envelopes
and LF model parameters across a range of glottal noises wσg

are displayed in Figs. 7 and 8, respectively. For all three
methods, the influence of the glottal distortion is negligible up
to SNRg “ 20 dB. The LP method is the most affected method
by a further increase of the glottal noise, although mainly with
respect to bias. Here, the proposed method shows a similar
degree of degradation. As in the case of environmental noise,
the proposed method performs well also in the presence of
glottal noise with respect to the estimated formant frequencies
in terms of bias, but less well in terms of the standard deviation
of the estimates.

As in the previous experiments, the LF model parameters
estimated by the proposed method exhibit a smaller bias and
a smaller standard deviation compared with IAIF.

C. Physical Model of Speech

In our final experiment, we assess the performance of
the proposed method on synthetic vowel samples, represen-
tative of an adult male speaker, generated using a physical,
computational model of the speech production system. The
voice source component of the model consists of a kinematic

46 47 48 49 50 51 52 53 54 55 56 57
−400

−200

0

200

400
(a)

A
m

pl
.

46 47 48 49 50 51 52 53 54 55 56 57

−60

−40

−20

0

20

(b)

A
m

pl
.

46 47 48 49 50 51 52 53 54 55 56 57

−60

−40

−20

0

20

(c)

A
m

pl
.

Time (ms)

Fig. 9. Example of a speech segment of a vowel /a/ (top) synthesized with
the physical model of speech. In the middle and bottom panel, the true glottal
flow derivative (gray line) is shown and the inverse filter residual (black line)
of the IAIF method is shown in the middle panel and the respective residual
of the proposed method is shown in the bottom panel.

representation of the medial surfaces of the vocal folds (
[45], [46]; and specifically [47]) for which surface bulging,
adduction, length, and thickness are control parameters, as
well as fundamental frequency. Vocal fold length and thickness
are set to be 1.6 cm and 0.3 cm, respectively. As the vocal
fold surfaces are driven in vibration the model produces
a time-varying glottal area that is coupled to the acoustic
pressures and air flows in the trachea and vocal tract through
aerodynamic and acoustic considerations [48]. The resulting
glottal volume velocity is determined by the interaction of
the glottal area with the time-varying pressures present just
inferior and superior to the glottis.

The vocal tract shape, which extends from glottis to lips,
was specified by area functions representative of /i/ and /a/
vowels, or as a transition from /i/ to /a/, and were based
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on data reported by Story [49]. The tracheal shape was also
specified by an area function that extended from the glottis to
bronchi [50]. Acoustic wave propagation in the subglottal and
supraglottal airspaces was computed with a wave-reflection
model [50], [51] that included energy losses due to yielding
walls, viscosity, heat conduction, and radiation at the lips [50].
This form of the computational model was similarly used to
generate synthetic speech samples for [47]; a more extensive
description of the model can be found there.

The test material consisted of nine speech samples, each
0.7 s long. Three vowel configurations were used (/a/, /i/,
transition /i/ to /a/ ). Of each vowel, three different realizations
were synthesized using three different voice types (pressed,
modal and breathy) and a constant fundamental frequency of
f0 “ 105Hz. Along with the synthesized speech, a true glottal
flow signal generated by interaction with trachea and VT,
as well as true formant frequencies are available. All speech
samples were low-pass filtered (fc “ 4 kHz) and downsampled
to a sampling rate of fs “ 10 kHz.

An example of an inverse filtered glottal derivative wave-
form is shown in Fig. 9. Both, IAIF and the proposed method,
are able to retain the general waveform of the glottal source
including low frequency glottal distortions (observable in the
first 4ms of the example). From visual inspection it is also
observable that there remains slightly more high-frequency
noise in the IAIF residual. In this particular example, the IAIF
method did not capture all the VT resonance components in the
estimated VT filter. These remaining spectral components were
thus not removed by inverse filtering. A possible explanation
is temporal averaging in the IAIF method. The glottal VT
coefficients estimated for a speech segment may well represent
the average spectra of the observed respective components, but
individual glottal cycles may diverge considerably from this
average. No parametric representation of the true glottal source
is available, thus no objective results are reported.

In Table V, the errors related to the estimated formant
frequencies are presented. In virtually all examples, the bias
of the first formant (F1) estimated using the proposed method
is smaller compared to that of the other two methods. The
standard deviation of the F1 estimate varies from example to
example but compares similar to the other methods.

In general, the proposed method performs best for pressed
voice and worst for breathy voice. This is expected, since
in pressed voice the instant of greatest excitation (te) occurs
relatively early in the glottal cycle and thus a longer duration of
the analysis window contains the VT resonances. Furthermore,
it is well known that the duration of the return phase of the
glottal source, ta, is strongly correlated with the spectral tilt
of the voice source [29]. A small value of ta, as found in
pressed voice, yields a low spectral tilt and results in the
higher glottal energy in higher frequency bands. As a result,
higher formants exhibit a larger SNR and are more likely to
be estimated correctly.

An interesting observation concerns the error found for
higher formant estimates. The performance of the proposed
method appears to deteriorate when compared to the other
methods for some configurations (e.g. pressed and modal
voice of vowel /i/ ). By inspection of the results of individ-

ual glottal cycles it was discovered that these errors were
mostly introduced by outliers in formant estimation for some
glottal cycles. Further inspection of glottal cycles exhibiting
estimation outliers revealed that their spectra in frequency
ranges corresponding to higher formants (above 2 kHz) show
considerable, cycle-specific, attenuations and amplifications
in relatively narrow frequency bands. In other words, the
high frequency spectral characteristics of some glottal cycles
show large frequency-dependent deviations from the constant
spectral decay assumed by the LF model. The LF model used
in the proposed method is not capable of describing such fine
details due to the constant decay in high frequencies. It may
be argued that the LF model, despite its relatively high degrees
of freedom, lacks in its ability to represent the details of high
frequency components of the glottal source. Therefore, errors
in the estimated formant frequencies are introduced.

V. DISCUSSION AND CONCLUSION

A novel method for robust joint source-filter optimization
was proposed. The focus of our work was to combine multi-
parametric voice source models with efficient, global opti-
mization methods. In our approach, the LF model is used
to represent the voice source and an ARX process models
speech production. The respective optimal model parameters
were found using an evolutionary algorithm named differential
evolution.

A first series of experiments showed the accuracy and ro-
bustness of the proposed optimization method against a variety
of changing parameters such as fundamental frequency, jitter,
glottal and environmental noise. The proposed method out-
performed the comparative LP and IAIF methods at formant
estimation and voice source parameter estimation accuracy. In
particular, the bias of the estimated parameters was shown
to be largely reduced. Therefore, a promising direction for
future research is the consideration of a priori information,
for example by using probabilistic tracking schemes, to further
reduce the standard deviation of the estimated parameters.

A second experiment using speech generated with a physical
model of speech production revealed that the accuracy of lower
formant estimates was mostly improved. In higher spectral
bands, where the glottal source deviated from the spectral
characteristics of the LF model, the accuracy of the formant
estimation deteriorated. Nevertheless, the experiments have
shown that for voices within the boundaries of the used voice
source model, the proposed method is a reliable and efficient
method for source-filter separation.

The proposed method has been designed with source-filter
decomposition, rather than computational efficiency, in mind.
The real-time factor of our mixed Matlab/C++ implementation
was measured as 1:200, averaged over all the experiments.
This means that, on average, it takes approximately 200
seconds to analyze 1 second of speech. Following the above
considerations, the method is best suited for applications with
moderate amounts of data and non-real-time requirements,
such as clinical speech analysis or as a research tool in acoustic
phonetics. The proposed method also represents a promising
approach for research aiming at improved models of speech
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production. Voice restoration, voice transformation, parametric
speech coding and speaker verification may also benefit from
such improved models. To be applicable for large-scale speech
or speaker recognition systems, further speed optimization is
necessary.
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