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Mixture of Factor Analyzers Using Priors from
Non-Parallel Speech for Voice Conversion

Zhizheng Wu, Tomi Kinnunen, Member, IEEE, Eng Siong Chng, Senior Member, IEEE, and Haizhou Li, Senior
Member, IEEE

Abstract—A robust voice conversion function relies on a large
amount of parallel training data, which is difficult to collect
in practice. To tackle the sparse parallel training data problem
in voice conversion, this paper describes a mixture of factor
analyzers method which integrates prior knowledge from non-
parallel speech into the training of conversion function. The
experiments on CMU ARCTIC corpus show that the proposed
method improves the quality and similarity of converted speech.
With both objective and subjective evaluations, we show the
proposed method outperforms the baseline GMM method.

Index Terms—Voice conversion, prior knowledge, factor anal-
ysis, mixture of factor analyzers.

I. INTRODUCTION

THE objective of voice conversion is to manipulate one
speaker’s (source) voice to sound like that of another

(target) without changing the phonetic information. It involves
two processes: training and run-time conversion. During the
training process, a conversion function is estimated to establish
the relationship between the source and target speech features.
In the conversion process, the conversion function is used to
convert source speaker’s voice to that of the target speaker.
Apparently the conversion function has a direct impact on the
quality of the resulting speech.

Many statistical methods have been adopted to implement
the conversion function, such as mapping codebooks [1],
artificial neural networks [2], [3], Gaussian mixture model
[4], [5], [6], and partial least squares regression [7]. The joint
density Gaussian mixture model (JD-GMM) [4], [5], [6] is
one of the most effective approaches. Unfortunately, it requires
relatively large parallel training data to avoid over-fitting [8].

There have been reported work on speech [9] and speaker
recognition [10] where researchers leverage on existing speech
corpora from non-target speakers as the prior knowledge to
improve their systems’ performance. Following the same idea,
eigenvoice-based conversion [11], and tensor representation of
speaker space [12] are examples of similar successful attempts
in voice conversion. However, these methods all require a
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large amount of parallel data which are difficult to collect in
practical situations.

In speaker verification, the joint factor analysis (JFA)
method [13] decomposes a supervector into speaker indepen-
dent, speaker dependent and channel dependent components,
each of which is represented by a low-dimensional set of
factors. Inspired by such an idea, we argue that similar decom-
position would be useful in voice conversion, where we would
like to separate phonetic and speaker specific components
of speech spectral vectors, and apply factor analysis on the
speaker specific component. The speaker specific component
can then be represented by a low-dimensional set of latent
variables via the factor loadings. To cover the intended speaker
space densely, we adopt mixture of factor analyzers (MFA)
[14], which was previously used to refine covariance of JD-
GMM in voice conversion [15].

The main contribution of this work is a new technique
that estimates the phonetic component and factor loadings
from non-parallel prior data. In this way, during the training
process, we only estimate a low-dimensional set of speaker
identity factors and a tied covariance matrix instead of a full
conversion function from the source-target parallel utterances.
Even though parallel utterances are still required for estimating
the conversion function, the use of prior data allows us to
obtain a reliable model from much fewer training samples than
those required by conventional JD-GMM [5].

II. BASELINE JOINT DENSITY GAUSSIAN MIXTURE MODEL

The mainstream joint density Gaussian mixture model (JD-
GMM) conversion method [4] is used as our baseline.

Given parallel training utterances from source X and
target Y speakers, dynamic time warping (DTW) can be
applied to obtain the aligned feature vector pairs: Z =
[z1, z2, . . . , zt, . . . , zT ], where zt = [x>t ,y

>
t ]> ∈ R2d and

xt ∈ Rd, yt ∈ Rd. The joint probability density of X and Y
is modeled by a GMM as follows:

P (X,Y) = P (Z) =

K∑
k=1

π
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are the mean vector and covariance matrix, respectively.
Given the component k, π(z)

k is its prior probability with∑K
k=1 π

(z)
k = 1. In the training phase, the GMM parameters

λ(z) = {π(z)
k ,µ

(z)
k ,Σ

(z)
k |k = 1, 2, . . . ,K} are estimated using

the expectation maximization (EM) algorithm.
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In the conversion process, given a source speech feature
vector x, the joint density model is used for predicting
the target speaker’s feature vector ŷ = F(x), where the
conversion function F(.) is given as follows:

F(x) =

K∑
k=1

pk(x)(µ
(y)
k + Σ

(yx)
k (Σ

(xx)
k )−1(x− µ

(x)
k )). (2)

Here pk(x) = πkN (x|µ(x)
k ,Σ

(xx)
k )/

∑K
l=1 πlN (x|µ(x)

l ,Σ
(xx)
l )

is the posterior probability of source vector x belonging to
the k-th Gaussian component.

III. MIXTURE OF FACTOR ANALYZERS

In JD-GMM, we need to estimate many Gaussian com-
ponents λ(z) = {π(z)

k ,µ
(z)
k ,Σ

(z)
k |k = 1, 2, . . . ,K} from a

large parallel training corpus for a reliable performance. To
overcome this, we propose to use non-parallel prior data to
estimate some speaker-independent parameters in advance,
which are needed by the conversion.

Given a spectral vector, we assume that it consists of
phonetic and speaker specific components, which are statisti-
cally independent. We further assume that the speaker specific
component can be represented by a low-dimensional speaker
identity vector (SIV) via a low-rank factor loading matrix. We
use factor analysis model to represent this idea:

o = µ + Tw + ε, (3)

where o ∈ Rd is an observed d-dimensional spectral vector,
µ ∈ Rd is the speaker-independent phonetic component, Tw
is the speaker specific component in which w ∈ Rm×1 is the
latent SIV and T ∈ Rd×m is the factor loading matrix. ε is
the noise term.

Factor analysis is a linear single-Gaussian latent variable
model. However, as speech data can not be well represented
by a single Gaussian, we adopt the mixture of factor analyzers
(MFA) model [14]. The likelihood function of the non-parallel
prior data O = [o

(1)
1 ,o

(1)
2 , . . . ,o

(1)
N1
, . . . ,o

(S)
NS

]> for the model
λ(MFA) = {πk,µk,Tk,Σk|k = 1, 2, . . . ,K} is :

P (O,w|λ(MFA)) = P (O|w, λ(MFA))P (w)

=

S∏
s=1

P (O(s)|ws, λ
(MFA))P (ws) (4)

P (O(s)|ws, λ
(MFA)) =

Ns∏
n=1

K∑
k=1

πkN (o(s)
n |µk + Tkws,Σk).

(5)
P (ws) = N (0, I) (6)

where N is the Gaussian function, S represents the number
of speakers, and Ns represents the number of frames from
the s-th speaker, µ1,µ2, . . . ,µK ∈ Rd represent speaker
independent phonetic vectors, ws ∈ Rm is the SIV of
speaker s, Tk ∈ Rd×m is the factor loadings of the k-
th factor analyzer component with prior probability πk and∑K

k=1 πk = 1.
The proposed spectral conversion framework is presented

in Fig. 1. In off-line process, we use non-parallel prior corpus

Fig. 1. Proposed spectral conversion system

to estimate the phonetic component µk and factor loadings
Tk in section 3.A and 3.B, respectively. Then we adopt µk

and Tk to jointly estimate the speaker identity vectors w(x),
w(y) for source and target in section 3.C, and finally derive
the conversion function, which is similar as equation (2).

A. Speaker-independent phonetic vectors estimation

In theory, we could estimate all the parameters λ(MFA) at
the same time as in [14]. To benefit from a large speaker
independent database [13] and ensure that the phonetic vectors
are not affected by the speaker-specific component when
estimating the factor loadings, we use pre-trained GMM to
represent the phonetic space. While a Gaussian component
may not correspond to a phonetic unit exactly, we assume that
a mixture of Gaussian components cover the whole phonetic
space. In this way, the likelihood function for the phonetic
GMM λ(phonetic) = {πk,µk,Σk|k = 1, 2, . . . ,K} is written
as,

P (O|λ(phonetic)) =

S∏
s=1

Ns∏
n=1

K∑
k=1

πkN (o(s)
n |µk,Σk), (7)

where µk ∈ Rd is an estimated phonetic vector, and Σk ∈
Rd×d is the covariance matrix. EM algorithm is used to
estimate the parameters λ(phonetic). The πk, µk and Σk in
(5) are replaced by that in (7), and πk, µk and Σk are fixed
when estimating the factor loading matrices Tk.

B. Speaker-independent factor loadings estimation

Given λ(phonetic), we use EM algorithm to estimate the
factor loading matrices Tk in (4), as there are latent variables
w. The E-step and M-step are written as follows:

1) E-step: Calculate the occupation probability γ(s)n (k) and
the expectation of latent variable ws:

γ(s)n (k) =
πkP (o

(s)
n |ws,T

′

k,µk,Σk)∑K
l=1 πlP (o

(s)
n |ws,T

′
l,µl,Σl)

(8)

E[ws] = F−1 ·
Ns∑
n=1

K∑
k=1

γ(s)n (k)T
′

k

>
Σ−1k (o(s)

n − µk) (9)
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E[wsw
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>
, (10)

where F = I +
∑Ns

n=1
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k=1 γ

(s)
n (k)T

′
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>
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′

k and T
′

k are
the factor loading matrices estimated in previous M-step.

2) M-step: Estimate the new factor loading matrices Tk:

Tk =

∑S
s=1

∑Ns

n=1 γ
(s)
n (k) · E[ws](o

(s)
n − µk)∑S

s=1

∑Ns

n=1 γ
(s)
n (k)E[wsw>s ]

(11)

We run 10 EM iterations for estimating the factor loading
matrices Tk, which are randomly initialized at the beginning.

C. Voice conversion using mixture of factor analyzers

Now that we have estimated the factor loadings and
phonetic vectors from non-parallel prior corpora, we can
estimate the conversion function from parallel data Z =
[z1, z2, . . . , zt, . . . , zT ], where zt = [x>t ,y

>
t ]> ∈ R2d, we

concatenate the phonetic vectors as µ
(z)
k = [µ>k ,µ

>
k ]> ∈ R2d

and the factor loadings as Ak =

[
Tk 0
0 Tk

]
∈ R2d×2m.

We note that the two µk in µ
(z)
k are identical and the two Tk

in Ak are also identical. This concatenation will not change
the phonetic mapping when training conversion function. Thus
the joint distribution for the parallel data is written as follows.

P (Z|w(z)) =

K∑
k=1

πkN (z|µ(z)
k + Akw(z),Σ(z)). (12)

Here w(z) = [w(x)>,w(y)>]> ∈ R2m×1 is the joint speaker
identity vector where w(x) ∈ Rm×1 is for source speaker
and w(y) ∈ Rm×1 is for target speaker, and Σ(z) =[

Σ(xx) Σ(xy)

Σ(yx) Σ(yy)

]
∈ R2d×2d is a covariance matrix. A

full covariance matrix consists of a large number of free
parameters which need to be estimated. To circumvent this
data sparseness and avoid numerical problem, we use a tied
covariance matrix shared by all the Gaussians in implementa-
tion. We dub our method as tied mixture of factor analyzers
(TMFA). The benefit of using factor loadings is that when
estimating speaker specific components, we only need to
estimate a low-dimensional SIV with less training data, as the
factor loadings are estimated in advance. Similar as that for
equation (4), EM algorithm can be adopted to estimate w(z)

and Σ(z) under the maximum likelihood criterion:
1) E-step: calculate the occupation probability pk(zt) and

joint speaker identity vector w(z):

pk(zt) =
πkP (zt|w(z),Ak,µ

(z)
k ,Σ(z))∑K

l=1 πlP (zt|w(z),Al,µ
(z)
l ,Σ(z))

(13)

w(z) =

∑T
t=1

∑K
k=1 pk(zt)A

>
k Σ(z)−1(zt − µ

(z)
k )

I +
∑T

t=1

∑K
k=1 pk(zt)A>k Σ(z)−1A>k

(14)

2) M-step: estimate new tied covariance matrix Σ(z):

Σ(z) =

∑T
t=1

∑K
k=1 pk(zt)vv>∑T

t=1

∑K
k=1 pk(zt)

, (15)

where v = zt − µ
(z)
k − Akw(z). In this EM algorithm, we

initialize the tied covariance matrix with global covariance

matrix and initialize w(z) as zero vector. We run three EM
iterations to estimate Σ(z) and w(z).

In the conversion process, given x, the tied joint-density
MFA model is adopted to predict the target feature vector
ŷ = F(x) as follows:

F(x) =

K∑
k=1

pk(x)·(µk+Tkw(y)+Σ(yx)(Σ(xx))−1(x−µk−Tkw(x)))

where pk(x) is the occupation probability of x belonging to
the k-th factor analyzer.

IV. EXPERIMENTS

We conduct conversion tests on CMU ARCTIC corpus for
two speaker pairs: male-to-male (M-M, BDL-to-RMS) and
female-to-female (F-F, SLT-to-CLB). We use 2 to 8 utterances
of each speaker as the training data, and 50 utterances as
testing data. Aurora 4 corpus, which has 83 speakers and each
speaker has around 100 utterances (clean speech), is used as
the prior data to estimate phonetic vectors and factor loadings.

The speech signal is sampled at 16kHz. Spectral envelope
and fundamental frequency (F0) are extracted by STRAIGHT
[16] at 5ms step, and the spectral envelope is parameterized
as 25-order mel-cepstral coefficients (MCC), including the
energy coefficient, which is not converted. Hence only 24-
order coefficients are converted. F0 is converted by equalizing
the mean and variance of the source and target speakers.

The following conversion methods are compared:
1) GMM-full: JD-GMM with full covariance matrices.
2) GMM-cross: JD-GMM with covariance matrices which

have only diagonal and cross-covariance elements [15].
3) TMFA-full: TMFA with full covariance matrices.
4) TMFA-cross: TMFA with covariance matrices which

only have diagonal and cross-covariance elements.

A. Objective evaluation

The mel-cepstral distortion (MCD) is used as the ob-
jective evaluation measure between a converted target
frame and a original target frame [6]: MCD[dB] =

10
log 10

√
2
∑24

d=1(cd − c(converted)d )2 where cd and c
(converted)
d

are the d-th original target and converted MCCs, respectively.
A lower MCD value indicates smaller distortion.

We first compare the conversion method using two training
utterances. Fig. 2 shows the average MCD values of M-M
and F-F spectral conversions as a function of the number
of factors in TMFA. The baseline JD-GMM model has one
Gaussian component, as it gives the lower MCD value than
2 or 4 Gaussian components. There are 128 Gaussians in
TMFA with the number of factors in TMFA varying from 8 to
64. When more than 24 factors are used, TMFA gives much
lower distortion than the baseline JD-GMM does. Another
observation is that TMFA-cross always outperforms TMFA-
full that suggests the latter suffers from over fitting.

We further train TMFA-cross and GMM-cross with a differ-
ent amount of parallel training data. The number of factors is
set to be m = 44, which is the median number between 24 and
64. The average MCD values of M-M and F-F conversion are
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Fig. 2. Average mel-cepstral distortion of in terms of number of factors

presented in Fig. 3. TMFA outperforms JD-GMM when we
have a limited amount of parallel training data, in particular,
when the number of parallel utterances is less than 7. In
general, TMFA model has fewer parameters and is more robust
than JD-GMM due to the prior knowledge that it learnt from
non-parallel prior data.
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Fig. 3. Average MCD in terms of number of training utterances

B. Subjective evaluation

TMFA-cross with 44 factors is compared with GMM-cross
with 1 mixture in the listening test. The number of training
utterances is two. Similarity of the converted speech was first
evaluated in an AB preference test. 8 subjects participated in
the listening test. They were asked to listen to two converted
speech (A and B), and the reference speech, and decide which
converted speech sounded more similar to the reference speech
by choosing one of the followings: 1) A is more similar; 2) B is
more similar; 3) no preference. 10 sentences were evaluated
for each speaker pair. The similarity preference results are
shown in Fig. 4(a). We can see that TMFA technique consis-
tently outperforms JD-GMM in both test cases.

The AB preference test was also conducted to evaluate
the perceptual quality of the converted speech. Eight subjects
listened to 10 sentence pairs for each speaker pair, and decided
which converted speech they preferred. The quality preference
test results are presented in Fig. 4(b). It shows that TMFA
outperforms JD-GMM perceptually.

V. CONCLUSION

We proposed a voice conversion technique based on mixture
of factor analyzers, by assuming that a speech spectral vector
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Fig. 4. Subjective evaluation results with 95% confidence interval

consists of independent phonetic and speaker specific com-
ponents. We have shown that the prior knowledge from non-
parallel data serves well in covering the feature space. With
objective and subjective evaluations, we show our proposed
method outperforms the conventional JD-GMM method.
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