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Abstract

Automatic speaker verification (ASV) systems are highly vulnerable to presenta-
tion attacks, also called spoofing attacks. Replay is among the simplest attacks
to mount — yet difficult to detect reliably. The generalization failure of spoofing
countermeasures (CMs) has driven the community to study various alternative
deep learning CMs. The majority of them are supervised approaches that learn
a human-spoof discriminator. In this paper, we advocate a different, deep gen-
erative approach that leverages from powerful unsupervised manifold learning in
classification. The potential benefits include the possibility to sample new data,
and to obtain insights to the latent features of genuine and spoofed speech. To
this end, we propose to use variational autoencoders (VAEs) as an alternative
backend for replay attack detection, via three alternative models that differ in
their class-conditioning. The first one, similar to the use of Gaussian mixture
models (GMMs) in spoof detection, is to train independently two VAEs — one
for each class. The second one is to train a single conditional model (C-VAE) by
injecting a one-hot class label vector to the encoder and decoder networks. Our
final proposal integrates an auxiliary classifier to guide the learning of the latent
space. Our experimental results using constant-Q cepstral coefficient (CQCC)
features on the ASVspoof 2017 and 2019 physical access subtask datasets indi-
cate that the C-VAE offers substantial improvement in comparison to training
two separate VAEs for each class. On the 2019 dataset, the C-VAE outper-
forms the VAE and the baseline GMM by an absolute 9 - 10% in both equal
error rate (EER) and tandem detection cost function (t-DCF) metrics. Finally,
we propose VAE residuals — the absolute difference of the original input and
the reconstruction as features for spoofing detection. The proposed frontend ap-
proach augmented with a convolutional neural network classifier demonstrated
substantial improvement over the VAE backend use case.

Keywords: anti-spoofing, presentation attack detection, replay attack,
countermeasures, deep generative models.
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1. Introduction

Voice biometric systems use automatic speaker verification (ASV) [1] tech-
nologies for user authentication. Even if it is among the most convenient means
of biometric authentication, the robustness and security of ASV in the face of
spoofing attacks (or presentation attacks) is of growing concern, and is now well
acknowledged by the community [2]. A spoofing attack involves illegitimate
access to personal data of a targeted user.

The ISO/IEC 30107-1 standard [3] identifies nine different points a biometric
system could be attacked from (see Fig. 1 in [3]). The first two attack points
are of specific interest as they are particularly vulnerable in terms of enabling
an adversary to inject spoofed biometric data. These involve: 1) presentation
attack at the sensor (microphone in case of ASV); and 2) modifying biometric
samples to bypass the sensor. These two modes of attack are respectively known
as physical access (PA) and logical access (LA) attacks in the context of ASV.
Artificial speech generated through text-to-speech (TTS) [4] and modified speech
generated through voice conversion (VC) [5] can be used to trigger LA attacks.
Playing back pre-recorded speech samples (replay [6]) and impersonation [7] are,
in turn, examples of PA spoofing attacks. Therefore, spoofing countermeasures
are of paramount interest to protect ASV systems from such attacks. In this
study, a countermeasure (CM) is understood as a binary classifier designed to
discriminate real human speech or bonafide samples from spoofed ones in a
speaker-independent setting.

Like any traditional machine learning classifier, a spoofing countermeasure
(Fig. 1) typically consists of a frontend and a backend module. The key function
of the front-end is to transform the raw acoustic waveform to a sequence of short-
term feature vectors. These short-term feature vectors are then used to derive
either intermediate recording-level features (such as i-vectors [8, 9] or x-vectors
[10]) or statistical models, such as Gaussian mixture models (GMMs) [11] to
be used for bonafide or spoof class modeling. In contrast to these approaches
that require a certain level of handcrafting especially in the frontend, modern
deep-learning based countermeasures are often trained using either raw-audio
waveforms [12, 13] or an intermediate high-dimensional time-frequency repre-
sentation — often the power spectrogram [14, 15]. In these approaches, the
notions of frontend and backend are less clearly distinguished.

In classic automatic speech recognition (ASR) systems and many other
speech applications, prior knowledge of speech acoustics and speech percep-
tion has guided the design of some successful feature extraction techniques, mel
frequency cepstral coefficients (MFCCs) [16] being a representative example.
Similar a priori characterization of acoustic cues that are relevant for spoofing
attack detection, however, is challenging; this is because many attacks are un-
seen, and since the human auditory system has its limits — it is not designed
to detect spoofed speech and may therefore be a poor guide in feature crafting.
This motivates the study of data-driven approaches that learn automatically
the relevant representations for spoofing detection. In this study, we primarily
focus on deep learning based CMs.
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Figure 1: An automatic spoofing detection pipeline using a generative model backend. We
explore VAEs as an alternative to a GMM backend. In either case, two generative models are
trained to learn the distribution of the bonafide and spoof class data. During inference, for a
given test utterance, the scoring function computes the log-likelihood difference between the
two generative models as a score. See Section 3 for details on the methodology.

Both discriminative models (such as support vector machines (SVMs), deep
neural networks (DNNs) [17, 14]) and generative models (such as GMMs) [11,
15], have extensively been used as backends for spoofing detection. The former
directly optimize the class decision boundary while the latter model the data
generation process within each of the classes, with the decision boundary being
implied indirectly. Both approaches can be used for classification but only
the generative approach can be used to sample new data points. We focus
on generative modeling as it allows to interpret the generated samples to gain
insights about our modeling problem, or to “debug” the deep learning models
and illustrate what the model has learned from the data to make decisions.
Further, they can be used for data augmentation which is challenging using
purely discriminative approaches.

GMMs have empirically been demonstrated to be competitive in both the
ASVspoof 2015 and ASVspoof 2017 challenges [11, 15]. While [11] use hand-
crafted features for synthetic speech detection, [15] used deep features to train
GMM backends. A known problem with GMMs, however, is that use of high-
dimensional (short-term) features often leads to numerical problems due to sin-
gular covariance matrices. Even if off-the-shelf dimensionality reduction meth-
ods such as principal component analysis (PCA) [18] or linear discriminant
analysis (LDA) [19] prior to GMM modeling may help, they are not jointly op-
timized with the GMM. Is there an alternative way to learn a generative model
that can handle high-dimensional inputs natively?

Three generative models that have been demonstrated to produce excellent
results in different applications include generative adversarial networks (GANs)
[20], variational autoencoders (VAEs) [21] and autoregressive models (for ex-
ample, WaveNet [22]). A VAE is a deep generative probabilistic model that
consists of an encoder and a decoder network. The encoder (inference network)
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transforms the input data x into a low-dimensional latent representation, z, by
learning a conditional probability distribution qφ(z|x). The decoder (or genera-
tor) network, on the other hand, learns to reconstruct the original data from the
low-dimensional latent vector z by learning the conditional probability distri-
bution pθ(x|z). GANs, on the other hand, do not have an encoder/recognition
network. Instead, they consist of a generator and a discriminator network. The
generator takes as input a random vector and aims to generate fake data that is
as close to the real data x, and the discriminator network aim is to discriminate
between the real and the fake data. Autoregressive models, on the other hand,
do not use any latent variables.

Both GANs and VAEs have demonstrated promising results in computer
vision [23, 24, 25], video generation [26] and natural language processing tasks
[27]. VAEs have recently been studied for modeling and generation of speech
signals [28, 29, 30], and synthesizing music sounds in [31]. They have also been
used for speech enhancement [32, 33] and feature learning for ASR [34, 35].
Recent studies in ASV have studied the use of VAEs in data augmentation [36],
regularisation [37] and domain adaptation [38] for deep speaker embeddings
(x-vectors). In TTS, VAEs have been recently used to learn speaking style
in an end-to-end setting [39]. Recent work in [40] uses VAEs for extracting
low-dimensional features and trains a separate classifier on these features for
spoofing detection. However, as far as the authors are aware, the application of
VAEs as a backend classifier for spoofing attack detection in ASV remains an
unexplored avenue.

In this work, we focus on deep probabilistic VAEs as a backend for spoofing
detection. Figure 1 illustrates our idea. While VAEs have both inference and
generator networks, GANs do not have an inference network and autoregressive
models do not use latent variables. This motivates our focus on VAEs over other
deep generative models, as it suits more naturally our task. The reconstruction
quality of VAEs tends to be inferior to that obtained by GANs [41], but for
classification tasks, obtaining a perfect reconstruction is not the main priority.
A key challenge, instead, is how to train VAEs to not only preserve reasonable
reconstruction but to allow to retain discriminative information in the latent
space. To address this, VAEs are often trained with additional constraints. For
example, by conditioning the encoder and decoder with additional input — so
called conditional VAE (C-VAE) [42]; or by augmenting an auxiliary classifier
either to the latent space [43] or to the output of the decoder network [44]. As
there is no de facto standard on this, we aim to fill this knowledge gap in the
domain of audio replay detection. In specific, we present a feasibility study of
various alternative VAEs for replay spoofing attack detection. We summarize
the contributions of this work as follows:

• While deep generative models, VAEs in particular, have been studied in
many other domains, their application in audio spoofing detection remains
less explored to date. We study the potential of deep generative VAEs as
a backend classifier for spoofing detection. To the best of our knowledge,
this is the first work in this direction.
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• We describe practical challenges in training a VAE model for spoofing de-
tection applications and discuss approaches that can help overcome them,
which could serve as potential guidelines for others.

• Along with a “naive”1 VAE we also study conditional VAEs (C-VAEs) [42].
The C-VAE uses class labels as an additional conditional input during
training and inference. Since we pass class labels in C-VAE, we use a
single model to represent both classes unlike naive VAE where we train
two separate models, one each for bonafide and spoof class. For the text-
dependent setting of ASVspoof 2017 data, we further address conditioning
using a combination of the class and passphrase labels.

• Inspired by [43, 44], we introduce an auxiliary classifier into our VAE
modeling framework and study how this helps the latent space2 to capture
discriminative information without sacrificing much during reconstruction.
We experiment adding the classifier model on top of the latent space and
at the end of the decoder (Section 3.3).

• While our primary focus is in using VAEs as a back-end, we also address
their potential in feature extraction. In particular, we subtract a VAE-
modeled spectrogram from the original spectrogram so as to de-emphasize
the importance of salient speech features (hypothesized to be less relevant
in spoofing attack detection) and focus on the residual details. We train
a convolutive neural network classifier using these residual features.

2. Related work

Traditional methods. Since the release of benchmark anti-spoofing datasets
[63, 64, 65] and evaluation protocols as part of the ongoing ASVspoof challenge
series3, there has been considerable research on presentation attack detection
[2], in particular for TTS, VC, and replay attacks. Many anti-spoofing features
coupled with a GMM backend have been studied and proposed in the litera-
ture. We briefly discuss them here. Constant Q cepstral coefficients (CQCCs)
[66], among them, have shown state-of-the-art performance on TTS and VC
spoofed speech detection tasks on the ASVspoof 2015 dataset [63]. They have
been adapted as baseline features in the recent ASVspoof 2017 and ASVspoof
2019 challenges. Further tweaks on CQCCs have been studied in [67] showing
some improvement over the standard CQCCs. Teager energy operator (TEO)
based spoof detection features have been studied in [68]. Speech demodula-
tion features using the TEO and the Hilbert transform have been studied in

1We use naive VAE to refer the standard (vanilla) VAE [21] trained without any class
labels. Information about the class is included by independently training one VAE per class.

2A latent space is a probability distribution that defines the observed-data generation
process and is characterised by means and variances of the encoder network.

3http://www.asvspoof.org/
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[69]. Authors in [70] proposed features for spoofing detection by exploiting the
long-term temporal envelopes of the subband signal. Spectral centroid based
frequency modulation features have been proposed in [71]. [72] proposes the
use of decision level feature switching between mel and linear filterbank slope
based features, demonstrating promising performance on the ASVspoof 2017
v2.0 dataset. Adaptive filterbank based features for spoofing detection have
been proposed in [73]. Finally, [74] proposes the use of convolutional restricted
Boltzmann machines (RBMs) to learn temporal modulation features for spoof-
ing detection.

Deep learning methods. Deep learning-based systems have been pro-
posed either for feature learning [47, 15, 17, 48] or in an end-to-end setting
to model raw audio waveforms directly [13, 12]. A number of studies [55, 52]
have also focused on multi-task learning for improved generalization by simul-
taneously learning an auxiliary task. Transfer learning and data augmentation
approaches have been addressed in [52, 54]. Some of the well known deep archi-
tectures from computer vision, including ResNet [53] and light CNN [46] have
been adopted for ASV anti-spoofing in [56, 60, 57, 58, 59] and [15, 49, 50, 51],
respectively, demonstrating promising performance on the ASVspoof challenge
datasets. The recently proposed SincNet [75] architecture for speaker recogni-
tion was also proposed for spoofing detection in [50]. Furthermore, attention-
based models have been studied in [61, 62] during the ASVspoof 2019 challenge.
It is also worth noting that the best performing models on the ASVspoof chal-
langes used fusion approaches, either at the classifier output or the feature level
[57, 76, 15], indicating the challenges in designing a single countermeasure ca-
pable of capturing all the variabilities that may appear in wild test conditions
in a presentation attack. Please refer to Table 1 for details.

As Table 1 summarizes, there is a substantial body of prior work on deep
models in ASV anti-spoofing, even if it is hard to pinpoint commonly-adopted or
outstanding methods. Nonetheless, the majority of the approaches rely either on
discriminative models or classical (shallow) generative models. This leaves much
scope for further studies in deep generative modeling. Recently, VAEs have been
used for embedding learning for spoofing detection [40]. They trained a bonafide
VAE using only the bonafide utterances from the 2019 LA dataset, and use it
to extract 32 dimensional embeddings for both bonafide and spoof utterances.
Unlike [40], our main focus is on studying VAEs as a backend classifier, described
in the next section.

3. Methodology

This section provides a brief background to the VAE. Besides the original
work [21], the reader is pointed to tutorials such as [77] and [78] for further
details on VAEs. We also make a brief note on the connection between VAEs
and Gaussian mixture models (GMMs), both of which are generative models
involving latent variables [79].
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3.1. Variational autoencoder (VAE)

The variational autoencoder (VAE) [21] is a deep generative model that aims
at uncovering the data generation mechanism in the form of a probability dis-
tribution. The VAE is an unsupervised approach that learns a low-dimensional,
nonlinear data manifold from training data without class labels. VAEs achieve
this by using two separate but jointly trained neural networks, an encoder and
a decoder. The encoder forces the input data through a low-dimensional latent
space that the decoder uses to reconstruct the input.

Given a D-dimensional input x ∈ RD, the encoder network maps x into a
latent vector z ∈ Rd (d � D). Unlike in a conventional (deterministic) au-
toencoder, z is not a single point; instead, the encoder imposes a distribution
over the latent variable, qφ(z|x), where φ denotes all the parameters (network
weights) of the encoder. The default choice, also in this work, is a Gaussian

qφ(z|x) = N (z|µφ(x), diag
(
σ2
φ(x)

)
), where µφ(x) and diag

(
σ2
φ(x)

)
are de-

terministic functions (the encoder network) that return the mean and variance
vector (i.e., diagonal covariance matrix) of the latent space given input x.

The decoder network, in turn, takes z as input and returns a parameterized
probability distribution, which is another Gaussian. The decoder distribution is
pθ(x|z) = N (x|µθ(z), diag

(
σ2
θ(z)

)
), where µφ(z) and diag

(
σ2
θ(z)

)
are deter-

ministic functions implemented by the decoder network, and where θ denotes
the decoder network parameters. Random observations sampled from the de-
coder distribution (with fixed z) should then bear resemblance to the input x.
In the standard VAE, the only sampling that takes place is from the variational
posterior distribution of the latent variable. Conceptually, however, it is useful
to note that the decoder also produces a distribution of possible outputs, rather
a single point estimate, for a given (fixed) z. These outputs will not be exactly
the same as x due to the dimensionality reduction to the lower-dimensional z-
space, but each of the individual elements of the z-space represents some salient,
meaningful features necessary for approximating x.

3.2. VAE training

The VAE is trained by maximizing a regularized log-likelihood function. Let
X = {xn}Nn=1 denote the training set, with xn ∈ RD. The training loss for the
entire training set X ,

L(θ,φ) =

N∑
n=1

`n(θ,φ), (1)

decomposes to a sum of data-point specific losses. The loss of the nth training
example is a regularized reconstruction loss:

`n(θ,φ) = −Ez∼qφ(z|xn)

[
log pθ(xn|z)

]
︸ ︷︷ ︸

Reconstruction error

+ KL
(
qφ(z|xn) ‖ p(z)

)︸ ︷︷ ︸
Regularizer

, (2)

where E[·] denotes expected value and KL(·‖·) is the Kullback-Leibler diver-
gence [80] – a measure of difference between two probability distributions. The
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reconstruction error term demands for an accurate approximation of x while
the KL term penalizes the deviation of the encoder distribution from a fixed
prior distribution, p(z). Note that the prior, taken to be the standard normal,
p(z) = N (z|0, I), is shared across all the training exemplars. It enforces the
latent variables z to reside in a compatible feature space across the training
exemplars. We use stochastic gradient descent to train all our VAE models.
More training details provided later in 4.4.

In practice, to derive a differentiable neural network after sampling z, VAEs
are trained with the aid of the so-called reparameterization trick [21]. Thus,
sampling z from the posterior distribution qφ(z|x) is performed by computing
z = µφ(x)+σφ(x)�ε where ε is a random vector drawn from N (z|0, I), µ and
σ are the means and variance of the posterior learned during the VAE training,
and � denotes the element-wise product.

3.3. Conditioning VAEs by class label

As said, the VAE is an unsupervised method that learns an encoder-decoder
pair, Λ = (θ,φ), without requiring class labels. When used for classification,
rather than data reconstruction, we have to condition VAE training with the
class label. Here, we use labels yn = 1 (bona fide) and yn = 0 (spoof) to
indicate whether or not the nth training exemplar represents bona fide speech4.
We consider three alternative approaches to condition VAE training, described
as follows.

The first, naive approach, is to train VAEs similarly as GMMs [68, 72, 66] —
independently of each other, using the respective training sets Xbona = {xn|yn =
1} and Xspoof = {xn|yn = 0}. VAEs are trained to optimize the loss function
described in (2). This yields two VAEs, Λbona and Λspoof. At the test time,
the two VAEs are independently scored using (2), and combined by subtracting
the spoof score from the bona fide score. The higher the score, the higher the
confidence that the test utterance originates from the bonafide class.

Our second approach is to train a single conditional VAE (C-VAE) [42]
model. In contrast to the naive approach, the C-VAE can learn more complex
(e.g., multimodal) distributions by including auxiliary inputs (conditioning vari-
ables) to the encoder and/or decoder distributions. In this approach, the label
vector yn is used both in training and scoring. Specifically, in our implementa-
tion inspired from [81, 36], we augment yn to the output of the last convolutional
layer in the encoder network and to the input of the decoder network. Section
4.3 describes our encoder and decoder architectures. The training loss (2) is
now revised as,

`n(θ,φ) = −Ez∼qφ(z|xn,yn)

[
log pθ(xn|z,yn)

]
+ KL

(
qφ(z|xn,yn) ‖ p(z|yn)

)
,

(3)

4We use the vector notation yn to indicate the corresponding one-hot vector — i.e., yn =
(0, 1) to represent bonafide and yn = (1, 0) to represent a spoof sample.
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(a) Naive VAE. Separate bonafide and spoof VAE models are trained using the respective-
class training audio files.

(b) C-VAE. A single VAE model is trained using the entire training examples but with
class-label vectors.

(c) AC-VAE extends C-VAE by augmenting an auxiliary classifier (AC). We include AC
in two alternative settings: (i) AC-VAE1: use latent mean vector µz as its input, or (ii)
AC-VAE2: at the end of decoder using reconstruction as its input. These are highlighted with
dotted lines. At test time we discard the AC.

Figure 2: Different VAE setups studied in this paper.
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where, in practice, we relax the class-conditional prior distribution of the latent
variable to be independent of the class, i.e. p(z|yn) = p(z) [42]. We perform
scoring in the same way as for the previous approach: we pass each test exem-
plar x through the C-VAE using genuine and spoof class vectors yn, to give
two different scores, which are then differenced as before. Note that yn may
include any other available useful metadata besides the binary bonafide/spoof
class label. In our experiments on the text-dependent ASVspoof 2017 corpus
consisting of 10 fixed passphrases, we will address the use of class labels and
phrase identifiers jointly.

Our third approach is to use an auxiliary classifier with a conditional
VAE (AC-VAE) to train a discriminative latent space. We use rψ(x) to denote
the predicted posterior probability of the bonafide class, as given by an auxiliary
classifier (AC). And, ψ denotes the parameters of AC. Note that the posterior
for the spoof class is 1 − rψ(x) as there are two classes. Inspired by [38] and
[44], we consider two different AC setups. First, following [38], we use the mean
µz as the input to an AC which is a feedforward neural network with a single
hidden layer. Second, following [44], we augment a deep-CNN as an AC to the
output of the decoder network. Here, we use the CNN architecture from [45].
From hereon, we call these two setups as AC-VAE1 and AC-VAE2 respectively.
To train the model, we jointly optimise the C-VAE loss (3) and the AC loss. In
specific, the loss for the nth training exemplar is

`n(θ,φ,ψ) = α · `n(θ,φ) + β · `n(ψ), (4)

where the nonnegative control parameters α and β weigh the relative importance
of the regularisation terms during training, set by cross-validation, and where
`n(ψ) denotes the binary cross-entropy loss for the training exemplar xn. It is
defined as

`n(ψ) = −
(
yn log rψ(xn) + (1− yn) log(1− rψ(xn))

)
(5)

Note that setting α = 1 and β = 0 in (4) gives (3) as a special case. At test time
we discard the auxiliary classifier and follow the same approach for scoring as
in the C-VAE setup discussed earlier. All the three approaches are summarized
in Fig. 2.

3.4. Gaussian mixture model (GMM)

Besides VAEs, our experiments include a standard GMM-based approach.
Similar to the VAE, the GMM is also a generative model that includes latent
variables. In the case of GMMs, x is a short-term feature vector, and z is a
one-hot vector with C components (the number of Gaussians), indicating which
Gaussian was ‘responsible’ for generating x. Let zk = (0, 0, . . . , 1, 0, . . . , 0)T be
a realization of such one-hot vector where the k-th element is 1. The conditional
and prior distributions of GMM are:

p(x|z = zk,Λ) = N (x|µk,Σk)

p(z = zk,Λ) = πk,
(6)
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where Λ = (µk,Σk, πk)Ck=1 denotes the GMM parameters (means, covariances
and mixing weights). By marginalizing the latent variable out, the log-likelihood
function of a GMM is given by:

log pΛ(x) = log
∑
z

p(z)p(x|z) = log

C∑
k=1

πkN (x|µk,Σk), (7)

used as a score when comparing test feature x against the GMM defined by Λ.
At the training stage we train two GMMs (one for bonafide, one for spoof). As
maximizing (7) does not have a closed-form solution, GMMs are trained with
the expectation-maximization (EM) algorithm [79, 82] that iterates between
component assignment (a ‘soft’ version of the true 1-hot latent variable z) and
parameter update steps.

3.5. VAEs and GMMs as latent variable models

Given the widespread use of GMMs in voice anti-spoofing studies, it is useful
to compare and contrast the two. Both are generative approaches, and com-
mon to both is the assumption of the data generation process consisting of two
consecutive steps:

1. First, one draws a latent variable zn ∼ pgt(z) from a prior distribution.

2. Second, given the selected latent variable, one draws the observation
from a conditional distribution, xn ∼ pgt(x|zn),

where the subscript ‘gt’ highlights an assumed underlying ‘true’ data generator
whose details are unknown. Both VAEs and GMMs use parametric distribu-
tions to approximate pgt(z) and pgt(x|zn). In terms of the ‘z’ variable, the main
difference between GMMs and VAEs is that in the former it is discrete (cate-
gorical) and in the latter it is continuous. As for the second step, in GMMs, one
draws the observation from a multivariate Gaussian distribution corresponding
to the selected component. In VAEs, one also samples the reconstructed obser-
vation from a Gaussian, but the mean and covariance are not selected from an
enumerable set — they are continuous and are predicted by the decoder from a
given z.

Both GMMs and VAEs are trained with the aim of finding model parame-
ters that maximize the training data log-likelihood; common to both is that no
closed-form solution for the model parameters exists. The way the two mod-
els approach the parameter estimation (learning) problem differs substantially,
however. As in any maximum likelihood estimation problem, the training ob-
servations are assumed to be i.i.d., enabling the log-likelihood function over the
whole training dataset to be written as the sum of log-likelihoods over all the
training observations. This holds both for VAE and GMM. Let us use the GMM
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as an example. For a single observation x, the log-likelihood function is:

log pΛ(x) = log
∑
z

p(x, z|Λ) =
∑
z

Q(z)
p(x, z|Λ)

Q(z)
= log Ez∼Q(z)

[
pΛ(x, z)

Q(z)

]

≥ Ez∼Q(z)

[
log

pΛ(x, z)

Q(z)

]
=
∑
z

Q(z) log
pΛ(x, z)

Q(z)

(8)
where Q(z) is any distribution, and where the inequality in the second line
is obtained using Jensen’s inequality [80] (using concavity of logarithm). The
resulting last expression, known as the evidence lower bound (ELBO), serves
as a lower bound of the log-likelihood which can be maximized more easily.
The well-known EM algorithm [82] is an alternating maximization approach
which iterates between updating the Q-distribution and the model parameters
Λ (keeping the other one fixed when updating the other one). An important
characteristic of the EM algorithm is that, in each iteration, the posterior dis-
tribution Q(z) is selected to make the inequality in (8) tight, making the ELBO
equal to the log-likelihood. This is done by choosing Q(z) to be the posterior
distribution PΛ(z|x) (using the current estimates of model parameters). Im-
portantly, this posterior can be computed in closed form. The EM algorithm
is guaranteed to converge to a local maximum of the log-likelihood. It should
be noted, however, that as the likelihood function contains local maximae [83],
global optimality is not guaranteed. The quality of the obtained GMM (in
terms of log-likelihood) depends not only on the number of EM iterations, but
the initial parameters.

In contrast to GMMs, the posterior distribution of VAEs cannot be evaluated
in closed form at any stage (training or scoring). For this reason, it is replaced
by an approximate, variational [79] posterior, qφ(z|x), leading to the ELBO
training objective of Eq. (2). As the true posterior distribution cannot be
evaluated, the EM algorithm cannot be used for VAE training [21]. The ELBO
is instead optimized using gradient-based methods. Due to all these differences,
it is difficult to compare VAEs and GMMs as models exactly. One of the main
benefits of VAEs over GMMs is that they can handle high-dimensional inputs —
here, raw spectrograms and CQCC-grams consisting of multiple stacked frames
— allowing the use of less restrictive features.

4. Experimental setup

We describe our experimental setup in this section, including description of
the evaluation datasets, features, model architectures and training, and perfor-
mance metrics.
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Table 2: Database statistics. Spkr: speaker. Bon: bonafide/genuine, spf: spoof/replay. Each
of the three subsets has non-overlapping speakers. The ASVspoof 2017 dataset has male
speakers only while the ASVspoof 2019 has both male and female speakers.

ASVspoof 2017 [64] ASVspoof 2019 PA [65]
Subset # Spkr # Bon # Spf # Spkr # Bon # Spf
Train 10 1507 1507 20 5400 48600
Dev 8 760 950 20 5400 24300
Eval 24 1298 12008 67 18090 116640
Total 42 3565 14465 107 28890 189540

4.1. Dataset

We use the anti-spoofing dataset that has been released publicly as a result of
the automatic speaker verification and spoofing countermeasures5 (ASVspoof)
challenge series that started in 2013. We focus on replay attacks that are simple
to mount, yet extremely challenging to detect reliably. We use the ASVspoof
2017 (version 2.0) [84] and ASVspoof 2019 PA [65] subconditions as our eval-
uation data. Both datasets consist of 16 kHz audio and are complementary to
each other. The former consists of real replay recordings obtained by replay-
ing part 1 of the RedDots corpus [85] through various devices and environments
[86]. The latter dataset consists of controlled, simulated replay attacks, detailed
in [87]. Both datasets are split into three subsets: training, development and
evaluation with non-overlapping speakers in each subsets. Table 2 summarizes
the key statistics of both datasets.

4.2. Features and input representation

We consider both CQCC [66] and log-power spectrogram features. We apply
a pre-processing step on the raw-audio waveforms to trim silence/noise before
and after the utterance in the training, development and test sets, following
recommendations in [45] and [76]. Following [84], we extract log energy plus 19-
dimensional static coefficients augmented with deltas and double-deltas, yielding
60-dimensional feature vectors. This is followed by cepstral mean and vari-
ance normalisation. As for the power spectrogram, we use a 512-point discrete
Fourier transform (DFT) with frame size and shift of 32 ms and 10 ms, respec-
tively, leading to N feature frames with 257 spectral bins. We use the Librosa6

library to compute spectrograms.
As our VAE models use a fixed input representation, we create a unified

feature matrix by truncating or replicating the feature frames. If N is less than
our desired number of feature frames T , we copy the original N frames from
the beginning to obtain T frames. Otherwise, if N > T , we retain the first T

5https://www.asvspoof.org/
6https://librosa.github.io/librosa/
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frames. The point of truncating (or replicating) frames in the way described
above is to ensure meaningful comparison where both models use the same
audio frames as their input. This also means that the numbers reported in this
paper are not directly7 comparable to those reported in literature; in specific,
excluding the trailing audio (mostly silence or nonspeech) after the first 1 second
will increase the error rates of our baseline GMM substantially. The issue with
the original, ‘low’ error rates relates in part to database design issues, rather
than bonafide/spoof discrimination [76, 45]. The main motivation to use the T
frames at the beginning is to build fixed-length utterance-level countermeasure
models, which is a commonly adopted design choice for anti-spoofing systems,
e.g. [15, 14].

This yields a 100 × 60-dimensional CQCC representation and a 100 × 257
power spectrogram representation for every audio file. We use the same number
of frames (T = 100) for both the GMM and VAE models. Note that GMMs
treat frames as independent observations while VAEs consider the whole matrix
as a single high-dimensional data point.

4.3. Model architecture

Our baseline GMM consists of 512 mixture components (motivated from [84])
with diagonal covariance matrices. As for the VAE, our encoder and decoder
model architecture is adapted from [88]. For a given T×D feature matrix, where
T=time frames andD=feature dimension, the encoder predicts the mean µz and
the log-variance log σ2

z that parameterize the posterior distribution qφ(z|x), by
applying a series of strided 2D convolutions [89] as detailed in Table 3. We use a
stride of 2 instead of pooling for downsampling the original input. The decoder
network architecture is summarized in Table 4. It takes a 128 dimensional
sampled z vector as input and predicts the mean µx and the log-variance log
σ2
x that parameterize the distribution through a series of transposed convolution

[89] operations. We use LeakyReLU [90] activations in all layers except the
Gaussian mean and log variance layers which use linear activations. We use
batch normalisation before applying non-linearity in both encoder and decoder
networks.

4.4. Model training and scoring

We train GMMs for 10 EM iterations with random initialisation of param-
eters. We train bonafide and spoof GMMs separately to model the respective
class distributions as discussed in Section 3.4. We train our VAE models (Sub-
section 3.3) using stochastic gradient descent with Adam optimisation [91], with
an initial learning rate of 10−4 and 16 samples as the minibatch size. We train
them for 300 epochs and stop the training if the validation loss does not improve
for 10 epochs. We apply 50% dropout to the inputs of fully connected layers in

7GMMs reported in the literature do not truncate or replicate, and this was done by us
for a fair comparison with VAEs.
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Table 3: Encoder model architecture. Conv denotes a convolutional operation. T: number of
time frames. F: number of feature dimensions. The scalar f is the size of the flattened vector
from the last Conv layer output, and represents the number of input units to µz and log σ2

z
fully connected layers. M=16 for spectrogram inputs and 32 for CQCCs. Conv 5 layer is not
applicable for CQCCs.

Layer Input Filter Stride # Filters/ Output
shape size size neurons shape

Conv 1 T×F×1 5×257 2×2 M T/2×F/2×M
Conv 2 T/2×F/2×M 5×129 2×2 2M T/4×F/4×2M
Conv 3 T/4×F/4×2M 5×65 2×2 4M T/8×F/8×4M
Conv 4 T/8×F/8×4M 5×33 2×2 8M T/16×F/16×8M
Conv 5 T/16×F/16×8M 5×17 2×2 16M T/32×F/32×16M
µz f - - 128 128

log σ2
z f - - 128 128

our auxiliary classifier. We do not apply dropout in the encoder and decoder
network.

4.5. Performance measures

We assess the bonafide-spoof detection performance in terms of the equal
error rate (EER) of each countermeasure. EER was the primary evaluation
metric of the ASVspoof 2017 challenge, and a secondary metric of the ASVspoof
2019 challenge. EER is the error rate at an operating point where the false
acceptance (false alarm) and false rejection (miss) rates are equal. A reference
value of 50% indicates the chance level.

In addition to EER, which evaluates countermeasure performance in isola-
tion from ASV, we report the tandem detection cost function (t-DCF) [92] which
evaluates countermeasure and ASV performance jointly under a Bayesian deci-
sion risk approach. We use the same t-DCF cost and prior parameters as used in
the ASVspoof2019 evaluation [87], with the x-vector probabilistic linear discrim-
inant analysis (PLDA) scores provided by the organizers of the same challenge.
The ASV system is set to its EER operating point while the (normalized) t-
DCF is reported by setting the countermeasure to its minimum-cost operating
point. We report both metrics using the official scripts released by the organiz-
ers. A reference value 1.00 of (normalized) t-DCF indicates an uninformative
countermeasure.

4.6. Experiments

We perform several experiments using different VAE setups using CQCCs
and log-power spectrogram inputs as described in Subsection 3.3. We also train
baseline GMMs for comparing VAE performance using the same input CQCC
features. While training VAEs with an auxiliary classifier on the µz input,
we use 32 neuron units on the FC layer. We do not use the entire training
and development audio files for training and model validation on the ASVspoof
2019 dataset, but adopt custom training and development protocols used in
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Table 4: Decoder model architecture. ConvT denotes a transposed convolutional operation.
* denotes zero padding operation applied to match the input shape. The Gaussian layers µx

and log σ2
x use Conv operation. The initial values of H and W depend on the number of

neurons (#neurons) in the FC layer which is 12288 for spectrograms and 2304 for CQCCs.

Layer Input Filter Stride # Filters Output
shape size size neurons shape

FC 128 - - #neurons #neurons
ConvT H×W×128 5×10 2×2 64 2H×2W×64
ConvT 2H×2W×64 5×20 2×2 32 4H×4W×32
ConvT* 5H×4W×32 5×20 2×2 16 10H×8W×16
ConvT* 10H×8W×16 5×20 2×2 8 20H×16W×8
µx* 100×F×8 5×5 1×1 1 100×F×1

log σ2
x∗ 100×F×8 5×5 1×1 1 100×F×1

Table 5: EER vs dimension of latent space. Showing the effect of latent dimension on the
performance metric for the C-VAE model when trained using CQCCs and spectrograms.
Shown results are on the evaluation set. Shown results are on the ASVspoof 2017 dataset.

Spectrogram CQCC
Latent Dimension EER t-DCF EER t-DCF

8 31.20 0.8642 33.35 0.8584
16 26.88 0.7551 33.74 0.8542
32 36.65 0.9383 30.81 0.7909
64 29.73 0.7650 29.52 0.7325
128 29.43 0.7303 29.27 0.7222
256 29.80 0.7609 28.87 0.6962
512 25.73 0.6662 28.42 0.7033

[76] that showed good generalisation on the ASVspoof 2019 test dataset during
the recent ASVspoof 2019 evaluations. Note, however, that all the evaluation
portion results are reported on the standard ASVspoof protocols. In the next
section we describe our experimental results.

5. Results and discussion

5.1. Impact of latent space dimensionality

We first address the impact of latent space dimensionality on the ASVspoof
2017 corpus. To keep computation time manageable, we focus only on the
C-VAE variant. The results, for both CQCC and spectrogram features, are
summarized in Table 5. We observe an overall decreasing trend in EER with
increased latent space dimensionality, as expected. All the error rates are rel-
atively high, which indicates general difficulty of our detection task. In the
remainder of this study, we fix the latent space dimensionality to d = 128 as a
suitable trade-off in EER and computation.
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Table 6: Performance of GMM (baseline) and different VAE models using CQCCs as input
feature. AC-VAE1: augmenting classifier on top of the latent space. AC-VAE2: augmenting
classifier at the output of the decoder. Highlighted in bold indicates the best performance
among VAE variants.

ASVspoof 2017 ASVspoof 2019 PA
Dev Eval Dev Eval

Model EER t-DCF EER t-DCF EER t-DCF EER t-DCF
GMM 19.07 0.4365 22.6 0.6211 43.77 0.9973 45.48 0.9988
VAE 29.2 0.7532 32.37 0.8079 45.24 0.9855 45.53 0.9978

C-VAE 18.1 0.4635 28.1 0.7020 34.06 0.8129 36.66 0.9104
AC-VAE1 21.8 0.4914 29.3 0.7365 34.73 0.8516 36.42 0.9036
AC-VAE2 17.78 0.4469 29.73 0.7368 34.87 0.8430 36.42 0.8963

5.2. Comparing the performance of different VAE setups with GMM

Our next experiment addresses the relative performance of different VAE
variants and their relation to our GMM baseline. As GMMs cannot be used
with high-dimensional spectrogram inputs, the results are shown only for the
CQCC features. This experiment serves to answer the question on which VAE
variants are the most promising, and whether VAEs could be used to replace
the standard GMM as a back-end classifier. The results for both the ASVspoof
2017 and 2019 (PA) datasets are summarized in Table 6.

Baseline GMM. On the ASVspoof 2017 dataset, the GMM displays EERs of
19.07% and 22.6% on the development and evaluation sets, respectively. Note
that our baseline is completely different from the CQCC-GMM results of [84] for
two reasons. First, we use a unified time representation of the first 100 frames
obtained either by truncating or copying time frames, for reasons explained
earlier. Second, we remove the leading and trailing nonspeech/silence from
every utterance, to mitigate a dataset-related bias identified in [45]: the goal of
our modified setup is to ensure that our models focus on actual factors, rather
than database artefacts.

On the ASVspoof 2019 PA dataset, the performance of the GMM base-
line8 is nearly random as indicated by both metrics. The difficulty of the task
and our modified setup to suppress database artifacts both contribute to high
error rates. The results are consistent with our earlier findings in [76]. The
two separate GMMs may have learnt similar data distributions. Note that the
similarly-trained naive VAE displays similar near-random performance.

VAE variants. Let us first focus on the ASVspoof 2017 results. Our first,
naive VAE approach falls systematically behind our baseline GMM. Even if

8For sanity check, we trained a GMM without removing silence (and using all frames per
utterance) and obtained a performance similar to the official GMM baseline of the ASVspoof
2019 challenge. On the development set, our GMM now shows an EER of 10.06% and t-DCF
of 0.1971 which is slightly worse than official baseline (EER = 9.87 and t-DCF =0.1953).
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Table 7: Comparing VAE and C-VAE performance on the ASVspoof 2017 dataset using the
log power spectrograms as input features.

Dev Eval
Model EER t-DCF EER t-DCF
VAE 32.12 0.8037 36.92 0.9426

C-VAE 22.81 0.5219 29.52 0.7302

both the bonafide and spoof VAE models display decent reconstructions, they
lack the ability to retain discriminative information in the latent space when
trained in isolation from each other. Further, remembering that VAE training
optimizes only a lower bound of the log-likelihood function, it might happen
that the detection score formed as a difference of these ‘inexact’ log-likelihoods
either under- or overshoots the true log-likelihood ratio — but there is no way
of knowing which way it is.

The C-VAE model, however, shows encouraging results compared with all
the other VAE variants considered. This suggests that conditioning both the en-
coder and decoder with class labels during VAE training is helpful. Supposedly
a shared, conditional C-VAE model yields ‘more compatible’ bonafide and spoof
scores when we form the detection score. The C-VAE model shows comparable
detection performance to the GMM baseline on the development set, though it
performs poorly on the evaluation set.

The VAE variants with an auxiliary classifier outperform the naive VAE
but are behind C-VAE: both AC-VAE1 and AC-VAE2 display slightly degraded
performance over C-VAE on the evaluation set. While AC-VAE1 and AC-VAE2

show comparable performance on the evaluation set, on the development set
AC-VAE2 outperforms all other VAE variants in both metrics. This suggests
overfitting on the development set: adding an auxiliary classifier increases the
model complexity as the number of free parameters to be learned increases
substantially. Apart from having to learn optimal model parameters from a
small training dataset, another challenge is to find an optimal value for the
control parameters α and β in (4).

On the ASVspoof 20199 dataset our C-VAE model now outperforms the
naive VAE and the GMM baseline. By conditioning the encoder and decoder
networks with class labels, we observe an absolute improvement of about 10%
over the naive VAE on both the development and the evaluation sets. Unlike
in the ASVspoof 2017 dataset, the auxiliary classifier VAE now offers some
improvement on the evaluation set. This might be due to much larger number
of training examples available in the ASVspoof 2019 dataset (54000 utterances)

9We would like to stress that we do not use the original training and development protocols
for model training and validation. Instead, we use custom, but publicly released protocols
available at https://github.com/BhusanChettri/ASVspoof2019 from our prior work [76] that
helped to improve generalisation during the ASVspoof 2019 challenge. However, during test-
ing, we report test results on the standard development and evaluation protocols.
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in comparison to the ASVspoof 2017 training set (3014 utterances).
It should be further noted that while training models on ASVspoof 2019

dataset, we used the hyper-parameters (learning rate, mini-batch size, con-
trol parameters including the network architecture) that were optimised on the
ASVspoof 2017 dataset. This was done to study how well the architecture
and hyper-parameters generalize from one replay dataset (ASVspoof 2017) to
another one (ASVspoof 2019).

The results in Table 6 with the CQCC features indicate that the C-VAE is
the most promising variant for further experiments. While adding the auxiliary
classifier improved performance in a few cases, the improvements are modest
relative to the added complexity. Therefore, in the remainder of this paper, we
focus on the C-VAE unless otherwise stated. Also, we focus testing our ideas on
the ASVspoof 2017 replay dataset for computational reasons. Next, to confirm
the observed performance improvement of C-VAE over naive VAE, we further
train both models using raw log power-spectrogram features. The results in
Table 7 confirm the anticipated result in terms of both metrics.

5.3. Conditioning VAEs beyond class labels

The results so far confirm that the C-VAE outperforms the naive VAE by
a wide margin. We now focus on multi-class conditioning using C-VAEs. To
this end, our possible conditioning variables could include speaker and sentence
identifiers. However, speakers are different across the training and test sets in
both ASVspoof 2017 and ASVspoof 2019, preventing the use of speaker condi-
tioning. Further, the phrase identities of the ASVspoof 2019 PA dataset are not
publicly available. For these reasons we restrict our focus on the 10 common
passphrases in the ASVspoof 2017 dataset shared across training, development
and evaluation data. The contents of each phrase (S01 through S10) are pro-
vided in the caption of Fig. 3. The number of bonafide and spoof utterances
for these passphrases in the training and development sets are equally balanced.
We therefore use a 20-dimensional one-hot vector to represent multi-class con-
dition. The first 10 labels correspond to bonafide sentences S01 through S10
and the remaining 10 to spoofed utterances. Everything else about training and
scoring the C-VAE model remains the same as above, except for the use of the
20-dimensional (rather than 2-dimensional) one-hot vector.

We first visualise how the latent space is distributed across the 10 differ-
ent phrases of the ASVspoof 2017 training set. Fig. 3 shows the t-SNE [93]
plots for 10 different utterances in the ASVspoof 2017 dataset. The clear dis-
tinction between different phrases suggests that the latent space preserves the
structure and identity of different sentences of the dataset. This suggests that
choosing the sentence identity for conditioning the VAE might be beneficial to-
wards improving performance; such model is expected to learn phrase-specific
bonafide-vs-spoof discriminatory cues.

Table 8 summarises the results. The C-VAE trained on spectrogram fea-
tures with multi-class conditioning shows a substantial improvement over two-
class conditioning. This suggests that the network now benefits exploiting rel-
evant information present across different passphrases, which may be difficult
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Figure 3: Visualisation of the latent space for 10 different sentences in the ASVspoof 2017
training set by C-VAE with genuine-class conditioning. S01: ‘My voice is my password’. S02:
‘OK Google’. S03: ‘Only lawyers love millionaires’. S04: ‘Artificial intelligence is for real’.
S05: ‘Birthday parties have cupcakes and ice cream’. S06: ‘Actions speak louder than words’.
S07: ‘There is no such thing as a free lunch’. S08: ‘A watched pot never boils’. S09: ‘Jealousy
has twenty-twenty vision’. S10: ‘Necessity is the mother of invention’.

from binary class conditioning. For the CQCC features, however, we have the
opposite finding: while EER is slightly decreased on the evaluation set with
multi-class conditioning, overall it shows degraded performance. One possible
interpretation is that CQCCs are a compact feature representation optimized
specifically for anti-spoofing. CQCCs may lack phrase-specific information rele-
vant for anti-spoofing which is retained by the richer and higher-dimensional raw
spectrogram. To sum up, the C-VAE trained on raw spectrograms with multi-
class conditioning offers substantial improvement over two-class conditioning in
comparison to CQCC input features.

5.4. Qualitative results

A relevant question is whether or not the latent space features z have some
clear meaning in terms of human or spoofed speech parameters, or any other rel-
evant information that helps us derive some understanding about the underlying
data. To this end, we analyse the latent space through 2D visualisations using
the t-SNE algorithm. We aim to understand how the latent space is distributed
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Table 8: Comparing the performance of the C-VAE model trained using two-class and multi-
class (10 bonafide and 10 spoof phrases) conditioning. Shown results are on the ASVspoof
2017 v2.0 dataset using CQCC and spectrogram inputs. For two-class conditioning we simply
use the class labels yielding 2 dimensional one-hot vector. For multi-class conditioning we
use the 10 different passphrases of the ASVspoof 2017 v2.0 dataset. This results in a 20
dimensional one-hot vector (10 for bonafide and 10 for spooof). The results for two-class
conditioning (the first row) are included from Table 6 and 7 for better readability.

CQCC Spectrogram
Dev Eval Dev Eval

Conditioning EER t-DCF EER t-DCF EER t-DCF EER t-DCF
Two-class 18.1 0.4635 28.1 0.7020 22.81 0.5219 29.52 0.7302
Multi-class 19.77 0.4961 27.88 0.7390 19.65 0.4324 25.48 0.6631

across different speakers and between genders. We do this on the ASVspoof
2019 dataset, as the 2017 dataset only has male speakers. Fig. 4 shows t-SNE
plots for 5 male and 5 female speakers on the ASVspoof 2019 PA training set
chosen randomly.

Subfigures in the first row of Fig. 4 suggest that the latent space has learned
quite well to capture speaker and gender specific information. We further anal-
yse bonafide and different attack conditions per gender, taking PA 0082 and
PA 0079 — one male and female speaker randomly from the pool of 10 speak-
ers we considered. Fig. 4, second row illustrates this. We use letters A-I to
indicate bonafide and 9 different attack conditions whose original labels are as
follows. A: bonafide, B: ‘BB’, C: ‘BA’, D: ‘CC’, E: ‘AB’, F: ‘AC’, G: ‘AA’,
H: ‘CA’, I: ‘CB’, J: ‘BC’. See [65] for details of these labels. From Fig. 4, we
observe overlapping attacks within a cluster, and spread of these attacks across
different clusters. The bonafide audio examples, denoted by letter A are heavily
overlapped by various spoofed examples. This gives an intuition that the latent
space is unable to preserve much discriminative information due to the nature
of the task, and rather, it might be focusing on generic speech attributes such
as acoustic content, speaker speaking style to name a few, to be able to generate
a reasonable reconstruction — as depicted in Fig 5.

5.5. VAE as a feature extractor

The results shown in Fig. 5 indicate that our VAEs have learnt to recon-
struct spectrograms using prominent acoustic cues and, further, the latent codes
visualized in Fig. 3 indicate strong content dependency. The latent space in a
VAE may therefore focus on retaining information such as broad spectral struc-
ture and formants that help in increasing the data likelihood leading to good
reconstruction. But in spoofing attack detection (especially the case of high-
quality replay attacks) we are also interested in detail — the part not modeled
by a VAE. This lead the authors to consider an alternative use case of VAE as
a feature extractor.

The idea is illustrated in Fig. 6. We use our pre-trained C-VAE model (with
bonafide-class conditioning) to obtain a new feature representation that we dub
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Figure 4: t-SNE visualisations of latent space for 5 male and 5 female speaker utterances drawn
randomly from the ASVspoof 2019 PA training set. (a) Top left: represents 10 different
speaker identities. (b) Top right: male and female clusters (c) Bottom left: distribution of
bonafide and attack conditions for a male speaker PA 0082. (d) Bottom right: same as in
(c) but for a female speaker PA 0079. A-I indicate bonafide and 9 different attack conditions
whose original labels are as follows. A: bonafide, B: ‘BB’, C: ‘BA’, D: ‘CC’, E: ‘AB’, F: ‘AC’,
G: ‘AA’, H: ‘CA’, I: ‘CB’, J: ‘BC’. See [65] for details of these labels.

as VAE residual, defined as the absolute difference of the input spectrogram
and the reconstructed spectrogram by the C-VAE model. We extract the VAE
residual features from all training utterances and train a new classifier back-end
(here, a CNN) using these features as input. We adopt the CNN architecture
and training from [45]. During testing, we use the CNN output activation
(sigmoid activation) as our spoof detection score. Though another recent study
also used VAEs for feature extraction [40], our approach is different; the authors
of [40] used the latent variable from a pretrained VAE model, while we use the
residual of the original and reconstructed inputs.

Table 9 summarizes the results. Numbers in the second row correspond
to our proposed approach of using VAE residual features and training a sep-
arate classifier. We also include C-VAE results from initial approach (C-VAE
as a back-end) from the third row of Table 6 for comparison. For contrastive
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(a) Audio: D 1000022 with bonafide-class condi-
tioning

(b) Audio: D 1000022 with spoof-class condition-
ing

(c) Audio: D 1001049 with bonafide-class condi-
tioning

(d) Audio: D 1001049 with spoof-class condition-
ing

Figure 5: Visualisation of the reconstructed spectrograms by the C-VAE. Shown are the
reconstruction of bonafide (D 1000022) and spoof (D 1001049) audio examples using bonafide
and spoof class conditioning respectively. The audio examples are taken from the ASVspoof
2017 development set.
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Figure 6: VAE as a feature extractor. A pretrained C-VAE model first produces a recon-
structed input. The difference of the original and reconstructed input is used as a new feature
representation. This feature representation is obtained for the entire dataset and a new clas-
sifier (CNN in this case) is trained on the training set features. The development set is used
for model validation.

Table 9: C-VAE performance comparison under different settings. Results shown in the first
row are taken from Table 7 second row for comparison — C-VAE trained on spectrograms.
The second row shows results when the same C-VAE model (with bonafide class conditioning)
is used as a feature extractor. The third row shows the results when the same CNN classifier
is trained on spectrogram input so as to see how it compares with the one trained on VAE
residuals. Results shown are on ASVspoof 2017 dataset.

Dev Eval
Features Model EER t-DCF EER t-DCF

Spectrogram C-VAE 22.81 0.5219 29.52 0.7302
VAE residual CNN 13.16 0.3438 17.32 0.4293
Spectrogram CNN 10.82 0.2877 16.03 0.4461

purposes, we train another CNN classifier (using the same architecture) using
the original spectrogram directly. Using VAE residuals and training a sepa-
rate classifier outperforms the back-end approach on both metrics and on both
the development and evaluation sets. The residual approach, however, remains
behind the CNN trained directly on the original spectrogram, on the develop-
ment set. On the evaluation set, it achieves the lowest t-DCF and displays a
comparable EER. The small performance gap (in relative terms) between the
development and evaluation sets for the VAE residual approach suggests good
generalisation.

Although the proposed VAE residual approach did not outperform the raw-
spectrogram CNN, the results obtained are encouraging and show potential for
further investigation. In fact, given the similar performance of the original and
VAE residual spectrogram features, we interpret the results to mean that most
of the relevant information for discriminating bonafide and replay utterances
(on this data) lies in the residual or ‘noise’ part of the spectrogram. It is
noteworthy that heuristic ideas inspired directly by simple visualizations such
as Figs. 3 and 5 lead to boosted performance. Finally, recalling our initial
motivations, VAE leads to a generative model (unlike CNN) that allows data
sampling and obtaining uncertainty of the latent space representation. These
favorable properties of VAEs suggest further studies towards more versatile
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spoofing countermeasure solutions where the semantics, sanity and stability of
the learned feature representation can be easily explored.

6. Conclusions and future work

Inspired by the successful use of GMMs, a classical generative model, as
a backend in spoofing detection for ASV, we performed a feasibility study of
using an alternative generative model – deep generative VAEs – as a backend
classifier. Our first study using two separate VAEs suggests that it is difficult
to capture discriminative information when the models are trained using only
one-class data. Both the bonafide and spoof VAEs seem to focus on retaining
information relevant for data reconstruction while giving less attention on class-
discriminative information. As a result, the latent space in both bonafide and
spoof VAEs appears to capture common prominent characteristics of bonafide
and spoofed speech, making the detection task difficult. Nonetheless, our qual-
itative results indicate that both our bonafide and spoof VAEs yield reasonable
reconstruction of the input data.

Our second approach of training a single conditional VAE (C-VAE) by con-
ditioning the encoder and decoder networks by class-label vectors shows far
more encouraging results. The performance of our C-VAE models on both the
ASVspoof 2017 and ASVspoof 2019 datasets show remarkable improvement in
comparison to the naive VAE approach. Using an auxiliary classifier (AC) did
not help much. We did not observe substantial improvement in detection per-
formance on the ASVspoof 2017 dataset, though we observed some performance
gain on the ASVspoof 2019 dataset, suggesting the importance of training set
size for improved generalisation.

Despite different dataset sizes in the ASVspoof 2017 and ASVspoof 2019
datasets, we find that the model hyper-parameters tuned on the ASVspoof
2017 dataset worked quite well when applied on the 2019 dataset, showing con-
sistency of our findings with C-VAE models. However, optimisation of network
architecture and model hyper-parameters has not been fully explored in the
present study, leaving scope for further improvements.

To sum up, based on both the observed detection performance and archi-
tecture complexity considerations, from the three VAE back-end variants con-
sidered (Fig. 2), the authors recommend potential future work to focus on
conditional VAE (C-VAE). In fact, we obtained promising results by further
conditioning C-VAE using pass-phrase label. This warrants future studies with
other conditioning variables such as speaker identity, gender, channel. Frame-
level phone labels obtained through forced alignment procedure might also be
interesting with alternative frame-by-frame VAE architectures.

Our primary focus has been to study the feasibility of VAE as a back-end
classifier, but we also included a preliminary study on an alternative use case for
spectrogram residual feature extraction. The front-end approach demonstrated
substantial improvement over the VAE back-end use case, which warrants fur-
ther studies. In future work, we also plan to focus on investigating alternative
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architectures for encoder and decoder networks involving recurrent layers. Ex-
periments for the detection of text-to-speech and voice-conversion attacks would
be interesting as well.

Acknowledgements

This work was supported in part by the Academy of Finland (Proj. No.
309629 — entitled “NOTCH: NOn-cooperaTive speaker CHaracterization”).
EB is supported by RAEng Research Fellowship RF/128 and a Turing Fel-
lowship. We gratefully acknowledge the support of NVIDIA Corporation with
the donation of the Titan V GPU used for this research.

References

[1] D. A. Reynolds, Speaker identification and verification using Gaussian mix-
ture speaker models, Speech communication 17 (1) (1995) 91–108.

[2] M. Sahidullah, H. Delgado, M. Todisco, T. Kinnunen, N. Evans, J. Yamag-
ishi, K.-A. Lee, Introduction to Voice Presentation Attack Detection and
Recent Advances (2019). arXiv:1901.01085.

[3] ISO/IEC 30107-1:2016, Information technology - Biometric presentation
attack detection - part 1: Framework (2016).
URL https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-1:

ed-1:v1:en.

[4] T. Masuko, T. Hitotsumatsu, K. Tokuda, T. Kobayashi, On The Security
of Hmm-Based Speaker Verification Systems Against Imposture Using Syn-
thetic Speech, in: In Proceedings of the European Conference on Speech
Communication and Technology, 1999, pp. 1223–1226.

[5] B. L. Pellom, J. H. L. Hansen, An experimental study of speaker verification
sensitivity to computer voice-altered imposters, in: Proc. ICASSP, March
15-19, 1999, pp. 837–840.

[6] Z. Wu, S. Gao, E. S. Cling, H. Li, A study on replay attack and anti-
spoofing for text-dependent speaker verification, in: Asia-Pacific Signal and
Information Processing Association, 2014 Annual Summit and Conference
(APSIPA), IEEE, 2014, pp. 1–5.

[7] L. Y. W., W. M., T. D., Vulnerability of speaker verification to voice mim-
icking, in: Proc. of International symposium on Intelligent Multimedia,
Video & Speech Processing, Hongkong, 2004.

[8] E. Khoury, T. Kinnunen, A. Sizov, Z. Wu, S. Marcel, Introducing i-vectors
for joint anti-spoofing and speaker verification, in: Proc. INTERSPEECH,
2014, pp. 61–65.

27

http://arxiv.org/abs/1901.01085
https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-1:ed-1:v1:en.
https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-1:ed-1:v1:en.
https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-1:ed-1:v1:en.
https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-1:ed-1:v1:en.


[9] S. Novoselov, A. Kozlov, G. Lavrentyeva, K. Simonchik, V. Shchemelinin,
STC anti-spoofing systems for the ASVspoof 2015 challenge, in: Proc.
ICASSP, 2016, pp. 5475–5479.

[10] J. Williams, J. Rownicka, Speech Replay Detection with x-Vector Attack
Embeddings and Spectral Features, in: Proc. INTERSPEECH, 2019.

[11] T. B Patel, H. A. Patil, Combining evidences from mel cepstral, cochlear
filter cepstral and instantaneous frequency features for detection of natural
vs. spoofed speech, in: Proc. INTERSPEECH, 2015, pp. 2062–2066.

[12] H. Muckenhirn, M. Magimai-Doss, S. Marcel, End-to-end convolutional
neural network-based voice presentation attack detection, in: IEEE Inter-
national Joint Conference on Biometrics (IJCB), 2017, pp. 335–341.

[13] H. Dinkel, N. Chen, Y. Qian, K. Yu, End-to-end spoofing detection with
raw waveform cldnns, in: Proc. ICASSP, 2017, pp. 4860–4864.

[14] C. Zhang, C. Yu, J. H. Hansen, An Investigation of Deep Learning Frame-
works for Speaker Verification Anti-spoofing, IEEE Journal of Selected Top-
ics in Signal Processing.

[15] G. Lavrentyeva, S. Novoselov, E. Malykh, A. Kozlov, K. Oleg,
V. Shchemelinin, Audio Replay Attack Detection with Deep Learning
Frameworks, in: Proc. INTERSPEECH, 2017, pp. 82–86.

[16] S. Davis, P. Mermelstein, Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences, IEEE
Transactions on Acoustics, Speech, and Signal Processing 28 (4) (1980)
357–366.

[17] P. Nagarsheth, E. Khoury, K. Patil, M. Garland, Replay Attack Detection
Using DNN for Channel Discrimination, in: Proc. INTERSPEECH, 2017,
pp. 97–101.

[18] I. Jolliffe, J. Cadima, Principal component analysis: A review and re-
cent developments, Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 374 (2016) 20150202.
doi:10.1098/rsta.2015.0202.

[19] A. Tharwat, T. Gaber, A. Ibrahim, A. E. Hassanien, Linear discriminant
analysis: A detailed tutorial, Ai Communications 30 (2017) 169–190,. doi:
10.3233/AIC-170729.

[20] I. Goodfellow, J. Pouget-Abadie, B. X. M. Mirza, D. Warde-Farley,
S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Ad-
vances in neural information processing sys- tems, 2014, pp. 2672–2680.

[21] D. P. Kingma, M. Welling, Auto-encoding variational bayes (2013). arXiv:
1312.6114.

28

http://dx.doi.org/10.1098/rsta.2015.0202
http://dx.doi.org/10.3233/AIC-170729
http://dx.doi.org/10.3233/AIC-170729
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114


[22] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, K. Kavukcuoglu, Wavenet: A generative model
for raw audio (2016). arXiv:1609.03499.

[23] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, L. Carin, Variational
autoencoder for deep learning of images, labels and captions, in: Advances
in neural information processing sys- tems, 2016, p. 2352–2360.

[24] I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez,
A. Courville, Pixelvae: A latent variable model for natural images (2016).
arXiv:1611.05013.

[25] J. Walker, C. Doersch, A. Gupta, M. Hebert, An uncertain future: Fore-
casting from static images using variational autoencoders (2016). arXiv:

1606.07873.

[26] S. Tulyakov, M.-Y. Liu, X. Yang, J. Kautz, Mocogan: Decomposing motion
and content for video generation (2017). arXiv:1707.04993.

[27] S. Subramanian, S. Rajeswar, F. Dutil, C. Pal, A. Courville, Adversarial
generation of natural language, in: Proceedings of the 2nd Workshop on
Representation Learning for NLP, Association for Computational Linguis-
tics, Vancouver, Canada, 2017, pp. 241–251. doi:10.18653/v1/W17-2629.

[28] M. Blaauw, J. Bonada, Modeling and Transforming Speech using Varia-
tional Autoencoders, in: Proc. INTERSPEECH, 2016, pp. 1770–1774.

[29] W. N. Hsu, Y. Zhang, J. Glass, Unsupervised learning of disentangled and
interpretable representations from sequential data, in: Advances in Neural
Information Processing Systems, 2017.

[30] W. N. Hsu, Y. Zhang, J. Glass, Learning latent representations for speech
generation and transformation, in: Proc. INTERSPEECH, 2017, pp. 1273–
1277.

[31] P. Esling, A. Chemla–Romeu-Santos, A. Bitton, Generative timbre spaces
with variational audio synthesis, in: Proc. of the 21st International Con-
ference on Digital Audio Effects, 2018.

[32] S. Leglaive, U. Simsekli, A. Liutkus, L. Girin, R. Horaud, Speech en-
hancement with variational autoencoders and alpha-stable distributions,
in: Proc. ICASSP, IEEE, Brighton, United Kingdom, 2019, pp. 541–545.

[33] H. Kameoka, L. Li, S. Inoue, S. Makino, Semi-blind source separation with
multichannel variational autoencoder (2018). arXiv:1808.00892.

[34] S. Tan, K. C. Sim, Learning utterance-level normalisation using Variational
Autoencoders for robust automatic speech recognition, in: IEEE Spoken
Language Technology Workshop (SLT), 2016, pp. 43–49.

29

http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1611.05013
http://arxiv.org/abs/1606.07873
http://arxiv.org/abs/1606.07873
http://arxiv.org/abs/1707.04993
http://dx.doi.org/10.18653/v1/W17-2629
http://arxiv.org/abs/1808.00892


[35] S. Feng, T. Lee, Improving Unsupervised Subword Modeling via Disen-
tangled Speech Representation Learning and Transformation, in: Proc.
INTERSPEECH, 2019.

[36] Z. Wu, S. Wang, Y. Qian, K. Yu, Data Augmentation using Variational
Autoencoder for Embedding based Speaker Verification, in: Proc. INTER-
SPEECH, 2019.

[37] Y. Zhang, L. Li, D. Wang, VAE-based regularization for deep speaker em-
bedding, in: Proc. INTERSPEECH, 2019.

[38] Y. Tu, M. W. Mak, J. T. Chien, Variational Domain Adversarial Learning
for Speaker Verification, in: Proc. INTERSPEECH, 2019.

[39] Y. Zhang, S. Pan, L. He, Z. Ling, Learning latent representations for style
control and transfer in end-to-end speech synthesis, in: Proc. ICASSP,
2019, pp. 6945–6949.

[40] Y. Yang, H. Wang, H. Dinkel, Z. Chen, S. Wang, Y. Qian, K. Yu, The
SJTU Robust Anti-spoofing System for the ASVspoof 2019 Challenge, in:
Proc. INTERSPEECH, 2019.

[41] H. Huang, Z. Li, R. He, Z. Sun, T. Tan, IntroVAE: Introspective Vari-
ational Autoencoders for Photographic Image Synthesis, in: Proc. of the
32nd International Conference on Neural Information Processing Systems,
NIPS’18, Curran Associates Inc., USA, 2018, pp. 52–63.

[42] K. Sohn, H. Lee, X. Yan, Learning structured output repre- sentation using
deep conditional generative models, in: Advances in Neural Information
Processing Systems, 2015, p. 3483–3491.

[43] L. Li, H. Kameoka, S. Makino, Fast MVAE: Joint Separation and Classi-
fication of Mixed Sources Based on Multichannel Variational Autoencoder
with Auxiliary Classifier, in: Proc. ICASSP, 2019, pp. 546–550.

[44] H. Kameoka, T. Kaneko, K. Tanaka, N. Hojo, ACVAE-VC: Non-parallel
many-to-many voice conversion with auxiliary classifier variational autoen-
coder (2018). arXiv:1808.05092.

[45] B. Chettri, S. Mishra, B. L. Sturm, E. Benetos, Analysing the Predictions
of a CNN-based Replay Spoofing Detection System, in: IEEE International
Workshop on Spoken Language Technology (SLT), 2018.

[46] X. Wu, R. He, Z. Sun, T. Tan, A light cnn for deep face representation
with noisy labels (2015). arXiv:1511.02683.

[47] Y. Qian, N. Chen, K. Yu, Deep features for automatic spoofing detection,
Speech Communication.

30

http://arxiv.org/abs/1808.05092
http://arxiv.org/abs/1511.02683


[48] K. Sriskandaraja, V. Sethu, E. Ambikairajah, Deep Siamese Architecture
Based Replay Detection for Secure Voice Biometric, in: Proc. INTER-
SPEECH, 2018.

[49] R. Bialobrzeski, M. Kosmiderm, M. Matuszewski, M. Plata, A. Rakowski,
Robust Bayesian and Light Neural Networks for Voice Spoofing Detection,
in: Proc. INTERSPEECH, 2019.

[50] H. Zeinali, T. Stafylakis, J. R. Georgia Athanasopoulou, I. Gkinis, L. Bur-
get, J. H. Cernocky, Detecting Spoofing Attacks Using VGG and SincNet:
BUT-Omilia Submission to ASVspoof 2019 Challenge, in: Proc. INTER-
SPEECH, 2019.

[51] A. Gomez-Alanis, A. M. Peinado, J. A. Gonzalez, A. M. Gomez, A Light
Convolutional GRU-RNN Deep Feature Extractor for ASV Spoofing De-
tection, in: Proc. INTERSPEECH, 2019.

[52] S.-Y. Chang, K.-C. Wu, C.-P. Chen, transfer-Representation Learning for
Detecting Spoofing Attacks with Converted and Synthesized Speech in Au-
tomatic Speaker Verification System, in: Proc. INTERSPEECH, 2019.

[53] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recog-
nition (2015). arXiv:1512.03385.

[54] W. Cai, H. Wu, D. Cai, M. Li, The DKU Replay Detection System for the
ASVspoof 2019 Challenge: On Data Augmentation, Feature Representa-
tion, Classification, and Fusion, in: Proc. INTERSPEECH, 2019.

[55] R. Li, M. Zhao, Z. Li, L. Li, Q. Hong, Anti-Spoofing Speaker Verification
System with Multi-Feature Integration and Multi-Task Learning, in: Proc.
INTERSPEECH, 2019.

[56] Z. Chen, Z. Xie, W. Zhang, X. Xu, ResNet and Model Fusion for Automatic
Spoofing Detection, in: Proc. INTERSPEECH, 2017, pp. 102–106.

[57] C.-I. Lai, N. Chen, J. Villalba, N. Dehak, ASSERT: Anti-Spoofing with
Squeeze-Excitation and Residual neTworks, in: Proc. INTERPSEECH,
2019.

[58] M. Alzantot, Z. Wang, M. B. Srivastava, Deep Residual Neural Networks
for Audio Spoofing Detection, in: Proc. INTERSPEECH, 2019.

[59] J. weon Jung, H. jin Shim, H.-S. Heo, H.-J. Yu, Replay attack detection
with complementary high-resolution information using end-to-end DNN for
the ASVspoof 2019 Challenge, in: Proc. INTERSPEECH, 2019.

[60] W. Cai, C. Danwei, W. Liu, G. Li, M. Li, Countermeasures for Auto-
matic Speaker Verification Replay Spoofing Attack : On Data Augmenta-
tion, Feature Representation, Classification and Fusion, in: Proc. INTER-
SPEECH, 2017, pp. 17–21.

31

http://arxiv.org/abs/1512.03385


[61] M. Liu, L. Wang, J. Dang, S. Nakagawa, H. Guan, X. Li, Replay Attack
Detection Using Magnitude and Phase Information with Attention-based
Adaptive Filters, in: Proc. ICASSP, 2019, pp. 6201–6205.

[62] C. Lai, A. Abad, K. Richmond, J. Yamagishi, N. Dehak, S. King, Attentive
Filtering Networks for Audio Replay Attack Detection, in: Proc. ICASSP,
2019, pp. 6316–6320.

[63] Z. Wu, T. Kinnunen, N. Evans, J. Yamagishi, C. Hanilci, M. Sahidullah,
A. Sizov, ASVspoof 2015: the First Automatic Speaker Verification Spoof-
ing and Countermeasures Challenge, in: Proc. INTERSPEECH, 2015.

[64] T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco, N. Evans, J. Yam-
agishi, K. A. Lee, The ASVspoof 2017 Challenge: Assessing the Limits of
Replay Spoofing Attack Detection, in: Proc. INTERSPEECH, 2017.

[65] M. Todisco, X. Wang, V. Vestman, M. Sahidullah, H. Delgado, A. Nautsh,
J. Yamagishi, N. Evans, T. Kinnunen, K. A. Lee, ASVspoof 2019: Future
Horizons in Spoofed and Fake Audio Detection, in: Proc.INTERSPEECH,
2019.

[66] M. Todisco, H. Delgado, N. Evans, Constant Q cepstral coefficients: A
spoofing countermeasure for automatic speaker verification, Computer
Speech and Language, Volume 45, (2017) Pages 516–535.

[67] J. Yang, R. K. Das, H. Li, Extended Constant-Q Cepstral Coefficients for
Detection of Spoofing Attacks, in: 2018 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC),
2018, pp. 1024–1029.

[68] H. A. Patil, M. R. Kamble, T. B. Patel, M. Soni, Novel Variable Length
Teager Energy Separation Based Instantaneous Frequency Features for
Replay Detection, in: Proc. INTERSPEECH, 2017.

[69] M. R. Kamble, H. Tak, H. A. Patil, Effectiveness of Speech Demodulation-
Based Features for Replay Detection, in: Proc. INTERSPEECH, 2018.

[70] B. Wickramasinghe, S. Irtza, E. Ambikairajah, J. Epps, Frequency domain
linear prediction features for replay spoofing attack detection, in: Proc.
INTERSPEECH, 2018.

[71] T. Gunendradasan, B. Wickramasinghe, P. Ngoc Le, E. Ambikairajah,
J. Epps, Detection of Replay-Spoofing Attacks using Frequency Modulation
Features, in: Proc. INTERSPEECH, 2018.

[72] S. M. S, H. A. Murthy, Decision-level feature switching as a paradigm for
replay attack detection, in: Proc. INTERSPEECH, 2018.

[73] B. Wickramasinghe, E. Ambikairajah, J. Epps, Biologically Inspired
Adaptive-Q Filterbanks for Replay Spoofing Attack Detection, in: Proc.
INTERSPEECH, 2019.

32



[74] H. B. Sailor, M. R. Kamble, H. A. Patil, Auditory Filterbank Learning
for Temporal Modulation Features in Replay Spoof Speech Detection, in:
Proc. INTERSPEECH, 2018.

[75] M. Ravanelli, Y. Bengio, Speaker Recognition from Raw Waveform with
SincNet (2018). arXiv:1808.00158.

[76] B. Chettri, D. Stoller, V. Morfi, M. A. M. Ramı́rez, E. Benetos, B. L. Sturm,
Ensemble Models for Spoofing Detection in Automatic Speaker Verification,
in: Proc. INTERSPEECH, 2019, pp. 1018–1022.

[77] J. Altosaar, Tutorial – what is a variational autoencoder? (2019).
URL https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

[78] C. Doersch, Tutorial on variational autoencoders, CoRR abs/1606.05908.
arXiv:1606.05908.
URL http://arxiv.org/abs/1606.05908

[79] C. M. Bishop, Pattern recognition and machine learning, Vol. 1, springer,
New York, 2006.

[80] T. M. Cover, J. A. Thomas, Elements of Information Theory, Wiley, 2001.
doi:10.1002/0471200611.
URL https://doi.org/10.1002/0471200611

[81] S. Dahmani, V. Colotte, V. Girard, S. Ouni, Conditional Variational Auto-
Encoder for Text-Driven Expressive AudioVisual Speech Synthesis, in:
Proc. INTERSPEECH, 2019.

[82] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from
incomplete data via the EM algorithm, Journal of the Royal Statistical
Society: Series B 39 (1977) 1–38.
URL http://web.mit.edu/6.435/www/Dempster77.pdf

[83] C. Jin, Y. Zhang, S. Balakrishnan, M. J. Wainwright, M. I. Jordan, Local
maxima in the likelihood of gaussian mixture models: Structural results and
algorithmic consequences, in: Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, 2016, pp. 4116–4124.

[84] H. Delgado, M. Todisco, M. Sahidullah, N. Evans, T. Kinnunen, K. Lee,
J. Yamagishi, ASVspoof 2017 Version 2.0: meta-data analysis and baseline
enhancements, in: Proc. Speaker Odyssey, 2018.

[85] K. A. Lee, A. Larcher, G. Wang, P. Kenny, N. Brummer, D. van Leeuwen,
H. Aronowitz, M. Kockmann, C. Vaquero, B. Ma, H. Li, T. Stafylakis,
J. Alam, A. Swart, J. Perez., The RedDots Data Collection for Speaker
Recognition,, in: Proc. INTERSPEECH, 2015.

33

http://arxiv.org/abs/1808.00158
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
http://arxiv.org/abs/1606.05908
http://arxiv.org/abs/1606.05908
http://arxiv.org/abs/1606.05908
https://doi.org/10.1002/0471200611
http://dx.doi.org/10.1002/0471200611
https://doi.org/10.1002/0471200611
http://web.mit.edu/6.435/www/Dempster77.pdf
http://web.mit.edu/6.435/www/Dempster77.pdf
http://web.mit.edu/6.435/www/Dempster77.pdf


[86] T. Kinnunen, M. Sahidullah, M. Falcone, L. Costantini, R. G. Hautamaki,
D. A. L. Thomsen, A. K. Sarkar, Z.-H. Tan, H. Delgado, M. Todisco,
et al., Reddots Replayed: A New Replay Spoofing Attack Corpus For Text-
Dependent Speaker Verification Research, in: Proc. ICASSP, 2017.

[87] ASVspoof 2019, the Automatic Speaker Verification Spoofing and Coun-
termeasures Challenge Evaluation Plan.
URL http://www.asvspoof.org/asvspoof2019/asvspoof2019_

evaluation_plan.pdf

[88] S. Mishra, D. Stoller, E. Benetos, B. L. Sturm, S. Dixon, Gan-based Gener-
ation and Automatic Selection of Explanations for Neural Networks (2019).
arXiv:1904.09533.

[89] V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning
(2016). arXiv:1603.07285.

[90] A. L. Maas, A. Y. Hannun, A. Y. Ng, Rectifier nonlinearities improve neural
network acoustic models, ICML, 2013.

[91] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, CoRR
abs/1412.6980. arXiv:1412.6980.
URL http://arxiv.org/abs/1412.6980

[92] T. Kinnunen, K. Lee, H. Delgado, N. Evans, M. Todisco, M. Sahidullah,
J. Yamagishi, D.A, Reynolds, t-DCF: a Detection Cost Function for the
Tandem Assessment of Spoofing Countermeasures and Automatic Speaker
Verification, in: Proc. Speaker Odyssey, 2018.

[93] L. van der Maaten, G. E. Hinton, Visualizing Data using t-SNE, Journal
of Machine Learning Research 1 (2008) 1–48.

34

http://www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf
http://www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf
http://www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf
http://www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf
http://arxiv.org/abs/1904.09533
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

	Introduction
	Related work
	theory-background
	Variational autoencoder (VAE)
	VAE training
	Conditioning VAEs by class label
	Gaussian mixture model (GMM)
	VAEs and GMMs as latent variable models

	Experimental setup
	Dataset
	Features and input representation
	Model architecture
	Model training and scoring
	Performance measures
	Experiments

	Results and discussion
	Impact of latent space dimensionality
	Comparing the performance of different VAE setups with GMM
	Conditioning VAEs beyond class labels
	Qualitative results
	VAE as a feature extractor

	Conclusions and future work

