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Abstract

This paper introduces a generalized formulation of linear
prediction (LP), including both conventional and temporally
weighted LP analysis methods as special cases. The temporally
weighted methods have recently been successfully applied to
noise robust spectrum analysis in speech and speaker recogni-
tion applications. In comparison to those earlier methods,the
new generalized approach allows more versatility in weight-
ing different parts of the data in the LP analysis. Two such
weighted methods are evaluated and compared to the conven-
tional spectrum modeling methods FFT and LP, as well as the
temporally weighted methods WLP and SWLP, by substituting
each of them in turn as the spectrum estimation method of the
MFCC feature extraction stage of a GMM-UBM based speaker
verification system. The new methods are shown to lead to per-
formance improvement in several cases involving channel dis-
tortion and additive noise mismatch between the training and
recognition conditions.
Index Terms: linear prediction, speaker verification, mel fre-
quency cepstral coefficients

1. Introduction
Modeling of the short-time magnitude spectrum is a central task
in speech and audio signal processing. The two most common
methods of spectrum analysis are the discrete Fourier transform
implemented as the fast Fourier transform (FFT) and linear pre-
diction (LP). Among other fields, they are used in feature ex-
traction for speech and speaker recognition, in which statisti-
cal recognizers are first trained to represent spectral features
of the training utterances and subsequently used to recognize
other utterances. The conventional spectrum analysis methods
used in speech and speaker recognition are known to be sensi-
tive to transmission channel distortions and additive noise. An
additional difficulty specific to recognition ismismatch, which
occurs when the channel and/or environmental noise conditions
during recognition differ from those of the training material.

In this paper, we propose a new type of robust all-pole
model and apply it to text-independent speaker verification[3].
In speaker verification, robustness with respect to noises and
mismatch has traditionally been pursued via feature normaliza-
tion (e.g. cepstral mean and variance normalization, RASTAfil-
tering, feature warping [9]), speaker model compensation [10]
and score normalization [2]. Relatively little effort, however,
has been put on making the spectrum estimation itself robust.
Typically, these approaches have been based on different vari-
ants of LP analysis, e.g. [1] [14].

Temporally weighted LP methods aim to increase the con-
tribution of such samples in the LP analysis that have been
less corrupted by distortion and noise. Weighted linear pre-
diction (WLP) [5] and its stabilized version (SWLP) [6], com-
plemented with short-time-energy (STE) weighting, have been
successfully used to alleviate the problem of noise in isolated
word recognition [6], continuous speech recognition [11] and,
most recently, speaker verification [14]. In these studies,the
methods have been substituted, in place of the FFT, as the spec-
trum estimation part of the popular mel frequency cepstral co-
efficient (MFCC) front-end. They have been shown to improve
the robustness compared to baseline FFT-based MFCC features
in noisy conditions.

The present study introduces two novel methods related to
the previously known temporally weighted LP methods: eX-
tended weighted Linear Prediction (XLP) and its stabilizedver-
sion (SXLP). We evaluate these new methods in a speaker ver-
ification task, which involves signal corruption due to both
channel distortion and additive noise, and compare their per-
formance with that of FFT, LP, WLP and SWLP. The speaker
verification system is based on adapted Gaussian mixtures [12]
and standard MFCC feature extraction.

2. Linear Predictive Models

2.1. Linear Prediction (LP)

Linear predictive speech spectrum modeling [7] assumes that
each speech sample can be predicted as a linear combination
of p previous samples,̂sn =

Pp

k=1
aksn−k, wheresn are the

samples of the speech signal in a given short-term frame and
{ak} are the predictor coefficients. The number of predictor
coefficientsp is theorder of linear prediction. The prediction
error is denoted asen = sn − ŝn = sn − Pp

k=1
aksn−k.

Conventional LP analysis minimizes the energy of the predic-
tion error signalELP =

P

n
e2

n =
P

n
(sn − Pp

k=1
aksn−k)2

by setting the partial derivatives ofELP with respect to each
coefficientak to zero. This results in the normal equations
[7]

Pp

k=1
ak

P

n
sn−ksn−j =

P

n
snsn−j , 1 ≤ j ≤ p.

Although not explicitly written, the range of summation ofn
is chosen in this work to correspond to theautocorrelation
method, in which the energy is minimized over a theoretically
infinite interval, butsn is considered to be zero outside the
actual analysis window [7]. An important benefit of the au-
tocorrelation method is that the LP synthesis modelH(z) =
1/(1 − Pp

k=1
akz−k) is guaranteed to be stable, i.e., the roots

of the denominator polynomial are guaranteed to lie inside the
unit circle [7].



2.2. Weighted Linear Prediction (WLP)

Weighted linear prediction (WLP) [5] is a generalization of LP
analysis. In contrast to conventional LP, WLP introduces a tem-
poral weighting of the squared residual in model coefficientop-
timization. Specifically, in WLP, the predictor coefficients{bk}
are solved by minimizing the energy

EWLP =
X

n

e2

nWn =
X

n

(sn −
p

X

k=1

bksn−k)2Wn, (1)

whereWn is the weighting function. The weighting can
be used to emphasize the importance of the prediction error in
the temporal regions assumed to be less affected by noise, and
de-emphasize the importance of the noisy regions. The WLP
model is obtained by solving the normal equations

p
X

k=1

bk

X

n

Wnsn−ksn−i =
X

n

Wnsnsn−i, 1 ≤ i ≤ p.

(2)
It is easy to show that conventional LP can be obtained as a spe-
cial case of WLP: by settingWn = d for all n, whered 6= 0, d
becomes a multiplier of both sides of (2) and cancels out, leav-
ing the LP normal equations. Typically, the weighting function
Wn in WLP is chosen as the short-time energy (STE) of the
immediate signal history [5] [6] [11] [14]:Wn =

PM

i=1
s2

n−i,
whereM has previously been chosen close to or equal to the
value of p [11] [14]. When compared to conventional spec-
tral modeling methods such as FFT and LP, WLP using STE
weighting has been recently shown to improve robustness with
respect to additive noise in the feature extraction stages of
both large vocabulary continuous speech recognition [11] and
speaker verification [14].

2.3. The Proposed XLP Method

The present paper introduces a further generalization of the
WLP analysis. In this formulation, the prediction error energy
is expressed as follows:

EXLP =
X

n

(snZn,0 −
p

X

k=1

cksn−kZn,k)2. (3)

WLP is obtained as a special case whenZn,j =
√

Wn and LP is
obtained whenZn,j = d, with d 6= 0, for all n andj. However,
if Zn,i = Zn,j does not hold for alln, i andj, the result is a
novel LP analysis method, in which each lagged sample at each
time instant is weighted separately. In other words, the newfor-
mulation allows temporal weighting on a finer time scale than
WLP. This method is referred to aseXtended weighted Linear
Prediction (XLP).

The minimization of the error energy in Eq. 3 gives rise to
the XLP normal equations
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Zn,0snZn,jsn−j , (4)

1 ≤ j ≤ p.

The optimalck values from this equation yield the inverse filter
of the XLP analysis as follows:
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Figure 1: Upper panel: One frame of a 16 kHz male vowel
/a/. Middle panel: The corresponding STE weight function used
with WLP. Lower panel: The corresponding two-dimensional
AVS weight function used with XLP.

A(z) = 1 −
p

X

k=1

ckz−k. (5)

In the present study, the following recursion was used to com-
pute the weights:

Zn,j =
m − 1

m
Zn−1,j +

1

m
(|sn| + |sn−j |), (6)

with Zn,j = 0 for all j before the beginning of the frame. For
the parameterm, which controls the effective length of the mov-
ing average memory,m = p has been used. This weighting,
referred to as absolute value sum (AVS), emphasizes the predic-
tions of prominent signal samples, and within each prediction,
it emphasizes those lags for which the lagged signal sample has
a large amplitude. The underlying rationale for this is the same
as that for STE weighting in WLP: higher-amplitude samples
are arguably likely to contain smaller relative amounts of cor-
ruption (such as additive noise) than lower-amplitude samples.

Figure 1 shows one vowel frame sampled at 16 kHz, its cor-
responding STE weight withM = 20, and the two-dimensional
AVS weighting matrix computed according to Eq. 6 withm =
20. Figure 2 shows the spectra for the same frame computed us-
ing four methods: FFT, LP, WLP (using the STE weights) and
XLP (using the AVS weights). Orderp = 20 has been used for
the linear predictive methods.

2.4. Stabilized Methods

WLP is not guaranteed to produce a stable all-pole synthesis
model1/(1 − Pp

k=1
bkz−k) (even when using the autocorre-

lation method, which in conventional LP always gives a sta-
ble model). As a remedy, a stabilized version of WLP, called
SWLP, was developed in [6]. Although SWLP is stabilized
mainly for synthesis purposes, it has been found, like WLP, to
be a robust method in the feature extraction stages of speech
recognition [6] [11] and speaker verification [14] — even sur-
passing WLP in performance in the latter application. As stated
in Section 2.3, the WLP normal equations (Eq. 2) can be rewrit-
ten as
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Figure 2:Spectra of the vowel /a/. LP, WLP and XLP use pre-
diction order p = 20.
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1 ≤ j ≤ p,

whereZn,j =
√

Wn for 0 ≤ j ≤ p. As shown in [6] (using a
matrix-based formulation), model stability is guaranteedif the
weightsZn,j are, instead, defined recursively asZn,0 =

√
Wn

andZn,j = max(1,
√

Wn√
W

n−1

)Zn−1,j−1, 1 ≤ j ≤ p. Substi-

tution of these values in Eq. 7 gives the SWLP normal equa-
tions. A similar approach can be utilized for XLP: once the
weights Zn,j have been determined, they are replaced with
Z′

n,j = max(Zn,j , Zn−1,j−1) with Zn,j = 0 for j < 0.
The resulting analysis method will be denoted as stabilizedXLP
(SXLP).

3. Application to Speaker Verification
3.1. Test setup

Six different methods (FFT, LP, WLP, SWLP, XLP and SXLP)
were evaluated by substituting each one as the spectrum esti-
mation technique in the MFCC feature extraction module for
speaker verification. The effectiveness of the features waseval-
uated on the NIST 2002 speaker recognition evaluation (SRE)
corpus, which consists of speech samples transmitted over dif-
ferent cellular networks with varying types of handsets. There
are 2982 genuine and 36,277 impostor test trials in the NIST
2002 corpus. For each of the 330 target speakers, two minutes
of untranscribed, conversational speech is available to train the
target speaker model. The duration of the test utterances varies
between 15 and 45 seconds.

The experiments were conducted using a standard Gaussian
mixture model classifier with a universal background model
(GMM-UBM) [12]. Test normalization (T-norm) [2] was ap-
plied on the logarithmic likelihood ratio scores.

The (gender-dependent) background models and cohort
models for T-norm, having 1024 Gaussians, were trained using
the NIST 2001 corpus. This baseline system [13] has compa-
rable or better accuracy than other systems evaluated on this
corpus (e.g. [4]).

Features were extracted every 15 ms from 30 ms frames
multiplied by a Hamming window. Depending on the feature
extraction method, the magnitude spectrum was computed dif-
ferently. For the baseline method, the FFT of the windowed
frame was directly computed. For LP, WLP, XLP, SWLP and
SXLP, the model coefficients and the corresponding all-pole
spectra were first derived as explained in Section 2. All the
five parametric methods used a predictor order ofp = 20. For
WLP and SWLP, STE weighting was used with the energy win-
dow duration set toM = 20 samples. For XLP and SXLP,
AVS weighting was used with averaging parameterm = 20.
A 27-channel mel-frequency filterbank was used to extract 12
MFCCs. After RASTA filtering,∆ and∆2 coefficients were
appended. Speech frames were then selected using an energy-
based voice activity detector (VAD). Finally, cepstral mean and
variance normalization (CMVN) was performed.

Two standard metrics were used to assess recognition ac-
curacy: the equal error rate (EER) and the minimum detection
cost function value (MinDCF). EER corresponds to the thresh-
old at which the miss rate (Pmiss) and false alarm rate (Pfa) are
equal; MinDCF is the minimum value of a weighted cost func-
tion given by0.1×Pmiss+0.99×Pfa . All the reported MinDCF
values were multiplied by 10, for ease of comparison.

In terms of robustness issues, the original NIST samples
contain training/recognition condition mismatch mostly due to
transmission channel and handset variation, and possibly small
amounts of additive noise captured by the handsets. To further
study robustness with respect to additive noise, some noisewas
digitally added from the NOISEX-92 database [8] to the speech
samples. This study used thefactory2 noise. The background
models and target speaker models were trained with clean data,
but the noise was added to the test files with a given average seg-
mental (frame-average) signal-to-noise ratio (SNR). Fivevalues
were considered:SNR ∈ {original, 20, 10, 0,−10} dB, where
“original” refers to the original NIST samples (which contain
different types of channel distortion as well as possibly already
some background noise). In summary, the evaluation data used
in the present study contained linear and nonlinear distortion
present in the sounds of the NIST 2002 database as well as ad-
ditive noise taken from the NOISEX-92 database.

3.2. Results

Table 1 shows the speaker verification results. According to
the EER measure, both XLP and SXLP are consistently better
than the FFT baseline in every mismatch case. Considering both
measures of performance, SXLP is the overall best performing
method in the “original” case, where the primary source of mis-
match is channel variation, as well as in the moderately noisy
cases (added noise SNR levels 20 and 10 dB). It is closely fol-
lowed by XLP in overall performance in these cases, these two
being the two best performing methods in two cases according
to the MinDCF criterion and one case according to the EER cri-
terion. When noise corruption is further increased (added noise
SNR levels 0 and -10 dB), SWLP is still the most robust method,
as in an earlier study [14]. In these cases, however, the system
performance has severely deteriorated with each method, EERs
at 0 dB SNR being roughly almost twice those of the “original”
case.

The DET plot in Fig. 3, for the SNR level 0 dB, indicates
that the weighted LP models outperform the baseline FFT and
LP models by a wide margin. The two overall best methods at
this noise level are the stabilized versions, SWLP and SXLP.
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Figure 3: A detection error tradeoff (DET) curve plot for the
case with added factory noise SNR level 0 dB.

4. Conclusions
Novel weighted linear predictive methods XLP and SXLP,
which generalize earlier temporally weighted methods WLP
and SWLP, respectively, were evaluated in MFCC feature ex-
traction for speaker verification. The new methods are based
on imposing time-domain weighting separately on each lagged
signal sample in the prediction model and then optimizing the
prediction coefficients according to the least squares criterion.

The new variants were compared with the conventional
methods FFT and LP, as well as with WLP and SWLP. XLP
and SXLP used the novel AVS weighting scheme, while WLP
and SWLP used their usual STE weighting scheme. According
to the evaluation, SXLP was the best performing method for the
cases with channel distortion mismatch and low to moderate
amount of additive noise. XLP came close to its performance in
these cases. Both the XLP and SXLP methods improved upon
the FFT baseline in each evaluated mismatch scenario in terms
of the EER measure.

In summary, while the previously proposed SWLP method
showed the best overall performance for speech utterances
heavily corrupted by additive noise, XLP and SXLP were, in
general, the best methods in the cases where additive noise cor-
ruption was slight and channel variation was the primary source
of mismatch. Interesting research topics for future include the
search for new two-dimensional weighting schemes for XLP
and SXLP, as well as the application of these methods to new
tasks.
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