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Abstract

This paper introduces a generalized formulation of linear
prediction (LP), including both conventional and templyral
weighted LP analysis methods as special cases. The teryporal
weighted methods have recently been successfully appdied t
noise robust spectrum analysis in speech and speaker fecogn
tion applications. In comparison to those earlier methtiuks,
new generalized approach allows more versatility in weight
ing different parts of the data in the LP analysis. Two such

weighted methods are evaluated and compared to the conven-

tional spectrum modeling methods FFT and LP, as well as the
temporally weighted methods WLP and SWLP, by substituting
each of them in turn as the spectrum estimation method of the
MFCC feature extraction stage of a GMM-UBM based speaker
verification system. The new methods are shown to lead to per-
formance improvement in several cases involving chanrel di
tortion and additive noise mismatch between the training) an
recognition conditions.

Index Terms: linear prediction, speaker verification, mel fre-
qguency cepstral coefficients

1. Introduction

Modeling of the short-time magnitude spectrum is a cengig t

in speech and audio signal processing. The two most common
methods of spectrum analysis are the discrete Fourierftnams
implemented as the fast Fourier transform (FFT) and linear p
diction (LP). Among other fields, they are used in feature ex-
traction for speech and speaker recognition, in which sttati

cal recognizers are first trained to represent spectralifest

of the training utterances and subsequently used to reoegni
other utterances. The conventional spectrum analysisadsth

used in speech and speaker recognition are known to be sensi-

tive to transmission channel distortions and additive @oisn
additional difficulty specific to recognition isismatch, which
occurs when the channel and/or environmental noise conditi
during recognition differ from those of the training masari

In this paper, we propose a new type of robust all-pole
model and apply it to text-independent speaker verificgpn
In speaker verification, robustness with respect to noisels a
mismatch has traditionally been pursued via feature nozaal
tion (e.g. cepstral mean and variance normalization, RABTA
tering, feature warping [9]), speaker model compensati@} [
and score normalization [2]. Relatively little effort, hewver,
has been put on making the spectrum estimation itself robust
Typically, these approaches have been based on differeint va
ants of LP analysis, e.g. [1] [14].
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Temporally weighted LP methods aim to increase the con-
tribution of such samples in the LP analysis that have been
less corrupted by distortion and noise. Weighted linear pre
diction (WLP) [5] and its stabilized version (SWLP) [6], cem
plemented with short-time-energy (STE) weighting, haverbe
successfully used to alleviate the problem of noise in tedla
word recognition [6], continuous speech recognition [1ddl,a
most recently, speaker verification [14]. In these studiles,
methods have been substituted, in place of the FFT, as tlee spe
trum estimation part of the popular mel frequency cepstval ¢
efficient (MFCC) front-end. They have been shown to improve
the robustness compared to baseline FFT-based MFCC feature
in noisy conditions.

The present study introduces two novel methods related to
the previously known temporally weighted LP methods: eX-
tended weighted Linear Prediction (XLP) and its stabilized
sion (SXLP). We evaluate these new methods in a speaker ver-
ification task, which involves signal corruption due to both
channel distortion and additive noise, and compare their pe
formance with that of FFT, LP, WLP and SWLP. The speaker
verification system is based on adapted Gaussian mixtuggs [1
and standard MFCC feature extraction.

2. Linear Predictive Models
2.1. Linear Prediction (LP)

Linear predictive speech spectrum modeling [7] assumes tha
each speech sample can be predicted as a linear combination
of p previous samplesi,, = Y 7_, axSn—k, Wheres,, are the
samples of the speech signal in a given short-term frame and
{ax} are the predictor coefficients. The number of predictor
coefficientsp is theorder of linear prediction. The prediction
error is denoted a8, = sn — 8n = Sn — D p_; AkSn—k-
Conventional LP analysis minimizes the energy of the predic
tion error signalELp = >, er =3 (sn — > h_, akSn—k)’

by setting the partial derivatives dfi,p with respect to each
coefficienta, to zero. This results in the normal equations
(7] 3k ak D, Snksn—j = 32, Snsn—j, 1 < j < p.
Although not explicitly written, the range of summation 1of

is chosen in this work to correspond to thatocorrelation
method, in which the energy is minimized over a theoretically
infinite interval, buts,, is considered to be zero outside the
actual analysis window [7]. An important benefit of the au-
tocorrelation method is that the LP synthesis moHék) =

1/(1 = 3°P_ axz"") is guaranteed to be stable, i.e., the roots
of the denominator polynomial are guaranteed to lie indge t
unit circle [7].



2.2. Weighted Linear Prediction (WLP)

Weighted linear prediction (WLP) [5] is a generalization of LP
analysis. In contrast to conventional LP, WLP introducesna-t
poral weighting of the squared residual in model coefficamt
timization. Specifically, in WLP, the predictor coefficisqby, }
are solved by minimizing the energy

p
EWLP = Z eiWn = Z(Sn - Zbksnfk)QW’nw (1)
n n k=1

whereW,, is the weighting function. The weighting can
be used to emphasize the importance of the prediction error i
the temporal regions assumed to be less affected by noide, an
de-emphasize the importance of the noisy regions. The WLP
model is obtained by solving the normal equations

P

Z bk Z Wnsn—ksnfi - Z Wnsnsnfi, 1 S 7 S p-
k=1 n n

2
Itis easy to show that conventional LP can be obtained as-a spe
cial case of WLP: by settiniy/,, = d for all n, whered # 0, d
becomes a multiplier of both sides of (2) and cancels ow; lea
ing the LP normal equations. Typically, the weighting fuoit
W, in WLP is chosen as the short-time energy (STE) of the
immediate signal history [5] [6] [11] [14]W,, = > s2_,,
where M has previously been chosen close to or equal to the
value ofp [11] [14]. When compared to conventional spec-
tral modeling methods such as FFT and LP, WLP using STE
weighting has been recently shown to improve robustness wit
respect to additive noise in the feature extraction stades o
both large vocabulary continuous speech recognition [bd] a
speaker verification [14].

2.3. The Proposed XLP Method

The present paper introduces a further generalization ef th
WLP analysis. In this formulation, the prediction error egye
is expressed as follows:

P
Exip = Z(Snzn,o - Z kSn—kZni)’- (3)
k=1

n =

WLP is obtained as a special case wiigy);, = +/W,, and LP is
obtained wher¥,, ; = d, with d # 0, for all n» andj. However,
if Zn,i = Zn,; does not hold for alk, ¢ andj, the result is a
novel LP analysis method, in which each lagged sample at each
time instant is weighted separately. In other words, the foew
mulation allows temporal weighting on a finer time scale than
WLP. This method is referred to &Xtended weighted Linear
Prediction (XLP).

The minimization of the error energy in Eq. 3 gives rise to
the XLP normal equations

> Znksn-kZnsn—i = Zn0SnZnisn—j, (4)

n n

P

> ek

k=1
1<j<p.

The optimalc;, values from this equation yield the inverse filter
of the XLP analysis as follows:

Figure 1: Upper panel: One frame of a 16 kHz male vowel
/al. Middle panel: The corresponding STE weight function used
with WLP. Lower panel: The corresponding two-dimensional
AVSweight function used with XLP.

P

A(z)=1- chsz. (5)
k=1

In the present study, the following recursion was used to-com

pute the weights:

m—1 1
Znj = ———Zn-1; + EOS"' + [sn—jl);

(6)
with Z,, ; = 0 for all j before the beginning of the frame. For
the parametein, which controls the effective length of the mov-
ing average memoryn = p has been used. This weighting,
referred to as absolute value sum (AVS), emphasizes thépred
tions of prominent signal samples, and within each preaficti
it emphasizes those lags for which the lagged signal sanagle h
a large amplitude. The underlying rationale for this is thms
as that for STE weighting in WLP: higher-amplitude samples
are arguably likely to contain smaller relative amounts @f c
ruption (such as additive noise) than lower-amplitude dasp
Figure 1 shows one vowel frame sampled at 16 kHz, its cor-
responding STE weight with/ = 20, and the two-dimensional
AVS weighting matrix computed according to Eq. 6 with=
20. Figure 2 shows the spectra for the same frame computed us-
ing four methods: FFT, LP, WLP (using the STE weights) and
XLP (using the AVS weights). Order = 20 has been used for
the linear predictive methods.

2.4. Stabilized Methods

WLP is not guaranteed to produce a stable all-pole synthesis
model1/(1 — >°P_, byz~*) (even when using the autocorre-
lation method, which in conventional LP always gives a sta-
ble model). As a remedy, a stabilized version of WLP, called
SWLP, was developed in [6]. Although SWLP is stabilized
mainly for synthesis purposes, it has been found, like WaP, t
be a robust method in the feature extraction stages of speech
recognition [6] [11] and speaker verification [14] — even-sur
passing WLP in performance in the latter application. Atesta

in Section 2.3, the WLP normal equations (Eg. 2) can be rewrit
ten as
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Figure 2: Spectra of the vowel /a/. LP, WLP and XLP use pre-
diction order p = 20.

Zzn,ksnszn,jsn—j = ZZn,OSnZn,an—j7 (7)

n

P
S
k=1 n

1<j<p,

whereZ, ; = vW, for 0 < j < p. As shown in [6] (using a
matrix-based formulation), model stability is guarantéettie
weightsZ,, ; are, instead, defined recursively8s,, = vW,
andZ, ; = max(1, \/=VV;‘,’::1)Z71_1,]-_1, 1 <j < p. Substi-

tution of these values in Eq. 7 gives the SWLP normal equa-
tions. A similar approach can be utilized for XLP: once the
weights Z,, ; have been determined, they are replaced with
Z:l,j max(Zn,j,Zn,Lj,l) with Zn_’j =0 forj < 0.
The resulting analysis method will be denoted as stabilkie@l
(SXLP).

3. Application to Speaker Verification
3.1. Testsetup

Six different methods (FFT, LP, WLP, SWLP, XLP and SXLP)
were evaluated by substituting each one as the spectrum esti
mation technique in the MFCC feature extraction module for
speaker verification. The effectiveness of the featuresewals
uated on the NIST 2002 speaker recognition evaluation (SRE)
corpus, which consists of speech samples transmitted dver d
ferent cellular networks with varying types of handsetsergh

are 2982 genuine and 36,277 impostor test trials in the NIST
2002 corpus. For each of the 330 target speakers, two minutes
of untranscribed, conversational speech is availableain the
target speaker model. The duration of the test utterangéssva
between 15 and 45 seconds.

The experiments were conducted using a standard Gaussian
mixture model classifier with a universal background model
(GMM-UBM) [12]. Test normalization (T-norm) [2] was ap-
plied on the logarithmic likelihood ratio scores.

The (gender-dependent) background models and cohort
models for T-norm, having 1024 Gaussians, were trainecjusin
the NIST 2001 corpus. This baseline system [13] has compa-
rable or better accuracy than other systems evaluated sn thi
corpus (e.g. [4]).

Features were extracted every 15ms from 30ms frames
multiplied by a Hamming window. Depending on the feature
extraction method, the magnitude spectrum was computed dif
ferently. For the baseline method, the FFT of the windowed
frame was directly computed. For LP, WLP, XLP, SWLP and
SXLP, the model coefficients and the corresponding all-pole
spectra were first derived as explained in Section 2. All the
five parametric methods used a predictor ordep of 20. For
WLP and SWLP, STE weighting was used with the energy win-
dow duration set ta\/ = 20 samples. For XLP and SXLP,
AVS weighting was used with averaging parameter= 20.

A 27-channel mel-frequency filterbank was used to extract 12
MFCCs. After RASTA filtering,A and A? coefficients were
appended. Speech frames were then selected using an energy-
based voice activity detector (VAD). Finally, cepstral meand
variance normalization (CMVN) was performed.

Two standard metrics were used to assess recognition ac-
curacy: the equal error rate (EER) and the minimum detection
cost function value (MinDCF). EER corresponds to the thresh
old at which the miss rateéi,iss) and false alarm rate,,) are
equal; MinDCF is the minimum value of a weighted cost func-
tion given by0.1 X Ppiss+0.99 X P, . All the reported MinDCF
values were multiplied by 10, for ease of comparison.

In terms of robustness issues, the original NIST samples
contain training/recognition condition mismatch mostlyedo
transmission channel and handset variation, and possitéyl s
amounts of additive noise captured by the handsets. Toefurth
study robustness with respect to additive noise, some mase
digitally added from the NOISEX-92 database [8] to the sheec
samples. This study used tfeetory2 noise. The background
models and target speaker models were trained with clean dat
but the noise was added to the test files with a given average se
mental (frame-average) signal-to-noise ratio (SNR). Falees
were considered3NR € {original, 20, 10,0, —10} dB, where
“original” refers to the original NIST samples (which cointa
different types of channel distortion as well as possibhgadly
some background noise). In summary, the evaluation dath use
in the present study contained linear and nonlinear distort
present in the sounds of the NIST 2002 database as well as ad-
ditive noise taken from the NOISEX-92 database.

3.2. Results

Table 1 shows the speaker verification results. According to
the EER measure, both XLP and SXLP are consistently better
than the FFT baseline in every mismatch case. Consideritig bo
measures of performance, SXLP is the overall best perfgmin
method in the “original” case, where the primary source af-mi
match is channel variation, as well as in the moderatelyynois
cases (added noise SNR levels 20 and 10 dB). It is closely fol-
lowed by XLP in overall performance in these cases, these two
being the two best performing methods in two cases according
to the MinDCF criterion and one case according to the EER cri-
terion. When noise corruption is further increased (addssen
SNR levels 0 and -10 dB), SWLP is still the most robust method,
as in an earlier study [14]. In these cases, however, thersyst
performance has severely deteriorated with each methddsEE
at 0 dB SNR being roughly almost twice those of the “original”
case.

The DET plot in Fig. 3, for the SNR level 0 dB, indicates
that the weighted LP models outperform the baseline FFT and
LP models by a wide margin. The two overall best methods at
this noise level are the stabilized versions, SWLP and SXLP.
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Figure 3: A detection error tradeoff (DET) curve plot for the
case with added factory noise SNR level 0 dB.

4. Conclusions

Novel weighted linear predictive methods XLP and SXLP,
which generalize earlier temporally weighted methods WLP
and SWLP, respectively, were evaluated in MFCC feature ex-
traction for speaker verification. The new methods are based
on imposing time-domain weighting separately on each ldgge
signal sample in the prediction model and then optimizirgy th
prediction coefficients according to the least squaresraoit.

The new variants were compared with the conventional
methods FFT and LP, as well as with WLP and SWLP. XLP
and SXLP used the novel AVS weighting scheme, while WLP
and SWLP used their usual STE weighting scheme. According
to the evaluation, SXLP was the best performing method #@r th
cases with channel distortion mismatch and low to moderate
amount of additive noise. XLP came close to its performance i
these cases. Both the XLP and SXLP methods improved upon
the FFT baseline in each evaluated mismatch scenario irsterm
of the EER measure.

In summary, while the previously proposed SWLP method
showed the best overall performance for speech utterances
heavily corrupted by additive noise, XLP and SXLP were, in
general, the best methods in the cases where additive raise ¢
ruption was slight and channel variation was the primarys®u
of mismatch. Interesting research topics for future ineltiae
search for new two-dimensional weighting schemes for XLP
and SXLP, as well as the application of these methods to new
tasks.
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