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ABSTRACT
A voice activity detector (VAD) plays a vital role in robugtesaker

signal-to-noise ratios (SNRs). According to [10], energyDvwith
spectral subtraction enhancement can outperform morenedsga

verification, where energy VAD is most commonly used. Er]ergystatistical model VAD [3]. Alternative ways to tackle noigelude

VAD works well in noise-free conditions but deterioratesnioisy
conditions. One way to tackle this is to introduce speeclapoé-
ment preprocessing. We study an alternative, likelihodid tzased
VAD that trains speech and nonspeech models on an uttetgnce-
utterance basis from mel-frequency cepstral coefficieMBECs).
The training labels are obtained from enhanced energy VADha
speech and nonspeech models are re-trained for each attenaim-

imum assumptions of the background noise are made. Acaprdin

to both VAD error analysis and speaker verification resuiil&zing
state-of-the-art i-vector system, the proposed methogesfdrms
energy VAD variants by a wide margin. We provide open-sourc
implementation of the method.

Index Terms— \oice activity detection, speaker verification

1. INTRODUCTION

\oice activity detection (VAD) is the task of locating speech seg-
ments from an utterance and it plays a crucial role in any dpee
processing system. The standard VADs such as the g729 [B| ET
advanced front-end (AFE) [2] and statistical model VADs [%ve
been designed with telecommunication and automatic speecky-
nition (ASR) desiderata in mind, namely, low complexity aedl-
time operation. But there are also applications that do eqtire
real-time operation, such as speaker diarization and retiog for
screening, indexing or forensic use cases. In these apiphisa it
would be beneficial to utilize the full recording for noise dedting
and VAD threshold adaptation. Here we focus on text-inddpeh
speaker verification [4].

Energy-based VAD [5, 4] is by far the most popular VAD in
speaker verification, possibly due to its simplicity. It qmuies
the energy of each short-term frame and assumes that thenldw a
high energy frames, respectively, correspond to nonspech
speech. The energy threshold is usually adjusted on aranter
by-utterance basis. For instance, the threshold can be metadre
to maximum or average energy of the utterance [5, 4, 6]. Itss a

common to fit a 2- or 3-component Gaussian mixture model (GMM)

to the energy distribution and adjust the threshold acogrtth the
GMM parameters (e.g. cross-over point of the two Gaussians].
This may involve iterative re-training of the energy GMM atfne
thresholds [9].

A well-known shortcoming of the energy-based VADs are their
sensitivity to additive (environmental) noise [10, 6]. Seorform
of speech enhancement pre-processing seems necessarjiamde
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alternative features such as periodicity [11] or phase.[12]

Beyond the simple energy VAD, at the other extreme are meth-
ods that adopt an off-the-shelf phone recognizer or tréénaiodels
for VAD [13, 14, 15, 16, 12]. For instance, phone posteriaslpr
abilities can be merged and combined with energy measufgs [1
Such VADs are generally complex. Their pre-trained acoustd-
els may also not generalize well to unseen types of channels-o
vironments. In [6], phone recognizer VAD, similar to eneMAD,
was found sensitive to additive noise degradation.

We propose a practical VAD that does not rely on pre-trained

eacoustic models but is trained only from the recording atharhis

Is achieved via an initial energy VAD to label a small numbér o
“reliable” training vectors for that utterance. Two GMMaefor
speech and one for nonspeech, are trained and a likelihtioddes
tector is used for labeling all the frames as speech or neaspd he
proposed VAD is designed with the following criteria in mind

e Unsupervised: It does not require hand-labeled training sets.

e Self-adaptive: It does not require pre-trained speech/nonspeech
models but adapts itself to a given utterance. It makes no
strong assumptions of the type or level of noise.

e Practical: It is directly applicable to both telephone and in-
terview data in recent NIST SRE data. It does not use costly
Viterbi decoding or iterative re-training procedures.

Relation to previous work: Closest similar works to ours are VADs
described in[17, 18, 19], which also use a preliminary VADIxain
training class labels. Unlike [17, 18] that use maximum aqyiri
(MAP) training, we use maximum likelihood training (ML) a&d],
but without iterative Viterbi segmentation and re-tragito speed
up processing. Further speed-up is achieved by use of cokigpo
viewed as constrained GMMs [20]. As part of our preparatmtihe
latest NIST SRE 2012 evaluation with 14U coalition [21], #mer
novelty is a systematic study of the effect of the VAD conpratam-
eters with a special focus on additive noise degradatioh use of
multiple enrollment utterances per speaker. The speak#ication
experiments are reported using a state-of-the-art i-vesgtstem on
the 14U dataset.

2. VOICE ACTIVITY DETECTORS

2.1. Simple Energy VAD

For completeness, we describe here the adaptive energy MaD.
z:[n] denote thex'™ sample of the"™ speech frame in an utterance.
We first compute the log-energy of each frame as,

N

Et = 1010g10 (ﬁ Z(mt[n] - Ht)Q + 6)7 (1)
n=1



wherey; = (1/N) S0, z[n] is the sample mean of the fram,

is the frame size and= 10~'% is an arbitrary constant to avoid log
of zero. We find the maximum energ¥i.x = max¢—1,.. 7{F:}
over all theT frames of the utterance. The VAD decision is sim-
ple threshold comparison adjusted according to this maxirdewel.
Additionally, a minimum energy constraint is used to avotteu
ances with low energy being falsely tagged as speech. Thas, t
energy VAD rule for speech presence5; > Emax — Omain) A
(Bt > Omin), Wherefnain anddnixn, respectively, denote pre-set pri-
mary and minimum energy thresholds. These were ggtie = 30

dB andf.in = —55 dB [4] when optimizing the spectral subtraction
parameters (Section 4).

2.2. Energy VAD with Spectral Subtraction

For high signal-to-noise ratios (SNRs), the energy VAD vgor&a-
sonably well butin low SNRs it tends to mark most frames assipe
One strategy to remedy this is to use a plug-in speech entmamte
method, intended for increasing SNR, prior to the abovesitesd
energy VAD. The spectral subtraction method is based on M¥gL
implementionspecsub in Voicebox!. Let|X|*> and|N|?, respec-
tively, denote the powers of noisy speech and estimateat rinia
particular time-frequency FFT bin. Spectral subtract®adhieved
by multiplying noisy magnitudéX| by a gain factory whose gen-

Inputs: Speech signai[n], frame length ) and hop &)
Outputs: Binary VAD labelsVAD[t], ¢t = 1,2,...,T

1. // Extract MFCCs from theoisy signal

X «+ ExtractMFCC(s, L, H, MFCCParams);

. I/ Denoise the speech signal
Sclean <— Specsub(s, SpecsubParams);

. I Compute frame energies of thehancedsignal, Eq. (1)
E + ComputeEnergy (sciean, L, H);

N

. /I Find indices of low/high energy frames (fixed percen)ag
[t1ow, thigh] ¢~ FindLowest AndHighest(E, percentage);

. Il Train speech and nonspeech models from the farbsets
)\spccch «— Train({mt c X|t c ihighjﬁ ModelParamS);
Anonspeech « Tyain({@, € X|t € i1ow }, ModelParams);

. Il Forall frames, pick the more likely hypothesis
VAD[t] — {logp(wtl)\speech) Z logp(mtp\nonspeech)} A
E¢ > Omin; // With min-energy constraint

Note that all MFCC processing uses features of the origimaik{)
signal rather than the enhanced one that contains spedittahstion
artefacts.

eral form is [22], Both the speech and nonspeech models are GMMs of the form
(z|\) = Zle PN (z|py,, Xi) with mixing weights P, mean
v/2\ e/ e/2 : : .
_ . vectors i, and covariance matriceX,. Even though different
g = max 1- |« ,min | gn, | B , .
number of Gaussians can be used for speech and nonspeech mod-
) ) ) ) els [18, 19], we use the same number for simplicity. Two chal-
whereq is an oversubtraction factot; determines the subtraction lenges in maximum likelihood training are small amount ofada
domain,e is gain exponenty,, is maximum gain for noise floor and and zero frames found in NIST corpora causing duplicated vec

N2
| X2

s
| X2

gain-multiplied magnitude is combined with phase of thespaig-
nal followed by overlap-and-add signal reconstruction.

We fix g, = 1.00 and 8 = 0.01 and focus on (1) subtraction
domain, (2) amount of oversubtraction and (3) noise estimdae-
garding the subtraction domaimagnitude domain subtraction is
obtained by choosingy, e) = (1, 1), power domain spectral sub-
traction by(vy, e) = (2, 1) andWiener filter by (v,e) = (2, 2). Re-
garding the amount of subtractiom varies linearly fromy = amax
for a frame signal-to-noise ratio (SNR) of -5 dB downdc= 1 for
SNR = 20 dB; we treat the maximum oversubtraction facil.x,
as a control parameter. Regarding noise estimator, wead@nisio-
well known alternativesminimum mean square error (MMSE) [23]
andminimum statistics (MS) [24] noise trackers.

2.3. Proposed Self-Adaptive VAD

The proposed method is outlined in the pseudocode. FirsC G4
are extracted from the original signal. The signal is thelmagiced
with spectral subtraction whose purpose is to merely irsgdhe
energy contrast between speech and nonspeech withoug aafrin
spectral subtraction artefacts. Therefore, relativelyragsive over-
subtraction is used [10]. Following this, we sort the energlpes
and find a fixed percentage of the lowest and highest energyefa
(for instance, 10 % of all frames) assumed to correspongberes
tively, to reliably-labeled nonspeech and speech frampse&h and

nonspeech models are then trained using the MFCCs cormspon

ing to these frame indices. Finally, all the frames are letbeising
the trained models, with an additional minimum-energy t@mst.

Ihttp: //ww. ee. i c. ac. uk/ hp/ st af f/ dnmb/ voi cebox/
voi cebox. ht M (URL valid March-2013).

dom Gaussian noise with small amplituded{°) to the signal
as a preprocessing step, similar to dithering option in HFKr-
ther, since our goal is to retain low complexity, we use k-nsea
instead of expectation maximization (EM). As discussed 28,

p. 443-444], k-means can be viewed as a limit case of EM with
identical covariance matrices, = eI wheree — 0. Assum-
ing equal speech/nonspeech priors and misclassificatisis,cthe
log-likelihood ratio test for speech presence for vecior i.e.
P APeP) > log p(a| AP°"Peeh) | reduces to the nearest-
speech H2 nonspeech ||2’

neighbor ruleminy, ||z; — p) < ming ||&: — p,
whereu,(c‘) are the codevectors obtained using k-means.

3. EXPERIMENTAL SETUP

The experiments are divided into two parts. First, VAD pagters
are optimized to minimize average frame labeling error. ®pt-
mized VAD is then integrated into a speaker verificationexyst

3.1. VAD development set

To evaluate VAD accuracy, we adopt a simulated additiveenpis-
tocol. To this end, we utilize utterances in the developmsasit
of the NIST 2010 speaker recognition evaluation (SRE) cagmpa
This dataset, provided by NIST, contains 2-channel reagsifrom

18 interview and 36 telephone recordings with supplemgrear
tomatic speech recognition (ASR) transcripts. Here we ugg o
the telephone segments due to cross-talk and subsequeotls i
rect VAD in the interview data. Both sides of the telephone-co
versations, leading to 3& = 72 unique recordings, are used. They
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Fig. 1. Energy VAD with spectral subtraction (MMSE noise tracker)

are downgraded with controlled signal-to-noise ratiosRSNrang-
ing from [original, 20dB, 15dB, 10dB, 6dB, 0dB] using g729-au
dio weighting filter for level determination. We use the oeurce
Filtering and Noise Adding Tool (FaNTY. The noise files were se-
lected fromFreeSound® and contain mostly device sounds found at
home environments (e.g. airconditioner and washing maghifor

a given clean speech file, the noise file was randomly seleatdd
the noise section in the file was also randomized.

Table 1: Energy VAD (average VAD error, %) with and without
spectral subtraction in magnitudgldg.), power Pow) or Wiener
domain. Max. oversubtraction factor é6 = 10. Minstat.=min.
statistics andMMSE =min. mean square error noise estimator.

SNR| Baseline Minstat. MMSE

(dB) | (no specsub.) Mag. Pow. Wiener Mag. Pow. Wiene
Orig. 21.90 22.35 22.11 21.54 |23.08 22.47 21.98
20 44.33 25.79 25.52 25.32 |26.02 25.52 25.39
15 50.37 27.68 27.36 27.25|28.00 27.53 27.32
10 54.30 31.70 31.86 30.61 [33.34 32.38 30.61
6 54.85 36.07 35.05 31.74 |36.27 35.45 31.76
0 55.63 4577 45.17 34.92 | 46.78 45.66 35.35

years’ NIST corpora which is adopted here. The 14U trainind a
test data was drawn from SRE 2006, 2008 and 2010 corporalinclu
ing both telephone and microphone data. In addition to thggral
recordings, two noisy versions (15 dB and 6 dB) of each utt@a
were generated using FaNT where the noises included sideléce
sounds as the VAD devset but also additional (unintell@ibtowd
noises. A different set of noise files from VAD optimizatianuised
for the speaker verification part. More details are giverRiti [

A state-of-the-artprobabilistic linear discriminant analysis
(PLDA) [25] classifier with an i-vector extractor [26] andnigth
normalization [27] is used. 18 MFCCs are extracted, folldwe
by RASTA filter, delta and double deltas (54 dimensions)miea
dropping using one of the compared VADs, and global cepstral
mean/variance normalization (CMVN). Gender-dependeiveusal
background models (UBMs) with 1024 diagonal covariancedsau
sians are trained from NIST 04, 05, 06 and 08 data. The i-vecto
extractor (T-matrix) with 600 dimensions is trained (5 at@ons)
using the same corpora plus Fisher and Switchboard. Thesdsar
used for PLDA training with speaker and channel subspacemim
sions of 200 and 0, respectively. The original utterancebomit
added noise are used for UBM and T-matrix training, but bbgh t
PLDA training and the enrollment data contain original amispy
utterances. A single, averaged i-vector is used as the levaol
representation. To evaluate accuracy, we report both esuat
rate (EER) and normalized MinDCF following NIST 2010 speaake
recognition evaluation plaff.. = 0.001, Ciiss = Cta = 1).

4. RESULTS: VAD OPTIMIZATION

We first optimize the denoising parameters in the energy VAR
first parameters of interest are the maximum oversubtradtiotor
and spectral subtraction domain (magnitude, power or Wjefibe
results, using minimum mean square error (MMSE) noise &rack
of [23], are given in Fig. 1. As expected, accuracy drops @tam
ically with decreasing SNR. Regarding oversubtractiorgrassive
oversubtraction is helpful as noted earlier [10]. Stahtiian occurs
roughly fora > 5 for magnitude subtraction and > 10 for power
subtraction and Wiener filter across all SNRs. Regardingstiie
traction domain, the results are similar for high SNRs butShiRs

The accuracy of a VAD is evaluated by comparing the predicteqags than 15 dB. Wiener filter clearly wins.

VAD labels with a clean reference segmentation obtainenh fitoe
ASR transcripts provided by NIST. Lét(n) € {0,1} andy:(n) €

{0, 1}, respectively, denote the predicted and ground truth VAD la
bel of framet in file n, and letT'(n) denote the total number of
frames in utterance. Our primary metric for VAD tuning isver-
agetotal error rate,

Nutt

—>

Nutt —
n=1

T(n)

1 .
£ m ;I{yt(n) ;éyt(n)}7

@)

whereZ{-} is an indicator function an@.,; = 72 is the number
of utterances. Additionally, averagsiss andfalse alarmrates, cor-
responding to assertioqg:(n) = 0 A y¢(n) = 1} and{g:(n)

1 A y¢(n) = 0}, respectively, are reported for selected cases.

3.2. Speaker verification experiments

As part of the pre-evaluation activity for the NIST SRE 20th2, 14U
coalition developed a speaker verification devset based@rnqus

2http://dnt.kr. hsnr. de/ downl oad. ht ni
Shtt p: // ww. f reesound. or g

We next study the influence of the noise tracker. We fix max-
imum oversubtraction factor ta = 10 and compare the MMSE
[23] and minimum statistics [24] methods in Table 1. The itsfor
baseline energy VAD without spectral subtraction are aispldyed.
Clearly, any enhancement yields remarkable improvemesgaRi-
ing noise estimator, minimum statistic method wins in mastes,
but the difference is small. This was further confirmed byualk/
comparing the estimated noise spectra which appeared weitgars
The MMSE tracker implementation executes faster and is filked
rest of the experiments.

We now turn attention to the proposed VAD, where the opti-
mized spectral subtractor (Wiener domain, MMSE trackes 10)
is used for training vector labeling. 12 MFCCs (including) @6th-
out any normalizations or deltas are extracted. 10 % of thadés
are used for training speech and nonspeech models kuite 16
codevectors each. Table 2 shows the results for energy VARDwi
(column 1) and with (column 2) spectral subtraction. Theppeed
self-adaptive VAD is reported using energy VAD without (omin 3)
and with (column 4) enhancement of energy. The last columesgi
the result when both the energpd the MFCCs are extracted from
Wiener-filtered signal. We observe the following from Tabie



Table 2. Energy VAD and proposed VAD (codebodk = 16) with
and without spectral subtractio8$, average VAD errors (%). In
the last column the MFCCs are also extracted from denoiseetsp

SNR| Energy VAD Self-adaptive VAD
(dB) IN0SS. SS.|NoSsS. SS. SS. (energy
(energy) & MFCCs)

Orig.| 21.90 21.98 10.90 12.46 12.54

20 | 44.33 25.39 26.63 23.15 22.29

15 | 50.37 27.32 30.21 25.24 25.61

10 | 54.30 30.61 36.01 28.21 28.59

6 | 54.85 31.76 40.05 30.00 30.32

0 | 55.63 35.35 45.75 34.04 34.49

energy VAD when spectral subtraction is turned off.

ther improves accuracy of the proposed VAD.
Column 2 vs. 4: when spectral subtraction is included, ther

Column 1 vs 3: proposed VAD systematically outperforms

Column 3 vs 4: spectral subtraction for energy cleaning fur-

Table 3. Speaker verification accuracy (EER %) on the female trials
of the 14U devsetEn. = energy VAD,SS-En. = energy VAD with
spectral subtractiorRrop. = Proposed self-adaptive VAD.

Test
SNR
Orig
15dB
6dB
All

mic int
En. | SS-En|Prop.
0.87| 0.35|0.48
1.16] 0.69 | 0.94
3.20| 2.26 | 1.77
1.74] 1.10 | 1.06

tel phn
En. | SS-En|Prop.
1.59| 0.94 | 0.85
4,89 2.13 | 0.94
751 4.47 | 1.45
4.66| 2.51 | 1.08

mic phn
En. | SS-En| Prop.
7.64| 3.10 | 1.82
8.07| 4.57 | 2.25
9.18| 6.12 | 3.69
8.29| 4.50 | 2.58

Table 4. Same as Table 3 but for MinDCF.

Test
SNR
Orig
15dB
6dB
L All

mic int
En. | SS-En] Prop.
0.24| 0.10 | 0.09
0.28/ 0.14 | 0.10
0.59| 0.36 | 0.20
0.37| 0.20 | 0.13

tel phn
En. | SS-En] Prop.
0.37] 0.20 | 0.19
0.63] 0.36 | 0.20
0.81] 0.62 | 0.26
0.60] 0.39 | 0.21

mic phn
En. | SS-En| Prop.
0.64| 0.33 | 0.27
0.70, 0.42 | 0.29
0.91] 0.69 | 0.38
0.75] 0.48 | 0.31

is a slight yet systematic advantage of using the proposed

VAD. The same energy VAD is used in both, so this addi-

tional gain is due to the trained MFCC-based VAD.

MFCCs are extracted from the original or enhanced signal.

5. RESULTS: SPEAKER VERIFICATION

Column 4 vs 5: there is not much difference whether the

The speaker verification results (female trials only), g of equal

To sum up, the proposed VAD outperforms energy VAD systemati error rate (EER) and MinDCF are shown in Tables 3 and 4. Sirce w

cally across all SNRs. For the rest of the experiments, wespse-
tral subtraction to enhance energy only. As a final analysgg, 2
displays separately the average miss and false alarm atearfy-
ing number of codevectors and percentage of training frames
utterance (20 dB and 0 dB). Comparing the scales of the twihgra
majority of the VAD errors come from missed speech. Incregthie
codebook size decreases miss rate and slightly incredsesafarm
rate. Regarding the amount of training vectors, largeningi set
reduces miss rate and increases false alarm rate.

use multi-condition training including multiple SNRs ankdaanel
types and a variable number of training segments per speaker
report the results considering the test file SNR and data e
latter includes phone conversations with telephone cHdteigphn)
and microphone channeinf{c-phn), as well as interview scenario
with microphone channelnfic-int). The results for pooled trials
across all test SNRs are are given in the last rows of eacé.tabl

As expected, accuracy drops with decreasing SNR. Energy VAD
without spectral subtraction yields highest error ratesxgsected.

The miss rate should be interpreted with caution because of €Including this simple enhancement yields a considerabbstbdhe

roneous ASR transcripts used as reference; a large propaofi
“missed speech” likely originates from speech-internalges con-
sidered as speech according to ASR transcript but whiclsgfeaker
verification, should be considered nonspeech. Consideoiy ut-
terances, we would like to mainly retain low false alarm raitdout

proposed self-adaptive VAD further improves on this by géamnar-
gin. In the case of interview data EER for the original and B3ekt,
energy VAD with spectral subtraction slightly outperforthe pro-
posed VAD. Regarding the noisiest 6 dB case and MinDCF, the
posed VAD wins again. Our cross-talk cancellation stratedych

pr

removing too many speech frames; we fix the amount of trainingyas implemented as logical operation (interviewdD NOT inter-

data to 10 % with codebook siz€ = 16 for the speaker verifi-
cation part. The minimum energy threshold (same for all kmeet
VADSs) was re-adjusted t6,in = —75 dB and main threshold of
energy VAD tofma.in = 45 dB following [5]. These selections were
confirmed by listening and viewing spectrograms of the VARsdx.

SNR=0dB

SNR=0dB

N
Y

N
o

Avg miss rate (%)

Avg false alarm rate (%)

16,

2 4 8 16 32 64 128 256

Codebook size

2 4 8 16 32 64 128 256

Codebook size

Fig. 2. Effect of the amount of data used for VAD initialization (10
%, 20 %, 30 %) and codebook size (2,4,...,256).

viewer) [5] may be suboptimal. In summary, the overall resin-
dicate that the proposed VAD can indeed handle data witereifft
channel type and SNR without breaking down; it experiencesim
smaller relative degradation with decreasing SNR in comparto
the energy VAD variants.

6. CONCLUSIONS AND POINTER TO PROGRAM CODE

We studied a simple VAD for speaker verification with promggi
results over spectral subtraction VAD which is considered of
the high-performance VADs in speaker verification [10, 9Jon€
sistent behavior on telephone, microphone data, clean ai®y n
data was observed. Results should be further compared fo sim
lar utterance-by-utterance adaptive VADs (e.g. [19]). Pheb-
lems of threshold selection to maximize speaker verificatiocu-
racy and detect nonspeech-only utterances deserve attastivell.

A MATLAB implementation of our VAD is available aht t p:

/'l cs.uef.fi/pages/tkinnu/ VQVAD VQVAD. zi p.
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