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ABSTRACT

Although temporal information of speech has been shown to play
an important role in perception, most of the voice conversion ap-
proaches assume the speech frames are independent of each other,
thereby ignoring the temporal information. In this study, we improve
conventional unit selection approach by using exemplars which span
multiple frames as base units, and also take temporal information
constraint into voice conversion by using overlapping frames to gen-
erate speech parameters. This approach thus provides more stable
concatenation cost and avoids discontinuity problem in conventional
unit selection approach. The proposed method also keeps away from
the over-smoothing problem in the mainstream joint density Gaus-
sian mixture model (JD-GMM) based conversion method by directly
using target speaker’s training data for synthesizing the converted
speech. Both objective and subjective evaluations indicate that our
proposed method outperforms JD-GMM and conventional unit se-
lection methods.

Index Terms— Voice conversion, unit selection, multi-frame
exemplar, temporal information

1. INTRODUCTION

The task of voice conversion is to modify one speaker’s voice
(source) to sound like another (target). It has many applications in
unit selection based speech synthesis, such as personalization of a
text-to-speech (TTS) system without the need to retrain a full TTS
system for each target speaker [1]. To be useful in such applications,
natural sounding and high quality speech generated from the voice
conversion system is expected.

A number of methods have been proposed in order to generate
natural sounding converted speech. One of the successful methods
is to estimate a parametric conversion function from a parallel train-
ing corpus, and then to apply this conversion function to convert
the unseen test utterances. For instance, methods such as joint den-
sity Gaussian mixture model (JD-GMM) [2, 3], partial least squares
regression [4], mixture of factor analyzers [5] and local linear trans-
formation [6] have been studied making use of local linear trans-
formation functions. Non-linear mapping approaches such as neu-
ral network [7, 8], dynamic kernel partial least squares regression
[9] and conditional restricted Boltzmann machine [10] have also
been proposed, assuming that the vocal tract shape differences be-
tween two speakers constitute a non-linear relationship. All of the

above methods can generate converted speech with acceptable qual-
ity. However, over-smoothing and over-fitting problems in these sta-
tistical methods have been reported in [11, 9, 6, 5], due to statisti-
cal average and large number of parameters, respectively, and these
problems affect the quality of synthesized speech considerably.

Without using transformation functions, it is also possible to di-
rectly utilize the original target speech parameters to generate con-
verted speech. Unit selection [12], a method of automatically se-
lecting and concatenating target speech segments, is a representative
example of such non-parametric methods. In [13], unit selection
method, which uses source speech as reference speech for select-
ing the target units, is proposed for text-independent voice conver-
sion. In [14], the authors improved the original unit selection ap-
proach [13] by using JD-GMM based converted speech as reference
speech. To avoid discontinuities at the concatenated boundaries, the
unit selection methods [13, 14] consider both the target cost and con-
catenation cost. Unfortunately, they only use one frame to calculate
the concatenation cost, which has not considered a smooth frame-
to-frame transition in the target space. In addition, temporal infor-
mation is also ignored in the generated speech parameter sequence,
which will result in the discontinuity at the concatenation points and
affect the perceptional quality of the synthesized speech.

A major concern in most of the conventional voice conversion
methods is that they assume the short-term frames are independent
observations of each other. Inspired by the findings in exemplar-
based speech recognition [15] which considers the dependency
of multiple frames, we propose an exemplar-based unit selection
method to avoid frame-by-frame independence assumption. We use
exemplars which span over a fixed number of frames as basic units
to calculate the concatenation cost and to generate converted speech
parameters to avoid discontinuity at the concatenation boundaries.
Compared with the previous unit selection approaches [13, 14], our
method has three novel contributions:

a) we use a multi-frame exemplar instead of a single frame as
basic unit;

b) we adopt the exemplars to calculate the concatenation cost to
ensure that the consecutive frames in the target space have
zero concatenation cost;

c) we utilize the temporal information constraint to generate the
converted speech parameters by using a temporal window to
deal with the overlapping frames between consecutive exem-
plars.



In contrast to the statistical approaches, our method directly makes
use of the target speaker’s training data to generate the converted
speech, which will avoid both over-smoothing and over-fitting prob-
lems.

We summarize the process as follows. We first find source-target
exemplar pairs on parallel training data; we then select several target
candidate exemplars for each source exemplar in a test sentence and
calculate the target cost and the concatenation cost; after that Viterbi
algorithm is adopted to find the optimal target exemplar sequence
which minimizes the overall target and concatenation costs; finally,
the converted speech parameters are generated from the overlapping
exemplars by considering temporal information constraint.

2. EXEMPLAR-BASED UNIT SELECTION

An exemplar is a time-frequency speech segment which spans over
multiple consecutive frames. Exemplar-based methods have been
popular in modern speech recognition [15], as they allow modelling
of the temporal information. Different from the template-based
speech recognition [16] and unit selection for concatenative speech
synthesis [12] which employ transcription label to obtain the tem-
plate or unit, we use exemplars with fixed number of frames similar
as [17], because the transcription information is not available in this
study.

2.1. Source-target exemplars pairing

Given a parallel data, source frame sequence X = [x1,x2, ...,
xnx , ...,xNx ] and target frame sequence Y = [y1,y2, ...,yny ,
...,yNy ], dynamic time warping (DTW) is performed to obtain
aligned frames. The alignment produces the joint vector sequence
Z = [z1, z2, ..., zN ], where zn = [x⊤

nx
,y⊤

ny
]⊤, xnx ∈ RD,yny ∈

RD and zn ∈ R2D . Hence, the exemplar pair at time n is

X(n) = [xnx−p,xnx−p+1, ...,xnx , ...,xnx+p−1,xnx+p] ∈ Rq×D

for source and

Y(n) = [yny−p,yny−p+1, ...,yny , ...,yny+p−1,yny+p] ∈ Rq×D

for target, where q = 2p+ 1 is the window size of an exemplar. We
note that two consecutive exemplars X(n) and X(n+1) have (q− 1)
overlapping frames. We note that there are no repeated frames within
an exemplar.

2.2. Pre-selection of candidate exemplars

Note that we obtain exemplar pairs from parallel training data. At
run-time testing, for each source exemplar Xt = [xt−p,xt−p+1,
...,xt, ...,xt+p−1,xt+p] in the testing sentence, we pre-select sev-
eral target exemplars as candidates.

We first find the K nearest neighbors X
′(t)
1 , ...,X

′(t)
K in the

source training data for each X(t). The paired target exemplars
Y

′(t)
1 , ...,Y

′(t)
K corresponding to X

′(t)
1 , ...,X

′(t)
K are then selected

based on the source-target exemplars pairing in the previous step.
Thus, the target cost for each candidate is calculated as follows:

Ctarget(X
(t),Y

′(t)
k ) =

q∑
i=1

D∑
d=1

(X(t)(i, d)−Y
′(t)
k (i, d))2, (1)

where X(t)(i, d) and Y
′(t)
k (i, d) are the d-th dimension elements of

the i-th frame vector of exemplars X(t) and Y
′(t)
k at time t, respec-

tively.

After the shortlisted candidate exemplars are chosen, we calcu-
late the target-to-target concatenation cost as follows:

Cconcatenation(Y
′(t)
k ,Y

′(t+1)
j ) =

q−1∑
l=1

D∑
d=1

(Y
′(t)
k (l + 1, d)−Y

′(t+1)
j (l, d))2; j = 1, ..,K (2)

where Y
′(t)
k (l + 1, d) is the d-th dimension element of (l + 1)-th

frame vector of the k-th candidate at time t. We note that if two
exemplars are exactly the neighbours in the training set, the concate-
nation cost will be 0, because the (q−1) frames used for calculation
are exactly the same.

If the window size is one (q = 1), Y
′(t)
k becomes a D-

dimensional vector. In this special case, the concatenation cost
is:

Cconcatenation(Y
′(t)
k ,Y

′(t+1)
j ) =

D∑
d=1

(Y
′(t)
k (d)−Y

′(t+1)
j (d))2; j = 1, ...,K. (3)

This is the same as the calculation of conventional concatenation
cost, which can not guarantee the cost to be 0 when the two frames
are exactly neighbours, as two consecutive frames may not be ex-
actly the same.

2.3. Searching for the optimal exemplar sequence

Given a source exemplar sequence X(1), ...,X(t), ...,X(T ) from a
testing sentences, K target exemplars for each source exemplar are
pre-selected, and the target cost and the concatenation cost are all
calculated as introduced in the previous step. Then, the optimal tar-
get exemplar sequence can be found by minimizing the following
cost function:

Ỹ(1), ..., Ỹ(T ) = arg min
k=1,...,K

T∑
t=1

{Ctarget(X
(t),Y

′(t)
k )

+ Cconcatenation(Y
′(t)
k ,Y

′(t+1)
j )}; j = 1, ...,K.

(4)
In practice, this is achieved by using Viterbi search, as illustrated

in Fig. 1.

2.4. Speech parameter generation

Although the exemplar sequence is obtained using Viterbi search,
we can not directly pass the exemplar sequence to the synthesis
filter to reconstruct the speech signal, because there are overlapping
frames between consecutive exemplars. The overlapping frames
contain temporal information that is beneficial for a smooth signal
re-construction. To take advantage of such temporal information,
we introduce a weight for each frame in an exemplar, which forms a
temporal window.

a = [p, p− 1, ..., 0, ..., p− 1, p], (5)

w = exp(−λ|a|), (6)
where λ is a scalar value to control the shape of the temporal win-
dow. We normalize the weight vector w to make sure the elements
sum to 1. The converted speech parameters are generated as follows:

˜y(t) =

q∑
i=1

Ỹ(t−p+i−1)(q − i+ 1)×w(q − i+ 1) (7)



Fig. 1. Illustration of searching for the optimal exemplar sequence.
In the figure, dashed line (connecting X(t) and Y

′(t)
k ) represents

target cost and solid line (connecting Y
′(t)
k and Y

′(t+1)
j ) represents

concatenation cost.

where Ỹ(t−p+i−1)(q− i+1) is the (q− i+1)-th column vector of
Ỹ(t−p+i−1), and w(q − i+ 1) is the (q − i+ 1)-th element of w.
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Fig. 2. The temporal window with different λ

Fig. 2 shows the shape of the temporal window for different val-
ues of λ. As we increase λ, the contribution of the center frame to
the converted speech parameter increases as well. While choosing
large enough λ is similar as choosing only the center frame as the
converted speech parameter. Conversely, decreasing λ means con-
sidering more temporal information, and λ = 0.0 corresponds to
merely averaging all the overlapped frames.

If we set the center element of w to one and the rest elements
to zero, in other words, only the center frame in an exemplar is used
as the converted speech parameter, this will reduce the method to
a scheme which does not take into consideration of temporal infor-
mation constraint in the synthesis and only in finding the optimal
sequence of exemplars.

3. EXPERIMENTS

The CMU ARCTIC corpus is adopted for the experiments. Two
male (BDL, RMS) and two female (SLT, CLB) speakers are selected.
200 utterances of each speaker are used as training data, and 20 ut-
terances of each speaker are used as testing data. We conduct both
inter-gender and intra-gender conversions: BDL to RMS (M2M),
BDL to SLT (M2F), SLT to CLB (F2F) and SLT to RMS (F2M).

The speech signal, sampled at 16 kHz, is analyzed using
STRAIGHT [18] with 5ms shift. 24-order mel-cepstral coeffi-

cients (MCC), excluding the 0th energy coefficient, are extracted.
The MCCs are converted by using each of the conversion method
detailed in the following paragraph, while log-scale F0 is converted
by equalizing the means and variances of the source and the target
speakers.

In this work, we compare the following four approaches:

a) Joint density Gaussian mixture model (JD-GMM): This is the
mainstream voice conversion method [2, 3]. We adopt 64 full
covariance Gaussian components to model the joint distribu-
tion of source and target speech. This is our first baseline
method.

b) Unit selection (US) [13, 14]: This is the conventional unit
selection approach, using only one frame to calculate both
the target and the concatenation costs. This is our second
baseline method.

c) Partial exemplar-based unit selection (PEUS): The method
follows the steps as described in section 2.1, 2.2 and 2.3.
While in the generation step, only the center frame in an ex-
emplar is chosen to generate the converted speech parameters.
It is an intermediate method towards our proposed method.

d) Exemplar-based unit selection (EUS): This method is the pro-
posed method as detailed in previous section.

3.1. Objective evaluation

To evaluate the performance objectively, we adopt mel-cepstral dis-
tortion [2, 3] as an objective evaluation measure:

MCD =
10

ln 10

√
2Σ24

i=0(mcti −mcci )
2, (8)

where mct and mcc are the target and converted MCCs, respectively.
The lower of the MCD value, the smaller distortion.

We first study the effects of the window size of an exemplar (q)
and the number of shortlisted candidates (K). Here we only use the
center frame in the exemplar without any overlapping constraints to
generate converted speech.
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Fig. 3. Spectral distortion as a function of window size of an exem-
plar and number of shortlist candidates in terms of spectral distortion
(dB).

Fig. 3 indicates that window size of q = 9 can give lowest
distortion consistently. Distortion decreases with increased shortlist
size as expected, but comes with an added computational overhead.
Since there is not much change beyond 200 candidates, we fix K =
200 and q = 9 for the rest of the experiments.

We now turn our attention to the temporal window. As shown in
Eq. (6), we use λ to control the shape of the temporal window for
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Fig. 4. Distortion as a function of λ.

an exemplar. The distortion with different values of λ are shown in
Fig. 4. When λ ≥ 0.4, the distortion increases. When λ < 0.2, the
distortion also increases. Therefore, we empirically fix λ = 0.2 for
the rest of the experiments.

Table 1. Spectral distortion comparison of the baselines and the
proposed exemplar-based unit selection (EUS) method

M2M M2F F2F F2M Average
JD-GMM 5.28 5.60 4.82 5.34 5.26

US 6.25 6.69 5.62 6.39 6.24
PEUS 5.57 5.90 5.04 5.52 5.51
EUS 5.26 5.57 4.77 5.21 5.20

Comparison of the proposed method with the two baseline meth-
ods and PEUS method is given in Table 1. Comparing with US and
PEUS, PEUS gives lower spectral distortion and we can see the ad-
vantage of using multiple frames exemplar to do pre-selection and
to calculate the target cost and concatenation cost for searching the
optimal frame sequence. The benefit of using a temporal window
to include temporal information constraint in the converted speech
parameter generation can be seen by comparing the results of PEUS
and EUS. The difference of PEUS and EUS methods is that EUS em-
ploys a temporal window to deal with overlapping frames between
consecutive exemplars while PEUS does not. JD-GMM method also
gives higher spectral distortion than the proposed EUS method for
both male and female source speakers. In general, the proposed
method (EUS) has lower spectral distortion than both JD-GMM and
US methods. We note again that the lower spectral distortion, the
better performance.

3.2. Subjective evaluation

To assess the overall quality of converted speech, we conducted sub-
jective evaluation using mean opinion score (MOS). We compare the
proposed EUS method with the two baseline methods: JD-GMM and
US. As PEUS is an intermediate method towards EUS, it is excluded
in the subjective evaluation. We randomly select 5 sentences from
JD-GMM conversion, US conversion and EUS conversion speech
of four conversion directions (M2M, M2F, F2F and F2M). As a re-
sult, there are 20 sentences for each method and 60 sentences in the
whole test. These speech samples were presented to 9 subjects. The
subjects were asked to listen to each speech sample and then rate
the speech quality based on a five point scale: 5 for perfect, 4 for
good, 3 for fair, 2 for poor, and 1 for bad. The MOS is obtained
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Fig. 5. Subjective evaluation results with 95% confidence interval

by average all the scores rated by all the subjects. The MOS results
are presented in Fig. 5(a). We can see that our proposed method
outperforms both JD-GMM and conventional unit selection method
in terms of perceptual quality. The proposed temporal window in
EUS method is able to smooth the converted trajectory, while the
US method without such temporal window can not.

An AB preference test was also conducted to access the simi-
larity of the converted speech. As the bad quality of US converted
speech affect the similarity test, we only compare the proposed EUS
method with baseline JD-GMM method. 9 subjects were asked to
listen to a reference target speech and one pair converted speech (A
and B), and decide to choose which speech sample, A or B, is more
similar to the reference target speech. The preference results are
shown in Fig. 5(b). It clearly shows that the proposed EUS method
can generate speech to sound more similar to the target speaker than
the conventional JD-GMM method. We note that EUS method di-
rectly select target frames to compose the converted speech. Thus, it
is easy to understand that it generates speech more similar to target
speaker than JD-GMM based conversion does, the latter employs a
transformation function to transform the source speech to the target
space.

4. CONCLUSIONS

In this paper, to avoid the frame-by-frame independence assump-
tion in most the voice conversion methods, we proposed exemplar-
based unit selection method to model the temporal dependency and
take into consideration of temporal information constraint in both the
process of finding the optimal exemplar sequence and generation of
converted speech parameters. By using multi-frame exemplars, the
proposed method avoids the discontinuity at the concatenation point
in conventional unit selection approaches. In addition, our method
also avoids the over-smoothing problem in the popular JD-GMM
approach because the target speaker’s training data is directly used
to generate the converted speech. Generally, the proposed method
has lower spectral distortion, and also generates perceptually better
speech than baseline methods.
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[2] Y. Stylianou, O. Cappé, and E. Moulines, “Continuous prob-
abilistic transform for voice conversion,” IEEE Transactions
on Speech and Audio Processing, vol. 6, no. 2, pp. 131–142,
1998.

[3] T. Toda, A.W. Black, and K. Tokuda, “Voice conversion based
on maximum-likelihood estimation of spectral parameter tra-
jectory,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 15, no. 8, pp. 2222–2235, 2007.

[4] E. Helander, T. Virtanen, J. Nurminen, and M. Gabbouj, “Voice
conversion using partial least squares regression,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 18,
no. 5, pp. 912–921, 2010.

[5] Z. Wu, T. Kinnunen, E. Chng, and H. Li, “Mixture of factor
analyzers using priors from non-parallel speech for voice con-
version,” Signal Processing Letters, IEEE, vol. 19, no. 12, pp.
914–917, 2012.

[6] V. Popa, H. Silen, J. Nurminen, and M. Gabbouj, “Local linear
transformation for voice conversion,” in ICASSP 2012.

[7] M. Narendranath, H.A. Murthy, S. Rajendran, and B. Yegna-
narayana, “Transformation of formants for voice conversion
using artificial neural networks,” Speech communication, vol.
16, no. 2, pp. 207–216, 1995.

[8] S. Desai, A.W. Black, B. Yegnanarayana, and K. Prahallad,
“Spectral mapping using artificial neural networks for voice
conversion,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 18, no. 5, pp. 954–964, 2010.

[9] E. Helander, H. Silén, T. Virtanen, and M. Gabbouj, “Voice
conversion using dynamic kernel partial least squares regres-
sion,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 20, no. 3, pp. 806–817, 2012.

[10] Z. Wu, E. S. Chng, and H. Li, “Conditional restricted boltz-
mann machine for voice conversion,” in the IEEE China Sum-
mit and International Conference on Signal and Information
Processing (ChinaSIP) 2013.

[11] Y. Chen, M. Chu, E. Chang, J. Liu, and R. Liu, “Voice
conversion with smoothed GMM and MAP adaptation,” in
Eurospeech-2003.

[12] A.J. Hunt and A.W. Black, “Unit selection in a concatenative
speech synthesis system using a large speech database,” in
ICASSP 1996.

[13] D. Sundermann, H. Hoge, A. Bonafonte, H. Ney, A. Black,
and S. Narayanan, “Text-independent voice conversion based
on unit selection,” in ICASSP 2006.

[14] T. Dutoit, A. Holzapfel, M. Jottrand, A. Moinet, J. Perez, and
Y. Stylianou, “Towards a voice conversion system based on
frame selection,” in ICASSP 2007.

[15] T.N. Sainath, B. Ramabhadran, D. Nahamoo, D. Kanevsky,
D. Van Compernolle, K. Demuynck, J.F. Gemmeke, J.R. Bel-
legarda, and S. Sundaram, “Exemplar-based processing for
speech recognition: An overview,” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 98 –113, nov. 2012.

[16] M. De Wachter, M. Matton, K. Demuynck, P. Wambacq,
R. Cools, and D. Van Compernolle, “Template-based contin-
uous speech recognition,” Audio, Speech, and Language Pro-
cessing, IEEE Transactions on, vol. 15, no. 4, pp. 1377–1390,
2007.

[17] J.F. Gemmeke, T. Virtanen, and A. Hurmalainen, “Exemplar-
based sparse representations for noise robust automatic speech
recognition,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 19, no. 7, pp. 2067–2080, 2011.

[18] H. Kawahara, I. Masuda-Katsuse, and A. de Cheveigné, “Re-
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