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Figure 1: A Gaussian mixture model (GMM) with universal backround model (UBM). User-dependent models are adapted from the UBM
and the recognition score is normalized using the UBM score.

Abstract

We propose a person authentication system using eye movement
signals. In security scenarios, eye-tracking has earlier been used
for gaze-based password entry. A few authors have also used phys-
ical features of eye movement signals for authentication in a task-
dependent scenario with matched training and test samples. We
propose and implement a task-independent scenario whereby the
training and test samples can be arbitrary. We use short-term eye
gaze direction to construct feature vectors which are modeled us-
ing Gaussian mixtures. The results suggest that there are person-
specific features in the eye movements that can be modeled in a
task-independent manner. The range of possible applications ex-
tends beyond the security-type of authentication to proactive and
user-convenience systems.

CR Categories: K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection—Authentication; I.5.2
[Pattern Recognition]: Design Methodology—Feature evaluation
and selection;
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1 Introduction
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The goal of biometric person authentication is to recognize persons
based on their physical, behavioral and/or learned traits. Physical
traits, such as fingerprints, are directly measured from one’s body
with the aid of a biometric sensor. Behavioral traits, such as hand-
writing and speech, on the other hand, involve physical action per-
formed by the user, and hence involve a time-varying component
which can be controlled by conscious action. The behavioral signal
captured by the sensor hence includes a (possibly very complex)
mixture of the cognitive (behavioral) component and the physical
component corresponding to the individual physiology.

Human eyes provide a rich source of information about the iden-
tity of a person. The biometric systems utilizing commonly known
physical properties of eyes - iris and retinal patterns - achieve high
recognition accuracy. The eyes, however, have a strong behavioral
component as well, the eye movements. The eye, the oculomotor
plant and the human visual system develop individually for each
person and thus, it is reasonable to hypothesize that some part of
the resulting eye-movements is individual too. In this paper we
study eye movement features to recognize persons, independently
on the task. Thus, eye movements could provide complementary
information for iris, retina, or face recognition. In addition, an eye
tracker enables also liveness detection, that is, validating whether
the biometric template originates from a real, living human being.

Another advantage of biometric eye movement authentication
would be that it enables unnoticeable continuous authentication of
a person; the identity of the user can be re-authenticated continu-
ously without any interaction by the user. From the technological
viewpoint and accessibility, the accuracy of eye trackers is contin-
uously improving; at the same time, eye trackers have already been
integrated with some low-cost webcams, see e.g. [Cogain ]. It can
be hypothesized that future notebooks and mobile devices will have
integrated eye trackers as standard equipment.
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1.1 Related Work
The idea of using eye-movements for person authentication is not
new. The currently adopted approaches consider eye gaze as an al-
ternative way to input user-specific PIN numbers or passwords; see
[Kumar et al. 2007] for a recent review of such methods. In these
systems, the user may input the pass-phrase by, for instance, gaze-
typing the password [Kumar et al. 2007], using graphical pass-
words such as human faces [Passfaces ], or using gaze gestures sim-
ilar to mouse gestures in web browsers [Luca et al. 2007]. In such
systems, it is important to design the user interface (presenting the
keypad or visual tokens; providing user feedback) to find acceptable
trade-off between security and usability - too complicated cognitive
task becomes easily distracting. The eye gaze input is useful in se-
curity application where shoulder surfing is expected (e.g. watch-
ing over one’s shoulder when he/she is typing his/her PIN code in
an ATM device). However, it is still based on the “what-the-user-
knows” type of authentication; it might also be called cognometric
authentication [Passfaces ].

In this paper, we focus on biometric authentication, that is, who
the person is rather than what he/she knows. Biometric authentica-
tion could be combined with the cognometric techniques, or used as
the only authentication method in low-security scenarios (e.g. cus-
tomized user profiles in computers, adaptive user interfaces). We
are aware of two prior studies that have utilized physical features of
the eye movements to recognize persons [Kasprowski 2004; Bed-
narik et al. 2005]. In [Kasprowski 2004], the author used a custom-
made head-mounted infrared oculography eye tracker (“OBER 2”)
with sampling rate of 250 Hz to collect data from N = 47 sub-
jects. The subjects followed a jumping stimulation point presented
on a normal computer screen at twelve successive point positions.
Each subject had multiple recording sessions and one task consisted
of less than 10 seconds of data and lead to fixed-dimensional (2048
data points) pattern. The stimulation reference signal, together with
robust fixation detection, was used for normalizing and aligning the
gaze coordinate data. From the normalized signals, several fea-
tures were derived: average velocity direction, distance to stimula-
tion, eye difference, discrete Fourier transform (DFT) and discrete
wavelet transform (DWT). Five well-known pattern matching tech-
niques, as well as their ensemble classifier, were then used for ver-
ifying the identity of a person. Average recognition error of the
classifier ensemble around 7 % to 8 % was reported.

In an independent study [Bednarik et al. 2005], the authors used a
commercially available eye tracker (Tobii ET-1750), built in a TFT
panel, to collect data from N = 12 subjects at sampling rate of 50
Hz. The stimulus consisted of a single cross shown in the middle of
the screen and displayed for 1 second. The eye-movement features
consisted of pupil diameter and its time derivative, gaze velocity,
and time-varying distance between the eyes. Discrete Fourier trans-
form (DFT), principal component analysis (PCA) and their combi-
nation were then applied to derive low-dimensional features, fol-
lowed by k-nearest neighbor template matching. The time deriva-
tive of the pupil size was found to be the best dynamic feature,
yielding identification rate of 50 % to 60 % (the best feature, dis-
tance between the eyes, was not considered interesting since it can
be obtained without an eye tracker).

1.2 What is New in This Study: Task Independence
Both of the studies [Kasprowski 2004; Bednarik et al. 2005] are
inherently task-dependent: they assume that the same stimulus ap-
pears in training and testing. This approach has the advantage that
the reference template (training sample) and test sample can be ac-
curately aligned. However, the accuracy comes with a price paid
on convenience: in security scenario, the user is forced to perform
a certain task which becomes both learned and easily distracting.

Design of the authentication stimulus should be done with great
care to avoid learning effect of the user; if the user learns the task,
such as the order of the moving object, his behavior changes which
may lead to increased recognition errors. From the security point of
view, the repetitious task can easily be copied and intrusion system
built to imitate the expected input.

Here we take a step towards eye movement biometrics where we
have minimal or absolutely no prior knowledge of the underlying
task. We call such problem as task-independent eye-movement bio-
metrics. We stem this terminology from other behavioral biometric
tasks, such as text-independent speaker [Kinnunen and Li 2010] and
writer [Bulacu and Schomaker 2007] identification.

2 Data Preprocessing and Feature Extraction

The eye-coordinates are denoted here by xleft(t), yleft(t), xright(t),
yright(t) for each timestamp t. Some trackers, including the one
used in this study, provide information about pupil diameter of both
eyes as well; we focus on the gaze coordinate data only. The eye
movement signal is inherently noisy and includes missing data due
to blinks, involuntary head movements, or corneal moisture tear
film and irregularities, for instance. Typically, the eye-tracking de-
vice gives information about the missing data in a validity variable.
We assume continuity of the data within the missing parts and lin-
early interpolate the data in-between the valid segments. Interpola-
tion is applied independently for all four coordinate time series.

It is a known fact that the eye is never still and constantly moves
around the fixation center. While most eye-trackers cannot mea-
sure the microscopic movements of the eye – the tremor, drift, and
microsaccades – due to accuracy and temporal resolution, we con-
centrate on the movements on a coarser level of detail that can be
effectively measured. Even during a single fixation, the eye con-
stantly samples the region of interest. We hypothesize that the way
the eye moves during the fixation and smooth pursuit have bearing
on some individual property of the oculomotor plant.

We describe the movement as a histogram of all angles the eye
travel during a certain period. Similar technique was used for the
task-dependent recognition in [Kasprowski 2004]. Figure 2 sum-
marizes the idea. We consider short-term data window (L sam-
ples) that expands over a temporal span of few seconds. The lo-
cal velocity direction of the gaze (from time step t to time step
t + 1) is computed using trigonometric identities and transformed
into a normalized histogram, or discrete probability mass function
z = (p(θ1), p(θ2), . . . , p(θK)), where p(θk) > 0 for all k and∑

k
p(θk) = 1. The K histogram bin midpoints are pre-located

at angles θk = k(2π/K) where k = 0, 1, . . . ,K − 1. The data
window is then shifted forward by S samples (here we choose S =
L/2). The method produces a time sequence {zt}, t = 1, 2, . . . , T
of K-dimensional feature vectors which are considered indepen-
dent from each other and used in statistical modeling as explained
in the next Section.

Note that in the example of Fig. 2 most of the fixations have a
“north-east” or “south-west” tendency and this shows up in the his-
togram as an “eigendirection” of the velocity. It is worth empha-
sizing that we deliberately avoid the use of any fixation detection
– which is error prone – but instead use all the data within a given
window. This data is likely to include several fixations and sac-
cades. Since the amount of time spent on fixating is typically more
than 90 %, the relative contribution of the saccades in the histogram
is smaller.

188



200 400 600 800 1000

100
200
300
400
500
600
700
800

Eye gaze data (entire task)

 

 

x coordinate (pixels)

y 
co

or
di

na
te

 (p
ix

el
s)

400 450 500 550 600 650
300

350

400

450

500

x coordinate (pixels)

Short−term gaze (temporal
window of 1.6 seconds)

 

 

y 
co

or
di

na
te

 (p
ix

el
s)

0 50 100 150 200
300

350

400

450

500

550

600

650

Time (samples reletive to window location)

Short−term coordinate data

 

 

co
or

di
na

te
 (p

ix
el

s)   0.05 30

210

60

240

90

270

120

300

150

330

180 0

Histogram of velocity directions
within the temporal window

x coordinate
y coordinate

Local
velocity
direction

Magnitude of each arc is proportional to the
probability of that velocity direction within the
window.

Figure 2: Illustration of velocity direction features.
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Figure 3: Effect of feature parameters to accuracy.

3 Task-Independent Modeling of Features
We adopt some machinery from modern text-independent speaker
recognition [Kinnunen and Li 2010]. In speaker recognition, the
speech signal is also transformed into a sequence of short-term fea-
ture vectors that are considered independent. The matching prob-
lem becomes to quantifying the similarity of the given “feature vec-
tor clouds”. To this end, each person is modeled using a Gaussian
mixture model (GMM) [Bishop 2006]. An important advance in
speaker recognition was normalizing the speaker models with re-
spect to a so-called universal background model (UBM) [Reynolds
et al. 2000]. This method (Fig. 1) is now well-established base-
line method in that field. The UBM, which is just another Gaus-
sian mixture model, is first trained from a large set of data. The
user-dependent GMMs are then derived by adapting the parame-
ters of the UBM to that speaker’s training data. The adapted is
an interpolated model between the UBM (prior model) and the ob-
served training data. This maximum a posteriori (MAP) training of
the models gives better accuracy than maximum likelihood (ML)
trained models for limited amount of data. Normalization by the
UBM likelihood in the test phase also emphasizes the difference of
the given person from the general population of persons.

The GMM-UBM method [Reynolds et al. 2000] can be shortly
summarized as follows. Both the UBM and the user-dependent
models are described by a mixture of multivariate Gaussians with
some mean vectors µm, diagonal covariance matrices (Σm) and
mixture weights (wm). The density function of GMM is then
p(z|Θ) =

∑
M

m=1 wmN (z|µm,Σm), where N (·|·) denotes mul-
tivariate Gaussian and Θ denotes collectively all the parameters.
The mixture weights satisfy wm ≥ 0,

∑
m
wm = 1. The UBM

parameters are found via the expectation-maximization (EM) algo-
rithm, and the user-dependent mean vectors are derived as,

µ
′

m = αmz̃m + (1− αm)µm, (1)

where z̃m is the posterior-weighted mean of the training sample.
The adaptation coefficient is defined as αm = nm/(nm+r), where

nm is the soft count of vectors assigned to the mth Gaussian and
r > 0 is a fixed relevance factor. Variances and weights can also
be adapted. For small amount of data, the adapted vector is interpo-
lation between the data and the UBM, whereas for large number of
data the effect of UBM is reduced. Given a sequence of independent
test vectors {z1, . . . ,zT }, the match score is computed as the dif-
ference of the target person and the UBM average log-likelihoods:

score =
1
T

T∑

t=1

{log p(zt|Θtarget)− log p(zt|ΘUBM)}. (2)

4 Experiments
4.1 Experimental Setup

For the experiments, we collected a database of N = 17 users.
The initial number of participants was higher (23), but we left out
the recordings with low quality data - e.g. due to a frequent loss
of eye. Participants were naive of the actual purpose of the study.
The recordings were conducted in a quiet usability laboratory with
constant lighting. After a calibration, the target stimuli consisted of
a two sub-tasks. First, the display showed an introductory text with
instructions related to the content and duration of the task. Partici-
pants were also asked to keep their head as stable as possible. The
following stimulus was a 25 minutes long video of a section of Ab-
solutely fabulous - a comedy series produced by BBC. The video
contained original sound and subtitles in Finnish. The screen reso-
lution of the video was 800 x 600 pixels and it was shown on a 20.1
inch LCD flat panel Viewsonic VP201b (true native resolution 1600
x 1200, anti-glare surface, contrast ration 800:1, response time 16
ms, viewing distance approximately 1 m). A Tobii X120 (sampling
rate 120 Hz, accuracy 0.5 degree) eye-tracker was employed in the
study and the stimuli were presented using the Tobii Studio analysis
software v. 1.5.2.

We use one training file and one test file per person and do cross-
matching of all file pairs, which leads to 17 genuine access tri-
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als and 272 impostor access trials. We measure the accuracy by
equal error rate (EER) which corresponds to the operating point
for which the false acceptance (accepting an impostor) and false
rejection (rejecting a legitimate user) are equal. The UBM train-
ing data, person-dependent training data and test data are all dis-
joint. The UBM is trained by a deterministic splitting method fol-
lowed by 7 k-means iterations and 2 EM iterations. In creating the
user-dependent adapted Gaussian mixture models, we adapt both
the mean and variance vectors with relevance factor r = 16.
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Figure 4: Effect of model order.

4.2 Results
We first optimize the feature extractor and classifier parameters.
The UBM is trained from 140 minutes of data whereas the train-
ing and test segments have approximate durations of five and one
minute, respectively. We fix the number of Gaussians toM = 12
and vary the length of the data window (L) and the number of his-
togram bins (K). The error rates presented in Fig. 3 suggest that
increasing the window size improves accuracy, and the number of
bins does not have to be too high (20 ≤ K ≤ 30). We fixK = 27
and L = 900 and further fine-tune the number of Gaussians in Fig.
4. The accuracy improves when increasing the number of Gaus-
sians, and achieves optimum at approximately 6 ≤ M ≤ 18. In the
following we setM = 16.

Finally, we display the error rates for varying lengths of training
and test data in Table 1. Here we reduced the amount of UBM
training data to 70 minutes so as to allow using longer training
and test segments for the target persons. Increasing the amount of
data improves accuracy, saturating to accuracy around 30 % EER.
Although the accuracy is not sufficient for a realistic application,
it is clearly below the chance level (50 % EER), suggesting that
there is individual information in the eye movements which can be
modeled. The error rates are clearly higher than in [Kasprowski
2004; Bednarik et al. 2005]. However, those studies used fixed-
dimensional templates that were carefully aligned whereas our sys-
tem does not use any explicit temporal alignment.

5 Conclusions

We approached the problem of task-independent eye-movement
biometric authentication from bottom-up without any prior signal
model of how the resulting eye-movement signal and features are
generated by the oculomotor plant. Instead, we had an intuitive
guess that the way the ocular muscles operate the eye is individ-
ual and there is some independence on the underlying task. Our
results indicate that this is a feasible conception. The error rates
are too high to be useful in a realistic security system, but signifi-
cantly lower than the chance level (50 %) which warrants for fur-

Table 1: Effect of training and test data durations.

Training data Test data Equal error rate (EER %)
10 sec 10 sec 47.1
1 min 10 sec 47.1
3 min 10 sec 35.3
6 min 10 sec 29.8
9 min 10 sec 28.7
1 min 1 min 41.9
2 min 2 min 41.2
4 min 4 min 29.4
5 min 3 min 29.4
6 min 2 min 29.4
7 min 1 min 29.8

ther studies using larger number of participants and wider range of
tasks and features. Several improvements could be done on the data
processing side as well: using complementary features from pupil
diameter, using feature and score normalization and discriminative
training [Kinnunen and Li 2010].
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