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Abstract

Automatic speaker verification (ASV) technology is recently finding its way to end-user applications for
secure access to personal data, smart services or physical facilities. Similar to other biometric technologies,
speaker verification is vulnerable to spoofing attacks where an attacker masquerades as a particular target
speaker via impersonation, replay, text-to-speech (TTS) or voice conversion (VC) techniques to gain illegit-
imate access to the system. We focus on TTS and VC that represent the most flexible, high-end spoofing
attacks. Most of the prior studies on synthesized or converted speech detection report their findings using
high-quality clean recordings. Meanwhile, the performance of spoofing detectors in the presence of additive
noise, an important consideration in practical ASV implementations, remains largely unknown. To this end,
our study provides a comparative analysis of existing state-of-the-art, off-the-shelf synthetic speech detectors
under additive noise contamination with a special focus on front-end processing that has been found critical.
Our comparison includes eight acoustic feature sets, five related to spectral magnitude and three to spectral
phase information. All the methods contain a number of internal control parameters. Except for feature
post-processing steps (deltas and cepstral mean normalization) that we optimized for each method, we fix
the internal control parameters to their default values based on literature, and compare all the variants using
the exact same dimensionality and back-end system. In addition to the eight feature sets, we consider two
alternative classifier back-ends: Gaussian mixture model (GMM) and i-vector, the latter with both cosine
scoring and probabilistic linear discriminant analysis (PLDA) scoring. Our extensive analysis on the recent
ASVspoof 2015 challenge provides new insights to the robustness of the spoofing detectors. Firstly, unlike in
most other speech processing tasks, all the compared spoofing detectors break down even at relatively high
signal-to-noise ratios (SNRs) and fail to generalize to noisy conditions even if performing excellently on clean
data. This indicates both difficulty of the task, as well as potential to over-fit the methods easily. Secondly,
speech enhancement pre-processing is not found helpful. Thirdly, GMM back-end generally outperforms the
more involved i-vector back-end. Fourthly, concerning the compared features, the Mel-frequency cepstral
coefficient (MFCC) and subband spectral centroid magnitude coefficient (SCMC) features perform the best
on average though the winner method depends on SNR and noise type. Finally, a study with two score fusion
strategies shows that combining different feature based systems improves recognition accuracy for known
and unknown attacks in both clean and noisy conditions. In particular, simple score averaging fusion, as
opposed to weighted fusion with logistic loss weight optimization, was found to work better, on average. For
clean speech, it provides 88% and 28% relative improvements over the best standalone features for known
and unknown spoofing techniques, respectively. If we consider the best score fusion of just two features,
then RPS serves as a complementary agent to one of the magnitude features. To sum up, our study reveals
a significant gap between the performance of state-of-the-art spoofing detectors between clean and noisy
conditions.
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1. Introduction

Automatic speaker verification (ASV) [1] is the task of authenticating users based on their voices. Tra-
ditionally, ASV has mostly been applied in specialized surveillance and forensics applications but recent
methodological advances have greatly increased interest in mass-market adoption to secure personal data.
For instance, in 2013 a smartphone voice unlock feature was introduced to a Baidu-Lenovo phone1, and
similar activities are being pursued by Google to their Android devices2. Some of the favorable points of
ASV over other popular biometric identifiers are wide applicability (no other sensors except microphone
required), natural integration with face authentication in smartphones, as well as revocability: if a voice
token is compromised or stolen, another user pass-phrase can be selected.

A speech-based authentication system to control access to personal data or physical site will be useful only
if it helps to improve the overall system security. A now well-recognized security concern with any biometric
modality — including fingerprints, face, and speech — is that they are vulnerable to circumvention by
spoofing attacks [2], whereby an attacker attempts to gain unauthorized access to the system by masquerading
herself as another user. Attacks can naturally be executed at any parts of the system [3], including software,
biometric templates or features. However, direct attacks, involving an injection of forged biometric data to
the sensor or the transmission point, are arguably most accessible to even less technology-aware attackers.
Consequently, direct spoofing attacks are under active research across all the major biometric modalities.
Specific to ASV, four currently known types of direct attacks have been identified [4, 5]: (i) replay [6,
7, 8], representation of a pre-recorded target speaker utterance; (ii) impersonation [9, 10], human-based
mimicry of a target voice; (iii) text-to-speech synthesis (TTS), artificially generated target voice from an
arbitrary text input [11]; and (iv) voice conversion (VC), modification of source speech towards target
speaker characteristics [12].

In this study, we focus on VC and TTS as they are arguably more flexible and consistent for spoofing both
text-independent and -dependent ASV systems [5]. The effectiveness of VC and TTS spoofing attacks were
first demonstrated nearly two decades ago in [13] and [14]. Further recent studies [15, 16, 17, 18, 19, 20, 21]
affirm that even state-of-the-art ASV systems remain highly vulnerable to modern VC and TTS attacks.
State-of-the-art VC and TTS can produce high-quality target speech using a relatively small amount of
training data [22, 23]. Even if implementing such attacks in practice would currently require a dedicated effort
or special skill-set from the attacker, anytime in near future one should expect advanced voice transformation
tools to be readily available for end-users in smartphones or other portable devices, thereby greatly increasing
the threats imposed by advanced VC and TTS spoofing attacks.

Having recognized the vulnerability problem caused by spoofing attacks, a few first steps to develop
various countermeasures (CMs) have been taken [5]. The most common approach (for an exception, see
[24]) is to equip an off-the-shelf ASV system with a stand-alone spoofing attack detector module. In our
case, a classifier that will assign a human or synthetic label (or a likelihood score) to a given utterance3.

The novel contribution of this work, which is placed into a wider ASV context in Section 2, is briefly
stated as follows. We provide a detailed analysis on synthetic speech detection under acoustically degraded
conditions, namely, additive noise, whose effects to spoofing detection are so far poorly understood. We
do not introduce new methods but analyse the state-of-the-art methods with respect to their potential
robustness bottlenecks under as comparable parameter settings and evaluation data as possible. In specific,
we adopt the now widely-adopted ASVspoof 2015 challenge data [25] to our experiments, so as to assess the
joint effect of varied attacks and additive noise. By focusing on the key part of synthetic spoofing detectors,
the feature extractor, our aim is to gain improved understanding on generalization capability of the feature
extractors in this task. Our study, being the most comprehensive comparative analysis on the topic to date,
is targeted especially for practitioners, such as ASV vendors, and researchers new to ASV spoofing research.
The material throughout the manuscript is intended to be tutorial-like and as self-contained as possible.

1http://www.signalprocessingsociety.org/technical-committees/list/sl-tc/spl-nl/2013-02/

SpeakerVerificationMakesItsDebutinSmartphone
2http://thehackernews.com/2015/04/android-trusted-voice.html
3For brevity, we use “synthetic speech detection” to refer to detection of both VC and TTS attacks. In the present context,

such umbrella term is justified as TTS and VC systems often employ similar methods for voice coding
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2. Related work, motivation and contributions

2.1. Methods for detecting synthetic speech

Synthetic speech detection is enabled by imperfections of the VC or TTS systems. For instance, voice
coders (vocoders) used for speech parameterization in VC and TTS systems use greatly simplified models of
human voice production, such as all-pole synthesis filters driven by impulse train excitation [26]. Processing
artifacts affect the spectral, temporal and prosody characteristics of synthetic speech. Similar to ASV,
synthetic speech detectors consist of front-end (feature extraction) and back-end (classifier) components.
Most of the work on synthetic speech detection focus on the former, including specific/tailored features
combined with a simple Gaussian mixture model (GMM) or support vector machine (SVM) back-end. A
substantially different approach, using standard MFCC features but focusing on i-vectors and advanced
back-end modeling ideas, was carried out in [24] with promising results on the voice-converted version of
NIST 2006 SRE data (though not performing well on ASVspoof 2015 [27]).

In [28], standard Mel-frequency cepstral coefficients (MFCCs), cosine phase and modified group delay
features were compared for the detection of Gaussian mixture model (GMM) and unit selection based
synthetic speech, cosine phase features leading to the lowest error rates. In [29], MFCCs, modified group
delay, phase, and amplitude modulation features were compared for detecting synthetic speech, the group
delay features yielding the highest accuracy. One of the most popular feature sets used for synthetic speech
detection are the so-called relative phase shift (RPS) features [30, 31, 32]. They are calculated based on
the phase shift of the harmonic components of the signal with respect to fundamental frequency (F0), and
have been reported to be effective in detecting synthetic speech [31, 32]. However, for instance [32] suggests
that RPS-based synthetic speech detection might be sensitive to vocoder mismatch across training and test
sets, leading to degraded performance. More recently in [31], the RPS features were used to detect synthetic
speech signals provided by Blizzard Challenge. The authors found out that RPS features outperformed
MFCCs on detecting speech generated by statistical parametric speech synthesis whereas MFCCs yielded
higher accuracy when synthetic signals were generated by unit selection, diphone or hybrid methods. Similar,
inconsistent observations were found in our recent study [33] where RPS features performed the best out
of 17 compared feature extraction techniques when vocoders between training and test were matched, but
yielded the highest error rates in the opposite case.

In [34], another robust phase-related feature similar to RPS, termed relative phase information (RPI)
[35], was used for synthetic speech detection using ASVspoof 2015 database. It was found to outperform
both MFCC and MGD features. RPI processing aims at normalizing the phase changes resulting from
frame positioning. In specific, with the aid of discrete Fourier transform (DFT), phase information is
estimated relative to a fixed base frequency (ωb = 2π× 1000 Hz was used in [34, 35]) in contrast to the RPS
representation that is based on sinusoidal modeling with phase shifts computed relative to estimated F0.

2.2. Towards varied spoofing attacks: SAS corpus and ASVspoof 2015 challenge

As the above review indicates, a large number of potentially useful methods to detect synthetic speech
have been investigated. The user’s dilemma, however, is that their relative performances are either in-
comparable or under-representative of real-world deployment, for many reasons. Firstly, no single study
compares the various methods on a common set of data or using a unified objective evaluation metric, mak-
ing unbiased performance assessment challenging, if not impossible. Secondly, the studies usually contain
only a handful of attacks, making conclusions attack-dependent. Thirdly, most studies involve a closed-
world evaluation setting where the synthetic test samples originate from the same methods, channels and
environments as used in training. This corresponds to a scenario where the ASV system administrator (de-
fender) knows in advance what spoofing technique the attacker will employ. While such an oracle evaluation
scenario may provide experimental bounds to the highest performance achievable using a specific attack
detector, it is unlikely to be representative of an actual attack scenario where the attacker may employ novel
(presently unknown) attacks. Fourthly, differently from the traditional NIST speaker verification scenarios
involving channel- and condition-mismatched data, most of the datasets used for synthetic speech detection
have consisted of high-quality (wideband) noise-free signals. As a result, it is largely unknown how well
the state-of-the-art synthetic speech detectors generalize to non-ideal conditions involving not only varied
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spoofing materials but extrinsic distortions induced by the environment or channel, important factors in any
real-world deployment of ASV technology.

To address the first three concerns — incomparability of results, limited set of attacks and closed-world
evaluation bias — a new speaker verification spoofing and anti-spoofing (SAS) corpus was introduced recently
in [21] and used in ASVspoof 2015: Automatic Speaker Verification Spoofing and Countermeasures Challenge
[25]4, that focused on stand-alone synthetic speech detection involving both known and unknown attacks.
The findings of ASVspoof 2015 were disseminated at a special session of the latest edition of Interspeech
conference in Dresden, Germany5.

During the special session, several participating sites reported independently that spectral phase-based
features (such as cosine phase [28], modified group delay [28] and RPS [31]) outperformed spectral magnitude-
based features in synthetic speech detection [36, 37, 34, 38]. GMM-based system [1] was used for modeling
both natural and synthetic speech classes in most of the studies presented at the special session [34, 37, 39].
Though in [37], more advanced support vector machines (SVM) and deep neural networks (DNN) are utilized
as their back-ends, the performance of GMM systems was found to be similar or better. Similar observation
was made in our preliminary study on ASVspoof 2015 data [27]. An i-vector with Gaussian back-end
and DNN based approach was also investigated in [40] without improvement in performance compared to
GMM. In most recent studies using ASVspoof 2015 data, fundamental frequency (F0) contour and strength
of excitation (SoE) were also used in combination with MFCCs and cochlear filter cepstral coefficients
and instantaneous frequency (CFCCIF) features [41]. In [42], constant Q cepstral coefficient (CQCC) was
proposed for synthetic speech detection.

2.3. Contribution of the present study: joint effect of varied attacks and noise

In our two preliminary studies on ASVspoof 2015 data, we did extensive comparative evaluation of several
front-end [33] and back-end [27] synthetic speech detectors. In our experiments, the simplest ideas tended to
outperform more elaborate ones. For instance, raw power spectrum features and maximum likelihood (ML)
trained Gaussian mixture models (GMMs) did a decent job both in detecting both unknown and known
attacks, while i-vector [43] based spoofing detection [24, 44] yielded much higher error rates.

The present study extends [33] and [27] towards an extended and self-contained comparative evaluation
of synthetic speech detectors. Unlike [33] and [27], where we used the original high-quality ASVspoof 2015
samples, in this study, we address the fourth concern missing from most of the prior studies: robustness of
synthetic speech detection under acoustically degraded conditions. In general, an acoustic signal reaching
a recognizer can be subjected to many extrinsic imperfections, induced by additive noise, transmission
channel (including compression artifacts and low bandwidth), and reverberation, to name a few. A limited
number of earlier studies have executed spoofing experiments on 8 kHz telephony data [45, 44], though
under somewhat artificial scenario in which an existing telephone-quality corpus has been post-processed
through voice conversion attacks, as opposed to the more likely case of spoofing attacks taking place before
signal transmission. We argue that it is difficult, if not impossible, to isolate the relative impact of spoofing
artifacts and extrinsic distortions without an access to the original, undistorted signal. Therefore, there is
a clear need to examine spoofing attacks under controlled extrinsic distortions to gain improved insight as
to what might be the important considerations in developing practical countermeasures. A recent study
[46] addressed the impact of bandwidth to synthetic speech detection accuracy on the same ASVspoof 2015
corpus as used in the present study.

In contrast to the above prior studies, we focus solely on arguably one of the most common and relevant
sources of distortions, additive noise. It has received almost no prior attention to the best of our knowledge6.
Specifically, using the ASVspoof 2015 corpus, we provide a detailed performance assessment of several
spoofing detectors under additive noise contamination. Special attention is paid in making the compared

4www.spoofingchallenge.org
5http://www.signalprocessingsociety.org/technical-committees/list/sl-tc/spl-nl/2015-11/2015-11-ASVspoof/
6An independent study, made publicly available almost in parallel to ours [47], considers the same ASVspoof2015 database

under additive noise contamination. Their noise contamination design is similar to ours though spoofing detection features are
mostly different, and our manuscript provides a more thorough analysis.
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Figure 1: Natural and synthetic speech signals of the same speaker and their noisy counterparts.

methods as comparable as possible with respect to feature dimensionalities, frame rate and other control
parameters.

We expect this to be a notoriously difficult task that could serve as a useful evaluation test-bench for
developing new robust countermeasures more relevant for end-user applications. As state-of-the-art TTS
and VC methods can produce high-quality speech, sometimes close to or indistinguishable from authentic
human speech (unit selection [48] is a good example), we expect additive noise to mask further the already
small differences between human and synthetic speech. As a motivation, Fig. 1 displays spectrograms of
natural and synthetic speech signals of the same speaker and their noisy counterparts. While differences
of natural and synthetic speech are apparent for the clean data, additive noise makes it difficult to tell the
difference.

It is not obvious, for instance, whether standard speech enhancement techniques as a pre-processing
method will be helpful: as noise suppression is always traded-off with speech distortion [49], processing
artifacts due to speech enhancement could be confused with artifacts due to synthesis vocoders. Similarly,
as indicated above, the popular RPS [32, 31] feature requires fundamental frequency tracking whose per-
formance is affected by additive noise [50]. For these reasons, it is not obvious what type of front-end or
back-end modeling ideas will work comparatively better for synthetic speech detection under noisy condi-
tions. To answer these questions, we have selected state-of-the-art or otherwise popular feature extraction
methods based on both our preliminary results [33] and those of the ASVspoof 2015 participants. Our eight
feature sets, detailed below, include both magnitude- and phrase-related features. From the classifier side,
we use GMMs trained via maximum likelihood (ML), reported as the best-performing one in [27], as well as
the i-vector approach [44, 24].

3. Spoofing Detection

Given a speech signal s, synthetic speech detection task is to decide whether s belongs to a natural
speech class — hypothesis H0, or a synthetic speech class — hypothesis H1. The decision is based upon the
log-likelihood ratio score, Λ:

Λ(s) = log p(s|H0)− log p(s|H1). (1)

To estimate the probabilities p(s|H0) and p(s|H1) we need to train an acoustic model for each hypothesis.
In our recent anti-spoofing study on ASVspoof 2015 [27], we evaluated a number of different classification
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techniques. Gaussian mixture models (GMM), trained with maximum likelihood (ML) principle, was found
the best choice.

GMM is a well-known probabilistic model that is extensively used for speaker recognition ever since
it was introduced for the task [1]. We separately use natural and synthetic training data to train two
GMMs. Each GMM consists of a mixture weight wi, a mean vector µi and a covariance matrix Σi for each
mixture component i. We use expectation-maximization (EM) algorithm to estimate the model parameters
λ = {wi, µi, Σi}

M
i=1, where M is the number of mixture components.

After the two acoustical models are trained, the log-likelihood for each hypothesis and a sequence of
feature vectors X = {x1, . . .xT}, that represent the speech signal s, takes the following form

log p(s|Hk) =
1

T
log p({x1, . . .xT}|λk) =

1

T

T
∑

t=1

log (xt|λk).

Besides GMM, we also consider the i-vector paradigm [43], that became state-of-the-art technique for
text-independent speaker verification. Recently, it was also used to perform speaker verification and anti-
spoofing jointly in the i-vector space [24]. In essence, i-vector w is a fixed-sized low-dimensional vector per
utterance that contains both speaker- and channel-specific variability. To extract an i-vector, we factorize
a GMM mean supervector µ as µ = m + Tw, where T is a low-rank rectangular matrix, m is a speaker-
independent mean vector and w has a standard normal prior distribution. Refer to [43] for more details.

We use two different i-vector based classifiers to compute the final score (1): cosine similarity measure
and probabilistic linear discriminant analysis (PLDA) [51]. Given two i-vectors, extracted from target (wtgt)
and test (wtst) utterances, we compute cosine similarity between them using

cosine(wtgt,wtst) =
wT

tgtwtst

‖wtgt‖‖wtst‖
. (2)

As the cosine similarity measure does not compute likelihoods, instead of Eq. (1) we form the detection
score as follows:

score = cosine(ŵnat,wtst)− cosine(ŵsynth,wtst), (3)

where ŵnat and ŵsynth represent the average training i-vectors for natural and synthetic speech classes,
respectively.

Besides cosine scoring, we also consider the so-called simplified PLDA [52]. The idea behind PLDA is to
split total i-vector variability into speaker and channel components, which allows efficient inference during
a test stage. To train the model, we grouped together i-vectors from each synthesis method and from a
natural speech which gave us 6 classes (“speakers”). For more details on the data, refer to Section 6.1.

4. Natural v.s. Synthetic/Converted Speech

Before proceeding to recognition experiments, we first wish to understand the acoustic signal properties
of the natural and synthetic speech signals. To analyze the characteristics of natural and synthetic speech,
long-term average spectra (LTAS) is utilized. LTAS somewhat represents the physical characteristics of the
speaker related the vocal tract resonances [53] and is mostly used in audio forensics [54] and for measuring
the audibility of speech to compute speech intelligibility index [55]. LTAS is computed by time averaging
the short-term Fourier magnitude spectra of all frames:

LTAS(k) =
1

T

T
∑

t=1

|St(k)|
2, (4)

where St(k) denotes the windowed discrete Fourier transform of tth speech frame of the signal, s, at DFT
bin k and T is the total number of speech frames after voice activity detection (VAD). We compute the
average LTAS of human and synthetic speech signals using the training portion of the ASVspoof 2015
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Figure 2: Long-term average power spectra of synthetic and human speech signals (we used 2525 speech files per each method
to compute an average). The spectra have been shifted by 10 dB with respect to each other.

dataset for each synthesis/conversion technique (S1-S5) to visualize their differences in frequency domain.
Fig. 2 displays the LTAS computed using synthetic and natural speech signals (average LTAS is computed
using 2525 speech files per method). Synthetic speech power is attenuated below 4 kHz compared to natural
speech. For f > 4 kHz, the opposite happens and the difference between human and synthetic speech signals
are larger. Especially for S3 and S4, hidden Markov model (HMM)-based speech synthesis techniques, the
relative difference between human and synthetic speech are higher than for the other synthesis/conversion
techniques. Interestingly, when f > 7 kHz, larger differences occur between other conversion techniques and
natural speech.

It is well known that additive noise drastically reduces the speaker, language and speech recognition
performances. Several methods to cope with the adverse effects of additive noise contamination have been
proposed. Speech enhancement techniques aim to improve the quality of the signal corrupted by noise in
the signal level. Cepstral mean subtraction (CMS) [56], cepstral mean and variance normalization (CMVN)
and RASTA filtering [57] are the popular feature level methods to suppress linear channal bias in cepstral
features, often yielding increased speaker recognition accuracy. Speaker, language and speech recognition
under additive noise and mismatched channel conditions are well-studied and several techniques have been
proposed to improve the performance. However, since spoofing detection has only recently been drawn
attention, its performance under degradation and possible solutions for mismatched conditions are unknown.
Thus, a thorough analysis on the effect of noise is necessary for the anti-spoofing research.

In this study, we consider three noise types: (i) white noise, (ii) babble noise and (iii) car noise. The
LTAS variations of each noise type are shown in Fig. 3.

5. Feature Extraction Methods

Speech features representing short-term spectral features, which are mostly used for speech and speaker
recognition, are also employed in speech-based spoofing detection. A comparative evaluation of a large
number of speech features for this task is available in [33]. In this paper, we focus on the most promising (or
otherwise popular) features for noise-robust spoofing detection, namely, mel-frequency cepstral coefficients
(MFCCs), inverted mel-frequency cepstral coefficients (IMFCCs) [58], spectral centroid magnitude coeffi-
cients (SCMCs) [59], recently proposed constant Q cepstral coefficients (CQCC) [42] and relative phase shift
(RPS) [30, 32, 31], modified group delay (MGD) [60] and cosine phase (CosPhase) [28] features. MFCC
and IMFCC are based on filter bank analysis, SCMC contains detailed information of subband while RPS,
MGD and CosPhase carry phase-related information. In addition to magnitude and phase based features,
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Figure 3: Long-term average power spectra of different noise types used in the experiments.

Table 1: Summary of the features and their parameters used in this study. Check marks represents corresponding post
processing is applied whereas empty entries correspond to opposite.

Features Frame length/shift
# DFT Filters

Coefficients
Post Processing

bins # Type Scale ∆ ∆∆ CMS

MFCC 20 ms/10 ms 512 32 Triangular Mel c0 − c31 X X X

IMFCC 20 ms/10 ms 512 32 Triangular Mel c0 − c31 X X X

SCMC 20 ms/10 ms 512 32 Rectangular Linear c0 − c31 X X X

MHEC 20 ms/10 ms - 32 Gammatone ERB c0 − c31 X X X

RPS 20 ms/10 ms 512 32 Triangular Mel c0 − c31

MGD 20 ms/10 ms 512 - - - c0 − c31 X X X

CosPhase 20 ms/10 ms 512 - - - c0 − c31

we also evaluate recently proposed mean Hilbert envelope coefficient (MHEC) feature used successfully for
robust speaker and language recognition [61].

The features and their parameters used in this study are summarized in Table 1. All the features have
been made as comparable as possible: their frame rates, DFT sizes, number of filters and dimensionality are
the same (where applicable). Feature post-processing techniques (none or deltas followed by cepstral mean
subtraction) were optimized for each feature set separately. In the following, we briefly describe each of the
features.

5.1. Mel-frequency Cepstral Coefficients (MFCCs)

In short-term speech processing, the speech signal is first divided into short overlapping frames (here 20
ms frames with 10 ms overlap is used). Then, the power spectrum of each Hamming windowed frame is
computed using discrete Fourier transform (DFT) by

|X [k]|2 =

∣

∣

∣

∣

∣

N−1
∑

n=0

x[n]e−j2πkn/N

∣

∣

∣

∣

∣

2

0 ≤ k ≤ K − 1, (5)

where, k is the DFT bin and x = [x[0], . . . , x[N − 1]] is a windowed speech frame (assumed to be zero
outside of the interval [0, N − 1]). In standard filterbank based feature extraction schemes, the power
spectrum is processed using a set of overlapping band-pass filters. Logarithmic filter bank outputs are
then converted into cepstral coefficients by applying discrete Cosine transform (DCT). Generally, triangular
filters spaced in mel-scale are used as filterbank and the resulting features are the mel-frequency cepstral
coefficients (MFCCs).
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Figure 4: Triangular filters spaced on Mel and inverted-Mel scale.

5.2. Inverted Mel-frequency Cepstral Coefficients (IMFCCs)

In MFCCs, filters have denser spacing in low-frequency region. The IMFCC features are extracted using
an inverted Mel scale [58], implemented in practice by flipping the Mel-scaled filter bank in frequency axis
giving more emphasis on the high-frequency region. Fig. 4 shows an example of triangular filters spaced on
Mel and inverted Mel scales. Otherwise, all the processing steps remain the same as in MFCC extraction.

5.3. Spectral Centroid Magnitude Coefficients (SCMCs)

Spectral centroid magnitude contains speech information similar to magnitude at the formant frequencies
[59]. The spectral centroid magnitude coefficients (SCMCs) are computed as follows. First, spectral centroid
magnitude (SCM) for the ith subband of speech frame is computed as:

SCMi =

∑K/2
k=0 f [k] |X [k]|wi[k]
∑K/2

k=0 f [k]wi[k]
, (6)

where f [k] is the normalized frequency (0 ≤ f [k] ≤ 1) and wi[k] is a window function in the frequency
domain (here rectangular window is used) for computing the centroid of the i-th subband. In the next step,
the logarithm of SCM values are computed and converted into feature coefficients (SCMCs) by using DCT.
This subband feature outperformed other related features in our preliminary comparison [33].

5.4. Constant Q Cepstral Coefficients (CQCCs)

CQCC is another magnitude-based feature propsed very recently to spoofing detection [42]. It was
reported to achieve the lowest EERs for known and unknown attacks on the ASVspoof 2015 corpus. CQCC
uses a wavelet-like, perceptually motivated time-frequency analysis known as the constant Q transform
(CQT) [62]. In contrast to the fixed time-frequency resolution of the short-term Fourier transform, CQT
provides a higher frequency resolution for the lower frequencies and a higher temporal resolution for the
higher frequencies. In order to compute the cepstrum, the CQT-based power spectrum is first uniformly
sampled in linear frequency scale. Finally, CQCCs are computed by performing DCT. In this work, we
have used the implementation of CQCC made publicly available by EURECOM7. The default values of the
control parameters were used in our experiments8.

7http://audio.eurecom.fr/software/CQCC_v1.0.zip
8For the CQCCs, the number of feature vectors implied by the default parameters used in [42] is slightly different from the

other features. On average, CQCCs produces about 17 % more feature frames.
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5.5. Mean Hilbert Envelope Coefficients (MHECs)

Gammatone filterbank based features are sometimes used in speech and speaker recognition especially
under mismatched and reverberated speech conditions [61, 63, 64]. In general, the speech signal is first
processed by a bank of Gammatone filters that are equally spaced on the equivalent rectangular bandwidth
(ERB) scale between 100 and 8000 Hz (assuming the speech signal is sampled at 16 kHz). In this study, we
used the Gammatone filterbank implementation provided by Auditory toolbox [65].

Mean Hilbert envelope coefficients (MHECs) were recently proposed for noise robust speech, speaker,
and language recognition [61, 66]. It uses the output of each filter in the filterbank. Calculation of MHEC
features is performed through the following steps:

1. First, the speech signal is passed through a Gammatone filterbank consisting of 32 filters and for each
Gammatone filter output, the temporal envelope, the squared magnitude of the analytical signal is
obtained using the Hilbert transform.

2. The envelope is smoothed by applying a low pass filter with cut-off frequency of fc = 20 Hz.

3. Short-term energy is computed from each smoothed envelope by framing and windowing.

4. MHECs are computed from the energies using logarithmic compression followed by DCT.

5.6. Relative-Phase Shift (RPS) Features

The relative phase shift (RPS) features [30, 32, 31] are based on harmonic modeling of the speech signal.
In harmonic modeling, each frame is approximated as the sum of sinusoids in the form:

x[n] =
∑

k

Ak[n] cos(φk[n]), (7)

where Ak[n] is the amplitude and
φk[n] = 2πkF0n+ θk (8)

is the instantaneous phase of the kth harmonic. F0 is the fundamental frequency and θk is the initial phase
of the kth harmonic. The instantaneous phase depends on the time instant n and harmonic, k, whereas the
initial phase, θk, is independent of the time instant. The RPS value is the phase shift of the kth harmonic
component with respect to fundamental frequency [30, 32, 31]. It is calculated by solving for θk by equating
the time instants ni in (8) between the kth harmonic and the reference fundamental frequency, assuming
θ1 = 0:

θk = φk[ni]− kφ1[ni], (9)

We used COVAREP tool [67] to compute the RPS values. COVAREP tool uses 100 ms frames with 10
ms frame shift for computing the F0. The RPS features are computed from the RPS values by performing
phase unwrapping and then differentiation followed by Mel-scale integration and DCT as in [30, 32]. Similar
to other front-end configurations, the 0th coefficient is included.

5.7. Modified Group Delay Function

Group delay function representing phase information shows spurious high amplitude spikes at zeros of
short-term magnitude spectrum due to excitation sources. Modified group delay function (MGDF) [60] is
formulated by suppressing zeros of the magnitude spectrum. It is defined as,

τ(k) = sgn×

∣

∣

∣

∣

[XR(k)YR(k) +XI(k)YI(k)]

H(k)2γ

∣

∣

∣

∣

α

(10)

where sgn is the sign of XR(k)YR(k) +XI(k)YI(k), XR(k) and XI(k) represent real and imaginary part
of DFT for a speech frame x(n) and YR(k) and YI(k) represent the real and the imaginary parts of DFT for
nx(n). H(k) is the speech spectrum after cepstral smoothing, while α and γ are two control parameters.
Cepstral like features are computed from MGDF using DCT. This feature was used for synthetic speech
detection in [28]. In the experiments, the parameters α and γ are set to 0.3 and 0.1, respectively.
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5.8. Cosine Phase (CosPhase) Features

The phase spectrum computed using short-time Fourier transform can be used for speech feature ex-
traction. Since the phase spectrum calculated directly from the complex STFT parameters is discontinuous
with respect to frequency, we first unwrap the phase spectrum. The cosine function is then applied to the
unwrapped phase spectrum to normalize the range in [-1.0, 1.0]. Then discrete cosine transform (DCT) is
applied to the cosine normalized phase spectrum. This feature is called as CosPhase and used in spoofing
detection [28].

6. Experimental Setup

6.1. Database

The experiments are conducted on the ASVspoof 2015 database [25] which consists of speech data with
no channel or background noise collected from 106 speakers (45 male and 61 female) and three subsets with
non-overlapping speakers:

• Training subset is used to train genuine and spoofed classes for spoofing detection. It contains natural
and five different types of spoofed speech: three are generated using voice conversion and the rest using
speech synthesis. Voice conversion algorithms are (i) frame-selection (S1), (ii) spectral slope shifting
(S2) and (iii) Festvox (S5) system9 whereas the speech synthesis spoofs are based on hidden Markov
model-based methods (S3 and S4).

• Development subset is used to optimize spoofing detectors. It contains the same five spoofing
methods (S1-S5) as the training subset.

• Evaluation subset is used for evaluating the final performance of the system. It contains five “known”
algorithms seen in the training and development subsets (S1-S5) as well as five “unknown” algorithms
(S6-S10).

Table 2 summarizes speaker and utterance information for each subset.

Table 2: Statistics of the ASVspoof 2015 database, used in the experiments [25].

Subset
Number of speakers Number of utterances

Male Female Natural Synthetic

Training 10 15 3750 12625

Development 15 20 3497 49875

Evaluation 20 26 9404 184000

To analyze the original ASVspoof 2015 data regarding noise level and to show the quality of recordings
in the database before interpreting the results, we computed the SNR level of recordings. Fig. 5 shows the
histograms of estimated SNR levels10 for each subset of the original ASVspoof 2015 dataset. All the speech
files from the training set are used to plot the histogram for this subset, whereas randomly selected 30000
speech signals are used to generate histograms for Evaluation and Development subsets. A vast majority
of the signals have a relatively high SNR exceeding 20 dB. The evaluation subset contains also signals with
very high SNRs (approximately 8% of 30000 files have SNR > 50 dB).

We use Filtering and Noise Adding Tool (FaNT)11 to corrupt the original ASVspoof 2015 signals with
noise for introducing controlled degradation. FaNT is an open-source tool which follows the ITU recommen-
dations for noise adding and filtering. To be more precise, it uses psychoacoustic speech level computation

9http://www.festvox.org
10SNREval Toolkit from http://labrosa.ee.columbia.edu/projects/snreval/ is used to estimate the SNR levels.
11http://dnt.kr.hsnr.de/
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Figure 5: Distributions of estimated SNR levels for each subset of ASVspoof 2015 dataset.

based on the ITU recommendation P.56 (objective measurement of active speech level). We digitally add
white, babble and car noises from NOISEX-92 database [68]. For each noise type we consider 3 SNR levels:
0, 10 and 20 dB. The reasons for selecting these types of noise are the following: (i) White noise has a
flat spectral density and it masks all the frequency components uniformly. Although it rarely represents a
real-case scenario, it is a commonly used control noise in studying robust speech processing methods. (ii)
Babble noise is one of the most difficult noise types in speech applications containing a mixture of multiple
speakers — a situation that occurs on a daily basis in any crowded place [69]. (iii) Car noise is another
noise type that may frequently occur in our daily life such as making a phone call while driving.

In the experiments, we consider noise mismatched condition by training the natural and synthetic
speech models using the original clean training files, but test them on noisy files. The reason for this choice
is practicality: in a real-world deployment of ASV technology in smartphones or other portable devices, the
operation environment of the user would be rarely known precisely.

6.2. Classifier and Features

We use 32 coefficients (including c0) and 32 filters in filterbank for every method. This is done to have
comparable results for different feature extraction methods. We apply energy-based voice activity detection
(VAD) [70, p. 24] on clean data to get speech/non-speech labels. Using clean VAD labels allows us to focus
merely on the effect of noise on synthetic speech detection rather than mixed effects of VAD and feature
set. These labels are used to discard non-speech frames for both clean and noisy speech.

For GMM-based classification, we use two models to represent natural and synthetic speech classes (see
details in Section 3). GMM for each class has 512 components and is trained using 5 EM iterations (the
performance differences for larger number of components were negligible in our initial experiments).

For i-vector based classification, we train a gender-independent universal background model (UBM)
consisting of 512 Gaussians using 9000 utterances from 150 male and 150 female speakers from the WSJ0
& 1 corpora [71]. To train the T-matrix, we select 8945 utterances from 178 male and 177 female speakers
from the WSJ0 & 1 databases12 and run EM-algorithm for 5 iterations. The extracted 600 dimensional
i-vectors are further processed by applying within-class covariance normalization (WCCN) [72], followed by
projection to the unit sphere [73]. The logic behind WCCN is not to normalize within-speaker variation
[43], like it is done for speaker recognition, but to normalize within-class (natural or synthetic) variation. To
this end, we separate the training data into natural and synthetic classes and use them to compute WCCN
transformation matrix B [43, p. 791]. PLDA model trained on original (clean) data is used in noisy spoofing
detection experiments.

12Usually 283 speakers from WSJ0 & 1 databases are used in most studies which is the official training set of the corpora.
In our experiments, we included test sets of WSJ0 & 1 corpora in addition to training set which yields a total of 177 male and
178 female speakers.
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Figure 6: Effects of ∆ and ∆∆ MFCC features and Cepstral Mean Subtraction on synthetic speech detection. First row,
MFCC features. Second row, CosPhase Features.

6.3. Combined Countermeasures via Score Fusion

Given the wide diversity and varied difficulty of existing and future spoofing attacks, it might be difficult
to come up with a single feature set to detect all possible attacks. As an example, phase-related features
might be suited to detect attacks whose vocoder discards natural phase information while other methods
may possess superior noise robustness. This motivates exploration towards countermeasures that includes
a bank of different front-ends, some being potentially specialized to detect particular types of attacks. To
this end, here we consider two score level fusion strategies to maximally benefit from the complementarity
of our features: 1) Fusion 1: Score averaging — a simple technique, which does not require any training,
2) Fusion 2: weighted sum, where fusion weights and a bias term are estimated using logistic regression
[74]. We use the development data to train the parameters for each noise type and SNR level.

6.4. Performance Measure

Following the evaluation plan of ASVspoof 2015, equal error rate (EER) is used as the objective perfor-
mance criterion in the experiments. EER corresponds to the threshold at which false acceptance (Pfa) and
miss rate (Pmiss) are equal. Pfa is the ratio of number of spoof trials detected as genuine speech to the total
number of spoof trials and Pmiss is the ratio of number of genuine trials detected as spoofed to the total
number of genuine trials. The EERs reported in this work were computed using the bosaris toolkit13 which
computes the EER on receiver operating characteristics (ROC) convex hull (ROCCH) that is an interpolated
version of standard ROC.

7. Results

We conduct the experiments separately on the development and evaluation parts of ASVspoof 2015.
The development part is first used for optimizing the system parameters and configurations. The feature
extraction method that yield the lowest EERs is then selected for further experiments on the evaluation
part.

13https://sites.google.com/site/bosaristoolkit/
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Table 3: Comparison (EER, %) of different front-end features in noisy conditions on development set using Gaussian Mixture
Model classifier. The results for clean original condition are presented as well as the average results for all noisy sub-conditions.

Noise SNR
MFCC IMFCC SCMC CQCC MHEC RPS MGD CosPhase Fusion1 Fusion2

type (dB)

Original 0.84 0.91 0.38 0.44 3.92 0.15 1.25 1.09 0.02 0.00

White
20 15.75 34.17 21.91 33.41 12.08 37.64 28.35 22.12 12.17 8.45

10 24.13 44.56 32.19 38.13 22.2 41.37 39.23 30.02 18.84 16.09

0 31.42 48.86 39.86 45.55 33.37 43.61 46.45 40.73 29.42 27.69

Babble
20 7.23 5.66 2.71 18.07 11.06 5.26 13.77 13.97 1.89 0.56

10 15.32 15.4 9.36 29.49 25.58 20.04 26.26 25.33 7.72 4.96

0 31.05 37.73 30.09 41.60 40.87 39.90 40.12 34.22 26.58 22.85

Car
20 3.51 1.94 0.87 9.26 8.96 0.74 9.30 15.14 0.39 0.03

10 7.48 4.69 2.48 18.04 19.47 5.75 15.84 25.05 2.56 0.67

0 16.44 14.27 8.74 29.42 33.12 24.03 29.72 38.23 11.83 7.12

Average 16.92 23.03 14.85 26.34 21.06 21.84 25.02 24.58 11.14 8.84

7.1. Effect of Feature Post-Processing

In our first experiment on the development set, we study the effect of feature post-processing. Specifically,
we study the appending ∆ and ∆∆ features and cepstral mean subtraction (CMS). The results on MFCC and
CosPhase features are shown in Fig. 6. Here, MFCC and CosPhase features are selected as representatives
of magnitude and phase-based features, respectively. The upper row corresponds to the MFCC and the
lower row to the CosPhase features. For the original (clean) case, 2.24% EER is obtained using only the
base MFCCs. Appending ∆ and ∆∆ features to the MFCCs reduces the EER to 0.49%. Applying CMS
slightly reduces the performance for the clean case (0.84% EER). For the CosPhase features, in turn, the
lowest EER (1.09%) is obtained with the base features on clean data in contrast to MFCCs. Appending ∆
features to the base CosPhase features almost doubles the EER (2.16%). Appending ∆∆ or applying CMS
does not help to increase the synthetic speech detection performance with CosPhase features.

For the noisy case, appending the ∆ and ∆∆ coefficients considerably improves the accuracy in most
cases. For example, we see 78% relative improvement over the base MFCCs for babble noise at 20 dB SNR
(EER 16.29% → 3.61%). Similarly, applying CMS on top of the dynamic features improves performance
considerably. Whereas, post-processing shows an opposite effect with CosPhase features where the smallest
EERs are obtained with the base features independent of the noise type and SNR.

The results in Fig. 6 are for the MFCC and CosPhase features. The results were similar for the other
studied features. Namely, for the magnitude (MFCCs, IMFCCs, SCMC and CQCC) and MHEC features,
the best performance is obtained with the full post-processing (included deltas followed by CMS) whereas
for the phase-based features the raw features yield the smallest EERs except for MGD. Out from the 10
conditions evaluated (3 SNRs × 3 noise types plus the clean data), MGD features with deltas and feature
normalization yielded the lowest EERs in 6 cases. Thus, in all the remaining experiments, we will adopt the
raw RPS and CosPhase features. For all the rest of the features, we include deltas and CMS.

7.2. Comparison of Features

The results on development set for different features using GMM are summarized in Table 3. For the
clean (original) case, the RPS features yield the lowest EER. However, under additive noise, especially for
white noise and at low SNR levels of car and babble noises, the performance of RPS is relatively poor. This
could be because RPS requires estimated F0 values that are difficult to extract reliably from noisy data.
For babble and car noises at high SNRs (20 dB), RPS yields reasonable accuracy. The SCMC features
perform well for the babble and car noises, whereas for white noise, MHEC yields lower EERs. To sum up
Table 3, none of the feature sets is consistently superior to others. In most cases, SCMC outperforms the
other features. Out of the three phase features (RPS, MGD and CosPhase), CosPhase features are superior
to RPS and MGD under white noise case. However, RPS outperforms MGD and CosPhase for babble and
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car noises. In general, magnitude features outperform phase-related features independent of noise type and
SNR.

Applying score fusion to the eight feature extraction methods considerably improves the accuracy for
all cases including the original (clean) condition as Table 3 indicates. Weighted sum technique where the
weights of each individual system are estimated with logistic regression (indicated as Fusion2 in Table 3)
yield lower EERs than score averaging fusion (Fusion1). The effect of each individual feature set on the
fusion performance has been investigated and it was found that excluding RPS from the fusion (applying
score fusion to the six remaining feature sets) dramatically increases the EERs irrespective of noise and
SNR. This suggests that RPS consists of complementary information even though it gives poor stand-alone
performance compared to other features.

7.3. Effect of Speech Enhancement

Next, we study the effect of speech enhancement techniques. To this end, magnitude and power spectral
subtraction algorithms [75, 76] and Wiener filtering [77] approaches are adopted. Detection error trade-off
(DET) curves for different speech enhancement methods for each noise type, at 0 dB SNR and using MFCC
features with deltas and CMS as well as CosPhase features, are shown in Fig. 7. Here, the DET curves are
generated by pooling the scores of all the individual attacks14. Fig. 7 indicates that the attempted speech
enhancement techniques do not yield any performance gains for MFCC features. For CosPhase features,
magnitude spectral subtraction slightly improves the performance for white noise whereas for babble and car
noises speech enhancement methods do not improve the performance. These three methods were applied to
SCMC features as well in order to analyse the effect of speech enhancement on different features and to check
whether the observations can be generalized and the similar results have been obtained. Apart from these
three popular methods, other methods including minimum mean square error (MMSE), logarithmic MMSE
(logMMSE) and iterative Wiener filtering techniques (as available in the Appendix of [78]) were studied,
without success. The reduction on the performance after speech enhancement might be because speech
enhancement introduces musical noise and other processing artifacts that mask the synthesis or conversion
artifacts.

A recent independent study [79] confirms the ineffectiveness of traditional unsupervised speech enhance-
ment techniques for spoofing detection in noisy condition. Currently, similar to most speech processing
tasks, the use of deep neural network (DNN) based techniques is extensively studied on speech enhancement
[80, 81, 82] and could be an interesting approach. However, as DNNs require large amounts of additional
training data from different noisy conditions for supervised training, they are not addressed in this study
that focuses on DSP-based unsupervised speech enhancement techniques. Further, achieving performance
improvement in unseen noisy condition appears challenging even with DNN-based speech enhancement
methods [83].

7.4. i-vector Countermeasures from Different Features

Up to this point, we have utilized the computationally light GMM classifier to study different feature
configurations. In our last experiments with the development set, we study an i-vector based countermeasure.
To this end, i-vector extractors are trained from scratch for all the seven acoustic feature sets. The results
are provided in Table 4 for both cosine and PLDA scoring. For clean (original) case, the recently proposed
CQCC features yield the smallest EER among the eight methods. While the performance of CQCC features
with i-vector back-end is superior to GMM classifier on clean data, for the remaining seven feature extraction
methods, GMM back-end outperforms the i-vector back-end. For additive noise cases, i-vector is inferior to
GMM independent of the noise type and feature extraction method. Similar results for GMM and i-vector
techniques were found in our recent comparative study of classifiers for synthetic speech detection [27].
This could be because of the short duration of recordings (approximately 3 seconds) that ASVspoof 2015

14Although in ASVspoof 2015 the evaluation metric is averaged EER over different attacks, producing a single DET curve
that would coincidence with this operating point is not obvious. Thus, here the scores are pooled to generate the DET plot
and to compute the corresponding EERs in Fig. 7 legends.
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Figure 7: DET curves for different speech enhancement techniques under additive noise (0 dB). First row, MFCC features.
Second row, CosPhase features.

consists of. Similar observation for i-vector performance on short utterances were found in [84] where GMM
and i-vector systems were compared for speaker verification task using short data and it was found GMM
recognizer outperforms i-vector system.

Similar to GMM experiments under additive noise (Table 3), none of the features are systematically
superior to others. The features that yield the lowest EERs are different for each noise type and SNR
level. MHEC yields the highest performance for white noise whereas, for the babble and car noises, RPS
is superior to other features at high SNRs (20 and 10 dB). Concerning the two i-vector back-end variants,
PLDA does not bring substantial improvements in comparison to cosine scoring. The most considerable
performance improvement with PLDA is obtained with CosPhase features using original (clean) data (EER
reduced from 11.80% to 4.54% with PLDA). Similar to the results with GMM classifier, CosPhase features
outperform the other phase features (RPS and MGD) under white noise. However, for the babble and car
noises, RPS outperforms other phase features. The performance of MGD features, in turn, lies between RPS
and CosPhase. In the next experiments on Evaluation set, MFCC and SCMC features as two magnitude
and RPS and MGD features as phase based features using GMM and i-vector techniques will be considered.

7.5. Results on Evaluation Set

In the experiments with the evaluation portion of ASVspoof 2015, we first study the performance of
each individual attack using clean data with two magnitude (MFCC and SCMC) and two phase (RPS and
MGD) based features. The EERs obtained with GMM and i-vector techniques for the individual attacks
are summarized in Table 5. Similar to observations found on the development set, GMM outperforms both
i-vector scoring variants independent of the attack type and the features.
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Table 4: Comparison (EER, %) of different front-end features in noisy conditions on development set using Cosine/Probabilistic
Linear Discriminant Analysis i-vector classifiers. The results for the clean (original) condition are presented as well as the
average results for all noisy sub-conditions. The lower half of the table presents a difference between the corresponding EERs
for PLDA and cosine scoring. Blue cells indicate conditions where PLDA scoring is advantageous to cosine scoring, whereas
red cells indicate the opposite.

Cosine Scoring

SNR (dB) MFCC IMFCC SCMC CQCC MHEC RPS MGD CosPhase Fusion1 Fusion2

Original 5.12 3.24 5.30 0.26 12.31 5.18 8.40 11.80 0.01 0.00

W
h
it
e 20 26.48 45.51 39.97 41.55 26.05 39.97 39.34 32.61 20.37 17.27

10 36.35 47.60 44.15 44.76 30.71 45.24 45.70 35.98 31.4 26.26

0 43.47 48.26 46.68 48.27 39.20 47.60 48.04 47.98 41.55 37.53

B
a
b
b
le 20 20.94 28.07 24.44 27.63 25.58 19.10 25.12 33.11 6.15 5.75

10 33.59 40.54 34.97 39.21 33.54 31.03 36.37 41.23 18.71 18.13

0 45.71 48.15 45.02 46.20 43.65 43.73 45.59 43.47 38.88 37.57

C
a
r

20 24.00 13.56 14.34 13.46 22.53 11.88 21.42 33.84 2.04 1.86

10 33.67 26.28 22.61 25.53 27.76 22.14 29.78 43.91 8.02 8.01

0 39.62 40.39 33.12 37.84 34.76 38.34 38.82 48.45 23.18 22.24

Average 30.89 34.16 31.06 32.47 29.60 30.42 33.85 36.75 19.03 17.46

PLDA - Cosine

SNR (dB) MFCC IMFCC SCMC CQCC MHEC RPS MGD CosPhase Fusion1 Fusion2

Original -0.09 0.81 0.73 -0.01 0.39 -0.15 0.08 -7.26 0.01 0.00

W
h
it
e 20 -1.16 -0.87 -0.93 2.21 2.18 3.12 0.06 3.12 1.69 1.88

10 -1.48 0.14 -0.04 1.25 2.49 1.53 -0.27 0.7 -1.40 2.44
0 0.2 0.32 0.27 0.3 1.29 -0.16 -0.15 -5.69 -1.99 0.65

B
a
b
b
le 20 -0.29 -0.04 0.04 0.84 0.49 4.05 0.7 2.81 2.87 1.35

10 -0.46 -0.92 -0.42 0.94 0.12 3.99 -0.13 1.18 4.83 1.52
0 0.11 0.08 -0.36 -0.19 -0.12 1.69 -0.31 0.77 0.58 3.01

C
a
r

20 0.35 0.97 0.55 0.61 0.24 1.91 12.42 2.17 1.59 0.72
10 -1.17 -0.23 0.53 1.34 0.51 3.97 0.28 0.54 3.79 0.65
0 -1.61 -1.32 -0.61 0.22 0.82 3.85 -0.38 -0.34 5.76 0.56

Average -0.56 -0.11 -0.03 0.75 0.85 2.38 0.11 0.28 1.77 1.27

Independent of the classifier and features, S10 —the speech synthesis algorithm that uses MARY text-
to-speech system15— is the most difficult attack type to detect in comparison to the other unknown attacks
(S6-S9). This could be because S10 does not use any vocoder in generating the synthetic speech signals
whereas the popular STRAIGHT vocoder [85] is used in most of the remaining attacks. Thus, spoofing
detectors trained with a STRAIGHT vocoder but tested without it will induce a mismatch between the
training and the test samples [25], making detection of S10 relatively more difficult.

In general, the SCMC features yield lower EERs than MFCCs with the GMM classifier except for S10.
Concerning the two phase-based features, RPS outperforms MGD in most cases. Notably, MGD yields
considerably better performance than RPS for S10, therefore for unknown attacks, on average. For the
unknown attacks, MFCCs are superior to phase based MGD features. However, for known attacks RPS
yields better accuracy than magnitude based MFCCs. For the two scoring variants of i-vector, in turn,
MFCCs outperform the SCMC features, except for S10. Overall, S10 yields extremely high EERs while
reasonable accuracies are obtained for the other attacks. In most studies that report their findings on the
ASVspoof 2015 data, the performance of countermeasures is reported by averaging the EER of individual
unknown attacks (S1-S10), which was the official evaluation metric of the challenge. However, the average
EER of unknown attacks becomes highly dependent on the performance of S10 attack. Therefore, in Table 5,
the performance of unknown conditions are reported by averaging the S6-S9 attacks rather than S6-S10.
Since GMM outperformed i-vectors systematically, only the GMM results are presented in the remaining
experiments on the Evaluation set.

15http://mary.dfki.de/
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Table 5: Comparison (EER, %) of Gaussian Mixture Model classifier and two i-vector based classifiers: Cosine scoring and
Probabilistic Linear Discriminant Analysis. We consider individual attacks on clean evaluation set using selected two magnitude
(MFCCs and SCMC) and two phase (RPS and MGD) based features.

Features Classifier
Known Attacks Unknown Attacks Avg.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 (S6-S9)

M
F
C
C GMM 0.00 3.54 0.00 0.00 0.70 1.10 0.80 0.53 0.11 27.34 0.63

Cosine 2.89 9.26 2.67 2.66 6.01 8.07 3.64 5.03 3.07 46.49 4.95
PLDA 3.26 9.67 2.16 2.39 5.84 8.23 3.55 6.97 3.29 47.11 5.51

S
C
M
C GMM 0.00 1.22 0.05 0.02 0.60 0.46 0.07 0.31 0.02 29.92 0.21

Cosine 4.24 12.31 2.08 2.27 5.46 7.64 3.03 2.73 2.45 44.17 3.96
PLDA 5.29 12.72 2.61 2.90 5.76 8.33 3.76 4.72 3.14 46.47 4.98

R
P
S GMM 0.00 0.02 0.10 0.10 0.04 2.00 0.01 0.92 0.00 45.18 0.73

Cosine 3.73 3.32 5.06 4.90 6.25 10.62 9.03 17.21 3.79 46.11 10.16
PLDA 4.20 3.74 4.46 4.12 4.49 11.11 14.38 17.03 4.53 46.93 11.76

M
G
D GMM 0.10 3.45 0.08 0.11 2.42 4.26 0.96 2.42 1.74 24.32 2.34

Cosine 7.19 14.74 5.04 5.48 11.42 12.42 11.82 13.00 11.09 36.59 12.08
PLDA 8.17 15.33 4.88 5.33 11.74 13.37 13.01 13.53 11.03 38.94 12.73

F
u
si
o
n
1 GMM 0.00 0.02 0.00 0.00 0.02 0.11 0.04 0.01 0.00 21.44 0.04

Cosine 0.29 1.33 0.24 0.27 1.13 2.11 0.88 1.39 0.38 41.50 1.19
PLDA 0.51 2.26 0.24 0.26 0.94 2.34 1.25 2.08 0.50 44.39 1.54

F
u
si
o
n
2 GMM 0.00 0.00 0.00 0.00 0.00 8.36 8.48 8.61 8.35 8.27 8.45

Cosine 0.96 0.91 0.87 0.92 0.91 14.26 14.41 14.53 14.26 14.45 14.36
PLDA 0.76 0.80 0.70 0.76 0.73 15.00 15.02 15.21 14.89 15.08 15.03

Note that in Table 5, simple score averaging (Fusion 1) performs considerably better than fusion with
weights optimized using logistic regression (Fusion 2). This stems from the fact that, during the training
of Fusion 2, we pool all scores together and look for a joint transformation for all the attack types. This
results in almost equal performance of the system to each attack type. Unfortunately, due to a very high
EER for S10, this performance could be called as being “equally bad”.

The results for the noise-contaminated evaluation set obtained with GMM using selected magnitude and
phase based features are given in Table 6. MFCCs yield lower EERs than SCMCs under white noise for both
known and unknown attacks. For the babble and car noises, in turn, SCMCs outperform MFCCs. Similar
to results on Development Set (Table 4), a considerable reduction in EERs is obtained using SCMC features
over MFCCs under car and babble noise cases. For phase features, RPS is superior to MGD features for
both known and unknown attacks under babble and car noises whereas MGD shows better performance
than RPS under white noise case. In general, magnitude features (MFCCs and SCMCs) yield lower EERs
than phase features independent of noise and SNR.

8. Conclusion

In this study, our goal was to analyze the robustness of existing state-of-the-art countermeasure systems
for synthetic speech detection in the presence of additive noise. Extensive experiments were conducted using
different front-ends and back-ends for three type of noises (white, babble and car) with three different noise
levels (20 dB, 10 dB, and 0 dB). We evaluated the performance with five different short-term magnitude
features (MFCC, IMFCC, SCMC, CQCC and MHEC) and three short-term phase features (RPS, MGD, and
CosPhase). These features have successfully been used for spoofing detection in clean conditions whereas our
study addresses their performance under additive noise backgrounds. As a back-end, we have experimented
with two well-known approaches: Gaussian mixture model (GMM) and i-vector. We also explored the effect
of various speech enhancement techniques as well as the impact of different feature post-processing methods.
Finally, we have investigated fusion techniques to combine the strength of multiple systems.

Our extensive results on ASVspoof 2015 dataset indicate that additive noise contamination considerably
complicates the task of synthetic speech detection. Applying standard speech enhancement techniques, such
as magnitude spectral subtraction, power spectral subtraction, and Wiener filtering were not found helpful in
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Table 6: Comparison (EER, %) of known and unknown attacks for Gaussian Mixture model classifier on evaluation set. In each
row, the lowest EERs for the known (K) and unknown (U) attacks (S6-S9 attacks) are bolded and underlined, respectively.

Noise SNR MFCC SCMC RPS MGD Fusion1 Fusion2
type (dB) K. U. K. U. K. U. K. U. K. U. K. U.

Original 0.85 0.63 0.38 0.22 0.05 0.73 1.23 2.35 0.01 0.04 0.00 0.04

W
h
it
e 20 16.43 17.94 19.92 15.40 38.53 40.62 27.25 36.24 13.39 13.93 16.76 16.40

10 25.45 29.78 33.36 32.14 42.16 44.98 37.42 38.66 22.78 26.13 25.91 27.71
0 35.07 39.66 43.73 42.27 44.56 46.64 44.42 45.88 34.29 38.53 34.96 38.90

B
a
b
b
le 20 7.48 6.49 2.15 1.39 6.09 10.62 14.20 23.55 1.13 1.81 0.69 1.97

10 15.59 12.76 8.32 5.30 21.17 23.71 26.30 35.65 5.81 6.52 5.36 8.08
0 33.54 28.40 29.74 25.13 40.66 40.81 37.59 40.77 24.90 23.75 25.23 23.95

C
a
r

20 3.57 2.83 0.79 0.52 0.74 3.67 9.39 16.12 0.11 0.45 0.05 0.38
10 7.31 6.03 2.16 1.67 5.28 9.93 15.99 24.44 1.00 2.07 0.72 1.95
0 17.33 14.69 8.59 7.36 24.66 25.67 30.32 36.63 8.17 9.38 7.11 8.03

improving the accuracy. In recent studies, it was reported that DNN-based speech enhancement techniques
outperforms standard methods such as MMSE and Wiener filtering [83]. Therefore, applying DNN-based
speech enhancement for anti-spoofing under additive noise would be interesting for the future work. We
also found that phase-based features, RPS, and CosPhase, perform better in the absence of any feature
post-processing schemes like delta features or cepstral mean subtraction (CMS). But those post-processing
steps were found crucial for the other features.

White noise degrades the accuracy the most. For example, in an experiment on the development set,
EER increased from 0.84% to 31.42% with MFCC features and GMM back-end in the presence of white
noise with 0 dB SNR. The severity of white noise can be explained with the help of comparative long-term
average spectra (LTAS) of different noises. We have shown that it has a considerable effect on the entire
speech spectrum unlike other two types of noises where the effect on speech spectrum is mostly partial.

Concerning the back-ends, we have observed the GMM-based classifier to consistently outperform the
more sophisticated i-vector method. Poor results for the i-vector systems could be explained by short
utterances or possibly suboptimal data selection to train UBM and T-matrix. Our findings on spoofing
detection task also agree with the results from the previously conducted independent studies, but on the
clean condition.

In the study of features using GMM as the classifier, MFCCs give best recognition accuracy in most cases
in the presence of white noise while SCMCs perform better for babble and car. However, this observation
is not consistent when we take i-vector systems into account. For example in an experiment with the devel-
opment set, MHEC feature outperforms the other features for the i-vector-cosine system whereas MFCCs
win when PLDA scoring is employed. We have also observed that RPS feature — which was successfully
used in many spoofing detection studies and outperforms other features such as MFCC in clean conditions
— generally yield higher EERs than standard MFCC features in the presence of additive noise. However,
its performance is still superior to the other two phase based features compared: MGD and CosPhase.

The results on the evaluation section of ASVspoof 2015 further reveals that detecting unknown attacks
is much harder than detecting known attacks in noisy condition. Moreover, from a detailed study on attack-
specific performances with clean speech data, we find that the notable performance difference between known
and unknown attacks is mostly due to one specific spoofing attach, S10 (i.e., MARY TTS) which does not
use any vocoder as the other synthetic speech generation techniques used in ASVspoof 2015. This was the
general observation regarding different systems submitted to ASVspoof 2015 [25].

Finally, we have observed considerable gain in spoofing detection performance due to fusion of multiple
front-ends. For example, in the presence of 10 dB car noise, the EERs of known and unknown attack
using score-average fused system are 0.99% and 7.82%, respectively, whereas best individual system (here,
SCMC) gives 2.16% and 8.49%. We have also noticed that improvement for the known attack condition
is relatively higher than the improvement in unknown attack. We further observe that logistic regression
based fusion scheme is better for known attacks, however, score average based method is more appropriate for
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unknown attacks. This is because for the logistic regression approach the fusion parameters are optimized on
development set, i.e., for known attacks, and those optimized parameters are used for fusion of evaluation set
scores consisting known and unknown attack. Applying score average based fusion strategy is a compromise
to reduce the generalization error. Preventing fusion overfitting is an important practical consideration and
clearly deserves further attention.

Our results suggest that synthetic speech detection becomes more challenging in noisy conditions, similar
to speaker verification in a noisy environment. This study opens a few potential directions for future work.
The first one is a development of robust approaches for both front-end and back-end sides of spoofing
detection systems. In front-end side, we used the most promising (or otherwise popular) features in this
study. Other phase based techniques, such as RPI that was reported to perform well under noisy conditions
in other speech processing tasks, would be interesting to study in antispoofing under additive noise. The
other direction is a study of trustworthiness of voice biometric systems under a joint presence of spoofing
attacks and noise that calls for joint optimization and evaluation of ASV and spoofing countermeasure
systems.
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A. Strasheim, “Fusion of heterogeneous speaker recognition systems in the STBU submission for the NIST speaker recog-
nition evaluation 2006,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 7, pp. 2072–2084,
2007.

[75] S. Boll, “Suppression of Acoustic Noise in Speech Using Spectral Subtraction,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 27, pp. 113–120, 1979.

[76] N. Berouti, R. Schwartz, and J. Makhoul, “Enhancement of speech corrupted by acoustic noise,” in Proc. ICASSP, 1979,
pp. 208–211.

[77] J. S. Lim and A. V. Oppenheim, “Enhancement and bandwidth compression of noisy speech,” Proc. IEEE, vol. 67, no. 12,
pp. 1586–1604, 1979.

[78] P. C. Loizou, Speech Enhancement: Theory and Practice, 1st ed. CRC Press, Inc., 2007.
[79] H. Yu, A. Sarkar, D. A. L. Thomsen, Z. H. Tan, Z. Ma, and J. Guo, “Effect of multi-condition training and speech

enhancement methods on spoofing detection,” in 2016 First International Workshop on Sensing, Processing and Learning
for Intelligent Machines (SPLINE), 2016, pp. 1–5.

[80] Y. Xu, J. Du, L. R. Dai, and C. H. Lee, “A regression approach to speech enhancement based on deep neural networks,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, no. 1, pp. 7–19, 2015.

[81] ——, “An experimental study on speech enhancement based on deep neural networks,” IEEE Signal Processing Letters,
vol. 21, no. 1, pp. 65–68, 2014.

22



[82] K. Han, Y. Wang, D. Wang, W. S. Woods, I. Merks, and T. Zhang, “Learning spectral mapping for speech dereverberation
and denoising,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, no. 6, pp. 982–992, 2015.

[83] M. Sun, X. Zhang, H. V. hamme, and T. F. Zheng, “Unseen noise estimation using separable deep auto encoder for speech
enhancement,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 24, no. 1, pp. 93–104, 2016.

[84] L. Li, D. Wang, C. Zhang, and T. F. Zheng, “Improving short utterance speaker recognition by modeling speech unit
classes,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. PP, no. 99, pp. 1–1, 2016.
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