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Abstract
A so-called modulation spectrogram is obtained from the con-
ventional speech spectrogram by short-term spectral analy-
sis along the temporal trajectories of the frequency bins. In
its original definition, the modulation spectrogram is a high-
dimensional representation and it is not clear how to extract
features from it. In this paper, we define a low-dimensional
feature which captures the shape of the modulation spectra. The
recognition accuracy of the modulation spectrogram based clas-
sifier is improved from our previous result of EER=25.1% to
EER=17.4% on the NIST 2001 speaker recognition task.
Index Terms: modulation spectrum, spectro-temporal features,
speaker recognition

1. Introduction
The human auditory system integrates information over an in-
terval of several hundreds of milliseconds [1]. In speech pro-
cessing, relevance of longer time context for phonetic classifi-
cation has been supported by both information-theoretic analy-
sis [2] as well as improvements in speech recognition through
spectro-temporal features; for an overview, refer to [3].

In modern speaker recognition systems, on the other hand,
contextual and long-term information are extracted in a rather
different way. First, the input utterance is converted into a se-
quence of tokens such as phone labels [4] or Gaussian mix-
ture model (GMM) tokens [5]. This is followed by modeling
of the token sequences using N -grams and support vector ma-
chines [4]. While these approaches have shown promising re-
sults especially when combined with traditional spectral fea-
tures, their implementation is complex, and computational com-
plexities high relative to the benefit obtained in the final recog-
nition system. It is likely that the tokenizers also quantize the
signal too much by losing some useful spectro-temporal details
that could be useful for speaker recognition. These reasons have
motivated us to study low-complexity contextual acoustic fea-
tures, similar to those used in speech recognition, that incorpo-
rate contextual information directly to the feature coefficients
[6, 7].

Our contextual features are based on the concept of the so-
called modulation spectrum [1, 8]. Modulation spectrum is de-
fined as the spectral representation of a temporal trajectory of
a feature and it provides information of the dynamic charac-
teristics of the signal. The modulation spectrum of a typical
speech signal has a steep low-pass shape with most of the en-
ergy concentrated on modulation frequencies less than 20 Hz.
Low-frequency modulations of the signal energy are related
to speech rhythm which we hope to capture with the modula-
tion spectrum-based features. As an example, it has been re-

Figure 1: Computation of the modulation spectrogram from
a spectrogram. A time-frequency context is extracted, from
which the DFT magnitude spectra of all frequency bands are
computed. We have used log magnitude values to improve vi-
sual appearance; however, all the computations use linear mag-
nitude values.

ported that conversational speech has a dominant modulation
frequency component around 4 Hz which is roughly the same as
the average syllable rate [1]. The dominant peak of the modula-
tion spectrum, therefore, may be an acoustic correlate of speak-
ing rate. Furthermore, some “high-level” speech phenomena
can be seen as acoustic events characterized by low modulation
frequencies. For instance, laughter consists of a few successive
vowel-like bursts having similar spectral structure between the
bursts and spaced equidistant in time. Thus, laughter is charac-
terized by its “fundamental frequency” which may be a speaker-
specific feature. These ideas motivate us to study the usefulness
of the modulation spectrum for capturing some articulatory and
stylistic features to be used in speaker recognition.

A joint acoustic and modulation frequency representation
[8] is obtained by simultaneous spectral analysis of all the fre-
quency bins as illustrated in Fig. 1. This representation is



also known as the modulation spectrogram [9] and we will
use this terminology for brevity. In [6], we presented prelim-
inary speaker verification results by using the modulation spec-
trogram with a long-term averaging classifier equipped with
divergence-based distance measure. Recently, modulation spec-
trogram has also been applied successfully to speaker separation
in a single-channel audio by filtering in this domain [9].

In this paper, our primary goal is to explore the relative im-
portances of the acoustic and modulation frequency resolutions
and the effect of the time-frequency context length to speaker
verification accuracy. In this way, we aim at establishing a rea-
sonable baseline system for the modulation spectrogram based
speaker verification. Short-term features like MFCCs have been
largely studied whereas literature on long-term features is lim-
ited. Another motivation comes from the observation that mod-
ulation spectrum filtering has already been applied in the con-
ventional speaker recognition systems via RASTA processing
and computation of the delta coefficients of cepstral features
[10, 11]. By studying the modulation spectrum as a feature
in speaker verification, we aim at gaining more insight about
the significance of the modulation spectrum per se for speaker
verification. As a secondary goal, we wish to explore how the
modulation spectrum based feature set compares with the stan-
dard MFCCs, and whether these two feature sets have fusion
potential.

In our preliminary proposal [6], we restricted our recog-
nition experiments to a simple long-term averaging classifier,
followed by score normalization. The reason was that, in
its original definition, the modulation spectrogram is a high-
dimensional representation for which statistical models like
GMM cannot be trained due to numerical problems (ill-defined
covariance matrices) that are a result of the high dimension-
ality. In this study, we therefore define a lower-dimensional
feature which represents the shape of the joint frequency repre-
sentation. This lower-order approximation is achieved by using
mel-frequency filtering on the acoustic spectrum and discrete
cosine transform on the modulation spectrum. In this way, we
are able to replace the averaging classifier with a standard Gaus-
sian mixture model [12] recognizer and report updated recogni-
tion results.

2. The Modulation Spectrogram
2.1. Computing the Modulation Spectrogram

The modulation spectrogram is derived from the conventional
spectrogram shown in the top panel of Fig. 1. To compute the
spectrogram [13], the signal s(n) is first divided into frames
of length L samples with some overlapping between the suc-
cessive frames. Each frame is pre-emphasized and multiplied
by a Hamming window, followed by K-point DFT computa-
tion. The magnitude are retained which yields the magnitude
spectrogram |S(n, k)|, where n denotes the frame index and k
denotes the DFT bin (0 ≤ k ≤ K/2).

To derive the modulation spectrogram, the magnitude spec-
trogram is analyzed in short-term frames with some overlap,
similar to the first transformation. Now the “frames”, in fact,
correspond to two-dimensional time-frequency contexts shown
in the central left panel of Fig. 1. A time-frequency context,
starting from frame n0 and having length of M frames, consists
of all the frequency bands within the time interval [n0, n0+M−
1]. The temporal trajectory of the kth frequency band within
the time-frequency context, denoted by yn0,M (k), is therefore
yn0,M (k) = (|S(n0, k)|, |S(n0 + 1, k)|, . . . , |S(n0 + M −

1, k)|).
The modulation spectrum of the kth frequency bin is com-

puted by multiplying yn0,M (k) with a Hamming window and
computing Q-point DFT. The magnitude of the DFT is re-
tained, resulting in the modulation spectrum |Yn0,M (k, q)|. In
summary, here k and q are the “acoustic” and “modulation”
frequency indices, respectively, where 0 ≤ k ≤ K/2 and
0 ≤ q ≤ Q/2.

It should be noted that modulation spectrum can be com-
puted also by convolving the original signal with a set of band-
pass filter kernels, followed by some form of envelope detec-
tion. We have chosen the FFT-based method because it is
straightforward to implement and computationally efficient.

2.2. Setting the Parameters

The most crucial parameters for the modulation spectrogram
are the frame shift and the time-frequency context length. The
frame shift determines the sampling rate of the temporal tra-
jectories and hence sets the upper limit for the modulation fre-
quencies. For instance, a typical frame shift of 20 milliseconds
implies a modulation spectrum sampled at 1000/20 = 50 Hz,
and therefore, the highest modulation frequency is 25 Hz. For
more details on the sampling considerations, refer to [14].

The time-frequency context length (M ), on the other hand,
is responsible for controlling the frequency resolution of the
modulation spectrum. For a large M , the frequency resolution
can be increased. However, for accurate spectrum estimation,
M should be short enough so that the temporal trajectories re-
main stationary within the context. In our previous studies with
temporal features, best verification results on the NIST corpora
were obtained by using a time-frequency context of 200 to 300
milliseconds in length [6, 7]. Similar time-frequency contexts
have been used in speech recognition [1, 3].

3. Reducing the Dimensionality
When used as a feature for speaker recognition, we rearrange
the two-dimensional matrix |Yn0,M (k, q)|, where 0 ≤ k ≤
K/2 and 0 ≤ q ≤ Q/2, into a single vector of dimension-
ality (K/2 + 1)(Q/2 + 1). For instance, for the typical values
K = 256 and Q = 128, dimensionality is 8385. This is about
two orders of magnitude too high to be used with statistical clas-
sifiers on typical speech training sample sizes. In principle, we
can reduce K and Q by using a shorter frame and shorter con-
text, respectively. This, however, leads to significant reductions
in the respective frequency resolutions and also violates the idea
of the contextual features expanding over a long time window.
We prefer to keep the context size up to several hundreds of
milliseconds and reduce the dimensionality of these features.

3.1. Reducing the Acoustic Frequency Dimension

We reduce the dimensionality of the acoustic frequency vari-
able using a standard mel-frequency filterbank [13] which ef-
fectively reduces correlations between the frequency subbands.
The standard triangular bandpass filters are applied on the short-
term spectra and the temporal trajectories of the filter outputs
are then subjected to modulation frequency analysis as de-
scribed in the previous section.

We compared linear-frequency and mel-frequency filter-
banks in preliminary experiments. It was found out that the
mel-frequency filterbank outperforms the linear-frequency fil-
terbank systematically, except for a small number of filters (5-
10) for which the linear-frequency filterbank was slightly bet-
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Figure 2: Dimension reduction of a single modulation spectrogram frame. Dimension reduction is achieved by mel-frequency filtering
along the acoustic frequency axis (number of filters C = 30) and DCT compression along the modulation frequency axis (number of
DCT coefficients D = 4). The dimensionalities of the features corresponding to the three panels are 129×65 = 8385, 30×65 = 1950
and 30× 4 = 120, respectively.

ter. However, the performance increases when using more fil-
ters and therefore the mel-scale seems a better choice.

3.2. Reducing the Modulation Frequency Dimension

The modulation spectrum of an arbitrary frequency band con-
tains redundant information as well. In particular, the modu-
lation spectrum has a lowpass shape with a heavy damping of
the frequencies above 20 Hz or so, and the spectrum is rela-
tively smooth in shape. This suggests capturing the envelope of
the modulation spectrum by using the discrete cosine transform
(DCT), similar to cepstrum computation. We apply the DCT
to each modulation spectrum, yielding a Q-dimensional vector
of the DCT coefficients. We retain the lowest D coefficients,
including the DC coefficient, so as to preserve most of the sig-
nal energy. To this end, by using C mel-frequency filters and
retaining the lowest D cosine transformation coefficients, the
feature vectors have dimensionality C ×D. Typical values are
C = 20 and D = 3, implying vectors of dimensionality 60.

Figure 2 illustrates dimension reduction for a single matrix
|Yn0,M (k, q)|. The panel on the left shows the original modu-
lation spectra (linear frequency scale). The middle panel shows
the mel-frequency modulation spectrum obtained using C = 30
filters and the panel on the right shows its approximation us-
ing D = 4 cosine transform coefficients. The approximation
was produced by retaining the lowest 4 coefficients, followed
by inverse DCT. It can be seen that the overall shape of the
mel-frequency modulation spectrum is well retained. The di-
mensionalities of the features corresponding to the three panels
are 129 × 65 = 8385, 30 × 65 = 1950 and 30 × 4 = 120,
respectively.

3.3. Further Considerations

Nonlinear operators are commonly used in speech front-ends
and we studied some of them in preliminary experiments as
well. In particular, we experimented with (1) squaring of
the FFT spectrum magnitude prior to mel-filtering, (2) log-
compression of the mel-filter outputs prior to modulation fre-
quency analysis and (3) log-compression of the modulation
spectra prior to the final DCT. The first two nonlinearities
yielded systematically higher error rates whereas the third one
did not make significant change. While we do not have theo-
retical justifications for these results, based on our experiments,
we recommend to use the simple magnitude operators without
squaring or log-compression.

It is worth noting that the proposed feature includes simi-
lar operations to MFCC computation, but it does not reduce to
MFCC vector when the context length is one frame (M = 1).
In MFCC computation, the DCT is applied on the acoustic mag-
nitude spectrum whereas we apply it to the modulation magni-
tude spectrum. It is easy to show that for M = 1, the pro-
posed feature equals mel-filtered magnitude spectrum, but with-
out log-compression and DCT as in MFCC.

4. Experimental Setup
We use the NIST 2001 speaker recognition evaluation corpus
for our experiments. The NIST corpus consists of conversa-
tional telephony speech in English. The speech is recorded over
the cellular telephone network with a sampling frequency of
8 kHz. We study the performance on the 1-speaker detection
task which consists of 174 target speakers and a total number of
22,418 verification trials of which 90 % are impostor trials and
10 % are genuine speaker trials. The amount of training data
is two minutes per speaker and the length of the test segment
varies from a few seconds up to one minute.

The feature extraction parameters for the spectrogram were
set as shown in Table 1, and these were kept fixed throughout
the experiments while varying the modulation spectrogram pa-
rameters. We use the Gaussian mixture model-universal back-
ground model (GMM-UBM) with diagonal covariance matrices
as the recognizer [12]. The UBM is trained using the develop-
ment set of the NIST 2001 with the expectation-maximization
(EM) algorithm. Target speaker models are derived using max-
imum a posteriori (MAP) adaptation of the mean vectors, and
the verification score is computed as the average log-likelihood
ratio. Speaker verification accuracy is measured in equal error
rate (EER), which corresponds to the verification threshold at
which the probabilities of false acceptance and false rejection
are equal.

Table 1: Parameter setup of the spectrogram.
Spectrogram parameters

Frame length L = 240 samples (30 ms)
Frame shift (1/4)L = 60 samples (7.5 ms)
Window function Hamming
Pre-emphasis filter H(z) = 1− 0.97z−1

FFT order K = 256



Table 2: Effects of mel filtering and DCT to recognition accu-
racy (EER %).

DCT coeffs. (D)
Mel filters (C) 1 2 3 4
5 26.7 26.4 25.9 26.2
10 22.5 22.7 22.3 22.5
15 21.1 21.0 20.5 20.3
20 20.5 20.1 20.1 20.3
25 20.7 20.3 20.2 20.4
30 20.1 20.1 19.9 28.7
35 21.0 20.4 21.6 41.0
40 21.1 21.3 27.5 47.5

Table 3: Effects of the mel filtering and DCT compression to
recognition accuracy (EER %) when keeping the dimensional-
ity (C ×D) fixed to 60.

C D EER C D EER
1 60 36.9 10 6 22.4
2 30 32.8 12 5 21.2
3 20 29.4 15 4 20.3
4 15 27.2 20 3 20.1
5 12 25.7 30 2 20.1
6 10 24.6 60 1 21.1

5. Results

5.1. Number of Mel-Frequency Filters vs DCT Order

We first study the effects of the number of mel filters and the
number of DCT coefficients by fixing the time-frequency con-
text size to M = 27 frames (225 milliseconds), context shift to
18 frames (1/3 overlap), DFT order to Q = 32 and the number
of Gaussians to 64. The results are shown in Table 2.

Increasing the number of mel-frequency filters improves ac-
curacy as expected, results saturing at C = 20 to about 20 %
EER and error rates increasing for C ≥ 35. Regarding the
number of DCT coefficients, the best results are obtained either
using D = 2 or D = 3 coefficients whereas the error rates for
D = 1 and D = 4 are systematically higher. The high error
rates at the lower right corner of Table 2 are caused by the nu-
merical problems of the GMM classifier: the dimensionality of
the features is too high relative to the training sample size and
the number of Gaussian components.

One may argue that degradation in accuracy for D > 3 is
merely because of the increased dimensionality and the associ-
ated problems with the statistical model. To gain further insight
into the relative importance of the “acoustic” and “modulation”
dimensions, we fix the dimensionality to C × D = 60 and
study all the parameter combinations. The results are displayed
in Table 3.

The best settings are (C, D) = (20, 3) and (C, D) =
(30, 2), both yielding the same error rate of EER = 20.1%.
For these settings, C À D, which suggests that the acoustic
frequency resolution is more crucial than the modulation fre-
quency resolution. On the other hand, increasing the number
of mel filters to C = 60 shows an increase in the error rate
which indicates that the joint frequency representation is use-
ful, though the improvement is not much.
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Figure 3: Effect of the time-frequency context size.

5.2. Context Length

Another interesting issue is the effect of the time-frequency
context length M . For an increased M , the resolution of the
modulation spectrum can be increased, and it is reasonable
to hypothesize that we would need more DCT coefficients to
model the increased details of the modulation spectra. We se-
lect the settings (C, D) = (30, 2), (C, D) = (20, 3) and
(C, D) = (12, 5) and vary the context length M . In all cases,
we fixed the FFT order to Q = 256 and adjusted the context
shifts to obtain approximately same number of training vectors
for all context lengths. In this way, having dimensionalities and
training set sizes equal, any differences in the accuracies can be
attributed to the context length and not to the statistical model.

The result is shown in Fig. 3. The settings with more reso-
lution on the acoustic frequency give better results for all con-
text lengths which is consistent with the previous experiment.
For all the three settings, the error curves are convex and show
optimum context sizes either at 330 ms (M = 41 frames) or 380
ms (M = 47 frames). From the settings (C, D) = (30, 2) and
(C, D) = (20, 3), the latter one with more DCT coefficients
gives better accuracy at very long contexts as hypothesized.

5.3. Further Optimizations

Next, we fix (C, D) = (30, 2) and M = 41 (330 milliseconds)
and further fine-tune the system by using voice activity detector
(VAD) [7], and increasing the number of GMM components to
128. Adding the VAD reduces the error rate from EER=20.1 %
to EER=18.1 % and increasing the model size to 128 reduces it
further to EER=17.4 %. In our previous study [6], we reported
an error rate of EER=25.1 % on the same data set by using the
full modulation spectrogram with a long-term averaging clas-
sifier and T-norm score normalization. We conclude that the
accuracy of the modulation spectrogram classifier has been sig-
nificantly improved by a combination of dimension reduction,
better classifier and VAD.

5.4. Comparison with MFCCs

Finally, we compare the proposed feature with the conventional
MFCCs. Our MFCC GMM-UBM system [15] first computes
12 MFCCs from a 27-channel mel-frequency filterbank. The
MFCC trajectories are then smoothed with RASTA filtering,
followed by delta and double delta feature computation. The
last two steps are voice activity detection and utterance-level



Table 4: Comparison of MFCC and modulation spectrogram
based features and their fusion (EER %) for different test seg-
ment durations.

Test MFCC Mod.spec. Fusion
duration (s)
0–20 10.5 18.6 10.5
20–30 8.5 17.6 8.4
30–40 7.6 16.6 7.3
40–60 7.7 15.8 7.3

mean and variance normalization. The same GMM-UBM clas-
sifier setup is used for both feature sets.

The accuracies across different test segment lengths are
shown in Table 4. The results for the different test lengths were
obtained by extracting the corresponding scores from the trial
list and the fusion result is obtained by a linear combination of
the log likelihood ratio scores. The weights of the fusion were
optimized using the FoCal toolkit1 which minimizes a logistic
regression objective function.

Overall, the accuracy of the MFCC-based classifier is
higher as expected. For short test segments, the fusion is not
successful. For longer test segments, there is a slight improve-
ment, which is an expected result. The modulation spectrum
measures low-frequency information which is likely to be more
subject to degradation for very short test segments. Neverthe-
less, the fusion gain is only minor. It would be interesting to
study further the accuracy by using significantly longer train-
ing and test segments, such as those found in the 3- and 8-
conversation tasks of the NIST SRE 2006 corpus.

6. Conclusions
We have presented a dimension reduction method for the mod-
ulation spectrogram feature and studied its performance in the
single-channel speaker verification task. Mel-frequency filter-
ing and DCT were used for reducing the number of acoustic
and modulation spectrum coefficients, respectively. The best
results were obtained using 20 to 30 mel filters, 2 or 3 DCT co-
efficients and a context length of 330 to 380 milliseconds. This
context length is significantly longer than the typical time span
of delta and double-delta features, and similar to those used in
speech recognition [3]. The best overall accuracy on the NIST
2001 set was EER=17.4 % which is significantly better than our
previous result of EER=25.1 %.

The conventional MFCC feature outperformed the pro-
posed feature in terms of accuracy. A slight improvement
was obtained when combining these two features with linear
score fusion. The modulation spectrum based feature cannot be
yet recommended for applications. Further experiments with
longer training and test data are required to confirm whether the
contextual features would benefit from larger training set sizes.

Both in this paper and in [7], we used the signal-
independent DCT in feature extraction, mostly due to its energy
compaction property. However, it might not be the best method
for speaker verification. Ideally, we should select or emphasize
those modulation spectrogram components which discriminate
speakers and are robust against channel mismatch and noise. It
is not clear which these frequencies would be. In [11], modula-
tion filtering of the mel-filter outputs indicated that modulation

1http://www.dsp.sun.ac.za/˜nbrummer/focal/
index.htm

frequencies between 1-4 Hz would be most important, whereas
frequencies below 0.125 Hz and above 8 Hz would be harmful
for recognition. In that study, however, same filtering opera-
tion was applied to all mel-frequency subbands, which does not
take advantage of the joint information between the acoustic
and modulation frequencies. The question of which regions in
the joint frequency representation are relevant, remains open.
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