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ABSTRACT controlled set-up. It was reported that mismatched vocal effort be-

. . T . . tween training and test (training with normal vocal effort and test-
Text-independent speaker identification is studied using neutral a_rmg with high vocal effort) cause degradation of recognition accu-

shouted speech in Finnish to analyze the effect of vocal mode m'%écy. The authors of [9] have found that features extracted from

match betwee_n_tralnlng and test utteran_ces. Stan_dard _mel-frequen dsal syllables are relatively robust to high vocal effort. They have
cepstral coefficient (MFCC) features with Gaussian mixture mode eported that, in context of a GMM-JFA recognizer on the NIST

.(GMM) recognizer are_useq _for _speaker identification. The result 010 SRE corpus, the nasal constrained cepstral coefficients tend to
indicate that speaker identification accuracy reduces from perfe(f)tring advantage over using all cepstral coefficients. In [4], whis-

((leO 0/;’.) tg 8'7%10? un.der vocallt.mode mismatch. Becauset of thif)ered speech was found to give the lowest identification rate and it
dramatic degradation in recognition accuracy, we propose to use g, ¢ reported that 98.8 % identification accuracy obtained in neutral
joint density GMM mapping technique for compensating the MFCC,

. U ) - ; training-neutral test condition whereas in neutral training-shouted
features. This mapping is trained on a disjoint emotional speech COfast case identification accuracy reduced to 56.3 %. An HMM based
pus to create a completely speaker- and speech mode independ

i tralizi ina. A it of th tion. th -dependent speaker identification method for shouted speech was
emo :)on.-neu. ralizing mapping. As a resutt of the %ompensa lon, roposed in [8] and it was reported that identification accuracy de-

.8'71 % |dent|f|_cat|on accuracy increases to 32.00 % without degra reases from 96 % to 73 % when shouted speech is used for testing.
ing the non-mismatched train-test conditions much. In that study, the speech samples used in the experiments were col-

Index Terms— speaker identification, shouted speech lected in different sessions and speaker models were trained using

1. INTRODUCTION neutral speech.
: In this study, we consider idealized speaker identification con-

Research in both speech and speaker recognition has largel focus%ifOns where the typically included effects of channel mismatch,
. P ) peaker recog gely focusgironmental noise and reverberation are completely excluded. To
on normalizing out undesirable variations caused by transm|SS|0{1

channel and acoustic environment. Combating for thesknical his end, we consider closed-set speaker identification using Finnish

; o tterances recorded in an anechoic chamber. This approach, impor-
nuisance factors has lead to many successful normalization tech-

niques in feature [1], model [2] and match score domains [3]. Aantly, enables studying speaker identifiability solely under varying

much less studied problem, however, is that of intra-person varia\{ocal modes; if one cannot correctly identify spealevenunder

. . : ; ch idealized setting, one should not expect accurate recognition
tions caused by changes in the vocal production process itself. ", . X

; ) . e under additional nuisance factors due to channel or environment.
particular interest is variation in speakevecal effort Vocal ef-

o has a communicaive pupose, such a an atmpt o conceal g 1L 701 1 St Seser Menufeaton b memach conions,
speech content (whispering), increasing intelligibility in noisy en- P ’ ] y

vironments (loud speech) or indicating emergency or other type O?MM mapping is proposed to compensate the effect of shouting. To

urgency (shouting). Speech in forensic speaker recognition and a&h's end, we adopt methods from voice conversion [10] — typically

cident investigation is likely to have been produced under stress anli'JS.'ed for speaker |de_nt|ty conversion — to tralr! a speaker-independent
is therefore combined with high vocal effort. Jjoint density Gaussian mixture model mapping on the MFCC fea-

Even though differences between neutral and shouted/louﬁ"e space. This mapping, intended to remove any expressive factors

speech in traditional acoustic parameters - formants, fundamentg & 9Ven stream of MFCCs, is mde_pendgntly trained on a _d|s-
frequency and intensity - are well studied (e.g. [4, 5, 6]), the effct Joint emotional German speech corpus including parallel recordings

vocal effort on automatic speech and speaker recognition [4, 6, 7, é’f neutral and emotionally colored speech samples.
has received much less attention. The question of how shouting

affects between-speaker and within-speaker differences is not only 2. NEUTRAL VS. SHOUTED SPEECH
relevant for forensic speaker recognition, but of fundamentalreatu ] o )
that has implications to other recognition applications as well. The authors of [4] categorize speech as having five different modes

In the NIST 2010 speaker recognition evaluation (SRE) camWhisperedsoft neutral loud andshouted Vocal intensity is lowest
paign, the effect of vocal effort on speaker recognition was aedlyz N whispered speech which is acoustically generated by an aperiodic

[7]. In that study, speakers produced soft and loud utterances in ‘Yeak excitation waveform in the absence of the vocal fold vibration.
Due to the lack of vocal fold vibration, whispered speech is the low-

The work was supported by Academy of Finland. est vocal mode. Shouted speech, in turn, is the highest vocal mode.
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Fig. 2. Power spectra of a voiced speech frame in neufigk€ 297
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3. SHOUT COMPENSATION
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To compensate the effect of different speech modes, voice conver
sion can be utilized to convert an utterance from one mode to an-
Tine © : : : other. Voice conversiomefers to methodologies for converting one
speaker’s gourcg utterances to given an impression that they are
Fig. 1. Spectrograms and first three formants of neutral and shoutegPoken by another speakearged [10]. A voice conversion sys-

versions of the same utterance spoken by a female speaker tem consists of two main components, signal parameterization and
feature mapping function. Signal parametrization model such as

. ) . ) . STRAIGHT [11] is used for analyzing (and synthesizing) utterances,

It calls for increased lung effort generating rapid period fluctuationyhereas mapping is used for learning a regression function between
of the vocal folds and a prominent voice excitation, which result infhe yocal spaces of the source and the target speakers. As we do
maximal vocal intensity. Current speaker recognition studies mostlyecognition rather than synthesis or conversion, we only consider
focus on neutral, normally spoken speech. the feature mapping part. We directly plug-in our feature mapping

A number of authors have ana|yzed acoustic differences of neu‘unction to our recognizer MFCC front-end as will be detailed be-
tral and shouted speech. In [5], acoustic differences between nolow.
mal and shouted speech were analyzed in forensic settings. In that A generic feature mapping function is denoted hergfgyx) :
study, it was found that the fundamental frequeniy)(and the first R? — R, where® denotes the model parameters ahts the
formant frequency#}) increase in shouting whereas the second andlimensionality of the acoustic vectors. In the training phase, the pa-
the third formants£» andF3) were less affected by shouting. In [4], rametersd are learnt from a training set consisting of frame-aligned
different speech modes were analyzed in terms of the sound intefeature vector pair§(x:, y:)|t = 1,2,...,T'}. To ensure that train-
sity level, duration and frame energies. It was found that the averagfd utterances are phonetically aligned, they are usually taken to be
sound intensity level of shouted speech is higher than that of neuparallel so that both the source and the target speakers read the same
tral speech and sentence duration of shouted sentence is longer tHgiitences. Alignment of the feature vectors is achieved using dy-
neutral. Number of low energy frames, on the other hand, is smalldtamic time warping (DTW). In the conversion phase — which is
in shouting than in neutral speech. This is in line with [7] where stacompletely text-independent — one applias = fe(x:) for each
tistically significant differences between the average energy levelg§ource vectoi; to find predicted target speaker vecyor for that
of normal and high vocal effort utterances in NIST SRE 2010 Werfbserva_tion. In this study, we adOPt feature mapping techniques
reported. In [6], emergency situation detection was studied for al fom voice conversion to compensate for shouted speech. To this

indoor acoustic-based security system and it was found thatBoth end, nowx’ and) represent non-neutral and neutral vocal spaces of

and F; and their standard deviations increase in shouting. Recogn hesame speakeather t_han two dl_fferen_t speakers. We compensate
qn-neutral speech using Gaussian mixture model (GMM) conver-

tion of shouted speech was also considered and it was reported t 95n [12]. In particular, we adopt theint density GMMoriginally

word recognition accuracy decreases for shouted speech. proposed in [13]. In this model, the joint distribution of the source
Acoustic differences between normal and shouted speech cgnon-neutral) and the target (neutral) features is modeled by GMMs
easily be seen from spectrograms. Fig. 1 displays the widebangained using the stacked feature vecteys= [x, ,y/]" of dimen-

spectrograms and the first three formanfts-{;) calculated using  sionality2d. The joint probability density function is given by,
Praat® for neutral and shouted version of the same utterance. As
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seen from the figure, the formants (especidily) are shifted to =) M ) (=) (=)

higher frequencies in shouted speech. Differences in neutral and p(z:|©®7) = Z Ppl N (ze|prs s B ),

shouted speech are further described in Fig. 2, which show spectra m=1

of these two vocal modes computed by fast Fourier transform (FFT) (@) (z2) (z1)

and linear prediction (LP). Clearly, the shouted speech is charactewhere pu\?) = /"(m) and 2 = EZnT) E(m ) | are
ized by sharper peaks in the spectral envelope. The spectral dis- T DIPAGID H a

similarities between neutral and shouted speech will affect MFCCghe mean vector and covariance matrix of the multivariate Gaus-
utilized in the feature extraction of speaker recognition resulting in sian densityV'(z;|u':), £), respectively, and?';’ are the prior
speech mode mismatch between training and test. In the followingrobabilities constrained by’ > 0 andY" PY’ = 1. The

we propose a feature compensation to mitigate for such mismatchgsint model parameters are estimated to maximize likelihood for the
training data set using the conventional expectation-maximization
(EM) algorithm [14]. In our implementation, we use full covari-
ance matrices and 40 EM iterations starting from randomized initial
Ihtt p: // www. praat . or g/ solution. Even though speaker recognition systems typically use di-




Original neutral speech Original shouted speech neutral, anger, happiness, fear, boredom, disgarsd sadness Us-
ing this corpus, we train a speaker-independent feature mapping that
attempts to normalize out any emotional effects of a given speech ut-
terance. To this end, we consider all the non-neutral utterances of a
given speaker as our source utterances and the correspondtra neu
utteranceof that speakems the target utterance. The DTW align-
e Vecg, 10 200 ot ment is first computed to the MFCC vectavithin each speakely
prame % 00 grame ™ using cosine similarity as a vector similarity measure so that all the
non-neutral utterances utilize the corresponding neutral utterance as
a target. Additional care is taken to exclude many-to-one and one-
200 to-many assignments of the training vectors [17]. The aligned vector
pairs from all the 10 speakers are then pooled and used for training
a speaker-independent joint density GMM as detailed above. This
feature mapping is then applied to all training and test utterances in
400 our evaluation set.
e > Compensating for emotions rather than shouting is naturally a
more general problem setup. In fact, in preliminary experiments, we
Fig. 3. MFCCs of neutral, shouted and their compensated counte}-raine.d onIyangry-to-neutrama_pping on the same corpus as angri-
ness is among the seven emotions of [16] the one which corresponds
parts. ! . . o L
best with shouting. However, since we have a rather limited training
agonal covariances, full covariances are common in voice conveket with full covariance GMM modeling, including the other source
sion. They capture cross-correlations across the source and the tafotions helped preventing numerical problems in GMM training.
get spaces, while diagonal covariance (for all the four submatricegor the same reason (small training set relative to the dimensionality
20w 5 ands ¥ implies independent conversion of of the joint feature space), we also experiment with two alternative
each cepstral coefficient. In preliminary tests, we implemented botfeature mappings. In the first approach, we train mapping on base
variants and, despite small amount of training data, full covarianc®IFCC coefficients only and add the delta and double delta coeffi-
with less Gaussians outperformed systematically all trialed diagonalientsafter feature mapping. In the second approach, we train the
conversions (up to 256 Gaussians). To reduce sensitivity to paranmapping function directly on the higher dimensional MFCQ+
eter initialization, we repeat training 20 times, each starting fromA? features (see below).
a different random guess, and pick the GMM which yields largest In the speaker identification experiments, we use standard
likelihood. Given the trained joint density model, the predictor for MFCCs extracted from 20 ms Hamming windowed speech frames
future data points is, every 10 ms. We use two standard spectrum estimation methods,
My FfFT agd LPd v]:/ith predictri]on order gf = 20, to compute c?pﬁctra A
. © wa)s 1 . of windowed frames. The power spectra are processed through a
y=fx)= Z P () () + B30 (S557) 7 (x = i), 27-channel triangular filterbank. The logarithmic filterbank outputs
m=l are converted into MFCCs by discrete cosine transform. The first
wherepp, (x) = PN (x|ps,, E57)/ 3, PN (x|ui, £57) de- and second_ time derivativeg(and_AQ) are appended to thg first 16
notes the posterior probability of originating from then'® Gaus- ~MFCCs which leads to 48 dimensional feature vectors. Finally, cep-
sian. stral mean and variance normalization (CMVN) are applied to the
Fig. 3 shows the MFCCs of the same utterance spoken witfgatures. Gaussian mixture model (GMM) is used as the classifier.
neutral and shouted speech modes and their compensated versidig use GMMs with 32 Gaussians trained by maximum likelihood
using 4 Gaussians, as an example. It can be seen that the variatidéL) criterion [14] using 5 EM iterations.
between neutral and shouted speech modes of the same utterance areVVe consider text-independent speaker identification in the ex-

Neutral speech after compensation (4 Gaussians) Shouted speech after compensation (4 Gaussians)
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highly reduced after compensation. periments. Due to relatively small amount of data, the speaker iden-
tification experiments are carried out using leave-one-out cross val-
4. EXPERIMENTAL SETUP idation to maximize the number of test trials. That is, each speaker

model is trained using his/her 23 sentences and the held-out utter-

The speech corpus used in experiments consists of 11 male and Jlqe is used for testing. Rotating over all 24 utterances and 22 speak-
female speakers. Each speaker produced 24 Finnish utterances Wgs this yieldg4 x 22 = 528 identification trials. In the experiments
ing neutral speech mode. The same 24 utterances were also produged - nsider four different training and test conditions:

with shouting. The sentences were recorded using a high-quality mi- -
crophone in an anechoic chamber so that the device, environmental ® Neutral - Neutral {I-N): Training and test utterances are both
and channel effects are completely excluded. The average duration  in neutral speech mode.

of utterances is approximately 3 seconds. Half of the sentences are o Shouted - Shoute®tS: Shouted speech is used in both train-
in imperative and half in indicative mood. For more details about the ing and test.

database, refer to [15].

In training the joint density GMM feature mapping, we utilize
the Berlin database of emotional speeft6]°. This corpus con-
sists of German speech samples from ten speakers (5 males and 5 fe- e Shouted - Neutral§-N): Each speaker model is trained using
males) recorded also in an anechoic chamber. Each speaker @soduc shouted speech and tested with neutral speech
5 short and 5 longer sentences in seven different emotional modes:

e Neutral - ShoutedN-S): Each speaker model is trained using
neutral speech and tested with shouted speech.

As the performance criterion, we use identification accuracy,
2http: // pascal . kgw. t u- berl i n. de/ enodb/ which is the ratio of the correctly identified trials to the total number
of trials.




Table 1 Identification accuracy (%) for different speech modes us 50— Compensation %
ing feature mapping £ 40| - - Napping (base cauremand teles)| & 40
Training' Baseline: no Compensation applled tO é 3 Neutral lr?/\?\ng—shouled !ﬁsg g Shouted training — Neutral test
Test compensation MFCCs MFCCs+A+A2 g e g%
condition | FFT LP FFT LP FFT LP gory EM
N-N 100.00 99.81| 86.55 89.96| 94.50  75.37 T 10 S
S-S 99.43 99.24| 91.47 92.61| 96.96  89.58 > 6 10 11 18 22 W% 10 14 18 =
N_S 871 1856 2537 2632 3200 2840 . Numbe.r cffGau?slan components . Number of Gaussian components .
S-N 2215 2765 2443 2935 3087 3390 Fig. 4. ldentification rates for different number of Gaussians used

for compensation.
5. EXPERIMENTAL RESULTS

We first analyze the performance of the baseline speaker identifica-

tion system without any feature compensations. The identification

accuracy for different scenarios and with different features swe p

vided as the first two columns of Table 1. In the matched vocal mode H HH

cases (N-N and S-S), both the FFT and LP spectrum estimators yield o o HH

high identification accuracies. In the case of the mismatched vocal 0246 816182022 024068 618202

mo.de cases (N-S and S-N), both methods degrac}e to unu§able Ievgga' 5. Number of misidentified trials per each speaker for no com-

which confirms the general observation on previous studies on thﬁensation (left) and after compensation (right)

topic. In the mismatched cases, LP outperforms FFT. ’
We next evaluated the shout compensation technique described

in Section 3 using different number of Gaussian components. Fig. on using joint density GMM mapping. Identification accuracy is

shows the identification rates for the N-S and the S-N conditions ud€250nable when the training and test conditions are matched but

ing FFT spectrum estimator. Feature mapping improves the identiflgirgrigziﬁg?/t(')%glor?]égi;ecﬁgvsg':ré:gv%r?ﬁgtcﬁ:;rje'nrg:j%ggseoﬁf
cation rates considerably in comparison to the uncompensated badB® o ) gre
line system. Comparing the two types of feature mappings, mappinr cognition accuracy can partly be compensated by training feature
the full front-end (MFCC +A + A?) works generally slightly bet- apping on the MFC.:CS.' Itis |mpc_)rtant to note that the prpposed
ter. This might be because the full front-end presents richer featur %mfenrlsatltonfmappll(ngr; IS spetak?Ir-ln\(jer;])edri]f(fjerntnatmd Wkasntgalned ona
space and directly compensates also for the cepstral dynamics. Re- erent set of speakers — actually eve erent Spoken larguag
garding the number of Gaussians, single Gaussian is not enough e to the lack of Finnish data to train the mapping fu_nct|on. While
expected. Using 32 Gaussians yields the highest identification acc € authors.of [4] uses a .smal.l Qatgbasg which consists of 12 male
racy for both the N-S and the S-N conditions Speakers with total of 48 identification trials, our results are in rea-
Y I : o . . sonable agreement with the results of that study. However, the au-
Identification rates using feature mapping are given in Table 1thor in [8] reported smaller degradation in shouted case and this is
Feature mapping improves recognition accuracies for mismatched P 9 ; A .
robably because text-dependent speaker identification were consid-

modes (N-S anc_i SN) by_ a wide margin whereas |dent|f_|cat|o %[]ed using a database of 50 speakers (25 male and 25 female speak-
rates decreases in comparison to the uncompensated baseline on

matched condions (VN and S-5) Haever, Dese relatve degr) 11357 SEaker e v 6 erences ot o mes
dations on N-N (5.5 %) and S-S conditions (2.48 %) are acceptabl 9 P

. ; . . DA% ut with 1600 neutral and 3600 shouted identification trials whereas
given that the mismatched vocal modes experience impressive ini-

provements (for instance, around 4-fold increase for FFT in thd" th;_s;]study \I/ve fhav’\? ;28 |3esntlsf|f:a;|_ort1)ltrlills.f ving th

N-S condition). In contrast to baseline performances, now FFT, eresu ts for N-N and S-S in Table ater_app ying t eFrans-

outperforms LP in most cases. formation reveals thgf[ the propo_sed transformation |s_sn_100th|ng out
Finally, the number of misidentified trials are given in Fig. 5 some speaker specific information from MFCCs. This is also seen

f5om Fig. 3 where, by applying the transformation, most of the

for FFT features before and after compensation. In the case of FCC fluctuati ftened for both tral and shouted h
compensation (baseline MFCC) the errors are uniformly distribute uctuations are softéned for both neutral and shouted speech.
n the other hand, the reason for improved recognition accuracy

and for most speakers all the 24 trials are misidentified. However N-S and S-N dit ft ing th dt p
the compensation reduces the number of errors almost for eveslgh -> and >-lv condition after applying the proposed transtorma-
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Number of misidentified trials
Number of misidentified trials

N

speaker. Fig. 5 reveals that, while shout compensation is succes2" could be also found in reduced mismatch between neutral and
ful for some speakers (e.g., 11 and 12), it makes no difference f shouted MFCCs as can be seen from the second row of Fig. 3.

some speakers (e.g. 8, 10, 14 and 19). The rest of the speakers f
in between these two extremes. There are two possible reasons for 7. CONCLUSION

such behavior. Firstly, the shout compensation mapping training s, this paper we evaluated the text-independent speaker identifica-
is both small and language-mismatched with our evaluation data, 4% ysing shouted speech. Four different training/test conditions
no addltlonal_parall_el Finnish shouted speech corpus was avallat_)lﬁave been analyzed and it has been found that recognition perfor-
Secondly, being trained from a pool of many speakers, the mapping,ance of speaker identification is quite reasonable when the training
function does statistical averaging that may remove speaker cues jihg test conditions are matched but large degradation on the recog-
addition to compensating shouting. nition accuracy occurs in the case of vocal effort mismatch between
training and testing. It was shown that this degradation on recog-
6. DISCUSSION nition accuracy can be partly compensated by applying the feature
We evaluated text-independent speaker identification using shoutedapping on the MFCCs. Future work should address how such map-
speech and proposed a first step towards explicit shout compensgaing could be trained ensuring that speaker features are retained.
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