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ABSTRACT

In the traditional voice conversion, converted speech is gener-

ated using statistical parametric models (for example Gaussian mix-

ture model) whose parameters are estimated from parallel training

utterances. A well-known problem of the statistical parametric meth-

ods is that statistical average in parameter estimation results in the

over-smoothing of the speech parameter trajectories, and thus leads

to low conversion quality. Inspired by recent success of so-called

exemplar-based methods in robust speech recognition, we propose

a voice conversion system based on non-negative spectrogram de-

convolution with similar ideas. Exemplars, which are able to cap-

ture temporal context, are employed to generate converted speech

spectrogram convolutely. The exemplar-based approach is seen as a

data-driven, non-parametric approach as an alternative to the tradi-

tional parametric approaches to voice conversion. Experiments on

VOICES database indicate that the proposed method outperforms

the conventional joint density Gaussian mixture model by a wide

margin in terms of both objective and subjective evaluations.

Index Terms— Voice conversion, exemplar, non-negative ma-

trix factorization, non-negative matrix deconvolution, temporal in-

formation

1. INTRODUCTION

Voice conversion is a process of modifying source speaker’s voice

to sound like it was spoken by another speaker (target). It can be

applied to speaker identity conversion in speech synthesis systems

when only a few recording samples from a specific target speaker

are available.

In general, voice conversion techniques operate on several dif-

ferent speech features, such as spectral envelope [1, 2], formants [3],

fundamental frequency [4, 5] and duration [6]. Spectral envelope

contains most of the speaker identity information and is the focus

in most of the voice conversion studies, including this one. Spectral

conversion involves two phases, training and run-time conversion.

During training, a transformation function is estimated from frame-

aligned source-target feature vectors. The trained conversion model

is then applied to unseen utterances at system run-time. Implemen-

tation of the conversion function is the most important part of a voice

conversion system.

To implement a robust spectral conversion function, a number of

data-driven statistical parametric methods have been proposed in the

past two decades. A straightforward way to model the relationship

between source and target speech is to employ vector quantization

(VQ) to learn a codebook from the paired source-target frame vec-

tors, and apply this codebook during conversion phase [7].

To alleviate the frame-to-frame discontinuity problem caused

by VQ, joint density Gaussian mixture model (JD-GMM) was pro-

posed [8, 9, 1]. It implements a smoothed local linear transformation

function for each frame. Other local linear transformation methods,

such as partial least square regression [10], trajectory GMM/hidden

Markov model (HMM) [11], mixture of factor analyzers [12], lo-

cal linear transformation [13], noisy channel model [2] and so on,

have been proposed to reduce the over-smoothing and over-fitting

problems of JD-GMM. In addition to the linear transformation func-

tions, which assume the source and target speech features to be lin-

early correlated, nonlinear methods, such as artificial neural network

[3, 14], support vector regression [15], kernel partial least square re-

gression [16], and conditional restricted Boltzmann machine [17],

have been studied to implement nonlinear conversion.

Due to inherent statistical averaging in parametric methods,

over-smoothed speech samples are generated from the averaged

parameters, which leads to unnatural speech quality. Inspired by the

success of so-called exemplar-based noise robust speech recognition

[18, 19, 20], we propose a non-parametric exemplar-based voice

conversion method as an alternative to statistical parametric meth-

ods. We define an exemplar to be a segment of speech spectrogram

spanning multiple frames. Utilizing multiple frames, as opposed

to single frame in the conventional methods, allows contextual

modelling which helps increasing the resulting speech quality.

We study two examplar-based voice conversion variants: non-

negative spectrogram factorization (NMF) and non-negative spec-

trogram deconvolution (NMD). In the former variant, each spectro-

gram frame is represented as a convex combination of several basis

spectra (atoms) forming a dictionary. In the deconvolution variant,

a converted spectrogram is generated as a convolution of exemplars

and activations. Comparing with the most related work in [21], our

work has the following novel contributions:

a) We utilize multiple-frame exemplar rather than single-frame

spectrum as the basis in the dictionary;

b) We employ low-dimensional filter-bank energies instead of

the original magnitude spectrum to represent source spectro-

gram and source dictionary for efficient computation;

c) We employ a convolutive model to include temporal context

information in the converted spectrogram.
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2. BASELINE JOINT DENSITY GAUSSIAN MIXTURE

MODEL METHOD

Among the statistical parametric methods, joint density Gaussian

mixture model (JD-GMM) method [8, 1] is one of the most suc-

cessful methods, due to the probabilistic treatment and flexible im-

plementation. Therefore, we employ the JD-GMM method as our

baseline method in this study.

The JD-GMM method involves two phases: off-line training and

run-time conversion phases. During the training phase, given par-

allel training data from a source speaker X and a target speaker

Y, dynamic time warping (DTW) algorithm is used to align the

source speech vectors and target speech vectors to obtain the paired

speech feature vector Z = [z1, z2, . . . , zt, . . . , zT ], where zt =
[x⊤n ,y

⊤
m]⊤ ∈ R2d, and xn ∈ R

d and ym ∈ Rd are source and

target speech feature vectors, respectively.

Gaussian mixture model (GMM) is adopted to model the distri-

bution of the paired feature vector sequence Z, which represents the

joint distribution of source speech X and target speech Y. The joint

probability density is given as follows:

P (X,Y) = P (Z) =

K
∑

k=1

w
(z)
k N (z|µ(z)

k ,Σ
(z)
k ), (1)

µ
(z)
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[

µ
(x)
k

µ
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k

]

,Σ
(z)
k =
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Σ
(xx)
k Σ

(xy)
k

Σ
(yx)
k Σ

(yy)
k

]

,

where K is the number of Gaussian components, µ
(z)
k and Σ

(z)
k are

the mean vector and the covariance matrix of the kth Gaussian com-

ponentN (z|µ(z)
k ,Σ

(z)
k ), respectively. The prior probability w

(z)
k of

the kth Gaussian component is constrained by
∑K

k=1 w
(z)
k = 1. To

estimate the model parameters of the joint density Gaussian mixture

model λ(z) = {w(z)
k , µ

(z)
k ,Σ

(z)
k |k = 1, 2, . . . ,K}, the well-known

expectation-maximization (EM) algorithm is adopted to maximize

likelihood of the training data.

In the run-time conversion phase, JD-GMM model parameters

are employed to implement the conversion function. To be more

specific, for each input source speech feature vector x, the conver-

sion function F (x) implemented with minimum mean square error

is used to predict the target’s feature vector ŷ is given as:

ŷ = F (x) =

K
∑

k=1

pk(x)(µ
(y)
k +Σ

(yx)
k (Σ

(xx)
k )−1(x−µ

(x)
k )), (2)

pk(x) =
wkN (x|µx

k,Σ
xx
k )

∑K

k=1 wkN (x|µx
k,Σ

xx
k )

,

where pk(x) is the posterior probability of the source vector x gen-

erated from the kth Gaussian component.

We note that during the JD-GMM model parameter estimation

process, the mean vector of each Gaussian component is updated as:

µ
(z)
k =

∑T

t=1 ztpk(zt, λ
(z))

∑T

t=1 pk(zt, λ
(z))

. (3)

Similarly, the covariance matrix of each Gaussian component is

updated as:

Σ
(z)
k =

∑T

t=1 pk(zt, λ
(z))(zt − µ

(z)
k )(zt − µ

(z)
k )⊤

∑T

t=1 pk(zt, λ
(z))

(4)

From (3) and (4), we observe that when calculating mean and

covariance for each Gaussian component, all the training samples

are used, which is the so-called statistical average. The statistical

average results in over-smoothing of the converted speech. We also

note that if the correlation between the paired source and target fea-

ture vectors is low, the value of the covariance matrix Σ
(yx)
k will be

very small, therefore, only µ
(y)
k contributes to the converted speech

as observed and reported in [22].

3. PROPOSED EXEMPLAR-BASED VOICE CONVERSION

METHOD

To tackle the over-smoothing problem, we propose an exemplar-

based method to generate the converted speech from the spectro-

gram segments (exemplar). We employ two matrix factorization

techniques to implement the exemplar-based method: non-negative

spectrogram factorization and non-negative spectrogram deconvolu-

tion. Both implementations have the same procedures as follows:

1 Training: construct parallel source and target dictionaries;

2 Conversion:

2.a Extract source spectrogram;

2.b Given source spectrogram and source dictionary, esti-

mate activation matrix;

2.c Utilize the activation matrix estimated in step 2.b and

the target dictionary to generate the converted spectro-

gram;

The two implementations using matrix factorization techniques are

briefly introduced in this section.

3.1. Non-negative spectrogram factorization (NMF)

The first exemplar-based method is based on non-negative spectro-

gram factorization. The basic idea of this method is to represent a

magnitude spectrum as a linear combination of a set of basis spectra

(speech atoms). It is formulated as follows:

x =

T
∑

t=1

a
(X)
t · ht = A

(X) · h, (5)

where x ∈ Rp×1 represents the spectrum of one frame, T is the total

number of speech atoms, A(X) = [a
(X)
1 ,a

(X)
2 , · · · ,a(X)

T ] ∈ Rp×T

is the dictionary of speech atoms built from training source speech,

a
(X)
t is the tth speech atom which has the same dimension as x, h =

[h1, h2, · · · , hT ] ∈ R
T×1 is the non-negative weight or activation

vector and ht is the activation of the tth speech atom.

Therefore, the spectrogram of each source utterance can be rep-

resented as:

X = A
(X) ·H, (6)

where X ∈ Rp×M is the source spectrogram, and H ∈ RT×M is

the activation matrix, the column vector of which is the activation

vector in Eq. (5).

In order to generate converted speech spectrogram, we assume

that the aligned source and target dictionaries share the same acti-

vation matrix. To this end, we represent the converted spectrogram

as:

Y = A
(Y) ·H, (7)

where Y ∈ Rq×M is the converted spectrogram, and A(Y) ∈
Rq×T is the dictionary of the target speech atoms from target train-

ing data.

Z. Wu, T. Virtanen, T. Kinnunen, E.S. Chng, H. Li

202



The illustration of Eq. (6) and (7) is presented in Fig. 1. The

source and target dictionaries A(X) and A(Y) are constructed from

parallel training data and they remain the same during the conversion

phase. During the conversion phase, the source spectrogram is given

and the activation matrix is obtained as a solution of non-negative

matrix factorization as in [18]. Then, the activation matrix estimated

from Eq. (6) is then directly employed in Eq. (7) to generate the

converted spectrogram.

Fig. 1. Illustration of non-negative spectrogram factorization for

exemplar-based voice conversion

3.2. Non-negative spectrogram deconvolution (NMD)

Although temporal constraints can be included in the estimation

of activation matrix by using multiple-frame exemplars as source

speech atoms, the converted speech spectrogram is still generated

frame-by-frame. In order to utilize temporal context in the genera-

tion process of the converted spectrogram, we propose non-negative

spectrogram deconvolution (NMD) method for exemplar-based

voice conversion. In the NMD method, a spectrogram is repre-

sented as a convolution of exemplars and activations. The idea is

formulated as follows:

X =

L
∑

l=1

A
(X)
l ·

→(l−1)

H , (8)

Y =

L
∑

l=1

A
(Y)
l ·

→(l−1)

H , (9)

where A
(X)
l ∈ Rp×T and A

(Y)
l ∈ Rq×T are the matrices consist-

ing of the lth frame of the source and target atoms, respectively, L

is the number of adjacent frames within an examplar and H is the

activation (weights) matrix as that in Eq. (6).
→(l−1)

(·) operator shifts

the matrix entries (columns) to the right by (l−1) units. In practice,

several consecutive frames of an exact frame can be stacked into one

supervector to represent the exact frame for constructing the source

dictionary A
(X)
l ∈ Rp×T . Therefore, p = L× d other than p = d,

where d is the dimension the spectrum. During conversion, a source

spectrogram X is first decomposed to estimate the activation ma-

trix, and then the converted speech spectrogram Y is generated as a

convolution of the target speech atoms and the corresponding acti-

vation matrix. The activation matrix is obtained by minimizing the

generalized Kullback-Leibler divergence as explained in [19].

3.3. Dictionary construction

As discussed above, dictionary is important for both estimating the

activation matrix and generating the converted speech signal. Before

introducing how to construct dictionary, we first introduce the related

features used to represent spectrum. In this work, the STRAIGHT

[23] system is employed to extract spectral envelope and fundamen-

tal frequency (F0). The following three features are involved in this

study:

a) Magnitude spectra (MSP): Magnitude spectra consist a se-

quence of spectral envelopes extracted by STRAIGHT. We

use 513 dimensional spectra. Magnitude spectra can be

passed to STRAIGHT for reconstructing speech signal. In

this work, target dictionary and converted spectrogram are

always represented by MSP.

b) Mel-scale magnitude spectra (MMSP): MMSP is obtained by

passing the magnitude spectrogram to a 23-channel Mel-scale

filter-bank. The minimum frequency is set to be 133.33 Hz,

and the maximum frequency is set to be 6,855.5 Hz. In this

work, MMSP is only used in the source dictionary to estimate

the activation matrix but not for synthesizing speech.

c) Mel-cepstral coefficient (MCC): MCC is obtained by employ-

ing mel-cepstral analysis technique on the magnitude spec-

trogram and keeping 24 coefficients as the feature. During

synthesis, MCCs are converted back to magnitude spectro-

gram, which is then passed to the STRAIGHT synthesis filter

to reconstruct speech signal. In this work, MCC is only used

in the JD-GMM method and in the dynamic time warping to

align two parallel utterances.

Given one pair of parallel utterances from source and target, the

following process is employed to construct the dictionary.

1) Extract magnitude spectrogram (spectral envelopes) from

both source and target speech signal using STRAIGHT;

2) Apply mel-cepstral analysis [24] on the spectrograms to ob-

tain mel-cepstral coefficients (MCCs);

3) Apply 23-channel Mel-scale filter-bank to obtain 23-dimensional

MMSP;

4) Perform dynamic time warping on the source and target MCC

sequence to align the speech to obtain source-target frame

pairs;

5) Apply the alignment information to the source and target

spectrograms. The resulting spectrum pairs are stored in the

source and target dictionaries (column vectors), respectively.

The above five steps are applied for all the parallel training utter-

ances. All the spectrum pairs (column vectors in source and target

dictionaries) are used as speech atoms. In order to include multiple

frames, consecutive frames are stacked into a super-vector to repre-

sent one frame. We note that for simple explanation, same features

(both spectral envelopes) are used in step 5. As the size of the activa-

tion matrix is independent of the dimensionality of the features (col-

umn dimensionality), therefore, 23-dimensional MMSP can be used

to replace 513-dimensional MSP in the source dictionary. While

513-dimensional MSP is always used in the target dictionary for syn-

thesizing speech purpose. More details will be discussed in Section

4.
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4. EXPERIMENTS

To evaluate the proposed methods, we conduct experiments using the

VOICES database [25]. Male-to-female and female-to-male conver-

sions are conducted. For each conversion, 10 utterances from each

speaker are selected as training data and 20 utterances, which are not

included in the training data, are used as testing data.

In the experiments, three methods are compared. They are sum-

marized as follows:

a) JD-GMM: The joint density Gaussian mixture model method

(Section 2). The number of Gaussian components is set to be

32.

b) NMF: The proposed non-negative spectrogram factorization

method (Section 3.1).

c) NMD: The proposed non-negative spectrogram deconvolu-

tion method (Section 3.2).

In the JD-GMM method, 24-dimensional MCC features are used

to represent spectral envelope and to synthesize speech signal, while

in NMF and NMD method, 513-dimensional MSP is used in the

target dictionary and to synthesize speech signal. Log-scale F0 is

converted by equalizing the mean and variance of the source and

target speech.

4.1. Objective evaluation

Two objective measures are employed to evaluate the proposed

method objectively. The first objective measure is spectral distor-

tion: mel-cepstral distortion (MCD), which is calculated between

a converted frame and the corresponding original target frame. We

note that the frame alignment is obtained by performing dynamic

time warping between parallel source and target sentences. The

MCD for the mth frame is calculated as:

MCD[dB] =
10

log 10

√

√

√

√2
24
∑

d=1

(cm,d − cconvm,d ), (10)

where, M is frame number in one utterance, cm,d and cconvm,d are the

dth dimension of the original target and converted MCCs of the mth

frame, respectively. We report the average MCD value over all the

frames. A lower MCD value indicates smaller distortion. The sec-

ond objective measure is the correlation coefficient, which is calcu-

lated between the original target and the converted MCC parameter

trajectories dimension-by-dimension. The correlation coefficient γd
of the dth MCC trajectory is computed as follows:

γd =

∑M

m=1(cm,d − cd)(c
conv
m,d − cconvd )

√

∑M

m=1(cm,d − cd)2
√

∑M

m=1(c
conv
m,d − cconvd )2

, (11)

where cd and cconvd are the mean values of the original target and

converted MCCs of the dth dimension, respectively. We note that

correlation coefficient is calculated sentence-by-sentence and we re-

port the average correlation coefficient. Different from MCD, corre-

lation coefficient focuses on the trajectory-level similarity, which is

not affected by the mean and variance of the MCC trajectory, and has

been used to measure the fundamental frequency trajectory similar-

ity [5, 26]. Bigger correlation coefficient indicates Higher similarity

between the original target and the converted MCC trajectories. We

report the average correlation coefficient over all dimension.

In order to obtain comparable MCD and correlation results, in

the NMF and NMD method, mel-cepstral analysis is applied to the

converted spectrogram to get the 24-dimensional MCCs for com-

puting MCD and correlation coefficient. Both MCD and correlation

coefficient results reported in this work are averaged over the con-

version pairs.

As shown in Eq. (6) and (7), and Fig. 1, the dimensionality

of the activation matrix is independent of the dimensionality of the

exemplars in both the source and the target dictionaries. Therefore,

we first evaluate the performance of NMF using different features

in source dictionary for estimating the activation matrix. We note

that for all the experiments, target dictionary always use the 513-

dimensional magnitude spectra, as the target dictionary does not af-

fect the activation matrix and also is used to synthesize speech signal.

As discussed above, the dimensionality of the spectral envelope

from STRAIGHT is 513 (1024-point FFT). If the original magni-

tude spectra (MSP) are used to estimate the activation matrix, as

illustrated in Fig. 1, the dimensionality of the source dictionary

A(X) will be 513× T , assuming that each exemplar spans only one

frame. If each exemplar spans 11 frame, the dimensionality of the

source dictionary A(X) will be 5, 643 × T , where T is the num-

ber of atoms. The huge dimensionality of the source dictionary will

increase the computation and memory usage considerably. To re-

duce computation and memory usage, low-dimensional features will

be a better choice. In this study, we propose to use 23-dimensional

MMSP instead of the 513-dimensional original MSP to make the

source dictionary for estimating the activation matrix. While the tar-

get dictionary reminds same as discussed above.

Table 1 presents the spectral distortions and correlations of

NMF using 513-dimensional MSP and 23-dimensional MMSP in

the source dictionary. Here, an exemplar spans only one frame. The

results show that, even the dimensionality is reduced from 513 to 23,

the distortion only increases 0.06 dB, and the correlation decreases

by 0.003. The benefit of using 23-dimensional MMSP instead of

513-dimensional MSP in source dictionary to represent speech sig-

nal is that more consecutive frames can be included in the exemplar

to estimate the activation matrix without increasing the computation

cost and memory usage too much.

Table 1. Comparison of NMF results using 513-dimensional magni-

tude spectra (MSP) and 23-dimensional Mel-scale magnitude spec-

tra (MMSP) in the source dictionary A(X). 513-dimensional MSP is

always used in the target dictionary A(Y).

Features in source dictionary A(X) MCD (dB) Correlation

MSP (513 dimensions) 5.47 0.439

MMSP (23 dimensions) 5.53 0.436

We then evaluate the performance of NMF using multiple frames

in an exemplar for source dictionary. The spectral distortion results

as a function of the window size (number of consecutive frames) of

an exemplar is presented in Fig. 2. For Mel-scale magnitude spectra,

the window size of exemplar is varied. While for 513-dimensional

magnitude spectra, only one frame spectrum is employed in the ex-

emplar due to computation restrictions discussed above. The results

show that when the window size is larger than 3, 23-dimensional

MMSP yields lower MCD and higher correlation coefficient than

513-dimensional MSP. NMF with exemplar using MMSP and span-

ning 9 frames gives the lowest spectral distortion. We note that the

dimensionality of exemplar using MMSP and spanning 9 frames is

23× 9 = 207, which is still much smaller than 513. The correlation

results in Fig. 3 agree well with the spectral distortion results.

Next, we evaluate the proposed non-negative deconvolution

(NMD) method using 23-dimensional MMSP. As shown above, 9
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Fig. 3. The correlation coefficient results of NMF method using

different features with the baseline JD-GMM method as a reference

frame exemplars give lowest distortion in the NMF method, there-

fore, in the NMD method, we stack 9 consecutive frames of an

exact frame to represent the exact frame. Therefore, In Eq. (1),

p = 9 × 23 = 207. The spectral distortion results are presented in

Fig. 4, as a function of the window size of an exemplar. Compar-

ing with JD-GMM method, we observe that NMD method always

obtains lower spectral distortion. NMD and NMF methods have

similar performance in terms of spectral distortion when the window

size is 5 or 7. The correlation coefficient results are shown in Fig.

5. It clearly shows that NMD has the highest correlation coefficients

in all the cases. We note that different from NMF, NMD method

utilizes multiples target frames (an exemplar) not only to estimate

the activation matrix but also to generate the converted spectrogram.

4.2. Subjective evaluation

To assess the similarity of the converted speech to the target speech,

a similarity preference listening test was conducted. The JD-GMM,

and the two proposed methods: NMF and NMD are compared. 10

converted utterances from each method were randomly selected, in-

cluding 5 utterances from the male-to-female conversion and the

other 5 utterances from the female-to-male conversion. 11 subjects

were asked to listen to a reference target speech and then the three

converted speech samples representing the three methods. After that

they were asked to decide which speech sample is more closer to

the reference target speech sample. The preference scores with 95%

confidence interval are presented in Fig. 6. We can clearly observe

that the proposed NMF and NMD methods are both able to generate

speech samples which are more similar to the target speaker than the
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Fig. 4. Comparison of the spectral distortion results of JD-GMM,

NMF and NMD methods as a function of the window size of an

exemplar
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baseline JD-GMM method. We note that during the listening test,

when the subjects are not able to distinguish the similarity across

speech samples, they prefer to choose the one which gives better

quality. Therefore, the similarity can reflect the speech quality of the

three methods to some degree.
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Fig. 6. Similarity results of the preference score with 95% confi-

dence interval
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5. CONCLUSIONS

In this paper, we proposed an exemplar-based voice conversion

method utilizing the matrix/spectrogram factorization techniques.

Two implementations, non-negative spectrogram factorization and

non-negative spectrogram deconvolution, are proposed to use orig-

inal target spectrogram directly without any dimension reduction

to synthesize the converted speech. The experiment results show

the proposed method outperforms the conventional joint density

Gaussian mixture model considerably.
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