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Abstract
The front-end factor analysis (FEFA), an extension of principal
component analysis (PPCA) tailored to be used with Gaussian
mixture models (GMMs), is currently the prevalent approach
to extract compact utterance-level features (i-vectors) for au-
tomatic speaker verification (ASV) systems. Little research has
been conducted comparing FEFA to the conventional PPCA ap-
plied to maximum a posteriori (MAP) adapted GMM supervec-
tors. We study several alternative methods, including PPCA,
factor analysis (FA), and two supervised approaches, supervised
PPCA (SPPCA) and the recently proposed probabilistic partial
least squares (PPLS), to compress MAP-adapted GMM super-
vectors. The resulting i-vectors are used in ASV tasks with
a probabilistic linear discriminant analysis (PLDA) back-end.
We experiment on two different datasets, on the telephone con-
dition of NIST SRE 2010 and on the recent VoxCeleb corpus
collected from YouTube videos containing celebrity interviews
recorded in various acoustical and technical conditions. The
results suggest that, in terms of ASV accuracy, the supervec-
tor compression approaches are on a par with FEFA. The su-
pervised approaches did not result in improved performance.
In comparison to FEFA, we obtained more than hundred-fold
(100x) speedups in the total variability model (TVM) training
using the PPCA and FA supervector compression approaches.

1. Introduction
Modern text-independent automatic speaker verification (ASV)
relies heavily on the use of identity vectors (i-vectors) [1, 2].
I-vectors are compact representations of speech utterances
containing useful information for speech-related classification
tasks. The i-vector extraction pipeline involves many steps
starting from the extraction of acoustic features such as Mel-
frequency cepstral coefficients (MFCCs), followed by the ex-
traction of sufficient statistics with the aid of an universal
background model (UBM), typically a Gaussian mixture model
(GMM) [3] or a deep neural network (DNN) model [4]. Suffi-
cient statistics are then used to extract an i-vector, a fixed-length
representation of an utterance, using a pre-trained total vari-
ability model (TVM) that models the distribution of utterance-
specific GMM supervectors.

The development and optimization of an i-vector based
ASV system consists of a multiple time-consuming steps. The
most notable ones are extraction of acoustic features and suffi-
cient statistics, and training of UBM and TVM. The two former
require processing of a large number of speech files and TVM
training is among the most time consuming parts of the system
development process. Thus, by reducing TVM training time, a
meaningful positive effect to the total development time of ASV
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system can be achieved [5, 6]. This is particularly beneficial in
studies focused on the acoustic front-end optimizations when
one has to retrain the entire system when feature extractor is
changed [7].

Previous studies on rapid i-vector extraction have primar-
ily optimized computations in the standard front-end factor
analysis (FEFA) approach [1, 2] by adopting new computa-
tional algorithms, often approximative in nature [6, 8, 9]. In
this study, however, we focus on an alternative and straightfor-
ward compression of classic maximum a posteriori (MAP) [3]
adapted GMM supervectors with a goal of obtaining fast execu-
tion times without compromising on ASV accuracy. In fact, be-
fore FEFA, and its predecessor, joint factor analysis (JFA) [10],
became prevalent, MAP adapted supervectors were commonly
used with support vector machine (SVM) to do speaker classifi-
cation [11]. Recently, however, the use of MAP adapted super-
vectors has been less common.

Supervector compression, for example by using probabilis-
tic principal component analysis (PPCA) [12, 13], provides a
large computational saving in TVM estimation over FEFA [14].
In FEFA, the posterior covariance matrix needed for i-vector ex-
traction is utterance-dependent, while in the supervector com-
pression methods addressed in this study, covariance is shared
among all speech utterances, which greatly reduces computa-
tion. As the TVM training set may consist of tens of thousands
of utterances, the resulting computational saving is consider-
able [14].

The closest prior work similar in spirit to ours are [14]
and [15], which we extend in many ways. In these two studies,
the training of TVM is performed using PPCA. The acoustic
feature vectors are hardly aligned to a single UBM component.
If they were softly aligned, this approach would equal to using
MAP adapted supervectors with a relevance factor of 0 [16].
Differing from [14] and [15], we use MAP adapted supervec-
tors to train TVM and we study how the choice of relevance
factor affects the system performance.

Recently [17], TVM estimation using probabilistic partial
least squares (PPLS) was proposed as an alternative to FEFA.
PPLS compresses supervectors in a supervised way by taking
advantage of the speaker labels in the training set. In the cur-
rent study, we attempt to validate the positive results [17] ob-
tained for Chinese mandarin corpus by using datasets contain-
ing English speech instead. In [18], supervision is added to the
total variability matrix training by deploying supervised PPCA
(SPPCA) [19]. The SPPCA model is fundamentally the same as
the PPLS model, with a difference in what has been used as the
supervision data; PPLS has been used directly with speaker la-
bels [17], while SPPCA has been utilized with speaker-specific
(not just utterance-specific) sufficient statistics [18]. In the cur-
rent work, we study the use of SPPCA for supervector compres-
sion.

In addition to the above models, we adopt standard fac-



tor analysis (FA) for supervector compression. Note, that this
differs from the FEFA framework: In FEFA, the TVM train-
ing is based on the maximization of posterior probabilities of
acoustic feature vectors, assumed to have been generated by
a GMM [20], whereas in FA (and PPCA), maximization is
performed with respect to posterior probabilities of supervec-
tors [21].

We conduct comparisons of different methods in ASV set-
ting using a recently released VoxCeleb corpus [22]. The corpus
contains “real-world” utterances obtained from YouTube videos
of celebrity interviews using a fully automated data collection
pipeline. The data is challenging for ASV due to large intra-
speaker variability caused by large differences in environments,
speaking styles, and technical conditions. In addition to Vox-
Celeb, we validate our findings with the telephone condition of
NIST 2010 Speaker Recognition Evaluation corpus.

Our contributions can be summarized as follows. First, we
present all the selected methods in an unified notation high-
lighting the important formulas regarding their implementation.
Second, we aim at validating the results claimed in [17] regard-
ing the recently proposed PPLS method on different corpora,
and we extend the study by introducing the weighting scheme
proposed in [18]. Third, we implement and test SPPCA in the
supervector compression domain. Fourth, we compare all the
methods in terms of ASV performances and training times of
total variability models. Lastly, we propose a slight simplifica-
tion to the maximization principle of TVM training.

2. I-Vector Extraction by Front-End Factor
Analysis

Front-end factor analysis (FEFA) [1] is the current standard
method for extracting utterance level features known as i-
vectors. In FEFA, a supervector m(u) of an utterance u is
modeled as

m̂(u) = µ+ Vw(u),

where µ ∈ Rh×1 is an utterance-independent bias supervec-
tor, w(u) ∈ Rd×1 is a low dimensional representation of an
utterance supervector, i.e., an i-vector, and V ∈ Rh×d is a map-
ping between low and high dimensional spaces known as total
variability matrix. The mathematical foundation of FEFA is
presented in detail in [20].

The traditional way of TVM estimation and i-vector ex-
traction begins with computing frame posterior probabilities for
short-term spectral features (e.g. MFCCs) of an utterance with
each Gaussian component of UBM. These posteriors are then
used to compute zeroth and first order sufficient statistics,

nc =

T∑
t=1

pt(c),

fc =

T∑
t=1

pt(c)xt,

wherext is the tth feature vector of the utterance and pt(c) is the
posterior probability of tth vector belonging to cth component of
UBM, computed with the aid of Bayes’ rule.

Assuming that the prior distribution p(w(u)) is stardard
normal, it can be shown [20] that

p(w(u)|X(u), V ) = N (µ(u),Σ(u)),

where X(u) = {x1, . . . ,xT } is a sequence of all feature vec-
tors in the utterance u and where

I-Vector Extraction

Σ(u) =

(
I +

C∑
c=1

nc(u)V ᵀ
c Σ−1

c Vc

)−1

,

µ(u) = Σ(u)

C∑
c=1

V ᵀ
c Σ−1

c (fc(u)− nc(u)µc).

In the above equations, Σc is the covariance matrix of the cth

UBM component, and Vc and µc are component-wise repre-
sentations of V and µ so that

V =

V1

...
VC

 and µ =

µ1

...
µC

 ,
where the vectors µ1, . . . ,µC are the means of the UBM com-
ponents. Mean µ(u) of the posterior i-vector distribution is the
i-vector of the utterance u.

The matrix V is estimated using an offline training set of U
utterances by maximizing

U∑
u=1

E[ln p(X(u)|w(u), V )], (1)

where the expectations are taken with respect to posterior i-
vector distributions [20]. This leads to an update formula

Update Formula for V

Vc=

(
U∑
u=1

fc(u)µ(u)ᵀ
)(

U∑
u=1

nc(u)Eµµ(u)

)−1

,

Eµµ(u) = Σ(u) + µ(u)µ(u)ᵀ.

Training of V is iterative; one iteration consists of computing
Σ(u), µ(u), and Eµµ(u) for all training utterances by keeping
V fixed and then updating V using the computed values. Dur-
ing the first iteration, parameters of posterior distributions are
computed using a randomly initialized matrix V .

3. I-Vector Extraction by Supervector
Compression

In this section, we present multiple approaches to compressing
MAP adapted GMM supervectors to low-dimensional represen-
tations, which we will also refer as “i-vectors”. Unlike FEFA,
these approaches do not assume the underlying speaker model
to be GMM.

In relevance MAP, the adapted mean vectors µ̂c,
c = 1, . . . , C, for utterance’s GMM are obtained from UBM
by computing

µ̂c = αcfc + (1− αc)µc,

where
αc =

nc
nc + r

and r ≥ 0 is the relevance factor to be optimized [3]. When
r → 0, then αc → 1, and when r = 0, the mean vectors are
solely determined by the sufficient statistics fc. If r is large,
then the adapted mean vectors remain close to UBM’s mean
vectors. Adapted mean vectors µ̂c are concatenated together to
form a supervector for the utterance.



3.1. Principal Component Analysis

Being one of the most commonly used dimension reduction
techniques, we include the conventional principal component
analysis (PCA) [23] as a baseline method for supervector com-
pression. The PCA transformation matrix, consisting of eigen-
vectors of data covariance matrix, can be used to transform high
dimensional supervectors to low dimensional i-vectors. In this
study, we use the standard singular value decomposition (SVD)
approach for PCA computation. However, for high dimensional
data, PCA could be computed more efficiently by adopting iter-
ative PCA algorithms [12].

3.2. Probabilistic Principal Component Analysis

Probabilistic principal component analysis (PPCA) [12, 13]
models observations using a linear-Gaussian framework. In
this section, we present a compact self-contained formulation
of PPCA in the context of supervectors. The rest of the meth-
ods discussed in Section 3 are formulated similarly and their
theory can be easily formulated using PPCA as a starting point.

In PPCA, supervectors are modeled as

m(u) = Vw(u) + ε, (2)

wherew ∼ N (0, I) and ε ∼ N (0, σ2I). For brevity, we have
omitted the bias termµ from the right-hand side of the equation
by assuming that supervectors have been centered using the data
mean computed from the training data.

By using properties of normally distributed random vari-
ables and by assuming that V is given, from (2) it follows that

p(m(u)|w(u)) = N (Vw(u), σ2I).

Further, in Appendix A, we show that

p(w(u)|m(u)) = N (µ(u),Σ), (3)

where
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Σ =
(
I +

1

σ2
V ᵀV

)−1

,

µ(u) =
1

σ2
ΣV ᵀm(u).

(4)

Unlike with FEFA, covariance Σ of the posterior i-vector dis-
tribution does not depend on the utterance. Hence, by adopt-
ing PPCA instead of FEFA, the time complexity of com-
puting the parameters of posterior distributions drops from
O(U(CFd+ Cd2 + d3)) to O(UCFd), where F is the di-
mension of acoustic feature vectors [14].

In the current work, we study two different ways of obtain-
ing V for all the presented methods. The traditional approach
(max. principle 1) maximizes

U∑
u=1

E[ln p(m(u)|w(u), V )], (5)

where expectations are taken with respect to posterior i-vector
distributions (similar to (1)). We propose maximizing the sum
of log-likelihoods directly (max. principle 2) without comput-
ing expectations by setting w(u) = µ(u). That is, we maxi-

mize

U∑
u=1

ln p(m(u)|w(u), V ) (6)

=

U∑
u=1

(
− h

2
ln(2πσ2)

− 1

2σ2

(
m(u)− V µ(u)

)ᵀ(
m(u)− V µ(u)

))
= −hU

2
ln(2πσ2)− 1

2σ2

U∑
u=1

(
m(u)ᵀm(u)

− 2m(u)ᵀV µ(u) + µ(u)ᵀV ᵀV µ(u)
)
,

where h is the dimension of supervectors.
By taking derivatives with respect to each variable in the

matrix V and by setting them to zero, we obtain

Update Formulas for V and σ2

V =

( U∑
u=1

m(u)µ(u)ᵀ
)( U∑

u=1

Eµµ(u)

)−1

,

σ2 =
1

hU

U∑
u=1

(
m(u)ᵀm(u)− tr

(
Eµµ(u)V ᵀV

))
,

Eµµ(u) = µ(u)µ(u)ᵀ (max principle 2).

The traditional approach (max principle 1) of solving V
results in the exact same formulas but with

Eµµ(u) = Σ + µ(u)µ(u)ᵀ [13].

Similarly to FEFA, training of V is iterative. As initial values,
we use random V and σ2 = 1.

3.3. Factor Analysis

Factor analysis (FA) agrees with the model (2) of PPCA,
except that the noise term ε has more freedom by let-
ting ε ∼ N (0,Ψ), where Ψ ∈ Rh×h is diagonal instead
of isotropic [13]. The training procedure is analogous to
PPCA [21, pp. 585–586]. First, the parameters of posterior
distributions (3) are computed as
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Σ =
(
I + V ᵀΨ−1V

)−1

,

µ(u) = ΣV ᵀΨ−1m(u).

Then, the model parameters are updated as follows:

Update Formulas for V and Ψ

V =

( U∑
u=1

m(u)µ(u)ᵀ
)( U∑

u=1

Eµµ(u)

)−1

,

Ψ =
1

U

U∑
u=1

(
m(u)m(u)ᵀ − V Eµµ(u)V ᵀ

)
� I,

where � denotes the Hadamard (element-wise) product. The
update formula for matrix V is the same as with PPCA.



3.4. Supervised Approaches

The methods presented so far capture the variability between
individual utterances regardless of the speaker’s identity. That
is, their training is unsupervised in the sense that no speaker
labels are needed. This makes it convenient to apply any of
the above methods to different classification tasks, but leaves
an open question whether “better” i-vectors could be extracted
by utilizing speaker labels. Thus, we explore two methods that
include identity information to the training process of the to-
tal variability matrix V to discriminate speakers better. The
explored methods, recently proposed probabilistic partial least
squares (PPLS) [17] and supervised PPCA (SPPCA) [18], can
both be thought as extensions of the regular PPCA. The un-
derlying models of PPLS and SPPCA are essentially the same,
where the difference is in the data used to discriminate speak-
ers: PPLS adds discrimination by using speaker labels while
SPPCA utilizes speaker-dependent sufficient statistics within
the FEFA framework. In the current work, however, we ap-
ply SPPCA in the supervector context in contrast to [18], where
the FEFA context is used.

In PPLS, supervector model is bundled together with a
speaker label model. Speaker labels are encoded as one-hot
vectors, y(u) ∈ Rs, where s is the number of speakers in the
training set. For example, if the utterance u originates from the
second speaker of the set, then y(u) = (0, 1, 0, . . . , 0)ᵀ. The
speaker label model and the supervector model share the same
i-vectorw(u) as follows:{

m(u) = Vw(u) + ε, (supervector model)
y(u) = Qw(u) + ζ, (speaker label model)

(7)

where (7) is defined in the same way as before, Q ∈ Rs×d is
a mapping between the i-vector space and the one-hot vector
space, and ζ ∼ N (0, ρ2I).

As presented in [17] and [18], the PPLS model leads to
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Σ =
(
I +

1

σ2
V ᵀV +

1

ρ2
QᵀQ

)−1

,

µ(u) = Σ
( 1

σ2
V ᵀm(u) +

1

ρ2
Qᵀy(u)

) (8)

and

Update Formulas for V , Q, σ2, and ρ2

V =

( U∑
u=1

m(u)µ(u)ᵀ
)( U∑

u=1

Eµµ(u)

)−1

,

Q =

( U∑
u=1

y(u)µ(u)ᵀ
)( U∑

u=1

Eµµ(u)

)−1

,

σ2 =
1

hU

U∑
u=1

(
m(u)ᵀm(u)− tr

(
Eµµ(u)V ᵀV

))
,

ρ2 =
1

sU

U∑
u=1

(
y(u)ᵀy(u)− tr

(
Eµµ(u)QᵀQ

))
, (9)

where, as before, we assume that all the supervectors and one-
hot vectors are centered using the mean vectors calculated from
the training data.

To extract i-vectors as in (8), we are required to have
speaker information of the utterance stored in y(u). In the test-
ing phase, however, we have no information about the speaker.

To this end, we might simply extract the test i-vector using ex-
traction formulas (4) for PPCA [18]. The result is not the same
as with PPCA, since the training of V is influenced by the su-
pervised approach. Another solution to deal with the lacking
speaker information is to predict speaker labels as a mean of
posterior distribution p(y(u)|m(u)); see the details in [17].
We found experimentally that both approaches extract exactly
the same i-vectors.

The described formulations apply also for SPPCA with a
difference that instead of using one-hot encoded speaker labels
as vectors y(s), we use speaker dependent supervectors. A
speaker dependent supervector is formed by using the acous-
tic features from all of the speaker’s training utterances. Note
that with SPPCA, h should be used instead of s in (9) and that
Q’s dimensionality is the same as V ’s.

In [18], a weighted SPPCA is proposed. In weighted
SPPCA, (8) becomes

I-Vector Extraction

Σ =
(
I +

1

σ2
V ᵀV +

β

ρ2
QᵀQ

)−1

,

µ(u) = Σ
( 1

σ2
V ᵀm(u) +

β

ρ2
Qᵀy(u)

)
,

where β is a weight parameter. The weight parameter can be
used to adjust the amount of supervision added on top of the
conventional PPCA model. With β = 0, the model equals
PPCA and when β = 1, we have the ordinary SPPCA.

4. Experimental Setup
4.1. VoxCeleb Speaker Recognition Corpus

We performed the speaker verification experiments on the re-
cently published VoxCeleb dataset [22]. VoxCeleb contains over
150,000 real-world utterances from 1251 celebrities, of which
561 are females and 690 are males. A key difference to the
widely used NIST corpora is that, on average, VoxCeleb has
more than 100 utterances per speaker, typically obtained from
multiple sessions with highly variable environments and record-
ing conditions providing a large intra-speaker variability. The
average utterance length is about 8 seconds. Although most of
the utterances are short, the utterance length varies consider-
ably, the longest ones being longer than one minute. Utterances
have a sampling rate of 16 kHz.

The dataset was collected using fully automated pipeline
that extracts and annotates utterances from YouTube videos. To
ensure correct speaker annotation, the pipeline contains auto-
matic face verification verifying that mouth movement in the
video corresponds to the audio track and that the speaker’s iden-
tity is the correct one. The utterances are mostly extracted
from interview situations ranging from quiet studios to public
speeches in front of large audiences. Differing environments
and speaking styles are not the only source of variability, since
differences in recording devices and audio processing practices
are present in YouTube videos. As the acoustic and technical
conditions of the utterances vary considerably, the dataset turns
out to be challenging for an automatic speaker verification task
as we will see in the experiments.

We used the same standard trial list as in the baseline system
of [22]. It contains 40 speakers, whose name starts with the
letter ‘E’. The list has 37720 trials, half of them (18860) being
same speaker trials, which differs substantially from the typical
NIST setups with about 10 to 1 ratio between non-target and
target trials.



The rest of the speakers were used for developing our
speaker verification systems, i.e., to train the UBM, TVM and
classifier back-end. To speed up experimentation, we utilized
only one-fourth of the available training data as we did not see
large decrease in system performance by decreasing the amount
of training data. Our training set contains total of 37160 utter-
ances from 1211 speakers.

We report recognition accuracy using equal error rates
(EERs) that are the rates where false alarm and miss rates are
equal. With the current trial list setup, 95% confidence intervals
around EERs that are below 8% (the case with most experi-
ments) are at widest±0.27% absolute. Confidence intervals are
computed using z-test based methodology presented in [24].

4.2. NIST Data

Even if our primary interest is in the VoxCeleb data, for the
sake of reference, we also study different i-vector systems using
common condition 5 of NIST 2010 Speaker Recognition Eval-
uation (SRE10)1. Trial segments in condition 5 contain con-
versational 8 kHz telephone speech spoken with normal vocal
effort. The trial list consists of 30373 trials, of which 708 are
same speaker trials.

Speaker verification systems were trained using 43308 ut-
terances obtained from SRE04, SRE05, SRE06, Switchboard,
and Fisher corpora.

The performances are reported as EERs and minimum val-
ues of detection cost function (minDCF) used in SRE10. The
SRE10 detection cost function is given as

DCF = 0.001Pmiss + 0.999Pfa,

where Pmiss and Pfa are probabilities of miss and false alarm,
respectively [25].

4.3. Description of Speaker Verification System

We extracted 38 dimensional acoustic feature vectors contain-
ing 19 Mel-frequency cepstral coefficients (MFCCs) and their
delta coefficients. After discarding features of non-speech seg-
ments, we subjected features to utterance-level mean and vari-
ance normalization.

The universal background model (UBM), 1024 component
Gaussian mixture model (GMM) with diagonal covariance ma-
trices, was trained using the development data. UBM was used
to extract sufficient statistics, which were used in FEFA or in
supervector extraction. Supervectors were extracted by first
creating utterance specific GMMs using maximum a posteriori
(MAP) adaptation [3] and then by concatenating mean vectors
of adapted GMMs into supervectors.

We extracted 400 dimensional i-vectors, which were
then centered, length-normalized, and whitened. Finally,
we used simplified probabilistic linear discriminant analysis
(PLDA) [26] to perform supervised dimensionality reduction of
i-vectors into 200 dimensions and to score verification trials.

5. Speaker Verification Experiments
The results presented in Sections 5.1 to 5.6 are given for
the VoxCeleb ASV protocol. Section 5.7 presents results for
SRE10.

1https://www.nist.gov/itl/iad/mig/speaker-recognition-evaluation-
2010

5.1. Relevance Factor in MAP Adaptation

We studied how the choice of relevance factor affects speaker
verification performance with PPCA and FA methods. The re-
sults for VoxCeleb protocol are presented in Figure 1. Based on
the results, we fix the relevance factor to r = 1 for the remain-
ing experiments with this data. The choice of relevance factor is
data-dependent, and therefore, the same value might not work
well with other datasets.
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Figure 1: The effect of relevance factor used in MAP adapta-
tion on speaker verification performance. For VoxCeleb data,
relevance factor close to 1 leads to the best results.

5.2. Number of Training Iterations

To find out the sufficient number of iterations in TVM training,
we evaluated verification performances with varying number of
iterations. The results of the experiment, presented in Figure
2, reveal that 5 iterations are enough to obtain near to optimal
performance. Hence, we fix the number of iterations to 5 for the
remaining experiments.

All the methods, except SPPCA, behave similarly. With
SPPCA, the training does not proceed in a desirable way during
the first 5 iterations.
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Figure 2: Speaker verification performances with different num-
bers of training iterations in total variability model training.
About 5 iterations are enough to obtain satisfying performance.
The trend is similar for all the methods except for SPPCA, for
which the iterative training does not improve the results.



5.3. Maximization Principles in System Training

In Section 3.2, we presented two different maximization princi-
ples that can be used with all the discussed iterative TVM train-
ing methods. The comparison of the maximization principles
in terms of resulting speaker verification performances is pre-
sented in Table 1. There are no clear differences between the
principles.

Table 1: Speaker verification equal error rates (%) for differ-
ent methods and maximization principles used in TVM training.
With conventional PCA approach we obtained EER of 7.39%.

max1 [Eq. (5)] max2 [Eq. (6)]
FEFA 7.09 7.11
PPCA 7.04 7.18
FA 7.20 7.26
PPLS 7.05 7.42
SPPCA 8.44 8.26

5.4. Training Times

Figure 3 shows the elapsed times for 5 TVM training iterations
with different methods. The measured times do not include the
times needed to compute sufficient statistics or supervectors or
to load them into memory using I/O operations. Measurements
were conducted by running MATLAB implementations of all
the methods in a 16-core 2.60 GHz machine with an ample
amount of RAM (>300GB). To obtain reasonable training time
with FEFA, we trained the system with 8 CPU cores, whereas
other methods were trained using a single core.

Before the TVM training phase, different methods have
only small differences in terms of computational requirements.
Even though FEFA differs from other methods in that it uses
sufficient statistics as inputs, the difference is minuscule, as
most of the time in the extraction of MAP adapted supervec-
tors is spent in the computation of sufficient statistics.

From the perspective of system optimization, note that
FEFA does not require optimization of the relevance factor. But,
the extra cost of relevance factor optimization in PPCA-PLDA
system does not outweigh the training time of FEFA, as MAP
adaptation using precomputed sufficient statistics and training
of PPCA and PLDA are much less expensive operations than
FEFA training.
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Figure 3: Training times of TVMs with 5 iterations (PCA is non-
iterative). Iterative supervector compression methods are the
fastest to train, while FEFA requires the most amount of com-
putation. FEFA was trained with 8 CPU cores to reduce the
training time.

5.5. Weight Parameter in Supervised Approaches

Next, we apply weighting to the supervised methods, PPLS
and SPPCA, as discussed in Section 3.4. The results obtained
with different weight parameter values are presented in Fig-
ure 4. We find that weighting does not affect PPLS and that
the weighted SPPCA model functions better when it approaches
PPCA (β → 0). This suggests that the studied supervised meth-
ods do not provide any noticeable benefits over the unsuper-
vised i-vector extractors.
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Figure 4: Effect of the weight parameter (β) value in the su-
pervised models. When β = 0, both models equal to the con-
ventional PPCA. Adding supervision by increasing β does not
improve the speaker verification performance.

5.6. Dimensionality of I-Vectors

To improve the speaker verification performance, we jointly op-
timized dimensions of i-vectors and their PLDA-compressed
versions. We varied the i-vector dimensionality between 200
and 1000 and the PLDA subspace dimensionality between 100
and 500. The results for all combinations using PPCA method
are presented in Figure 5. The results indicate that, our initial
parameters, 400 and 200 for i-vectors and PLDA, respectively,
give a relatively good performance. We also see that a slight
increase in performance might be obtained by using i-vector di-
mensions between 600 and 1000 with 350 to 400 dimensional
PLDA subspaces.
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Figure 5: Optimization of i-vector and PLDA subspace dimen-
sions for PPCA method. Different lines represent different i-
vector dimensionalities. The lowest error rate is obtained with
800-dimensional i-vectors and 350-dimensional PLDA space.



5.7. Evaluation With NIST SRE10 Data

To increase our confidence of the generality of the results, we
tested different i-vector systems on common condition 5 of
SRE10. We ran the second protocol using mostly the same sys-
tem configuration as with VoxCeleb corpus. We changed the
filterbank spacing in MFCCs to match the 8 kHz sampling rate
and we also increased the relevance factor to 6. Otherwise, the
system was not optimized for the new data.

The results for SRE10, shown in Table 2, indicate that there
are no clear differences between the two maximization princi-
ples. Further, we observe that the results for EER and minDCF
are somewhat different as FEFA performs the best in terms of
EER, while FA obtains the lowest minDCF. To gain better un-
derstanding on the performances of the systems, in Figure 6, we
present detection error trade-off (DET) curves for all the meth-
ods using the maximization principle 1. The DET curves reveal
that there are no clear differences between FEFA and FA.

6. Discussion and Conclusions
The development and optimization of i-vector systems tends
to be time consuming. In particular, any change in the acous-
tic front-end or the UBM configuration requires retraining the
TVM. If TVM training is slow, the parameter optimization can
become unfeasible, possibly leading to suboptimal system con-
figuration. In this work, we studied fast GMM supervector
compression methods to streamline ASV system development.
By focusing on compression of MAP adapted supervectors, we
managed to cut the system training time down to a fraction of
traditional approach (FEFA). Our results indicate that the alter-
native approaches work as well as the standard FEFA in terms
of recognition accuracy. The less-optimistic performance re-
ported in [14] and [15] (for the PPCA system) could be due to
absence of MAP adaptation: we found that increasing the rele-
vance factor from 0 (no MAP adaptation) towards some higher
(optimized) value results in considerably higher verification ac-
curacy.

We did not find benefit with either of the studied supervised
models, PPLS or SPPCA. We were not, therefore, able to repro-
duce positive findings claimed in [17] for PPLS. This might be
due to differing datasets or feature configurations. On a posi-
tive side, we found that PPLS attains similar training speeds to
PPCA and FA.

The proposed modification to the maximization principle
in TVM training did not affect verification results negatively.
This modification makes the theory and the system implemen-
tation slightly simpler as it avoids computing expectations over
i-vector posterior distributions.

We recognize that the findings of the current study can not
be generalized to all existing system configurations without fur-
ther studies. In this study, we only experimented with a specific
set of acoustic features together with a specific UBM and back-
end configurations (PLDA).

In summary, from the various compared variants, we rec-
ommend to use PPCA and FA to compress supervectors. Both
are easy to implement on top of the GMM framework and
lead to considerably faster TVM training times. For optimal
verification accuracy, supervectors should be created using the
MAP adaptation with an optimized relevance factor. We have
made our MATLAB implementations of PPCA, FA, PPLS,
and SPPCA available at http://cs.uef.fi/˜vvestman/
research codes/supervector compression.zip.

Table 2: Speaker verification performances for different meth-
ods and maximization principles (max1, max2) on common con-
dition 5 of SRE10. With conventional PCA we obtained EER of
4.69% and minDCF of 6.55%.

EER (%) minDCF (%)
max1 max2 max1 max2

FEFA 4.24 3.86 6.24 6.85
PPCA 4.66 4.66 6.55 6.72
FA 4.24 4.24 6.00 5.50
PPLS 4.66 4.79 6.73 6.53
SPPCA 4.46 4.38 6.46 6.26
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Figure 6: Detection error trade-off curves for different methods
using max. principle 1 on common condition 5 of SRE10.
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A. Proof: I-Vector Posterior Distribution
for PPCA Model

The following proof is similar in principle to the proof of Propo-
sition 1 in [20].

It is enough to show that p(w(u)|m(u)) ∝ N (µ(u),Σ),
since p(w(u)|m(u)) is a probability density function and will
hence be correctly scaled. For brevity, we drop u from the no-
tation of the following chain of relations that proves the claim
(e.g. µ will refer to µ(u)):
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Note that in the above chain of proportional relations, we can
drop (exp(const(m))) and add (exp(mᵀm); p(m)) multipli-
ers that only depend onm without breaking the chain.
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