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Abstract

In shouting, speakers use increased vocal effort to convey spoken messages over distance or above environmental
noise. For automatic speaker recognition systems trained using normal speech, shouting causes a severe vocal effort
mismatch between the enrollment and test hence reducing the recognition performance. In this study, two compen-
sation methods are proposed to tackle the mismatch in a shouted versus normal speaker recognition task. These
techniques are applied in the feature extraction stage of a speaker recognition system to modify the spectral envelopes
of shouts to be closer to those in normal speech. The techniques modify the all-pole power spectrum of the MFCC
computation chain with shouted-to-normal compensation filtering that is obtained using a GMM-based statistical
mapping. In an evaluation using the state-of-the-art i-vector based recognition system, the proposed techniques pro-
vided considerable improvements in identification rates compared to the case when shouted speech spectra were not
processed.
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1. Introduction

Human speech contains a great deal of intrinsic variability, such as changes in fundamental frequency (F0) and
intonation, different styles of speaking and phonation and different levels of vocal effort. Speaking style modifications,
such as the Lombard effect which takes place when speaking in noisy conditions, are naturally used by talkers to make
speech more intelligible to human listeners (Summers et al., 1988). The performance of data-driven systems, however,
typically suffers when such changes in speaking style occur (Junqua, 1993). The loss in performance is due to the
mismatch between the system’s training conditions and its testing conditions. In this study, the focus is on severe vocal
effort mismatch between the normal speaking mode and shouting. This mismatch condition is studied in automatic
speaker recognition where the system has been trained using normal speech but is tested with shouted speech.

Shouting is used in situations where a message needs to be conveyed urgently over a distance or in a noisy situation.
Differently from Lombard speech produced also in noisy conditions, shouted speech shows reduced intelligibility
for human listeners compared to speech produced in the normal speaking mode (Pickett, 1956). While the vocal
effort of Lombard speech rises to some extent from that of normal speech, the corresponding change is much more
prominent when changing from normal speech to shouting. In addition to an overall sound level increase (Rostolland,
1982), also a reduction in spectral tilt (Zhang and Hansen, 2007), movement of formant frequencies (Zelinka et al.,
2012; Traunmüller and Eriksson, 2000), increase in F0 (Rostolland, 1982) and changes in vowel and consonant
durations (Rostolland, 1982; Traunmüller and Eriksson, 2000) occur when speakers change their normal speaking
style to shouting.

Several studies have indicated that severe vocal effort mismatch between enrollment and test data causes a con-
siderable decrease in recognition rates in automatic speaker recognition (Zhang and Hansen, 2007; Shriberg et al.,
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Ap2(z) Âp2(z) g(n) ĝ20(n)
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Figure 1: Flowchart of the full envelope compensation (FEC) technique during (a) the training and (b) the test phase. The superscripts S and N
in the training phase refer to features computed from shouted and normal speech, respectively. The xFEC and yFEC are the line spectral frequency
(LSF) features used in the joint-density Gaussian mixture model (GMM) training as specified in Eq. 1

2008; Hanilçi et al., 2013b). To alleviate the problem, two main types of solutions have been proposed: (1) robust
feature extraction methods and (2) techniques for compensating the standard features for the vocal effort mismatch.
In the first group, Hanilçi et al. (2013a) compared several spectral estimation techniques to obtain Mel-frequency
cepstral coefficients (MFCCs) more robust to mismatch in vocal effort. Results showed that stabilised weighted linear
prediction (SWLP) performed better than the other candidates. Also mixture (Pohjalainen et al., 2014) and power-law
adjusted linear prediction (LP) (Saeidi et al., 2016) have been shown to result in better acoustic features in mismatch
conditions.

The second group of techniques are based in the domain of acoustic modeling and consist of different compen-
sation algorithms to mitigate the undesirable effects of vocal effort mismatch. Motivated by the success of Gaussian
mixture models (GMMs) in voice conversion (Stylianou et al., 1998), a GMM-based compensation of MFCCs was
proposed by Hanilçi et al. (2013b). This technique improved the recognition rates in shouted versus normal mismatch
conditions. Similar results were also reported by Ramírez López et al. (2017). A combination of both robust feature
extraction and feature compensation is also possible. This kind of setup has been used, for instance, in the context of
whispered speech where it improved speaker recognition accuracy in mismatched conditions (Fan and Hansen, 2009).

In this study, two compensation techniques are proposed for handling severe vocal effort mismatch (shouted versus
normal) in a speaker identification task. The techniques are applied in the feature extraction stage of the speaker
recognition system and their aim is to modify the spectral envelopes in shouts in such a way that the resulting acoustic
features are better matched with the features extracted from normal speech in training. The techniques modify the
power spectral estimate that is used in the MFCC computation with a shouted-to-normal compensation filter obtained
using a GMM-based statistical mapping. One of the techniques aims to compensate for the changes in spectral tilt
whereas the other technique uses a more general spectral model in the compensation. The proposed methods are
evaluated in a shouted versus normal inset speaker identification task against three different reference techniques.

2. Shouted-to-normal vocal effort compensation

The vocal effort compensation is applied in the first stage of the MFCC (Davis and Mermelstein, 1980) chain, the
computation of the signal’s power spectrum. In the current study, the power spectrum of the MFCC chain is computed
parametrically using LP as was done by Saeidi et al. (2016). Figs. 1 and 2 show the flow diagrams of the proposed two
compensation methods: full envelope compensation (FEC) is shown in Fig. 1 and smoothed envelope compensation
(SEC) is shown in Fig. 2. Both of the figures are divided into two parts: the training phase and the test phase. In
the training phase, frames from parallel normal and shouted samples are aligned using dynamic time warping (DTW)
and spectral features, denoted by AN

p2
(z) and AS

p2
(z) for normal and shouted speech, respectively, are computed. The

spectral features parameterized are then used to train a joint-density GMM, used as a regression method for mapping
shouted speech to normal speech. In the test phase, both methods take as an input a frame of shouted speech and yield
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Figure 2: Flowchart of the smoothed envelope compensation (SEC) technique during (a) the training and (b) the test phase. The superscripts S and
N in the training phase refer to features computed from shouted and normal speech, respectively. The xSEC and ySEC are the line spectral frequency
(LSF) features used in the joint-density Gaussian mixture model (GMM) training as specified in Eq. 1

as an output an all-pole spectral model, denoted by B(z) = Z{b(n)}, which is then used to compute the power spectrum
input to the later stages of the MFCC chain. The aim of both methods is to compute such B(z) that fits the spectral
envelope of normal speech better than the spectral envelope computed from the original shouted speech frame.

2.1. Training phase
For the training of the statistical mapping, the parallel shouted and normal speech samples were aligned with

dynamic time warping (DTW) (Ellis, 2003) using 30-ms frames with 15-ms shift.
In the FEC technique, the features used to train the GMM are the p2th-order LP analysis computed from the

aligned normal and shouted frames. Ap2 (z) is therefore an inverse filter and the corresponding all-pole filter models
the spectral envelope of the corresponding normal and shouted frames.

The two proposed methods, FEC and SEC, differ in their usage of LP analysis. While the former uses a single-
stage LP analysis, in the SEC technique, the impulse response of the first LP analysis, hp1 (n), is fed as a time-domain
input to the second LP analysis (this procedure, called double-LP, has been used previously by Jokinen et al. (2014)
in converting spectral tilt from normal to Lombard speech). Since the second LP analysis with order p2 (p2 < p1)
models the spectral envelope of the inverse filter Ap1 (z), this LP analysis yields a smooth all-zero estimate for the
spectral envelope of the input frame.

After the spectral features are calculated, they are transformed to line spectral frequencies (LSFs) for GMM
training. The statistical dependencies between the LSFs of shouts x and the LSFs of normal speech y are modeled as
a GMM

p(x, y) =

I∑
i

wiN
([

x
y

] ∣∣∣∣∣ [µx|i
µy|i

] [
Σxx|i Σxy|i

Σyx|i Σyy|i

])
, (1)

where the component probabilities are denoted as wi, the mean vectors as µi, and the covariance matrices as Σi. The
model parameters are trained with the expectation-maximization algorithm implemented by Paalanen et al. (2005).
The minimum mean square error (MMSE) estimate for features y∗ that correspond to test input x∗ is calculated based
on the GMM distribution as (Stylianou et al., 1998)

y∗ =

I∑
i

P(i|x∗)
[
µy|i + Ai(x∗ − µx|i)

]
, (2)

where the linear transformations Ai = Σyx|iΣ
−1
xx|i and the posterior probabilities P(i|x∗) are calculated based on the prior

probabilities wi and the feature likelihoods N(x∗|µx|i,Σxx|i).
Both speaker-dependent GMMs as well as gender-dependent GMMs were used for compensation. For the speaker-

dependent models, I = 5 full-covariance components were used, whereas for the gender-dependent models, GMMs
with I ∈ {10, 15, 20} full-covariance components were evaluated.
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2.2. Test phase

In the test phase of both FEC and SEC, an all-pole spectral model, Ap1 (z), is first computed from a shouted frame
using LP with order p1 = 12. The impulse response of the corresponding LP inverse filter, hp1 (n), is shown by
the upper signal paths in both of the test phase flowcharts in Figs. 1 and 2. Paths below the upper ones, shown in
gray, depict the GMM-based spectral envelope estimation that is used in compensating the effect of shouting from
the impulse response. The two paths are joined at the end using a convolution that yields b(n). Both the FEC and
SEC techniques utilize the GMMs trained during the training phase, where the obtained filter coefficient vectors are
presented as LSFs. After the mapping, the stability of the output filter is checked and if necessary, the roots outside
of the unit circle are replaced with their mirror-image pairs inside the unit circle.

In the FEC technique, the GMM-based compensation uses p2th-order (p2 ≤ p1) all-pole model computed from the
shouted frame. The inverse filter Âp2 (z) of normal speech is estimated with a GMM based on Ap2 (z). The compensation
needs to be defined in an inverted form because it is applied to the impulse response of the LP inverse filter. Therefore,
the compensation filter is defined as G(z) = Âp2 (z)/Ap2 (z) and its impulse response is denoted by g(n). Since the
feature extraction for the recognizer assumes the spectral envelope to be all-pole, the compensation filter is truncated
by cutting its impulse response to 20 samples, yielding an impulse response denoted as ĝ20(n). The impulse response
of the compensated inverse filter is finally computed as b(n) = ĝ20(n) ∗ hp1 (n).

In the SEC technique, the second LP analysis with order p2 (p2 < p1) is a smooth all-zero estimate for the spectral
envelope of the input frame. To obtain a tilt estimate for normal speech, Âp2 (z), the previously trained GMM is again
used. Because the all-zero filter Ap2 (z) now models the spectral envelope instead of its inverse, the compensation filter
is given as G(z) = Ap2 (z)/Âp2 (z). The impulse response truncation and the convolution are as in the FEC technique.
The main steps of both FEC and SEC are demonstrated in Fig. 3 with examples of obtained spectra at each stage.

3. Reference techniques

In order to evaluate the performance of the proposed vocal effort compensation methods in speaker identification,
three techniques were selected as reference methods. Two of the reference techniques, 1/3-octave band energy re-
gression fit and LP1 fit, were selected because they aim to model the spectral tilt of speech parametrically and can
therefore be used in vocal effort compensation in a similar manner as FEC and SEC. The third reference technique,
vocal effort compensation by directly modifying the MFCCs computed from shouted speech, represents a different,
more generic approach which does not include a separate parametric spectral tilt estimation phase. Below, these three
reference methods are described.

3.1. Techniques based on compensating the spectral tilt

1/3-octave band energy regression fit (REG): the REG method is based on (Lu and Cooke, 2009) where spectral
tilts of normal and Lombard speech were parameterized by a regression fit to spectral energies at 1/3-octave bands.
This technique has been later used also for spectral tilt -based intelligibility enhancement of telephone speech (Jokinen
et al., 2014) and in the present study, the technique is applied in the same form. Differing from the original method,
a 4th-order all-pole filter is computed from 1/3-octave band energies and only 15 bands up to 4 kHz are used. Based
on the sub-band energies, Ei, a magnitude spectrum is constructed where each component in the ith sub-band is set to
√

Ei/Ni, where Ni is the number of components in the ith sub-band. Autocorrelation is computed from the magnitude
spectrum and used to obtain a LP fit with the Levinson-Durbin recursion (Rabiner and Schafer, 2007). These features
are transformed to LSFs and then used as an input to a joint-density GMM which is used to map the shouted features
to normal features at test time.

LP1 fit (LP1): the LP1 method is based on using first order LP analysis to estimate the spectral tilt. The coefficient
of the first order LP analysis is then used as an input to a joint-density GMM which is used to map the shouted features
to normal features at test phase.

3.2. MFCC-based compensation

The MFCC-based compensation (HAN) was proposed for vocal effort compensation in speaker recognition by
Hanilçi et al. (2013b). In their original study, either 16 MFCCs or the entire 48-dimensional feature vector with
MFCCs and their first and second time derivatives were mapped using a joint-density GMM. The speaker recognition
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experiments were conducted on the same database as in the current study, but the training of the speaker-independent
models was done using another database containing emotional speech. For the current study, the MFCC-based com-
pensation technique was adopted to a slightly different feature extraction process: the MFCCs were mapped before
the addition of energy to the features and the training and testing was done using the same database. Due to the small
number of training samples, the mapping of the full feature vector including first and second time derivatives was not
used.

4. Experimental setup

4.1. Speech data

The speech database used in the experiments of this study contains normal and shouted speech from 11 male and
11 female speakers (Pohjalainen et al., 2013). For each speaker, 24 Finnish sentences of approximately 1.5 seconds in
duration (Raitio et al., 2013) were recorded. The sentences were first produced in normal voice after which they were
repeated in shouted voice. The difference in sound pressure levels between the shouted and normal speech ranged
from 15 to 33 dB for male speakers and from 17 to 28 dB for female speakers (Pohjalainen et al., 2013). The original
recordings were sampled at 16 kHz but for the current study they were downsampled to 8 kHz.

For each speaker, the speaker recognition system pools together 12 sentences for enrollment and 12 for testing.
This selection is circularly shifted by one sample 12 times which results in 12 pairs of enrollment and test data for each
speaker (Saeidi et al., 2016). For the spectral envelope compensation, speaker-dependent GMMs were first trained
using the same division of samples in enrollment and testing. For the gender-dependent GMMs, the training data was
obtained by pooling data from all the speakers of the given gender. In order to keep the training and test data separate,
the test utterance was dropped from all the speakers for the training.

4.2. Speaker recognition system

For the speaker recognition, an i-vector -based system was used (Saeidi and Van Leeuwen, 2012; Saeidi et al.,
2013; Dehak et al., 2011) by taking advantage of a gender-dependent universal background model (UBM) with 512
components (Reynolds et al., 2000). The UBM was trained using a subset of the Callfriend, Fisher, Switchboard
and NIST SRE 2004 speech corpora. A subset of the NIST SRE 2004-2008, Fisher and Switchboard corpora were
used to train the total variability space (Dehak et al., 2011) for factorizing the GMM mean supervectors. The 450-
dimensional utterance-level i-vectors were processed further using a linear discriminant analysis projection reducing
the dimensionality to 200. The i-vectors were centralized and length-normalized (Garcia-Romero and Espy-Wilson,
2011) before probabilistic linear discriminant analysis (Prince and Elder, 2007) modeling was utilized to calculate the
matching scores.

At run-time, the features were extracted by first using conventional LP with p1 = 12 on the pre-emphasized
frames for spectrum estimation. At this stage, the spectral envelopes of shouts were compensated with either FEC or
SEC except in the baseline normal and shouted conditions. This approach assumes that the system is able to detect
whether the incoming speech sample is produced in shouted or normal speaking mode. For the speaker-dependent
compensation, the trained GMMs are attached to their respective speaker model and this association is done in the
training phase. For the gender-dependent compensation, each speaker is similarly associated with either a male or
a female GMM during training time. After this, 19 MFCCs were computed based on the spectral estimate and the
energies of the frames were attached to the feature vectors. To obtain 60-dimensional feature vectors, the ∆ and ∆∆

features were calculated and appended. The features were then filtered with a combination of quantile-based cepstral
dynamics normalization and RASTA filtering (Bořil and Hansen, 2010). As described in Section 4.1 (following the
protocol used by Saeidi et al. (2016)), the 24 utterances from the speaker were divided equally into enrollment and
test data which resulted in approximately 10 seconds of speech in both sets.

5. Results

The results of the speaker identification experiments are shown in Tables 1-3. The baseline identification accu-
racies (without any compensation) for normal and shouted speech are shown in Table 1 and accuracies using the
speaker-dependent and gender-dependent GMMs are given in Tables 2 and 3, respectively. Furthermore, Table 2 also
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Table 1: Baseline accuracies (in %) from the speaker identification experiments with normal versus normal and shouted versus normal speech for
male, female and all speakers.

Normal vs. normal Shouted vs. normal
Male Female All Male Female All
90.9 98.5 94.7 59.8 29.5 44.7

Table 2: Identification accuracies (in %) from the speaker identification experiments with shouted versus normal speech for male, female and all
speakers using the two vocal effort compensation techniques, FEC and SEC, with different model orders (p2) as well as the reference techniques,
LP1, REG, and HAN, with both oracle and speaker-dependent Gaussian mixture models. In the bottom row, also the baseline scores in the shouted
condition (without any compensation) from Table 1 are given to ease comparison.1

Oracle Speaker-dependent
p2 Male Female All Male Female All

PR
O

PO
SE

D FEC

12 86.4 74.2 80.3 86.4 72.7 79.5
10 81.1 68.2 74.6 87.1 64.4 75.8
8 56.8 64.4 60.6 60.6 67.4 64.0
6 62.1 44.7 53.4 65.9 41.7 53.8

SEC
10 72.0 59.8 65.9 65.9 56.8 61.4
8 73.5 54.5 64.0 62.9 58.3 60.6
6 59.8 59.8 59.8 59.8 43.9 51.9

R
E

F.

LP1 53.0 28.8 40.9 57.6 34.8 46.2

REG 53.8 43.9 48.9 50.8 40.2 45.5

HAN 92.4 85.6 89.0 88.6 90.9 89.8

Baseline scores 59.8 29.5 44.7 59.8 29.5 44.7

contains the identification rates of the oracle scenario which correspond to the maximum achievable performance
in the identification task and therefore provides further insight into the compensation techniques. The oracle sce-
nario was computed by first using DTW to find the corresponding shouted and normal frames and then replacing the
GMM-estimated normal features in the compensation methods with the corresponding features taken directly from
the DTW-aligned frame.

5.1. Results of the oracle scenario

The identification rates obtained using normal speech (94.7%) and the best oracle scenario using FEC with p2 =

12 (80.3%) are slightly different. While in this oracle scenario, the compensation filter, when computed without
truncation, should be able to fully counter the effects of the difference in vocal effort, several reasons for the gap
in recognition rates can be identified. First, the oracle scenarios utilize only the frames that have been aligned by
DTW, which considerably reduces the number of frames compared to the recognition condition with normal speech.
Second, the energy used as one of the features of the recognizer is computed from the original shouted frames resulting
in partially mismatched features. Finally, an additional loss in performance might be caused by the use of a truncated
compensation filter instead of the untruncated one. As shown in Fig. 3c, the difference between the untruncated and
truncated compensation filters can become considerable with large values of p2.

The SEC technique (65.9%) improves the recognition rates compared to using shouted speech without compen-
sation (44.7%) which suggests that even rough spectral envelopes, loosely referred to as spectral tilt, play a role in
affecting spectral matching for automatic recognition system in the presence of severe vocal effort mismatch. How-
ever, the FEC technique is able to produce much higher identification rates compared to the rates obtained with shouted

1After the acceptance of this article, a software bug was found that affected the identification accuracies of LP1 and REG. The bug was corrected
when examining the article proofs.
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Table 3: Identification accuracies (in %) from the speaker identification experiments with shouted versus normal speech for male, female and all
speakers using the two vocal effort compensation techniques, FEC and SEC, with different model orders (p2) as well as the reference techniques,
LP1, REG, and HAN, using gender-dependent Gaussian mixture models with 10, 15, and 20 components. In the bottom row, also the baseline
scores in the shouted condition (without any compensation) from Table 1 are given to ease comparison.2

I = 10 I = 15 I = 20
p2 Male Female All Male Female All Male Female All

PR
O

PO
SE

D FEC

12 58.3 37.9 48.1 69.7 39.4 54.5 65.9 39.4 52.7
10 53.0 33.3 43.2 55.3 35.6 45.5 66.7 37.9 52.3
8 38.6 42.4 40.5 43.2 40.9 42.0 44.7 42.4 43.6
6 40.9 25.0 33.0 44.7 24.2 34.5 43.2 26.5 34.8

SEC
10 45.5 28.8 36.7 40.2 31.8 36.0 40.9 31.1 36.0
8 49.2 28.0 38.6 48.5 32.6 40.5 50.8 40.2 45.5
6 49.2 40.2 44.7 47.7 42.4 45.1 49.2 43.2 46.2

R
E

F.

LP1 59.8 33.3 46.6 59.1 33.3 46.2 59.1 34.1 46.6

REG 51.5 31.8 41.7 53.0 32.6 42.6 48.5 32.6 40.5

HAN 56.8 31.8 44.3 73.5 50.8 62.1 69.7 42.4 56.1

Baseline scores 59.8 29.5 44.7 59.8 29.5 44.7 59.8 29.5 44.7

speech which indicates that a compensation technique including further spectral details is more efficient in bridging
the gap between normal and shouted speech. In Fig. 3d, the spectral envelope compensated using FEC shows shifted
formants in addition to modified spectral tilt. The highest accuracy in the oracle scenario is achieved by HAN (89.0%)
which directly maps the MFCCs of shouted speech to those of normal speech. The two other reference techniques,
LP1 and REG, do not improve the baseline accuracy.

5.2. Results of the speaker-dependent compensation

In a realistic system, a GMM mapping is used to estimate Âp2 (z) which is a less accurate procedure to estimate
the spectral tilt of normal speech compared to the one used in the oracle scenario. Using a speaker-dependent GMM
results in some loss in identification performance, for instance, with the SEC technique using the smallest model
order, p2 = 6 (oracle: 59.8%, speaker-dependent: 51.9%). However, for the FEC and HAN techniques, the differences
between the oracle and the speaker-dependent scenario are relatively small. In some cases, the accuracies obtained in
the speaker-dependent scenario are even slightly higher than those obtained in the oracle scenario. The identification
in the GMM-mapped vocal effort compensation takes advantage of a larger number of frames than the oracle scenarios
which are based on the DTW matching of frames. The smaller number of frames results in lower identification rates
for the oracle scenarios as was discussed earlier. All of the speaker-dependent results were obtained using I = 5 GMM
components which gave a good compromise between the amount of required training data and the performance of the
model in the preliminary experiments.

The performance of the proposed methods and the MFCC-based reference technique was also compared in a
speaker-dependent scenario using different amounts of training data. The evaluation was conducted only with FEC
using p2 = 12 and SEC using p2 = 10 to limit the amount of test cases. The training data was reduced from the
maximum of 12 parallel shouted and normal utterances to the minimum of 1 parallel utterance pair. The identification
accuracies for the different test scenarios are shown in Fig. 4. While the HAN technique outperforms both FEC and
SEC with moderate amounts of training data, both of the proposed methods show a clearly better identification accu-
racy when the number of utterances in the training data is small. Especially, the FEC technique provides improvement
over the baseline without compensation even with limited training data.

2After the acceptance of this article, a software bug was found that affected the identification accuracies of LP1 and REG. The bug was corrected
when examining the article proofs.
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5.3. Results of the gender-dependent compensation

While the spectral envelope compensation using speaker-dependent GMMs provides largely improved identi-
fication rates compared to the shouted condition, the schemes with gender-dependent GMMs do not increase the
performance over the baseline in most cases for male speakers. For FEC with the largest model size (p2 = 12) and
with I = 15 or I = 20 GMM components, the identification accuracies are improved for both male and female speak-
ers. For male speakers otherwise, the identification rates are even slightly lower compared to the shouted condition
which suggests that the mapping impairs the speaker-specific features used in the recognition. For female speakers,
the gender-dependent compensation achieves higher accuracies compared to the baseline in most cases evaluated.
As shown in Table 3, the identification rates generally improve when the number of GMM components is increased
from I = 10 to I = 15 and further to I = 20. While the HAN technique still provides slightly higher recognition
scores than the proposed techniques, the difference between HAN and the two proposed methods is smaller than in
the speaker-dependent setting.

6. Conclusion

Two spectral envelope compensation techniques, full envelope compensation (FEC) and smoothed envelope com-
pensation (SEC), were proposed for vocal effort compensation in a normal versus shouted speaker recognition task.
The introduced methods use a statistical mapping to estimate a compensation filter that is applied on the spectral enve-
lope estimates of shouts in the recognizer before the MFCC extraction. The performance of the proposed algorithms
was evaluated in a shouted versus normal inset speaker identification task with 22 speakers using the state-of-the-art
i-vector based speaker recognition system.

The results show that while both of the proposed techniques were able to provide improvement in an oracle
scenario over the baseline identification rate obtained with shouted speech, the compensation taking advantage of a
more detailed spectral envelope model produced significantly better results. A similar difference between the two
techniques was observed using the speaker-dependent GMM mapping. Compared to the best oracle scenario which
increased the identification rate of shouted speech from 44.7% to 80.3%, the compensation based on the speaker-
dependent GMM achieved 79.5% identification rate overall. In the gender-dependent experiments, the identification
accuracies were improved over the baseline especially in the case of female speakers. While a previously proposed
MFCC-based compensation technique, HAN, still outperformed the proposed methods when the number of training
utterances was larger than 4, both of the proposed methods gave a better performance in cases when the number of
training utterances was less than 4. Therefore, the proposed methods, particularly FEC, could find use in speaker
recognition scenarios with highly limited training data.
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Hanilçi, C., Kinnunen, T., Rajan, P., Pohjalainen, J., Alku, P., Ertaş, F., 2013a. Comparison of spectrum estimators in speaker verification: Mismatch

conditions induced by vocal effort. In: Proc. Interspeech. pp. 2881–2885.
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