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This is a collection of five articles which deal with domain modeling. The
articles span from the usefulness of qualitative modeling to the algorithms
which could be used to reduce the computational burden associated with
simulating multiple biotic agents. The main theme of the articles is that we
should pay more attention to the semantics of the modeled domain and use
tools which suit the domain.

The first article discusses the usefulness of qualitative modeling and con-
cludes that the philosophical foundations of qualitative modeling are ques-
tionable. The questionable nature of these foundations is mainly due to
the fact that neither philophers nor artificial intelligence researchers have
been able to establish any logical primitives. This makes the fundamen-
tal assumptions behind qualitative modeling unsuitable for the modeling of
continuous systems. The use of causal processes for quantitative modeling
is proposed as a tool for the creation of structural models.

The second article discusses the terms deep knowledge and robustness.
After clarifying the terms, the nature of causality in domain models is dis-
cussed and the structure of quantitative causal models is presented. The
robustness of the models is discussed and the creation of such models is
tied to the classical simulation model creation steps.

The causal model structure is extended and experimentally used for sim-
ulation in the third article. The nature of the knowledge used in model
creation and simulation is discussed further and the causal model structure
is extended towards the creation of working simulation models. A simple
programmin environment is developed alongside the creation of a causal
process simulation language. An experimental simulation model of pine is
created and experimental simulation carried out. The results reveal that the
approach surprisingly is surprisingly robust.

The fourth article discusses the creation of formal explanations from the
simulation knowledge. The Salmonian approach to the causal structure of
the world is integrated to a causal calculus which has been created especially
for causal explanation.

The last article outlines a method which can be used to reduce the com-
putational burden associated with the simulation of multiple biotic agents.
The same method can be used with any type of structural and hierarchical
models.

Jarmo J. Ahonen, Department of Computer Science, University of Joensuu,
P.O.Box 111, SF-80101 Joensuu, Finland.
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Chapter 1

Foreword

Jarmo J. Ahonen

1.1 Introduction

This collection of five articles represents the results of a frustrating venture
to the land of knowledge representation. The venture started in Summer
1988 when I started to work for the Faculty of Forestry, University of Joen-
suu. My original task was to participate in an expert system development
project for strategic forest management, and as a simple subtask in that
project was the implementation of the knowledge of the beginning of the
life-cycle of Scotch pine. In addition to the implementation of the pine-
knowledge we were to implement a simple decision support system for re-
generation planning.

Unfortunately the easy looking subtask, the implementation of the pine
specific knowledge into a simulation model, turned out to be a very dif-
ficult and frustrating experience. I and my colleague Sari Anttila tried to
combine and implement several growth models and pieces of expert origi-
nated knowledge into a single model to be used in the expert system. That
turned out to be very frustrating because the tools we used seemed always
to lack one or more necessary features. Although we were blessed with
the versatility and expressiveness of Common Lisp and KEE1, we were un-
able to implement a sufficiently detailed model. This left us with several
unanswered questions about both the knowledge representation techniques
normally used in such projects and the actual usability of the pine models
published in forestry and biological journals.

The other part of the preliminary steps of the expert system develop-
ment project proceeded much better. Taneli Kolström and I implemented a
simple expert system for forest regeneration decision making. The system
worked reasonably but not brilliantly. As discussed in [17], the system was

1IntelliCorp’s registered trademark
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a fixed collection of IF ...THEN ... rules. Although a simple explanation
facility was implemented, the system was not able

• to provide domain specific detailed knowledge for the user’s questions,
or

• to simulate actual growth after the execution of the chosen regenera-
tion plan.

In other words, the system lacked the detailed model which I and Sari were
unable to produce. In addition to that, it was not clear how the system would
have utilized the model in explanations or simulations even if the model had
existed.

One additional complication to the expert system development project
came from the practical expectations of forest researchers. They expected
the system to produce numeric answers which could be easily interpreted
as money, man-hours, growth of bio-mass in kilograms etc. They were not
at all happy with the symbolic approaches normally used in expert system
development. Unfortunately the initial optimism turned into frustration and
a number of unanswered questions. The most important ones were:

A. Is it possible that there are fundamental problems with the symbolic
approach because it was so painful to implement forestry knowledge
using the symbols?

B. How could we combine different pieces of knowledge and a variety of
numeric models into a single model which could be used for simula-
tion? Could there be a single approach to the phenomena or objects
modeled? What would that approach be?

C. How could that model be developed in a way that makes it to work well
in as many cases as possible?

D. Could we easily combine the symbols used in reasoning and rules with
those numeric models?

E. How could we include the knowledge in the numeric models into the
explanations generated by the system?

F. The use of the existing simulation models was often much too slow for
multiple simulations to be done in a short time — could there be any
methods to speed up the use of complicated models?

These questions made me turn from practical expert system develop-
ment to the fundamental questions of domain modeling. The questions
have been, at least partially, answered during the years I have been working
with the fundamental aspects of domain modeling. My proposals for such
answers are expressed in the articles included, some of which have been
published or presented elsewhere and some appear the first time in this
collection.

Before discussing my own papers more deeply I will briefly outline what
has been done and what have been my answers to the questions. First I will
outline how I started to develop a solution for the representational problem.
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1.2 Proceeding from the questions

The first step in order to find a way out of the representational lock-up
was to find out what had been done earlier in the field. The knowledge
representation field has given rise to quite many articles and good books,
but the essential question was about the usability of those approaches in
the problem of implementing classical simulation knowledge into an expert
system.

The first approach to knowledge representation was the classic rule-
based approach which was not usable in this case. Unfortunately this out-
ruled most of the excellent work done with systems like MYCIN (see e.g. [2])
and other early expert systems. Therefore the early knowledge represen-
tation schemes were not the perfect ones to be used.2 Because rule-based
approaches did not promise solutions, new alternatives were sought after.

The approaches based on the semantic-networks principle did not seem
to be very promising either. Although semantic networks provide us with
many interesting possibilities for reasoning, they do not offer a suitable
methodology for representing changing things. Similarly the criticism that
propositional approaches (semantic networks, predicate calculus, logic pro-
gramming) to knowledge representation impose only a local organization on
the world [1] did not make the propositional approaches more promising.

One of the most interesting knowledge representation techniques is frames.
Frames, which have been proposed by Minsky[18], do not, however, promise
very much for simulation of continuous systems. Although frames are one
of the most powerful knowledge representation techniques, they do not
provide ways to simulate rapidly changing dynamic relations and numeric
values. Thus, we remain with traditional numeric methods and qualitative
modeling.

Traditional numeric methods which are based on differential equations
or other types of functions do not easily bend for explanations or repre-
sentations of causality. This has been found to be problematic by Iwasaki
and Salmon who express concern about the subjectivity of causal interpre-
tations of models [16] and who have developed methodologies to achieve a
causal ordering of differential equations [15].3 I decided to follow a different
path because I found out that even qualitative models were unsuitable for
the modeling tasks I was concerned with (this answered question A), but I
will return to the problems of qualitative modeling later because one of the
articles explicitly discusses the problems of qualitative modeling.

2It is interesting to note, however, that a great deal about explanation and similar basic
things have been fairly well covered those days. For example Clancey’s articles [6] [7] and
book [5] are very interesting.

3Although the causal-ordering approach proposed by Iwasaki and Salmon was not present
when this research started, it seems the definition of problems is fairly similar. The main
difference seems to be that I attempt to remove the problem of causal ordering altogether
by making causal structure a fundamental part of models, and Iwasaki and Simon attempt
to solve the problem within the existing modeling paradigms.
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1.3 Reformulating the questions

After considering the suitability of different modeling approaches and knowl-
edge representation techniques I realized that they did not help me very
much. The problem did not seem to be so much a technical one, it was much
more a problem of semantics. The knowledge representation schemes and
modeling techniques should obviously pay very close attention to the sub-
stance of the modeled domains, and I was not able to find guidelines for the
domain I was interested in.4 This was very unfortunate because I wanted
to express the substance of the domain, not to use fancy techniques. After
considering this difficulty I realized that Cercone and McCalla [4] had hit the
nail on the head by saying:

‘No data-structure makes sense unless what it means is precisely
specified.’

Unfortunately that rather obvious realization did not in any way help me to
find a suitable method for creating useful models of trees. After a while I
started to search for the semantics for modeling and simulation of physical
domains.

The semantics of the modeling approach should not be so difficult be-
cause the final product should be a representation of the modeled phe-
nomenon or object. The problem arises when we consider the way of achiev-
ing and implementing such a representation — the model. In order to find a
way to include the domain-specific knowledge in the model in the best pos-
sible ways I started to search for suitable approaches to the domain knowl-
edge.

The target domain was a biological system, about which there exists a
fairly large amount of scientific knowledge. Therefore it seemed a promising
starting point to consider the domain knowledge to be scientific knowledge
in the sense of professional knowledge used in biology and forestry. The
interesting thing seemed, therefore, to be the nature of scientific knowledge.

Many of the writers concerned with scientific knowledge seem to think
that scientific knowledge consists mainly of explanations. For example Ni-
iniluoto[19] holds this point of view. From that philosophical discussion and
the practical explanation-requirements of possible systems I concluded that
the best possible modeling approach should be able to combine the explana-
tory powers of scientific knowledge and still be able to provide methodology
for the implementation of practically useful simulation models.

This returned me more or less to the starting point, i.e. to the basic
principles of knowledge representation. Those principles are [4]:

I. Information of many different kinds must be able to be represented,
including knowledge about the world, knowledge about the goals and
(sometimes) intentions, knowledge of the context and so on.

4It is interesting to note that in the field of knowlede acquisition there have been articles
which propose that the characteristics of the domain should have a quite sustantial role in
the way in which knowledge is acquired. One of the most interesting papers is Nwana’s
article [20].
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II. Knowledge representation is relativistic — the best kind of knowledge
representation scheme is often dependent on the particular require-
ments of the given application.

III. Knowledge should be representable to all depths — there is no absolute
level of primitive which cannot be “opened-up”.

IV. The processes which manipulate a knowledge representation scheme
are important. Moreover, they should run in a reasonable space-time.

V. It is important that a knowledge representation scheme be precisely
formulated — ad-hocness is no longer satifactory.

VI. Artificial intelligence approaches to knowledge representation do not
have exclusive access to all the answers — other areas of inquiry are
extremely useful and have been influential on AI knowledge represen-
tation research.

The above principles together with the original questions which surfaced
during the forestry expert system development project provided a good ap-
proach for the search for possible solutions. In the next section I will briefly
outline the answers I have developed.

1.4 Proposing answers

The principal questions of knowledge representation are quite large, and I
think that it may not be possible to answer them at once. It is much more
promising to divide possible domains into a few groups which have more
similar characteristics. One possible group is physical domains.

Because the questions I have researched have oriented from the field of
forest simulation, the choice of physical domains was obvious. In order to
clarify and restrict the field I have restructured some of the problems and
principles according to the approach chosen by me. Due to the restriction
of the domain I was able to reformulate the principles in the following way:

I. Information of physical reality must be able to be represented. There
is no need to consider other domains and their requirements.

II. The relative nature of knowledge representation is not as straightfor-
ward as with the concrete world. The relativisticity is not so remark-
able because the prepresentation should strive to be as faithful to the
original as possible.

III. The processes used to manipulate knowledge are important because
models of physical reality are inherently complex.

IV. The theory behind the representation should be as good as possible.

V. Artificial intelligence approaches do not seem to be able to provide
promising schemes, hence other approaches should be sought after.



14

Because the domain was restricted to physical reality, there were no need
to have a knowledge representation scheme which could express anything
other than knowledge of the physical reality. In that way the way to pro-
vide a solution to question B was much easier to find. If we remember that
Hayes[14] required that the formalization used in a model of physical reality
should have a common framework for the whole formalization, it is obvious
that the structure of the knowledge of physical reality should provide the
semantics according to which different models should be conceptualized. In
that way the formalization would provide the solutions to question B in ad-
dition to being in accordance with the modified principles of knowledge rep-
resentation. The knowledge to be used in models of physical reality seems
to be quite near scientific knowledge. The modeling paradigms should not
try to force the domain to be according to the paradigm; the domain should
determine how we should model it. In other words, if our knowledge of
a specific domain is scientific knowledge, then we should use a modeling
approach which respects the nature of scientific knowledge.

One of the most promising approaches to the nature of scientific knowl-
edge has been proposed by Salmon [22] [23]. Salmon’s approach enables
us to avoid the problems encountered with other approaches and allows us
to create a quite straightforward implementation of our domain knowledge.
The connection between so-called deep knowledge5 and the Salmonian ap-
proach should enable the creation of models which are as robust as possible.
The depth of knowledge used in a specific model depends on pragmatic as-
pects, and those aspects have been discussed in Deep knowledge and domain
models. This answers question C.

Although the relative nature of knowledge representation is a fact, rela-
tivism is greatly reduced if the domain is restricted to physical reality only.
In that way the reliability of the model is greatly improved. The robustness
of models6 could also be improved by using the best knowledge available,
in this case scientific knowledge. Unfortunately the original question D has
not, yet, been answered. It has been left for further research.

The connection between explanation and simulation models (question E)
has been at least partly answered by incorporating a causal calculus, which
was originally been developed in order to enable the formalization of causal
explanations, with the concept of causal processes. That connection should
enable the creation of explanations from the causal models and their behav-
ior. Such explanations could be used for justifying the simulation results or
for education.

The time-space requirements of the processes are important with any
knowledge representation scheme and especially important in the case of
large simulation models. In the last article of this collection one possible
method (which is an answer to question F) of reducing the computational
burden is presented.

5See the included article Deep knowledge and domain models for the definition of deep
knowledge.

6A model is robust if it behaves like its real counterpart would behave in a similar new
situation. In other words, a robust model produces right values to the variables used to
represent the modeled real-world phenomenon or object.
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1.5 The articles

In this section I will briefly outline what the actual articles contain. The
order of the articles is according to their contents — chronological order
was not a proper order because some articles are contextually successors of
the theoretical articles, even if they are a few years older.

The chapters of this book are directly based on the original articles, and
the article-format has been retained — only some technical errors have been
corrected during the inclusion of the articles into this collection.

1.5.1 On qualitative modeling

In this article7 I outline why I feel such discomfort with qualitative and sym-
bolic methods when dealing with domains like forest modeling and simula-
tion. This article is a fairly recent one although its contents clearly make it
to be the first one.

Some parts of this article seem quite controversial when compared to
the second and the third article of this collection. In this paper I propose
the use of neural networks instead of symbolic methods, but that proposal
is not used in any of the following articles. The main reason is that I have
not yet implemented any explanation systems or decision making systems
based on the Salmonian models.

This article is mainly based on the realization that qualitative modeling
does not support the production of quantitative results at all. In addition
to that, the philosophical approach behind qualitative modeling seems to be
based on the assumption of the existence of a limited set of logical primitives
by which the workings of the system can be more or less easily expressed.
The assumption of the existence of such a set of logical primitives is ques-
tionable and that makes other features of qualitative models questionable
also. If we remember that a qualitative model can be thought to be a simpli-
fied version of the differential model, it is easier to see why I do not think
that qualitative modeling will provide the answers I have been looking for.

In qualitative modeling the differential equations are replaced by a collec-
tion of directions, change-markers and the like. Similarly numbers are sim-
plified to signs, inequalities and orders of magnitude [13]. In other words,
qualitative models look surprisingly like higher derivatives of the original
differential equation models. Because my research started as an attempt to
develop usable and explanatory models of trees, qualitative modeling did
not enable the main goals to be fulfilled because forest researchers required
numeric answers and explanations for those numeric values. In addition,
the models should be robust. Qualitative modeling did not provide suitable
methods because even the robustness of qualitative models can be ques-
tioned.

This article proceeds from the critique of qualitative modeling to possi-
ble alternatives. The main alternative proposed is the use of scientific knowl-
edge, which is explanatory by nature, in models. The chosen approach to the
scientific knowledge is the Salmonian approach which considers the world

7Ahonen, J. J. (1994). On Qualitative Modelling. AI & Society, 8. 17-28.
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to be made of causal processes. This would enable the modeler to follow a
uniform and concise view of knowledge throughout the modeling task.

1.5.2 Deep knowledge and domain models

This article8 is, as surprising as it may sound, one of the oldest ones. The
basic ideas proposed in this article originate from 1990. The most impor-
tant idea in this paper is that I realized that if we use a concise and sensible
approach to the structure of the physical world, we are able to develop a
uniform approach to structural quantitative domain modeling and simula-
tion.

One of the most important features of models is robustness, which could
allow us to use a model in much more complicated cases and more freely
than we could if the model is not robust. Normally authors concerned with
robustness have been speaking about deep knowledge which should be the
tool to allow us to create robust models. Unfortunately deep knowledge has
not been very well defined — in this article I clarify the term. In addition to
clarifying the term deep knowledge the connection between explanation and
the depth of knowledge is considered. Because explanation has been con-
sidered to be a very important feature of domain models, the most sensible
way to approach domain knowledge seems to be the explanatory capabilities
of that knowledge. Because scientific knowledge is considered to consist of
explanations, it is straightforward to think that scientific knowledge should
be the foundation for both explanation and robustness.

Although scientific knowledge does provide a natural step for the expla-
nation, its use for simulation-oriented modeling is not as clear. Fortunately
Salmon [22] has proposed an approach which uniformly covers the physi-
cal reality around us. Although the Salmonian approach is not easy to be
formalize exactly [12], it is coherent enough to be used as the semantic
background on which models could be based.

The Salmonian approach to the structure of the physical world is con-
ceptually tied to the steps of the modeling process. Those steps have been
proposed by Zeigler [24], who divides model development into five concep-
tual steps. The Salmonian processes can be incorporated fairly easily into
Zeigler’s steps. In this paper that incorporation is proposed on a conceptual
level.

1.5.3 Causal process modeling

This article9 describes an experimental implementation of the modeling and
simulation approach proposed in Deep knowledge and domain modeling. In
this paper I have avoided the qualitative modeling problems outlined in On
qualitative modeling.

The article starts with a short introduction to the domain and then pro-
ceeds to the definition of interesting types of knowledge. The new defi-
nitions differ a bit from the definitions presented in Deep knowledge and

8Ahonen, J. J. (1995). Deep knowledge and domain models. Informatica, 19. 265-279.
9This article has not yet been published. Submitted for publication.
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domain modeling because Salmon changed his definitions (see [23] for the
new definitions) due to criticism10 presented by Dowe [8]. The redefined
concepts are incorporated into implementable approaches to the domain
modeling. The formalism is fairly simple and yet expressive enough in or-
der to enable the modeling of complex systems.

A modeling language is derived from the developed modeling formal-
ism and a simple experimental modeling environment is presented. The
formalism and the modeling language are tested by developing a simple
experimental model of Scotch pine. The experimental model reveals the
expressiveness of the developed formalism and the modeling language. Al-
though the experimental model is fairly simple, it does provide surprisingly
good simulation results, which supports the claim that models based on
Salmonian concepts are robust.

1.5.4 Domain knowledge and explanation

This article11 is the oldest one. During the time when this article was written
I was concerned with the explanation capability of simulation models. Dur-
ing those times it seemed that the representation scheme would be object-
oriented and the interpretation would be according to the concept of causal
processes. In order to make it possible to produce explanations mechani-
cally from the simulation models some type of formalism is required. One
possibility is to use logic as the formalism.

Because the forestry simulation models I tried to implement into expert
systems did not include any straightforward possibilities for explanation
generation I had to rethink the whole matter. The first step was to reconsider
the nature of the knowledge used in simulation models. The most promis-
ing approach to rethinking knowledge is to consider simulation models to
be representations of scientific knowledge. Because scientific knowledge is
principally explanatory, it is not difficult to note the similarities between
explanation in expert systems and explanation in science.

In forestry most of the simulation models I am familiar with consider
biological low-level things to be processes, and this was in accordance with
the Salmonian theory of causal processes as the structure of the world. Al-
though the Salmonian theory is very useful in the conceptualization of the
world, it does not itself provide any mechanism which could be automa-
tized for explanation. Hence more formal approaches were required. In this
article the causal calculus developed by Fetzer and Nute [9] [10] and used
for explanation by Fetzer [11] has been integrated with the concept of causal
processes in order to produce a formalism by which it is possible to produce
explanations.

10The criticism will not be considered here because its foundations are outside the scope
of this collection. I refer to the original papers and books.

11This article was refereed and accepted to Bar-Ilan Symposium on the Foundations of Ar-
tificial Intelligence, June 1991. The article was presented in that symposium. Unfortunately
no official proceedings appeared.
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1.5.5 Model-based reasoning about natural ecosystems: An
algorithm to reduce the computational burden associ-
ated with simulating multiple biological agents

This article12 is the most practical of these papers. Although it is practically
based on principles which are surprisingly near the theoretical principles
which have been developed in other papers, it is the second oldest of these
articles.

During the years 1990 and 1991 Professor Hannu Saarenmaa and I did
some work together because our common interest was in the performance of
complex simulation models of trees. During those days we used an object-
oriented approach, mainly because Prof. Saarenmaa and I both believed that
our approach could provide us with the means to specify complex and robust
simulation models. Later our opinions diverged — I started to develop a new
approach to representing and using domain knowledge and Prof. Saarenmaa
started to use the approach used in this paper more rigorously. We agreed
to disagree on my semantic concerns and the fundamental ideas behind the
knowledge representation approach used for modeling and simulation. The
disagreement was very understandable because Prof. Saarenmaa had much
more pragmatic goals for the use of knowlege representation and simulation
schemes. The direction he and his group has been following can be clearly
seen from the article written by Salminen et al. [21]. I am not, however,
content with those approaches because I feel that our original approach
did not pay enough attention to the semantics of the representation, and
semantics is one of the most important points in knowledge representation
[4].

In this article we were concerned with the real-world performance of
hierarchical simulation models. The obvious problem with such models is
that they tend to expand very fast. Hence run-time requirements are very
important and something must be done. One of the simplest ways to achieve
performance improvements is to use previously computed values to approx-
imate new simulation results. The discussed method uses previous simula-
tion results in order to be able to drop simulation and use the approximation
instead. According to our results, the approach really worked, but unfortu-
nately we did not perform enough experiments with multiple domains in
order to be able to present real statistics of the performance improvement
achieved.

Unfortunately the future trends proposed in the paper did not mate-
rialize because the disagreement about semantic specifications broke our
cooperation. This did not, however, produce any specific problems because
Prof. Saarenmaa and his colleagues have followed the proposed approach
and achieved interesting results.13 I do not, however, agree with a modeling
philosophy which uses different techniques without explicitly specifying the

12Ahonen, J. J. and Saarenmaa, H. (1991). Model-based reasoning about natural ecosystems:
An algorithm to reduce the computational burden associated with simulating multiple bio-
logical agents. In: Computer Science for Environmental Protection, 6th Symposium, München,
December 1991, Proceedings. Springer-Verlag, Berlin. 193-200.

13Those results will not be discussed here. Interested readers should contact Prof. Saaren-
maa directly.
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semantics of the features of the approach and developed models.
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Chapter 2

On Qualitative Modeling

Jarmo J. Ahonen
Lappeenranta University of Technology, P.O.Box 20, SF-53851 Lappeenranta, Finland

Abstract

Fundamental assumptions behind qualitative modeling are critically con-
sidered, and some inherent problems in that modeling approach are out-
lined. The problems outlined are due to the assumption that a sufficient
set of symbols representing the fundamental features of the physical
world exists. That assumption causes serious problems when modeling
continuous systems. An alternative for intelligent system building for
cases not suitable for qualitative modeling is proposed. The proposed
alternative combines neural networks and quantitative modeling.

Keywords: expert systems, modeling, qualitative modeling
Running title: On qualitative modeling

2.1 Introduction

In early artificial intelligence (AI) research the approach was mainly based on
the philosophical assumption that it is possible to reduce all necessary infor-
mation into a set of basic elements which could be used by a computational
mind. Those elements could be called logical primitives in the philosophi-
cal tradition, and probably their clearest definition was done by Wittgenstein
in his Tractatus Logico-Philosophicus (1971; Finnish translation). In the AI
tradition this approach has been explicitly expressed by Newell and Simon
(1981) who stressed the idea that a physical symbol system has the nec-
essary and sufficient means for intelligent action. That idea may be called
The Physical Symbol System Hypothesis, from which a large part of the AI
approach seems to originate.
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Although the preference of a finite set of basic elements has not been
very clear during recent years, it seems to be a fundamental part of the
thinking behind AI techniques and approaches, and to be the cause of the
introduction of similar thinking into other sciences influenced by AI. One
such field is modeling and simulation into which AI originated techniques
have been appearing lately and having more or less clear effects (There are
several recent publications about the connection between simulation and
AI, e.g. Widman, Loparo and Nielsen (1989), Miller et al (1992), and Fishwick
(1992) — some of these papers have been published in a special issue of ACM
Transactions of Modeling and Computer Simulation). In this paper I intend to
show that an AI approach to modeling and simulation, qualitative modeling,
which has aroused great interest in the last fifteen years, is, in fact, a descen-
dant of the symbolic approach to artificial intelligence. This background is
the cause of several problems associated with qualitative modeling.

The importance of qualitative techniques for AI research has been clearly
expressed by Clancey (1992). He states:

. . . that qualitative process modeling is a good way of character-
izing AI programming for scientists and engineers; providing a
useful pedagogical answer to the question, “What constitutes an
AI program?”.

The importance of qualitative techniques in AI programming means we should
not be surprised that the qualitative approach has accompanied other AI
techniques to fields with which AI comes into contact.

The interaction between the simulation community and the AI commu-
nity is not surprising because simulation and AI have common interests
although that was not so clear in the early days of AI because at that time
AI was most concerned with reasoning. It now seems to be an accepted
paradigm in artificial intelligence research that in order to produce prac-
tical expert systems1 we have to turn our attention to representations of
the physical world. (Note that in this paper I will consider expert system
research to be a part of AI research — a point of view to which a few AI or
expert system practitioners may object, but which will help me to outline my
point of view.) This has originally been proposed by Hayes who proposed
the use of models of physical reality as the method of avoiding the problem
of too simple and simplified problem domains (Hayes 1979). Hayes pro-
posed that everyday knowledge of the physical world should be formalized.
That means, of course, that a model of physical reality should be created.
Even if we are not very optimistic about the possibility of a generally useful
formalization of the world around us in the Hayesian sense, the thinking
behind that approach is worth considering, especially because it seems to
hide an approach which is different from the normal thinking used in mod-
eling and simulation (as seen in fields other than AI). In addition, it is worth
noting that Hayes proposes the use of knowledge engineering techniques
used in expert system development as the method of model creation. This

1Expert systems are programs which are intended to replace human specialists in some
fields. In principle such systems are collections of knowledge from the field in question and
reasoning technique to enable the system to produce answers which should, in principle, be
similar to answers which the human expert would have produced.
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may produce several problems in the creation of those models, as will be
seen later.

Note that according to Clancey (1992) all expert systems use models; all
expert systems are model-based. It is especially interesting that this way of
thinking seems to share the original philosophical basis of symbolic AI re-
search. In the following section I will briefly outline the traditional modeling
view in order to make the philosophical difference between AI modeling and
traditional modeling clearer.

In order to make the following considerations clearer I will define several
concepts, some of which have been already used in the meaning given. In
this paper the term physical reality means the concrete world. Similarly, a
real-world phenomenon or a real-world object is a phenomenon or an object
which exists or can potentially exist in the physical world. A model is a rep-
resentation of the physical reality. Such representations are simplifications
of the physical reality, and unfortunately they will not produce reliable in-
formation on every aspect of the phenomenon being modeled (Lewis and
Smith, 1979, 2). Our definition of models differs from the normal definition
in its clear nature as a representation of the physical reality (see e.g. (Futo
and Gergely 1990) for the usual approach). Simulation is the creation and
execution of dynamic models employed for understanding system behavior
(Fishwick, 1992). These definitions restrict the following considerations on
the modeling and simulation of physical reality, in which case theories of
artificial and pure theory building are left out.

Before considering qualitative modeling in greater detail I will briefly
discuss a more common approach to modeling and simulation.

2.2 The traditional view of modeling

In order to emphasize the distinction between the modeling thinking in nat-
ural sciences like forestry and AI, I use the term traditional when I refer to
the modeling philosophy existing in sciences like forestry. Although forestry
includes many fields which cannot be considered to be natural sciences like
chemistry or physics, the term forestry will be used to cover the field of more
or less biologically-oriented research of trees and their behavior.2 Such re-
search normally provides models according to which the growth of forests
(or individual trees) are simulated in order to forecast actual forest growth.
That research includes the behavior of trees, the effect of pests on trees etc.
Since that part of forestry is close to biology it is reasonable to say that it is
a natural science.

One possibility of examining the thinking behind the traditional approach
to modeling is to consider that by approaching the model building process
by outlining the course of such modeling projects. One way of outlining
the traditional approach to the modeling task is presented by Widman and
Loparo (1989). They summarize Zeigler’s work (1976) to the following levels:

2The considerations presented in this article have originally been developed during various
modeling and simulation projects in the field of forestry. Hence the use of forestry as an
example.
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• the “real system”, a source of potentially observable data;

• the “experimental frames”, a set of limited observation or manipulation
cases for the real system;

• the “base model”, a comprehensive model of the system in every ex-
perimental frame;

• the “lumped model”, a simplified version of the base model, which is
simplified in a way that still provides the reliability of the original base
model in interesting cases.

• the “computer model”, an implementation of the lumped model in a
computer programming language on a machine.

The above steps of traditional modeling include the assumption that
there is no model which is complete, i.e. so thorough a replicate of the mod-
eled object or phenomenon that it could not be improved due to changes in
knowledge about original or experienced defects in the developed model.
Although traditional modeling intends to develop robust3 models, it ac-
knowledges the fact that due to the incompleteness of human knowledge
new models may be more robust than earlier models, but real robustness
can never be achieved. This is clearly expressed by Zeigler (1976, 31) who
concludes that:

In any realistic modeling and simulation area, the base model
description can never be fully known. (original emphasis)

The lumped model then includes the chosen features of that imperfect base
model which will be used for understanding the modeling system in the
most interesting cases.

In other words, the traditional modeling approach hopes that the de-
veloped model is a more or less good enough approximation of the reality
(see e.g. Thompson (1989) and Lewis and Smith (1979) for practically ori-
ented examples of the traditional modeling). This type of approach requires
greater and greater complexity of the model in order to overcome the in-
herent shortcomings of any model, namely their incompleteness resulting
from the imperfect knowledge of the real system in question. In some cases
it seems to be possible to produce robust enough models which include so
much knowledge that the incompleteness of that knowledge has been, at
least partially, overcome.

2.3 Knowledge acquisition and domain modeling in
expert systems

The origins of qualitative modeling are in conventional AI research and
partly in expert system research. In order to understand the thinking behind

3A model is robust if it behaves like its real counterpart would behave in a similar new
situation. In other words, a robust model produces right values to the variables used to
represent the modeled real-world phenomenon or object.
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qualitative modeling and simulation in expert systems we have to briefly
consider expert system development and how domain specific knowledge is
normally introduced into the expert system program (or into any other AI
program). This is especially important because Hayes (1979) proposed the
use of knowledge engineering as the method for the creation of models of
the physical world. Knowledge engineering is essentially the same process
as the traditional expert system development process.

The traditional expert system development involves at least two persons,
namely the domain expert and the knowledge engineer. Traditionally the
expert system development could have been expressed as the following cycle
(note that there may be more than one engineer and more than one expert):

• The knowledge engineer interviews the domain expert in order to get
useful knowledge.

• The knowledge engineer writes the knowledge into the expert system.

• The expert and the engineer evaluate the system, and if they decide
that the system is good enough, then the process stops, and if they do
not feel that the system is good enough, then the process is iterated to
the first step.

The inherent problem of traditional knowledge acquisition is clear from
the expert system development cycle. From the cycle we should note that
the original knowledge provided by the expert to the expert system goes
through the knowledge engineer and from that we realize how important
the role of knowledge engineer is to the development of the system. If the
expert sees an error in the system, he/she has to tell the engineer that the
system has to be changed. Hence one part of the problem does not lie in
the expert system technology, but in the communication between the expert
and the engineer. This obviously has practical consequences.

When a human expert is interviewed by a knowledge engineer, the inter-
view is in fact a two-way process. At the same time as the expert tells the
engineer what he/she considers to be the most important features of the
object or phenomenon being modeled, the knowledge engineer can be ar-
gued to transfer his/her way of viewing knowledge engineering and model
building to the expert. In other words, it is only natural that the domain
expert starts to modify his/her answers to the questions asked by the engi-
neer in a way that is gradually more similar to the engineer’s view of domain
knowledge. There is no way to be sure that the modified way of composing
answers to the engineer’s questions is in accordance with the way in which
the expert would explain the same domain to other experts in his/her field.
This type of problem is especially apparent in cases in which the knowledge
engineer introduces modeling concepts that are alien to the domain expert.
Such alien concepts may well be frames, object oriented programming, logic
as used in AI, a reasoning based approach to knowledge usage etc. One of
the most significant things the engineer may introduce to the domain expert
is the AI research philosophy, and when we remember that the original AI
research (and obviously a great part of current AI research also) was based
on the assumption that a finite set of logical primitives (or other types of
symbolic elements) exists, we have a clue to the birth of qualitative modeling.
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Considering the adaptability of the domain expert’s methods to express
his/her knowledge of the domain and the AI research tradition, it is not sur-
prising that AI researchers have combined the AI tradition and simplified
domain knowledge. It may be said that qualitative modeling is an obvious
combination of the AI philosophy and simplified domain knowledge origi-
nating from domain experts or textbooks (by textbooks I refer to simplified
books used to teach e.g. physics to novices, i.e. books in which knowledge is
used in a simplified way in order to make it comprehensible to non-experts).

Since I believe that qualitative modeling may be a fundamentally re-
stricted or flawed approach to domain modeling (at least in some cases),
I will outline those features which make me consider it inadequate for at
least some modeling tasks.

2.4 Qualitative modeling and qualitative simulation

Despite the fact that qualitative modeling and qualitative simulation have
been amongst the main interests in AI research during recent years, it has
been very difficult to develop a concise picture of the field. This has, how-
ever, changed because nowadays there are good collections of papers on
qualitative research, see e.g. Weld and de Kleer (1990). Unfortunately qual-
itative modeling and qualitative simulation articles very rarely make their
under-currents clear. In order to understand the thinking behind technical
considerations we have to briefly consider technical aspects as well.

One of the most illustrative perspectives to qualitative modeling and
simulation has been written by Kuipers, who is one of the rare writers who
has made the connection between qualitative models and differential equa-
tions explicit. In his paper (Kuipers 1985) he outlines a system for quali-
tative simulation, which he claims is able to produce every actual behavior
of the modeled system.4 Although the QSIM system outlined by Kuipers is,
obviously, fairly efficient in modeling a mechanism, it is quite important to
realize that QSIM leaves some questions open.

In the QSIM examples, and in other qualitative simulation systems, the
actual behavior of the modeled mechanism is considered to be modeled by
a very simplified artificial system representing the physical system. In that
artificial system the functions representing the changes of the values of dif-
ferent parameters of the system are reduced into changing directions and
landmarks. Landmarks are used to represent significant values of those pa-
rameters and the borders of the legal values which those parameters can
attain. This is both the strength and the weakness of qualitative simula-
tion. For those cases in which there is a limited, clearly distinctive set of
possible states of the system, qualitative modeling can fairly reasonably pro-
vide a tool by which those systems may be modeled without being forced
to compute exact values for every parameter used to represent the system
in question. Such qualitative models can be seen as extremely simplified

4It could be argued that a model which is able to produce every actual behavior of the mod-
eled system is, in fact, robust. This is a very different concept than the realistic assumption
of traditional modeling philosophy.
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traditional models of the actual system. In a qualitative model the collec-
tion of numeric parameters and the differential equations representing the
relations between the values of those parameters are replaced by a simi-
lar collection of parameters, which do not have exact values now but only
landmark values (which could be full and empty for a bucket), and the differ-
ential equations are replaced by some kind of derived forms which will then
be used to determine the changes, i.e. the direction of change, and possi-
ble reached landmark values of the parameters. The new equations derived
from the original differential equations do not represent the method how the
value for a parameter is computed, they represent the direction of change
which could occur to the parameter.

Lately there have been some interesting considerations presented in the
connection of qualitative models, and those considerations require more
attention. For example Clancey (1992) says that a qualitative model defini-
tion is, in fact, a qualitative graph definition and that possible defects in the
qualitative domain theory can be found by doing a complete search for every
possible combination. The claim is very interesting: obviously this means,
according to Clancey, that the checking of the domain theory of any system
using qualitative models can be done by producing a state-transition graph
of all possible states for the model. The problem with that kind of system is
that processes continuously interacting with each other may themselves be
continuous. A complete, or even a reasonably covering, search of different
combinations could easily turn out to be a practical impossibility.

The concept of a qualitative graph draws attention to a feature of qual-
itative models which seems not to be considered with enough seriousness.
From Clancey’s discovery that qualitative models are, in a sense, graphs
which represent the modeled object or phenomenon, it is possible to recon-
sider the philosophical foundation which makes the loss of accuracy accept-
able. The graph-likeness reveals the underlying assumption of a finite set
of basic elements. Because the sufficient set of elementary symbols is finite,
there is no reason to worry about the lost accuracy. From a finite set of
basic elements it is, of course, fairly easy to generate an ideal graph from
which every possible state of the system can be derived. Note that qualita-
tive simulation (i.e. simulation done by using qualitative models) produces
similarly finite graphs with clearly distinctive nodes. This should enable
the system to derive numerical answers fairly easily from those states.. The
change from qualitative representations to quantitative ones should be rel-
atively easy but that change has turned out to be much more difficult than
one would expect. This is clearly expressed by Kuipers (1993b) who lists
the derivation of quantitative problems from qualitative ones as one of the
most important unanswered questions. This is, however, very surprising
if we assume, as Kuipers (1985) does, that qualitative models cover every
actual behavior of the modeled system.

Although qualitative models and quantitative models are both models
in every sense of the term, I feel that in addition to the mathematical dif-
ferences there is a very fundamental difference in thinking behind the ap-
proaches. That difference may not exhibit itself in many cases, but in other
cases it may have a very important role. Examples of cases where this dif-
ference has practical meaning will be discussed later, at this point I shall
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concentrate on briefly describing the difference.
Consider that a qualitative model is provided as a large piece of paper on

which the qualitative graph of the model has been printed. Clearly it is the
case that with enough patience it is possible to track down the exact state
of the modeled system after a certain amount of time. But with quantita-
tive models which include probabilistic aspects that may not be possible.
Quantitative models of continuous physical systems provide an infinitely
large number of different states (of which there can be no state-transition
graph). In the following section I will outline a few reasons which cause
some concern.

2.5 Problems with qualitative modeling

Normally the qualitative modeling techniques have been used in connection
with various mechanical devices. Although it could be fairly comfortably
argued that those devices have too often been everything but seriously com-
plex (as an example of the simplest cases I refer to the string example used
by Kuipers (1985)). Despite the fact that qualitative systems large enough
to be practically useful seem to be very rare, there is no reason to claim
that qualitative modeling may not be a useful technique in technical and
other established fields. But the problematic fields seem to be those which
introduce more uncertainty to the domain.

In qualitative reasoning literature, like the collection edited by Weld and
de Kleer (1990), there is not even one example of qualitative simulation ap-
plied to natural natural systems, like trees, which are continuous and in
which processes may be in continuous interaction and form constant feed-
back loops, for example, the flow of nutrients from roots to the upper parts
of the tree, and sugar etc produced in leaves to the roots (or processes which
result from external stimuli, e.g. a moose may eat a part of the crown of a
young tree and cause a feedback loop to occur). Similarly even some quali-
tative modeling researchers have expressed serious reservations on the gen-
eral applicability of qualitative modeling, see e.g. Sachs (1987) who considers
her own technique to be useful for man-made devices only. This is not com-
forting, it raises questions about the usefulness of qualitative simulation in
nontechnical fields. Or could it be that qualitative models cannot be built
in those cases because such basic elements (or good imitations of them) as
required by the philosophical foundations of qualitative modeling cannot be
found?

Because qualitative modeling requires, according to Clancey, the possi-
bility of producing a complete graph of the different states of the modeled
system (qualitative simulation can, also, be thought to be a graph with a finite
set of nodes representing every possible starting state and every possible
simulation result can be achieved simply by traveling through the graph),
I claim that qualitative simulation provides, in fact, analytical solutions to
problems5, not simulation solutions in the same sense as simulation is con-

5It is worth noting that Kuipers (1993a) indirectly admits the analytical nature of qualita-
tive modeling by stating that a good general purpose algebraic manipulation utility may be
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sidered in the traditional simulation and even in early artificial intelligence
literature (see e.g. Sayre (1965)) in which a clear philosophical distinction
between solutions produced by analytical means and solutions provided by
simulation is made. Simulation inherently includes probabilistic and con-
tinuous parts, which makes it impossible to produce similar “state-space”
graphs for simulation as is for qualitative simulations.

As an example of a modeling task in which qualitative modeling en-
counters serious problems we may consider a real project from the field
of forestry. The problem with normal AI and expert system methodologies
is clearly outlined by a discussion of the usability of an expert system de-
veloped by using logic programming and qualitative modeling techniques.
That system, developed by Saarenmaa et al (1991) was designed to cope
with operational forest management, but the system did not succeed in giv-
ing any practically useful results. As an example of the embarrassing results
of the application of AI methodologies and implicit philosophies to a funda-
mentally different domain we may consider a very annoying feature of that
system. Saarenmaa et al state:

‘. . . This led to such surprising rules as “artificial regeneration
never fails”. This is not simplistic at all, but only a way to re-
organize knowledge so that it can be made functional.’

in an attempt justify a feature which has made the authors themselves un-
sure. The problem with the rule is that even artificial regeneration can fail
with varying degrees and varying probabilities, and the future behavior of
the modeled system after such failure is composed of continuously varying
combinations of different actions, and that it turned out to be impossible
to identify different variations as single symbolic names and unambiguous
directions (Saarenmaa, in personal communication).

The surprising rule of the never failing artificial regeneration did not,
however, encourage the authors to try to develop the system further, they
seem to have, in fact, dropped the method and turned their attention from
the qualitative techniques to the incorporation of quantitative models in the
decision support systems. They even say, in that same article, that

‘. . . it is very simplistic to base model integration on an inference
method only’

which represents their view according to which the qualitative techniques
are purely reasoning techniques, not simulation techniques. An especially
problematic feature of the qualitative techniques was their philosophical
basis, which would have required a philosophical change and which was
felt alien. It is interesting to note that de Kleer (1993) complains about a
very similar case, namely that physicists did not see any point in qualitative
modeling, but that should not be surprising. According to Hayes (1979), he
was very shocked at the age of eleven when he was taught Newtonian me-
chanics which was not in accordance with his previous conceptualization
of the physical world. From this background it is obvious that physicists,

able to evaluate models and produce new equations to be used for simulation. This clearly
implies the analytical nature of qualitative models.
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who are experts, would not use the naive conceptualization of the physical
world then talking to each other, they would use their field-specific work-
ing knowledge e.g. Newtonian physics. Because physicists and other experts
would use their field specific concepts when talking to each other and simpli-
fied or even wrong (in the sense of the specific knowledge which makes them
experts) conceptualizations when explaining the same things to novices like
knowledge engineers, it really is not a surprise that such experts (like the
physicists in de Kleer’s example) would see no sensible reason for qualitative
models which are like simplified versions of their own domain knowledge.

2.6 An alternative to qualitative techniques

Although the qualitative modeling approach and the physical symbol sys-
tem hypothesis have been dominant in domain modeling (in expert system
research), it is not clear that qualitative techniques really are the only way
to produce practically useful expert systems. I believe that it is possible to
develop expert systems which include quantitative models and provide an
alternative to the qualitative modeling based reasoning approach.

An alternative could be to develop quantitative models in a way which
uses a uniform way of thought and connect such quantitative models to
properly taught neural networks. The method for the uniform thinking for
domain models could be something like the causal process approach to the
structure of the reality proposed by Salmon (1984). This method could be
able to cover the original requirements proposed by Hayes, who said that the
formalization of the physical world should have the following characteristics
(1979):

• Thoroughness, i.e. it should be able to cover the whole range of ev-
eryday phenomena (the formalization will not, of course, be perfectly
thorough).

• Fidelity, i.e. it should be reasonably detailed.

• Density, i.e. the ratio of facts to concepts should be high.

• Uniformity, i.e. there should be a common framework for the whole
formalization.

I believe it possible to incorporate causal and structural knowledge into
quantitative models. In the development of quantitative models it should be
concentrated on achieving as much accuracy as possible in both the results
and the structure of the model. Unfortunately it often seems to be the case
that the use of accurate models does require so much computing power that
those models may not be practically useful. This problem can, however, be
avoided (at least partially) as discussed later.

If we intend to use a model for multiple simulations, it is a safe assump-
tion that in many cases the results may vary only a little. In such cases
it might be possible to combine quantitative models, which include struc-
tural and causal knowledge of the domain, with statistical methods in order
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to improve the overall performance of the system. In such combinations
the quantitative model would be used when a novel situation is encoun-
tered (i.e. a situation which has not yet been simulated by using the current
model) and cases which have a very near resemblance with previously sim-
ulated cases could be approximated by using statistical methods based on
previously generated simulation results. In that way it would be possible
to make actual simulations by using quantitative models, and let the per-
formance improvements be done by numeric methods based on previous
simulation results. One possibility for such a method has been proposed by
Ahonen and Saarenmaa (1991).

In order to be able to provide the required intelligence for, for exam-
ple, expert systems, an alternative to qualitative models must be found. I
think that there is no reason why the output of quantitative models (which
should be developed according to the structural considerations) could not
be used for providing the simulation results to pre-taught neural networks.
The neural network would provide the users with the required “intelligent”
answers.

In order to avoid arguments saying that neural networks alone are enough,
I will outline why I disagree with such arguments. Since one of the main uses
of modeling and simulation is to help us to understand the modeled system
and make certain that we really understand it, it would be much more prob-
able that we would identify the proper parameters used as the input (for a
neural network) if they are produced by well-designed models. Without us-
ing models to provide the neural network with important information, there
would be no guarantee that the information would be essential for decision
making. Hence I believe that the best results could be achieved by combining
quantitative models and neural networks.

2.7 Discussion

In AI research it has been customary to bury methodological and philo-
sophical aspects in various technical considerations and the development
of simple working systems (It is interesting to note that Hayes complained
about this trend more than a decade ago. Has nothing changed?). That habit
may have a problematic side-effect, namely that it may introduce qualitative
modeling philosophy to fields for which it is not suitable and/or alienate
potential users from AI techniques. For example, in forest simulation there
is often an explicit need to produce numeric estimates, and the symbolic
nature of qualitative techniques makes it doubtful in the eyes of forestry re-
searchers. This type of doubt is very unfortunate because in many fields of
traditional numeric simulations (e.g. forestry) there is a clear need for at least
some paradigms originating from expert system research — object-oriented
programming and conceptual modeling, just to mention some examples.

If it is true that there are systems which cannot be adequately modeled by
qualitative modeling, the philosophical justification of the qualitative sim-
ulation paradigm is questionable. It even may be possible that qualitative
simulation has been used as an escape route from the threatening compu-
tational requirements of real-world models — an escape route which pro-
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vides a convenient excuse to return back to symbolic representations under
the misconception that everything can be reduced into fundamental, atomic
structures which can fairly easily be implemented as a computer program.
This is very discomforting because the philosophers have not been able to
provide such fundamental notions thus far.6 Could it really be possible that
the AI community will succeed in something in which others have not suc-
ceeded?

The success of AI research in providing the basic elements required for
accurate symbolic systems is not very probable considering the efforts of
philosophers who have attempted to define even one logical primitive. The
lack of success of the qualitative approach has even been disappointedly
pointed out by de Kleer (1993) who complains that the advances required
have not been made and that research should still strive to fulfill the central
point of the more than a decade old naive physics manifesto of Hayes (1979).
This disappointment should not, however, be a great surprise because qual-
itative techniques still suppose the existence of the set of basic elements to
be used as the parts of the qualitative models. It may even be said that the
problems encountered by qualitative modeling could be considered to be a
constructive proof against the philosophical assumption about the existence
of such basic elements.

The existence of possible fundamental problems in the qualitative ap-
proach and cases which are not suitable for the qualitative approach does
not mean that the qualitative approach is not a useful approach for many
cases. In technical fields (and probably in many other fields also) qualita-
tive techniques have proved their practical usability (see e.g. the articles in
Weld and de Kleer (1990)). But for the cases which are not suitable for the
qualitative approach new alternatives are required. I believe that one alter-
native is to incorporate causal and structural knowledge into quantitative
models and feed the quantitative simulation results into neural networks.
This should enable us to avoid the problems of the restricted nature of the
quantitative approach and still be able to build systems which could be used
as expert systems.

References

Ahonen, J. J. and Saarenmaa, H. (1991). Model-based reasoning about natural
ecosystems: An algorithm to reduce the computational burden associated
with simulating multiple biological agents. In Proc. 6th Symposium on Com-
puter Science for Environmental Protection. 193-200.

Clancey, W. J. (1992). Model Construction Operators. Artificial Intelligence,
53. 1-115.

de Kleer, J. (1993). A view on qualitative physics. Artificial Intelligence, 59.
105-114.

6I will not, however, discuss this in great detail because I think that it is better if I leave
that discussion to those who are better educated in these matters.



33

Fishwick, P. A. (1992). An Integrated Approach to System Modeling Using
a Synthesis of Artificial Intelligence, Software Engineering and Simulation
Methodologies. ACM Transactions on Modeling and Computer Simulation, 2.
307-330.

Futo, I. and Gergely, T. (1990). Artificial Intelligence in Simulation. Ellis
Horwood. Chishester.

Hayes, P. J. (1979). The Naive Physics Manifesto. In Michie, D. (ed) Expert
Systems in the Micro-Electronic Age. Edinburgh University Press. Edinburgh.

Kuipers, B. J. (1993a). Reasoning with qualitative models. Artificial Intelli-
gence, 59. 125-132.

Kuipers, B. J. (1993b). Qualitative simulation then and now. Artificial Intel-
ligence, 59. 133-140.

Kuipers, B. J. (1985). The Limits of Qualitative Simulation. In: Proceedings
of International Joint Conference on Artificial Intelligence. 128-136.

Lewis, T. G. and Smith, B. J. (1979). Computer Principles of Modeling and
Simulation. Houghton Mifflin. Boston.

Miller, D. P., Firby, R. J., Fishwick, P. A., Franke, D. W. and Rothenberg, J.
(1992). AI: What Simulationists Really Need To Know. ACM Transactions on
Modeling and Computer Simulation, 2. 269-284.

Newell, A. and Simon, H. (1981). Computer Science as Empirical Inquiry:
Symbols and Search. Reprinted in: Haugeland J. (ed) (1981). Mind Design.
MIT Press. Cambridge.

Saarenmaa, H., Kaila, E., Nuutinen, T. and Kolström, T. (1991). Operational
forest management planning with logic programming. In: Current Advances
in the Use of Computers in Forest Research — Proc. of the IUFRO Workshop
February 14, 1991. Bulletins of the FFRI Vol. 395. 61-68.

Sachs, E. (1987). Piecewise Linear Reasoning. In: Proceedings of AAAI-87.
Seattle (WA). 655-659.

Salmon, W. C. (1984). Scientific Explanation and the Causal Structure of the
World. Princeton University Press. Princeton.

Sayre, K. M. (1965). Recognition: a Study in the Philosophy of Artificial Intel-
ligence. University of Notre Dame Press. Notre Dame (Indiana).

Thompson, J. R. (1989). Empirical Model Building. John Wiley & Sons. New
York.

Weld, D. S. and de Kleer, J. (eds) (1990). Qualitative Reasoning about Physical
Systems. Morgan Kaufmann Publishers, San Mateo, California.



34

Widman, L. E. and Loparo, K. A. (1989). Artificial Intelligence, Simulation and
Modeling: A Critical survey. In Widman, Loparo and Nielsen (1989). 1-44.

Widman, L. E., Loparo, K. A. and Nielsen, N. R. (1989). Artificial Intelligence,
Simulation & Modeling. John Wiley & Sons. New York.

Wittgenstein, L. (1971). Tractatus Logico-Philosophicus (Finnish translation).
WSOY. Keuruu.

Zeigler, B. P. (1976). Theory of Modeling and Simulation. Wiley. New York.



Chapter 3

Deep Knowledge and Domain
Models
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Abstract

An approach to the concept of deep knowledge is outlined. The ap-
proach is based on the assumption that the depth of knowledge results
from its explanatory powers. After considering some examples of deep
and shallow knowledge and defining deep knowledge and robustness, an
approach to the development of domain models based on deep knowl-
edge is proposed. The proposed approach is based on the Salmonian
concept of causal processes and it provides a uniform point of view to
knowledge of physical domains and domain modeling. The approach
is developed in order to incorporate structural and causal knowledge
directly into numeric models because qualitative approaches seem to
have philosophical problems.

Keywords: expert systems, modeling, qualitative modeling

3.1 Introduction

Since the Chandrasekaran and Mittal article (Chandrasekaran and Mittal,
1983) most writers concerned with so-called domain models have been using
the term deep knowledge. Unfortunately, the term has not been defined very
well and its use has depended on vague notations of its nature. The vague-
ness of the meaning of the term invites us to try to define it more clearly,
and one approach to the concept of deep knowledge and its nature and use
in domain modeling will be discussed later in this paper. The approach is
developed because qualitative techniques seem to have some philosophical
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problems (Ahonen, 1994) and there obviously is a need for the incorporation
of the best features of quantitative and qualitative approaches. In addition
to this some of the most obvious consequences of the use of deep knowledge
for the overall usefulness and structure of domain models will be discussed.

In fault diagnosis and simulation there is one obvious requirement for
the domain model, namely that it should be able to function like the modeled
phenomenon in every case. Unfortunately, how this can be achieved is not
entirely clear, despite some results and authors speaking in favor of deep
knowledge. The main problem with deep knowledge is that we do not know
what it is although we know what it should do, i.e. provide better robustness
for domain models.

The use of the term deep knowledge seems to be closely related to the
idea that we cannot create practical AI systems without turning our atten-
tion to physical reality around us. Hayes proposed the use of models of the
physical reality as a method of avoiding the problem of too simplistic prob-
lem domains (Hayes, 1979). The formalization of the physical world and
models created from the physical world should, according to Hayes, have
the following characteristics (Hayes, 1979):

• Thoroughness, i.e. it should be able to cover the whole range of ev-
eryday phenomena (the formalization will not, of course, be perfectly
thorough).

• Fidelity, i.e. it should be reasonably detailed.

• Density, i.e. the ratio of facts to concepts should be high.

• Uniformity, i.e. there should be a common framework for the whole
formalization.

In addition to the interest in physical domains, Hayes said that reasoning
alone is not enough, from which it may be concluded that an intelligent
system would include both reasoning and knowledge of physical reality.
This dual view leads us to adopt the idea of model based reasoning, according
to which the descriptions of domain and reasoning are kept separate.1 The
model based reasoning approach is more a methodology than a technique,
because it does not determine the implementation (Saarenmaa, 1988). The
model based approach seems to be especially useful in fault diagnosis and
other fields that require the use of real-world models (see, e.g., de Kleer
(1987), Koton (1985), Nardi and Simons (1986), Xiang and Srihari (1986),
Rich and Venkatasubramanian (1987), Cross (1984), and Adams (1986)).

One interesting possible approach to deep knowledge is to consider the
depth of knowledge possessed by human experts. The human performance
is especially interesting because human experts seem to be able to estimate
the functioning of a physical system even in cases that have not been encoun-
tered earlier and because studies of cognitive processes of human experts
seem to suggest that they, i.e. human experts, use some kind of domain
models in their reasoning (e.g. Sweller’s (1988) results support this belief).

1Note that according to Clancey (1992) all expert systems are model based.
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In this paper we will consider the nature of deep knowledge from the per-
spective of scientific knowledge. Scientific knowledge was chosen because
there are human experts succesfully applying scientific knowledge to tasks
which require deep knowledge and robustness. Possible examples vary from
engineers designing new equipment to doctors diagnosing patients. Hence
scientific knowledge provides a promising starting-point for our considera-
tions.

At this point it must be stressed that the considerations presented in
this paper are applicable only to domain modeling. All other aspects like
knowledge used by natural robust creatures are left out. In addition to that
restriction, the discussion is limited to physical domains only. The domain
we are interested in is physical reality, i.e. the concrete world, in which case
pure theory building and abstract entities are omitted. The main reason to
consider physical domains only is that there obviously is a need for a method
which could be used to incorporate causal and structural knowledge into
numeric simulation models because qualitative models do not work wery
well with all physical domains (Ahonen, 1994).2

In the next section we will define some of the key terms and concepts.

3.2 Models

In order to make the following discussion clearer we will define several con-
cepts, some of which have been already used. In this paper the term physical
reality means the concrete world. Similarly, a real-world phenomenon or a
real-world object is a phenomenon or an object which exists or can poten-
tially exist in the physical world. A model is a representation of physical
reality. Such representations are simplifications of physical reality, and un-
fortunately they do not produce reliable information on every aspect of the
phenomenon being modeled (Lewis and Smith, 1979, 2). Our definition of
models differs from the normal definition in its clear nature as a represen-
tation of physical reality (see, e.g., (Futo and Gergely, 1990) for the usual
approach). Simulation is the creation and execution of dynamic models em-
ployed for understanding system behavior (Fishwick, 1992). These defini-
tions restrict the applicability of the following discussion.

Sometimes it may be the case that the model is used to simulate a sit-
uation that has not been considered during the development of the model.
Such a new situation is a case in which the model is intended to be used
without prior knowledge of the possibility that such a case may be encoun-
tered during the use of the model. A model is robust if it behaves like its
real counterpart would behave in a similar new situation. In other words, a
robust model produces right values to the variables used to represent the
modeled real-world phenomenon or object.

2One of the fundamental points to remember when dealing with physical domains is that
scientific knowledge differs from everyday knowledge (or intuitive knowledge) (Tuchanska,
1992), and it would seem fairly strange to consider physical causality and intuitive mythical
causality, which has been discussed by de Kleer and Brown (1984), to be the same. In addition
to that, the philosophical discussion presented in (Ahonen, 1994) suggests that qualitative
approaches are not very good for modeling some types of continuous physical systems.
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Models should be designed in a way that they do not lose their modeling
ability even in new situations. The obvious way to achieve this goal is to de-
velop models by using knowledge that is required to determine the behavior
of the model in as many new situations as possible and do it despite the fact
that models are simplifications (note that the models of human experts are
also simplifications). We will call such knowledge deep knowledge because
it can be said to go beyond the surface of the knowledge on which our mod-
els are based. Deep knowledge is knowledge of the features that define the
structure and behavior of the phenomenon or the object considered. Deep
knowledge provides the basis on which robustness may be built.

This definition of deep knowledge is usable, however it leaves two im-
portant questions open. The first question concerns the actual nature of
deep knowledge, and the other question the structure of models that are
based on deep knowledge.

Despite the superficial differences both AI systems and simulation sys-
tems include models, simulation systems by definition, and according to
Clancey (1992) all AI systems include models. Hence the distinction be-
tween knowledge representation in the traditional AI sense and knowledge
representation in the traditional simulation sense is not very clear, although
some rough divisions may be made on the basis of the intended usage of
the models (Miller et al, 1992). Because the connection between both types
of models is very strong, we can proceed as if they were the same.3 The
sameness will be assumed because the approach we will outline later in this
paper will be the same for both AI and simulation modeling. The approach
outlined in this paper is based on the philosophical discussion and proposal
presented in (Ahonen, 1994). In order to approach modeling tasks from a
clearer point of view it is necessary to outline how modeling tasks proceed.
One way to look at such tasks is to divide them into different steps or levels.
For example Zeigler (1976) divides modeling tasks into the following levels:

• the “real system”, a source of potentially observable data;

• the “experimental frames”, a set of limited observation or manipulation
cases for the real system;

• the “base model”, a comprehensive model of the system in every ex-
perimental frame;

• the “lumped model”, a simplified version of the base model, which is
simplified in a way that still provides the reliability of the original base
model in interesting cases;

• the “computer model”, an implementation of the lumped model in a
computer programming language on a machine.

The above steps of traditional modeling include the assumption that
there is no model which is complete, i.e. so thorough a replica of the modeled
object or phenomenon that it could not be improved as a result of changes

3There is clearly a need for a representation which could really connect both approaches
(Kuipers, 1993).
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in knowledge about original or experienced defects in the developed model.
This is clearly expressed by Zeigler (1976, 31) who concludes that:

In any realistic modeling and simulation area, the base model de-
scription can never be fully known. (original emphasis)

The definition of robustness and the inherent incompleteness of models
mean that no really robust models exist. But for pragmatic reasons it is a
compelling and useful aim to make models more robust.

In the next section we will briefly look at the connection between shal-
lowness, robustness and the explanatory powers of the knowledge used in
the creation of models.

3.3 Shallow models, explanation, and robustness

In the field of the philosophy of science, one of the most active topics of
interest is the explanative nature of scientific knowledge. For our purposes
we will consider the explanatory aspect of scientific knowledge, and suppose
that scientific knowledge consists mainly of explanations. (This assumption
seems to be a safe one because the explanatory nature of scientific knowl-
edge tends to be so widely accepted a proposition, see e.g. (Fetzer, 1981),
(Niiniluoto, 1983), (Salmon, 1971), and (Salmon, 1984), that it is not seri-
ously questioned at all.) In order to avoid a multitude of arguments we will
assume that concepts are considered to be defined in such explanations.

To clarify the connection between robustness and the explanatory pow-
ers of models we will briefly consider so-called shallow models, which are
often thought to be the opposite of deep models (see e.g. Chandrasekaran
and Mittal (1983)). Although we will not define shallow models explicitly, we
will briefly consider some of their features. In this paper the term shallow-
model is interpreted in a way that makes clear that shallow models primarily
include shallow knowledge acquired by, for example, empirical observations,
which are then written into rules or equations that define the values of vari-
ables by relations between those values.4 If we consider shallow models to
include only empirical knowledge acquired by observing the surface behav-
ior of an object or a phenomenon, then we can assume that the features
of such models differ from the features of the respective deep-knowledge
models. In order to emphasize the distinction we will briefly consider some
simple examples of models that provide desired robustness or do not pro-
vide it.

Consider, as an example, a situation where a human being cannot get
enough vitamin A. It is well known that too little vitamin A causes illness,
and it is similarly well known that by giving more vitamin A to the person
in question, his/her health can be improved. From a limited amount of
knowledge it can be concluded that by giving more and more vitamin A
the person’s health will improve infinitely. It is, however, known that this

4In other words, a shallow model is like a “black-box” which responds to external stimuli
and produces values to interesting variables according to predefined mappings from the
stimuli to the values. The inside of the box cannot be seen in the case of shallow models.
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is not the case. Knowledge of the biological low-level effects of vitamin A
would have enabled the avoidance of the wrong conclusion. This example
is, however, fairly weak because a fully covering statistical example could
be created reasonably easily. Although a covering model could be created,
that statistical model would suffer from the same shortcomings as the next
example.

As an example of shallow models which completely lack explanatory
power we can consider a model of the growth of pines. Having gathered a
great number of observations, it is possible to generate a function, and say
that

‘According to our empirical observations we can give the statisti-
cal relationship between the height growth and the age of pines
as

h(t) = H
1+h1e−h2t

(3.1)

where H (max. height), h1 and h2 are 21 m, 20.4 m and 0.064,
respectively’

which is true. But by saying (as Oker-Blom et al (1988)) that

‘The height growth was assumed to be independent of stand den-
sity and was modeled as a logistic curve (3.1). The values of H
(maximum height), h1 and h2 were chosen as 21 m, 20.4 m and
0.064, giving a height development in accordance with existing
growth and yield tables.’

and implicitly supposing that the equation explains something, we say some-
thing that is not true. If we say that the equation states the statistical re-
lationship between h and t, we do not say anything that is untruthful but
we do not provide any explanation, either. In addition to not being able to
provide any explanations, the model is not robust. The lack of robustness
can be easily pointed out by asking “What will happen to the growth if the
climate really changes as they say?”. The presented statistical model cannot
answer that question.

Obviously Oker-Blom’s model does not have great explanatory power in
the sense required by the question:

‘Why does the equation (3.1) hold for
the height growth and the age?’ (3.2)

The question (3.2) to which a human expert could easily provide an answer,
cannot be answered by the model — although that question is one of the
most obvious to be asked.

Although knowledge present in Oker-Blom’s model can explicitly deter-
mine a model, it does not even implicitly answer the question (3.2). The fact
that models of this type do not include the knowledge required for adequate
explanations does not mean that explanations do not exist at all. The prob-
lem of non-existence of explanations in statistical relations has been noted
earlier (Fetzer, 1981, 87; Salmon, 1984).
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It is actually easy to find examples of cases in which obvious statistical
relations have nothing to do with explanations or actual mechanisms of the
case. We can, for instance, take Salmon’s (1984, 268) example:

‘. . . there is a strict positive correlation between the amount of
time required for clothes hung out on a line to dry and the dis-
tance required to get an airplane off the ground at the nearby
airport. I take it as given that the higher the relative humidity,
the longer the clothes will take to dry. Thus the phenomenon that
requires explanation is the fact that increased relative humidity
tends to make for greater takeoff distance, other things — such
as the temperature, the altitude of the airport, the type of the
plane and the load it is carrying — being equal. . . ’

In the example chosen by Salmon there is no direct explanatory connection
between the observed phenomena. The actual explanation gives the com-
mon reason for the phenomena. The interesting thing is that in addition to
providing the necessary knowledge, the explanation hints at the possibility
of creating a model of the concepts used in the explanation. Such a model
could be used in a variety of cases which involve physical phenomena and
objects modeled — in other words, such a model could be fairly robust. Note
that in Salmon’s example there is no way of creating a covering statistical
model which could offer any insight into the correlation.

Although statistical analysis of shallow knowledge is often very useful,
the unfortunate fact is that sometimes even strict correlations or conditional
probabilities of 1 or 0 do not mean that there is an explanatory relation. It
can, at first, seem strange to say that P(A|B) = 1 or P(A|B) = 0 does not
mean that there is any connection between A and B, but it is fairly easy
to find examples which show that the claim is true. A great deal of this is
implied by the fact that statistical correlation is a symmetric relation while
causality is not (Irtzik and Meyer, 1987). Obviously an alternative is requied
in order to create robust domain models.

Considering the vitamin A example and Oker-Blom’s equation and Salmon’s
airport-example and proper explanations for those cases5, it is interesting
to note that such explanations have to explain the observed phenomena by
using concepts and entities which are not parts of the original description
of the case. The same can be said of any physical phenomena which is ex-
plained using Newtonian mechanics because Newtonian mechanics is not
present in the description of e.g. the famous apple often said to be con-
nected with the late Newton. It seems to be the case that those explanations
use deep knowledge, i.e. knowledge that goes beyond the observed surface
features (i.e. the values of the actually interesting variables) of the case and
the original description of the situation.

Problems with shallow models lead us to look for other approaches. As
was said, one of the most important aspects of knowledge is to answer why-
questions, questions which often imply some kind of causality. Unfortu-
nately the concept of causality are very difficult to define, but we will, how-

5The explanations are left out because such case-specific aspects are outside the scope of
this paper.
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ever, briefly outline causality and explanation. We will continue on to the
assumption that causal relations exist.

Thus far we have briefly considered the connection between explanatory
power and robustness. In the following section we will outine one possible
approach to the conceptualization of physical reality. The approach differs
somewhat from the usual object-phenomena -models.

3.4 Causality and explanation

The use of causality in different forms is actually very tempting. The concept
of causal relations is acceptable at face value an and cognitively plausible.
Actually, different levels of explanatory powers and probability in causal
explanations seem to exist (see e.g. Sober (1984)), which implies the versatile
nature of causal explanation.

Probably the most useful approach to define the features of the physical
reality spoken about is proposed by Salmon (1984), who proposes the con-
cept of causal processes instead of causal events. Of causal processes he
says:

‘Causal processes propagate the structure of the physical world
and provide the connections among the happenings in the vari-
ous parts of space time. Causal interactions produce the struc-
ture and modifications of structure that we find in the patterns
exhibited by the physical world. Causal laws govern the causal
processes and causal interactions, providing the regularities that
characterize the evolution of causal processes and the modifica-
tions that result from causal interactions’ (Salmon, 1984, 132)

The concept of causal processes is not, however, very clear; many of their
features have to be defined with more precision. Those features include
mark transmission, structure transmission, the principle of causal influence,
and causal interaction.

The most important criterion for a causal process is its ability to transmit
a mark. By mark transmission we mean that a causal process can transmit a
mark from pointA to point B (and every point between them) without further
interactions. The mark transmission (MT ) is defined, in a more explicit way
(Salmon, 1984, 148) , as:

Let P be a process that, in the absence of interactions with other
processes, would remain uniform with respect to a characteristic
Q, which it would manifest consistently over an interval that in-
cludes both the space-time points A and B (A ≠ B). Then, a mark
(consisting of a modification of Q into Q′), which has been intro-
duced into process P by means of a single interaction at point A,
is transmitted to point B if P manifests the modification Q′ at B
and all stages of the process between A and B without additional
interventions.

Note that marks in a process are, actually, changes in the process itself.
Therefore we can say that a transmission of a mark is a transmission of
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the changed structure of the process transmitting the mark, and a process
can always be said to transmit its own structure, changed by a mark or not.
The principle of structure transmission (ST ) can be formulated as follows
(Salmon, 1984, 154):

If a process is capable of transmitting changes in structure due to
marking interactions, then that process can be said to transmit
its own structure.

The fact that a process does not transmit a particular type of mark does
not mean that it is not a causal process. Consider, as an example, the pro-
cesses of a hard rubber ball and a particular beam of light (caused by a lamp
and colored white). It is possible to paint a green mark on the surface of
the ball but it is not possible to do the same to the beam of light, although
it is possible to change the color of the beam to green by using a green fil-
ter. Marks must be consistent with the structure and properties of causal
processes — a causal process cannot be marked by every method.

In accordance with the principle of structure transmission there must be
a way to define how a causal process propagates causality from one space-
time locale to another. The principle of causal influence (PCI) can be defined
as (Salmon, 1984, 155):

A process that transmits its own structure is capable of propa-
gating a causal influence from one space-time locale to another.

Combined together the concepts MT , ST and PCI define what a causal
process is. Although a causal process can be very effectively defined by
them, no interactions between processes have been defined. Obviously pro-
cesses interact and interactions constitute the actual structure of causal re-
lations.

As can be deduced from the definitions of MT , ST and PCI, there exist,
in addition to causal processes, a great number of non-causal processes. The
existence of non-causal processes makes the definition of causal interaction
(CI) between processes a quite difficult task, and one proposition is made
by Salmon (1984, 171), and is as follows:

Let P1 and P2 be two processes that intersect with one another at
the space-time point S, which belongs to the histories of both. Let
Q be a characteristic that process P1 would exhibit throughout
an interval (which includes subintervals on both sides of S in
the history of P1) if the intersection with P2 did not occur; let R
be a characteristic that process P2 would exhibit throughout an
interval (which includes subintervals on both sides of S in the
history of P2) if the intersection with P1 did not occur. Then the
intersection of P1 and P2 at S constitutes a causal interaction if:

1. P1 exhibits the characteristic Q before S, but it exhibits a
modified characteristic Q′ throughout an interval immedi-
ately following S; and

2. P2 exhibits the characteristic R before S, but it exhibits a
modified characteristic R′ throughout an interval immedi-
ately following S.
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Salmon proposed that scientific explanations should use the concept
of causal processes as the basis, and that actual explanations are linguis-
tic descriptions of chains of causal interactions and mark transmissions.
The discussion of how explanations are actually created by using the causal
processes -concept is not presented in this paper — for that discussion we
refer to (Salmon, 1984). In the following section we will consider a modeling
approach that is based on the concept of causal processes and briefly dis-
cuss the intuitively tempting claim that models able to provide explanatory
knowledge are robust.

3.5 Causal process models

In this section we will describe a domain modeling approach based on the
Salmonian concepts of causality. Generally we will consider models that may
be called explanatory models. An explanatory model is constructed accord-
ing to the concept of causal processes and the model produces quantitative
results, i.e. values to variables, based on processing the descriptions of the
modeled causal processes. Note that we are considering models which are
not qualitative in the meaning discussed in (Weld and de Kleer, 1990). Be-
cause qualitative models of the physical reality suffer from philosophical
problems (Ahonen, 1994), we have to develop an alternative to normal qual-
itative and quantitative approaches. Our approach incorporates causal6 and
structural knowledge directly into numeric simulation models.

In order to prevent any confusion between explanatory inferences (i.e.
the mechanism by which explanations are generated) and explanatory mod-
els (i.e. models of the causal structure of the reality) we can consider the
sentence ‘I see that there is snow outside and therefore I know that the
temperature outside is below zero degrees celsius’. The sentence is not an
explanatory model, and even the sentence ‘I see that there is snow outside
and therefore I know that because water can be snow only if the tempera-
ture is below zero, I am able to deduce that the temperature outside is below
zero’ is not an explanatory model. Writing that ‘When the temperature is be-
low zero◦ C, water molecules arrange into a combination in which they do
not constitute a liquid’ we are much nearer to having an explanatory model.
Note that a transmission of energy causes water molecules to rearrange –
an obvious case of causal interaction and mark transmission. In the next
subsection we will outline a simple formalization of explanatory models.

6At this point it must be stressed that in this paper we are discussing physical domains
and physical causality only. This is partly because the approach presented is developed
to overcome the problems encountered by qualitative modeling of physical reality, and the
knowledge considered is our best knowledge about the physical world, i.e. scientific knowl-
edge, not naive knowledge used in qualitative modeling approaches like the mythical causal-
ity discussed by de Kleer and Brown (1984).
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3.5.1 The structure of explanatory models

If we consider any practically useful model, it is very probable that such a
model would include several processes which may interact with each oth-
ers. In addition to interacting with other processes from time to time, it
is interesting to note that causal processes P1 and P2 can be in continuous
interaction. Consider, as an example of continuous causal interactions, a
car. The motor of the car always has several different causal interactions
with other parts of the car, and there are, in the motor, parts which can be
thought to be causal processes continuously interacting with each others.
An explanatory model M (without the interactions) could now be said to be
a set of causal processes, i.e.

M = {P1, P2, . . . , Pn}

in which Pi denotes a causal process included into the model. In order
to have interactions, as defined in the previous section, between various
processes an explanatory model must be redefined as

M = (P, I)

in which P is the set of the modeled processes and I is the set of the possible
interactions between them. Every member of I is a CI.

Another interesting feature of causal processes is that they are divisible.
Consider, again, a car. For a pedestrian injured by the car, the car consti-
tutes one process, and for a mechanic the car consists of a multitude of
different causal processes. The example of the car shows that we can di-
vide a process into several processes depending on what we know of it. A
causal process can sometimes be divided into several subprocesses which
have causal interactions and causal structures of their own.

Because some processes can be divided into subprocesses, a process
should be clearly distinguishable from its subprocesses by means other than
just having different characteristics. One possible method for this separa-
tion is the introduction of the concept of levels; on lower levels there would
be the subprocesses of process Pj and Pj itself would be on the upper level.
Now the process Pj can be formalized as

Pj = {Pj,1, Pj,2, . . . , Pj,n}

in which Pj,i is a subprocess of Pj .
In principle the number of levels of an explanatory model is not re-

stricted. Different models require different numbers of levels, and the num-
ber of levels of a model is restricted by the limitations dictated by the com-
puter on which the model is used or by the fact that sometimes the required
accuracy can be achieved by using fewer levels, or by the fact that human
knowledge of the problem may not be complete enough.

It is interesting to note that the concept of levels seems to a be natural
solution for the modularity problem. Different processes existing on differ-
ent levels fulfill the modularity requirements presented by Cota and Sargent
(1992).
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In order to define the characteristics of a processes there must be a way
to identify that particular process. Therefore it is reasonable to consider
the characteristics of a process to be identified by an intensional name (the
name represents the intension of the intended real counterpart existing or
potentially existing in the physical reality). The name can be considered to
identify the variables and the values of the variables and the characteristic
space-time functions which constitute the features according to which the
process is defined and characterized. Now a process is formalized as

Pj =< N,S >

in which S is the set of subprocesses and N is the name of Pj .
A process is characterized by the values of the variables and the vari-

ables themselves and the space-time functions which are used to represent
the process in question. The name of the process is used to clarify the recog-
nizable features of the process in order to make the characterization more
comprehensible. In order to include the actual process characteristics in the
model, we can define a process as a tuple

Pj =< N,V, F, S >

in which N and S are as above, V is the set of the variables used to represent
the characteristics of Pj , and F is the set of space-time functions which
define the characteristics of Pj together withV . Note that a model of a causal
process does not require any names in principle, because an actual process is
characterized by the variables and the values of the variables and the space-
time functions which may change the values of the variables (the space-time
functions are required in order to enable specific time-related characteristics
like Polonium218’s tendency to lose mass over time). Processes are named
in order to make the model more understandable and easier to use and
construct. Now an explanatory model can be defined as a tuple

M =< P, I >

as above.
In this solution the variables in V and the functions in F are the method

by which the characteristics of a given process are represented. These
characteristics include the structure of the process and possible marks, i.e.
changes to the structure of the process, and transmit the structure and the
marks over space-time. If the process definition includes a variable for the
color of a rubber ball, that ball will be marked by painting it and changing the
value of that variable. That change would then be transmitted over the sim-
ulated space-time and the representation would fulfil the definition of MT .
Similarly the “variables with functions” representation obeys the principle
of structure transmission, and by being able to transmit their own structure
the representations are able to propagate causal influence from one space-
time locale to another and hence fulfil the definition of PCI. Naturally every
Ik ∈ I must fulfil the definition of CI.

Obviously the movement of a car, which is a causal process, has an effect
on the doors of the car — at least the effect of movement. Or consider a stone
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hitting one of the doors. Obviously causal processes on different levels can
have causal interactions with each other. It seems actually to be the case that
there is no limit for the level number difference between processes which
have causal interactions with each others.

In some cases the causal interaction is constant, but sometimes it is only
a possibility. The possibility of the causal interaction exists between any cup
and any table, but it actually exists only if the causal processes in question
fulfill certain characteristics (one example of that kind of characteristics is
the space-time locations of the processes). This makes Ik more a definition
of possible causal interactions than the actual interaction.

It can be said that the definitions of interactions are intentions of inter-
actions and actual interactions are their extensions. The general definition
of an interaction could be thought to be a demon which causes a real inter-
action to happen when certain requirements are satisfied.

3.5.2 Remarks on explanatory models

In the subsection above we defined the structure of explanatory models and
some other concepts. In this subsection we will consider some special se-
mantic and syntactic features of our explanatory model structure, and try
to clarify its intended interpretation.

In the explanatory model structure a causal process is a set of variables
and functions. The set is named by a term, and the naming relation defines
the characteristics of the process connected to the term. The mapping from
the name to the set defines the characteristics of the process. The map-
ping represents the intension of the name, and the set of the variables and
functions to which the mapping maps the name represents the extension of
the name. This means that a certain process, i.e. the set of variables and
space-time functions, can be named by several terms at a time and that the
set of terms can change over time. As the consequence of the possibility of
multiple names, N must be defined as a set of names.

One result of this characterization is that causal interactions and char-
acterizations themselves can make the process fall under different charac-
terizations at different times. Consider, as an example, a steel plate. If the
plate is crushed into another form, it is not a steel plate any more although
it is still steel and still the same process. Before crushing, the steel plate was
named by “steel” and “plate”, but after crushing that process is no longer
named by “plate” although it is still the same process. Actual processes do
not disappear although they can change into forms which may be very differ-
ent when compared to the original forms. Physical relations are not static.
A part of a machine can be removed, or a physical entity can be broken into
several pieces. Causal interactions can change the physical relationships be-
tween processes. This requires great flexibility from the simulation control
program which should allow such changes and maintain the reliability of
the system despite those changes.

Two models of two different chairs have very much in common despite
the fact that the chairs can be very different in some respects. A model
of every physical entity can include knowledge of atoms and particles, and
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knowledge of atoms and particles is very similar in any case. The relation
between knowledge used in two models could be said to mean that causal
processes on deeper levels are more and more alike conceptually, although
physically different. Two processes may have very similar structure and
definition. If models T1 and T2 are both models of pines, then they have
very similar knowledge on their lower levels. In other words, knowledge
used in a model is more common to other models on lower levels than it is
on upper levels.

In order not to give the impression that the only useful type of explana-
tory models includes knowledge of even subatomic relations, we have to
point out a quite obvious way of determining where to stop modeling. In
every case we start modeling by using a scientific theory according to which
we model. During the deepening of the model we will always end with a level
which cannot be defined without using a scientific theory that is different
from the theory according to which we started modeling. Such a change of
theories provides a suitable point in which we may stop modeling and still be
able to provide required robustness. If we are modeling a mechanical device,
e.g. a clock, we may be able to stop modeling when we have reached a level
on which we have exhausted the means of Newtonian mechanics. Explaining
that level would require entirely another kind of theory, and in many cases
such theories are not necessary in order to achieve the required robustness
or explanatory power. Note, however, that the number of scientific theories
used in a model depends on the pragmatic aspects of the modeling project,
and those aspects depend on the case considered.

There is often no need to compute the actual causal interaction on every
level of the model. The actual number of causal interactions required to
be computed depends on the model and the use of the model. Consider,
for example, the familiar fact that a metal table will support a coffee cup.
It is clear that the explanation of this fact involves the details of atomic
structure and the appeal to concepts as unfamiliar to everyday experience
as the Pauli exclusion principle (the example is taken from (Salmon, 1984)).
An explanatory model of the situation can be created, but a precise model
would include the atomic structure, and the workings of the atomic structure
would appear to be extremely difficult to be computed.

The computational problem can be avoided by hiding the atomic struc-
ture of the model from normal computations. Such hiding could be done by
using the method described in (Ahonen and Saarenmaa, 1991). If computa-
tions are necessary, the causal processes and interactions needed could be
created when required and disposed after the need has been met. The hid-
ing of the more precise structure of a model in order to avoid computational
problems seems to promise a solution to the question of the computational
effectiveness of causal models, see e.g. (D’Ambrosio et al, 1985).

3.5.3 The robustness of explanatory models

Although we would like to show that the structure of explanatory models
does provide robustness, we have to admit that it is not easy. The best we
are able to achieve is to discuss some features of explanatory models and
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the intuitively robust nature of those features.
A model should be able to function properly in new situations. From

the nature of models it is clear that robustness is actually provided by the
knowledge already present in the model, and the same seems to be the case
with the robustness present in estimations made by human experts. This
makes us to adopt a view very similar to Hacking’s (Hacking, 1967, 319).
According to Hacking you do not actually know something if you have not
performed the necessary inferences required to deduce it.

If we assume that the robustness of models is due to knowledge which is
used in a new way, we can understand the role of deep knowledge better. If
our assumption of the growing similarity of deep knowledge is true, then it
is tempting to conclude that new combinations of such basic knowledge, i.e.
deep knowledge, provide the robustness. Since very deep knowledge of one
model is very alike to similarly deep knowledge of another model, it may be
the case that such knowledge can be easily arranged in combinations that
provide the required robustness at the upper levels of the model.

We have considered the reasons for the robustness of models that use
deep knowledge, but we have not paid any attention to the robustness of
our explanatory models. We claim that explanatory models may provide
a uniform approach to domain knowledge, explanatory power and robust-
ness, because explanatory models employ only one concept — the concept
of causal processes. The concept of causal processes enables the modeler to
use uniform representations and a uniform way of thought throughout the
development of the model and maintain the explanatory power of scientific
knowledge. Causal processes provide a method by which more or less deep
knowledge may have similar conceptualization and representation notwith-
standing its depth.

The concept of causal processes has originally been developed to provide
a uniform approach to the study of scientific knowledge and scientific expla-
nation, and there seems to be no reason to assume that the same approach
could not be used in domain modeling. The causal process approach with
a suitable formalization may provide a very promising alternative by defin-
ing what kind of knowledge should be used and what kind of interactions
models include. Considering the nature of causal processes it is reason-
able to believe that representations of processes enable very different and
unanticipated causal interactions and mark transmissions to occur.

In the next section we will briefly discuss the creation of explanatory
models.

3.6 Building an explanatory model

In this section we will briefly outline how an explanatory model could be
built. Although the actual process of building such models is not covered
here, we will outline some of the major issues and pitfalls.
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3.6.1 Real systems and experimental frames

The choice of the domain to be modeled may seem to be an easy task. Un-
fortunately it is not — especially if we consider the requirements for the
domain.

Earlier we restricted our interest to the physical domains, i.e. the con-
crete world. If we consider physical domains only, we have to drop the
modeling of purely theoretical things like mathematics, arts and other non-
concrete artifacts. In other words, the domain must be one you can take a
piece off (probably not literally, but in the same meaning).

In addition to being limited to the physical world as his/her domain, the
modeler has additional limitations to his/her view of the structure of the
world. As discussed above, the modeler will consider processes in space-time
continuum — and those processes must be causal processes in the Salmonian
sense.7 The most significant feature of causal processes is their different
nature from normal conceptualization of processes in modeling, especially
in AI modeling (for a more usual approach, see e.g. (Drabble, 1993)) in which
processes are considered to be series of events occuring in the world of
objects. This is not the case when the world is conceptualized as causal
processes.

The causal process conceptualization of the physical world has no ob-
jects and no events in the traditional sense.8 Every physical object or phe-
nomenon is thought to be a causal process or a causal interaction between
such processes. Processes are not series of events, they are the basic struc-
ture of the world on which everything else is based. Processes have charac-
teristics which identify them and which make them behave in their specific
ways, but they are not objects.

The fundamental difference between objects and causal processes is in
their connection to the physical reality. It is much easier to decide that ob-
jects may be almost anything, not only something which really exists in the
physical world. One of the main reasons for using causal processes when
considering the world is that the definition of causal processes strictly de-
fines what there is in the physical world. Normal object-oriented approaches
do not impose such restrictions on the suitable domain. In order to make
the nature of the modeled reality and the usage of knowledge unambiguous
such restrictions are, in our opinion, required. Such restrictions are needed
especially if we want to maintain a coherent structure and uniformly inter-
pretable representation in our models.

The strict definition of the domain to be modeled and thorough thinking

7Note that all qualitative approaches to continuous causal processes suffer from the prob-
lems of qualitative modeling discussed in (Ahonen, 1994). All qualitative approaches handle
continuity in the same way (Bobrow, 1984), and hence approaches like the “Qualitative Pro-
cess Theory” of Forbus (1984) suffer from the same problems. Therefore Qualitative Process
Theory does not provide satisfactory means to achieve our goal, i.e. to be able to repre-
sent causal and structural knowledge in models which produce reliable numeric simulation
results.

8This makes causal ordering and other considerations presented by Iwasaki and Simon
(1994) unnecessary when dealing with physical systems. In this paper we do not, however,
attempt to say anything about the usability of those considerations when modeling other
domains.
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prior to commencing the actual modeling project are even more necessary
when modeling by using causal processes than other approaches. The ex-
clusion of all features and concepts which do not exist in the strictly de-
fined world of causal processes is a necessary step in order to make the
creation of explanatory models successful. This makes it necessary to focus
the possible experiments on the definition of the characteristics of causal
processes existing or potentially existing in the modeled domain and the
possible causal interactions between them. Such experiments may not be
easily planned or carried out. We do, however, leave the discussion of the
identification of causal processes existing in a specific domain out of this
paper, for such considerations we refer to (Salmon, 1984).

In the next subsection we will briefly consider what specific features the
usage of the causal process concept and explanatory models will require
from the base model created from the chosen domain and the experiments
done to it.

3.6.2 Base model

The definition of the domain and the possible experiments carried out in
order to find out more about the domain are themselves the first step in the
creation of the base model. It is very difficult and probably impossible to
make a distinction between the choice of the domain, the planning of the
experiments and the creation of the base model.

The definition of the domain to be modeled and the creation of the base
model seems to be a circular process. The first step is to decide to model,
for example, a tree and the second step is to start the creation of the base
model of the tree. During the creation of the base model the modeler has to
identify the causal processes and decide to model a specific subdomain of
the original domain (a needle is a good example of such subdomains if the
original domain is a pine).

The close relation between theory building and the choice of what ex-
periments to conduct has been discussed in the literature of the philosophy
of science, and it seems to be the case that it is very difficult to identify the
order in which those phases appear. Hence we will leave that discussion out
of this paper and only refer to the discussion in the field of the philosophy
of science.

In the next subsection we will briefly discuss the creation of the lumped
model from the previously defined base model. In addition to that, we briefly
consider the implementation of explanatory models.

3.6.3 Lumped model and computer implementation

Unfortunately the base model of the domain cannot ever be fully known,
and that makes it very difficult to produce robust models by simplifying
theories which are already incomplete. Fortunately it seems to be the case
that scientific knowledge is, in many cases, fairly robust.

Many scientific theories are fairly robust,9 and in our opinion they are
9This is because they are themselves conceptually or empirically testable, either directly
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robust because they attempt to offer a testable explanation to the ques-
tions regarding the structure and behavior of reality10. Such theories are,
of course, members of one type of models. The apparent use of theories
in explanation may help us to reduce the possibly very large set of domain
theories into an implementable lumped model.

As discussed above, the most viable point to stop modeling is when the
modeler should change the theory of the domain. If an explanatory model of
a mechanical device has been defined according to Newtonian theory and in
order to deepen the model the modeler would need to use quantum mechan-
ics, then that level would be an obvious level to stop modeling. In that way
several layers of scientific theories of the domain could be dropped from
the lumped model, although those theories are important parts of the base
model. Note that the base model could, in our opinion, be created by using
multiple levels of specification and theoretical accuracy — of course all the
theories should be able to be used to model the structure and behavior of
the domain according to the concept of causal processes.

The actual computer implementation of an explanatory model would
not be an obvious task to be completed using a conventional language like
FORTRAN 77. The most interesting alternatives seem to be various object-
oriented languages, but even with them there are some conceptual prob-
lems. The most difficult problem with object oriented languages is that they
are mainly event-oriented and causal processes are, by definition, continu-
ous and the simulation of causal processes should proceed over constantly
flowing time, not as series of events.11

In order to make the task of implementing an explanatory model easier
it might be a good idea to develop a specified programming environment
and a specific language for the task. The language should directly support
the concept of levels and other features of explanatory models. In addition
to supporting the features of causal processes, the language should include
methodologies to connect the implemented model structure and behavior
to an explanation generation system of some type.

3.7 Discussion

It is plausible that the cognitive models used by humans are very robust be-
cause of the human ability to connect different items of knowledge in new
ways. If we assume this, it is easy to conclude that robustness of domain
models may be based on the same method. The obvious way to introduce
robustness to domain models seems, in that case, to depend on the con-
ceptualization and representation of domain knowledge. Such conceptual-

or indirectly (Bunge, 1973, 27-43).
10This discussion is outside the scope of this paper and its fundamental aspects and prob-

lems are left to people who have specialized in those problems. In this paper we attempt only
to use one specific point of view of the scientific knowledge, namely that scientific knowledge
consists of explanations.

11A direct application of the methods used in qualitative simulations of continuous pro-
cesses, e.g. QSIM (Kuipers, 1985), is not very promising because those methods are more or
less directly connected with the philosophical assumptions behind qualitative modeling.
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ization should provide a versatile and uniform enough approach to domain
knowledge and its representation. In addition to that, the conceptualization
should be able to ease the discomfort that Iwasaki and Simon (1993) express
about the subjective and arbitrary representation of causality.

The concept of causal processes provides a uniform view to domain
knowledge, and it is not very difficult to develop a framework for the mod-
eling of causal processes and their features. This should enable us to follow
a clear path in our modeling activities, and it is reasonable to assume that
models with enough levels and accurate descriptions of processes and the
features of processes are robust. Unfortunately this is not obvious, although
most of the writers that have discussed deep knowledge have adapted a sim-
ilar point of view to modeling with deep knowledge.

The uncertainty concerning the robustness provided is due to the fact
that we do not actually know how human experts generate new combina-
tions of knowledge. If it is done by methods that work like normal logic or
straightforward simulation, then there should not be any problems. But if
the only method is induction, our attempts to develop models robust enough
to be comparable to the cognitive models used by human experts may be
void.

Another hazard with the use of the concept of causal processes may be
that the concept of causal processes seems to be extremely difficult or even
impossible to formalize fully with descriptive methods. It may be possible
that the nonlogical modalities and counterfactuals present in the definition
of causal processes prevent exact formalization (Fetzer, 1987). This prob-
lem does not, however, make the use of the concept of causal processes
impossible, it may only complicate it by giving more responsibility to the
modeler.

The modeler’s difficulties should, however, be manageable because the
structure of explanatory models is surprising simple. By using that simple
structure and uniform conceptualization of physical reality, the creation of
robust domain models should be possible and resulting models would ful-
fil the requirements defined by Hayes (1979). Thoroughness is an inherent
feature of causal processes because they are the basic structure of the phys-
ical reality, and fidelity and density are directly supported by the definition
of the explanatory model structure. In order to make such models work,
the amount of detail has to be fairly high and a working model would in-
clude relatively many facts when comparing their number to the number
of concepts. Uniformity is, also, an inherent feature of explanatory models
because everything existing in the physical reality is modeled by using the
causal processes conceptualization.

One additional benefit of the concept of causal processes is that if quan-
titative models were developed according the approach, it could be possible
to provide a natural connection between numeric simulation models and
the representation of physical causality and structural knowledge. If there
were a method to naturally include causal and structural knowledge into
numeric simulation models, it should be much easier to provide the con-
nection requested by Clancey (1992) and Kuipers (1993). That connection
could enable us to create numeric simulation models which would include
the best features of both qualitative and quantitative approaches and which
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would not suffer from the shortcomings of qualitative approaches discussed
in (Ahonen, 1994).
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Chapter 4
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Abstract

One of the most important benefits of the newest modeling paradigms
used mainly in AI research is their ability to enable the use of structural
and causal knowledge in models. Structural and causal knowledge has,
however, been mainly used in qualitative modeling, and the use of those
types of knowledge has not been common in quantitative, more tradi-
tional modeling and simulation. In this paper a structural and causal
approach to the development of quantitative models is developed from
Salmon’s approach[39] [40] to causal knowledge. The approach is tested
by an experimental model of Scotch pine which is implemented by us-
ing the developed implementation language and modeling environment.
The developed approach is suitable for both discrete and continuous
modeling and it enables modular modeling.

4.1 Introduction

In simulation and fault diagnosis in which models of the physical reality are
used there is one obvious requirement for the domain model, namely that
the model should be able to function as the modeled phenomenon in every
case. Unfortunately the method by which this can be achieved is not clear,
although some results and authors from the AI field speak in favor of so-
called deep knowledge (one of the first articles in which that term has been
used was [6]). Unfortunately deep knowledge has not been defined very well,
and from that vagueness it naturally follows that one of the problems with
deep knowledge is that we do not know what it is although we know what it
should do, i.e. make models behave more like the modeled phenomenon or
object. The most plausible approaches to robustness and deep knowledge
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use are causal and structural knowledge of the domain. Causal and struc-
tural knowledge has been successfully used to strengthen the robustness of
models, see e.g. the articles in [44].

The use of the term deep knowledge seems to be closely related to the
idea that we cannot create practical AI systems without turning our atten-
tion to the physical reality around us. Hayes proposed the use of models
of the physical reality as a method of avoiding the problem of too simple
and simplified problem domains [18]. In addition to the interest in phys-
ical domains Hayes said that reasoning is not enough, from which it may
be concluded that an intelligent system would include both reasoning and
knowledge of the physical reality. The distinction between reasoning knowl-
edge and domain knowledge is sometimes very vague because a great deal of
the reasoning knowledge can be, according to Clancey [7], considered to be
qualitative domain knowledge. If we, however, make the division, it leads us
to adopt the idea of model based reasoning, according to which the descrip-
tions of domain and reasoning are kept separate. The model based reasoning
approach does not determine the implementation [36], which seems to be
especially useful in fault diagnosis and other fields that require the use of
real-world models (see e.g. [11], [24], [32], [47], [35], [9], and [1]). Our interest
is in the modeling part of such systems. It is, however, worth stressing that
our main interest will be in quantitative domain models, i.e. models which
produce numeric results, and not so much in qualitative models. See e.g.
[44] and [27] for definitions of qualitative models. The definition of qualita-
tive models and modeling has been left out of this paper because qualitative
modeling can be thought to be a clearly different field than our main interest,
which is to make traditional quantitative modeling more expressive. This
distinction is very important because now we can leave qualitative consider-
ations of our modeling approach, e.g. Clancey’s [7] operators of qualitative
modeling can be left out because Clancey left quantitative models out of his
considerations. One thing to notice with quantitative and qualitative models
is that qualitative models, which are weak in producing exact quantitative
answers [15], can be thought to represent the reasoning oriented side of
modeling and simulation, and quantitative models are the traditional sim-
ulation models which are good with exact answers. If qualitative models
may be considered to be on the reasoning side of the model-based reason-
ing approach, quantitative models may be thought to represent the modeled
phenomenon or object only, not the reasoning associated with the use of the
model.

In order to enable quantitative models to be robust, we have to approach
domain knowledge and its usage from a point of view which allows us to
use the quantitative knowledge in a new way. This principally means that
we have to approach the task from a knowledge-oriented point of view,
and forget the normal technically oriented approaches which seem to cause
the simulation approaches to pay less attention to the structure of domain
knowledge.

In the following sections we will develop a modeling approach to quan-
titative modeling. The approach is developed to be able to incorporate both
structural and causal knowledge into quantitative models. We believe that
with a suitable approach to the quantitative modeling and simulation it is
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possible to avoid most of the problems associated with traditional simula-
tion codes and to achieve a methodology which fulfills the modularity re-
quirements presented in [8].

4.2 An approach to modeling knowledge

We think that it is necessary to develop also numerical approaches to the
knowledge representation, because purely symbolic methods are not suffi-
cient to represent the workings of the physical world.1 Despite all super-
ficial differences both AI systems and simulation systems include models,
simulation systems by definition and all AI systems according to [7]. Hence
the distinction between knowledge representation in the traditional AI sense
and knowledge representation in the traditional simulation sense is not very
clear, although some rough division can be made on the basis of the intended
usage of the models [30]. There is clearly a need for a representation which
could connect both approaches [26]. In this section we will, however, con-
sider one approach to the scientific knowledge. The approach considered
seems to connect the structural and causal aspects of qualitative model-
ing and allow quantitative aspects to be derived from the function of such
structural aspects.

In our consideration the term physical reality means the concrete world.
Similarly a real-world phenomenon or a real-world object is a phenomenon or
an object which exists or can potentially exist in the physical world. A model
is a representation of the physical reality. Such representations are simpli-
fications of the physical reality, and as simplifications they will not produce
reliable information on every aspect of the phenomenon being modeled [29,
p. 2]. Our definition of models differs from the normal definition in its clear
nature as a representation of the physical reality (see e.g. [16] for the normal
approach).

Models should be designed in a way that they do not lose their modeling
ability even in new situations. The obvious way to achieve this goal is to
develop models by using the knowledge that is required to determine the
behavior of the model in as many new situations as possible and do it despite
the fact that models are simplifications (note that the models of human ex-
perts are that also). We will call such knowledge deep knowledge because it
can be said to go beyond the surface of the knowledge on which our models
are based. Deep knowledge is knowledge that defines the structure and be-
havior of the phenomenon or the object considered and provides the basis
on which robustness may be founded.2 In this paper we have incorporated
deep knowledge into quantitative models, as will be seen later.

1See [5] for a discussion about possible problems present in the qualitative modeling
approach.

2For a discussion on the nature of deep knowledge, robustness and modeling knowledge
and their definition we refer to [4].
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4.2.1 What modeling knowledge should express?

One of the most important features of modeling in expert systems and other
systems is the ability to include some type of capability to express causality.
Note that the ability to represent causality has not often been considered in
the connection of quantitative i.e. numeric models. It is, however, very prob-
able that in order to use and represent causality throughout the system (e.g.
an expert system), the quantitative part of the system should also be able to
express causality. We should realize that causality is not an easily definable
feature of the reality.3 Most of the knowledge representation practitioners
should agree with at least some of the following assertions (these assertions
have been listed by Dowe [12]):

1. causality is an objective feature of the world;

2. causality is a contingent feature of the world;

3. a theory of causality must be consistent with the possibility of indeter-
minism;

4. the theory should be (in principle) time-independent so that it is con-
sistent with a causal theory of time;

5. the theory should not violate Hume’s strictures concerning “hidden
powers”.

Assertion 1 reflects the discomfort that Iwasaki and Simon [22] express
about the subjectivity of the representation techniques used to express causal-
ity in physical systems. The subjectivity of the causal interpretation is, how-
ever, a two edged sword.

Although the existence of the objective causality in the physical world
could be considered to be a fact (at least in the light of our philosophical
standpoint), some fundamental aspects of the nature of any model may
impose problems for the representation of objective causality. First we have
to remember that models (especially the computer models which we are
interested in) are representations of the physical world, not pieces of the
world. As representations those models are limited by the representation
technique and the philosophy behind that technique.

The normal techniques used to represent causality often seem to be
intended to capture the layman’s concept of causality.4 This approach to
causality severely suffers, however, from its concentration on the layman-
aspects of causality because there is not even one real guarantee about the
usefulness of such an approach in the light of the five assertions about
causality. It is actually possible that the layman’s causality does not agree
with even one of those assertions.5

3For this it is sufficient to point out the long-running philosophical discussion about on-
tology and causality.

4To us the discussion about the origins of the qualitative modeling in[5] shows that beyond
any doubt.

5Hume’s famous criticism of causality seems to be directed against the layman’s causality,
i.e. the type of causality used in qualitative modeling. We will not, however, discuss Hume’s
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Layman’s causality is not objective, and some other approaches are re-
quired in order to produce a large set of useful models that are properly
designed according to the scientific knowledge of the modeled object or phe-
nomenon. This is because layman’s causality is normally event oriented, and
the causal ordering of such events may not be the same in common sense
assumptions of the reality and the scientific conceptualization of the same
reality. We believe that the common sense modeling of the world is not suf-
ficient for many purposes, and that in order to achieve as much robustness
as possible we should use a properly defined conceptualization of scientific
knowledge.

The contingent nature of causality does not require clarification. The
requirement of indeterminism is, however, more problematic. This require-
ment is very important, although it has not been considered with the se-
riousness it requires. It is interesting to note that in normal AI modeling
approaches indeterminism has not received very much consideration, it has
often thought to be covered by probabilistic considerations. This may be
because most of the domains used in AI system development have not often
included any indeterministic features. The possibility of strong indetermin-
ism is, however, a very important requirement because there are fields in
which most of the features are indeterministic.

The time-independence of causality is also an important aspect. As
said in the assertion, the time independence allows the use of different ap-
proaches to time, although such time related theories may not be relevant
for expert system building.

Although Hume’s criticism against causality is important beyond doubt,
it and its implications will not be considered here. Discussions about the
Humean arguments are left to those who are better educated in these mat-
ters.

In the next subsection we will briefly consider an approach to domain
knowledge, in this case scientific knowledge. We believe that the approach
presented in the next subsection fulfills the five assertions, although some
doubts of that have been expressed in the philosophical literature, see e.g.
[12] and [13]. From our philosophical point of view the following approach
is, however, a valid one.

4.2.2 The Salmonian Approach to Modeling Knowledge

The use of causality in different forms is actually very tempting. The con-
cept of causal relations may be very explanation and cognitively plausible.
Actually there seem to exist different levels of explanatory and probability
in causal explanations (see e.g. [41]), which implies the versatile nature of
causal explanation.

Probably the most useful approach to define the features of the physical
reality spoken about is proposed by Salmon [39], who proposes the concept
of causal processes instead of causal events. Of causal processes he says
that

considerations longer, we are satisfied by referring to the literature of the philosophy of
science.
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‘Causal processes propagate the structure of the physical world
and provide the connections among the happenings in the vari-
ous parts of space time. Causal interactions produce the struc-
ture and modifications of structure that we find in the patterns
exhibited by the physical world. Causal laws govern the causal
processes and causal interactions, providing the regularities that
characterize the evolution of causal processes and the modifica-
tions that result from causal interactions’ [39, p. 132]

The concept of causal processes is not, however, very clear; many of their
features have to be defined with more precision. Those features include
mark transmission, structure transmission, the principle of causal influence,
and causal interaction. The original Salmonian approach has been consid-
ered in the light of deep knowledge, robustness and domain modeling in [5]
and[4]. In those articles the reasons for structural quantitative modeling and
the use of the Salmonian approach are discussed, and for that discussion
we refer to those articles.

Due to Dowe’s [12] criticism Salmon[40] changed his theory in a way that
makes Dowe’s criticism void. In that paper Salmon outlined the following
propositions for causality [40]:

1. A process is something that displays consistency of characteristics.

2. A mark is an alteration to a characteristic that occurs in a single local
intersection.

3. A mark is transmitted over an interval when it appears at each space-
time point of that interval, in the absence of intersections.

4. A causal interaction is an intersection6 in which both processes are
transmitted beyond the locus of the intersection.

5. In a causal interaction a mark is introduced into each of the intersecting
processes.7

6. A causal process is a process that can transmit a mark.

From the above propositions Salmon did rephrase the definitions. Some of
the rephrasing was done according to Dowe’s criticism [12] and other parts
had been presented in [40]. The first new definition is:

Definition 1 A causal interaction is an intersection of world-lines which in-
volves exchange of conversed quantity.

Definition 1 is a substitute for Salmons original definition of causal interac-
tion (CI) used in [4].

6In Salmon’s vocabulary an “interaction” is always a causal one, but “intersections” can be
causal or non-causal.

7This can be construed as a definition of “introduction of a mark”.
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Definition 2 A causal process is a world-line of an object that transmits a
nonzero amount of an invariant quantity at each moment of its history (each
spece-time point of its trajectory).

Definition 3 A process transmits an invariant (or conserved) quantity from
A to B (A ≠ B) if it possess this quantity atA and at B and at every stage of the
process between A and B without any interactions in the half-open interval
(A, B] that involve an exchange of that particular invariant (or conserved)
quantity.

Salmon proposed that scientific explanations should use the concept of
causal processes as the basis, and that actual explanations are linguistic de-
scriptions of chains of causal interactions and mark transmissions. Note
that the Salmonian approach to causality pays no attention to the distinc-
tion between discrete and continuous systems. In the following section we
will consider how the Salmonian concepts may be used as the theoretical
foundation on which causal models could be based.

4.2.3 From the Salmonian approach to implementable models

The existence of a theory is not enough when the purpose is to develop an
approach to building computer models for simulation. The next step is to
develop a way to represent knowledge, which is constructed according to the
theory in such a manner that it can be expressed in a computer program. In
the case of the Salmonian theory of the causal structure of the world it is
tempting to adopt the most obvious way to represent causal processes. Such
an approach may use variables to represent the characteristics of processes
and procedural or functional structures of representing the interactions be-
tween different processes. In this subsection we will briefly outline how we
will build models based on Salmonian concepts, for a more philosophical
discussion we refer to [4].

In order to allow processes to be divided into subprocesses we introduce
the concept of levels to our models. The subprocesses of a particular process
are on lower levels than the process itself. Because causal processes have to
be named (if not for any other reason, then to make the life of the modeler
easier), we can consider the names of the processes to form a network in
which pointed arcs start from the processes on upper levels and stop to
the processes on lower levels. Note, however, that a particular name can
represent a subprocess common to two or more processes on upper levels,
like the atoms in different models of chairs. This can be formalized as

M = (P,A)
in which P is the collection of the processes and A is a collection of ordered
pairs of those processes. The ‘arc’ from name Pi to Pj can go through more
than one level. Since in a model of e.g. a forest there very probably is more
than one tree of a type, we have to consider the names of the processes as
discussed above to denote types of processes.

In the definition of causal processes Salmon used the term characteristics
of processes. In a computer model such characteristics are represented by a
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set of variables and their values. If the values of the variables change due to a
change in the space-time coordinates of the process, then the characteristic
of a process includes the function of that change in addition to the variables
themselves. Now a process Pi can be defined as a tuple

Pi =< Ni, Vi, Fi, Si >
in which Vi is a set of variables used to represent the process, Ni is the
name of the process, Fi is a set of functions used to determine the space-
time related changes, and Si is the set of the subprocesses of the process
Pi.

Between processes there are causal interactions. Such interactions can
be defined between the process types. Now we can define a model as a pair

M = (P, I)
in which I denotes the set of causal interactions. The set of causal interac-
tions can be defined as

I = {< pi,pj, ci,j > |pi ∈ N;pj ∈ N}
in which ci,j denotes the effects of the causal interaction between processes
pi and pj on both processes, and N is the set of the names of processes, i.e.
Nk ∈ N.

At this point we have defined a kind of “skeleton” for representing Salmo-
nian models. In the following section we will briefly consider the traditional
approach to modeling and connect that approach to our skeleton in order
to produce usable models.

4.3 Modeling with causal processes

From the normal knowledge representation literature it is possible to get
the impression that the greatest part of interest is in different technical
aspects of the developed approach and not so much in the philosophical
approach to domain knowledge and the combined benefits of that approach
and its technical incarnation. Unfortunately the same problems seem to
plague traditional simulation literature, see e.g. [43], [20], and [29]. It is
interesting to note that according to Kiviat [23] there have lately been serious
discussions about the relative benefits of the use of C or Pascal as a modeling
language. This is quite astonishing. We will, however, concentrate on the
theoretical part of the issue.

Now we will approach the creation of our causal process modeling ap-
proach by starting from the conventional approach to the modeling project.
Normally the modeling project has been considered to be defined as the
following steps [48]:

1. the “real system”, a source of potentially observable data;

2. the “experimental frames”, a set of limited observation or manipulation
cases for the real system;
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3. the “base model”, a comprehensive model of the system in every ex-
perimental frame;

4. the “lumped model”, a simplified version of the base model, which is
simplified in a way that still provides the robustness of the original
base model in interesting cases.

5. the “computer model” which implements the base model in a computer
programming language on a machine.

We will not consider the origins of the above steps. For an interested reader
we recommend the original book [48].

After comparing the modeling project steps to our formalization of the
Salmonian models, it is obvious that our formalization represents the base-
model step. Although the formalization can be used to represent the base-
model, it does it in a theory-like way. In such a theory-like model the real
system(s) and experimental frames are combined into a Salmonian theory of
the causal structure represented as the base model. In that sense our third
step is modified to a theory representation step during which a causal theory
of the real system is represented according to the Salmonian formalism.

Obviously the computer model is even more clearly an abstraction than
the base model mentioned above. The interesting thing in the abstraction-
related nature of computer models is that very often the abstractive nature
has been taken so for granted that traditional modeling literature has not
paid enough attention to the possibility of developing methods to shorten
the gap between the real world system (or phenomenon) and the computer
model of the system, although AI research has been interested in imple-
menting causal and structural knowledge into models in order to do just
that. In order to shorten the gap between normal modeling and AI modeling
the traditional modeling steps should be changed in a way which reflects
the changed approach to domain knowledge. Hence the transition from the
base model to the lumped model should not be done at the expense of the
accuracy of the model.

Because our third step is modified into a theory representation step,
the previous two steps have to be reconsidered. The first step does not
require any modifications, but the second one is now transformed into a
domain theory formation step. Note, however, that in this approach we do
not pay any attention to the role of theories in the choice of the real system
to be modeled, the construction of the “experimental frames”, the choice
of the data to be observed etc. Discussion of those roles of theories are
beyond the scope of this paper and that discussion is left to thosee who
are better educated in these matters. Although the theory formation step is
very important, we will not propose any method for theory formation, we
will only recommend philosophical literature of the formation of scientific
theories for interested readers.8

The next step, the fourth step above, is now changed into a model for-
mation step in which the general theory of the domain (developed in the

8Lakatos has written very good articles about research programmes etc, and those articles
also include important hints for theory formation. See [28].
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previous step) is used to generate a working model of the system. This step
involves the change from a generalized domain theory (like Newtonian me-
chanics) to a case-oriented representation of the modeled system. In such
a representation the modeler has to decide how he/she will use the domain
theory in order to produce the actual simulation of the modeled case.

In order to make that transition more obvious, we will consider the fol-
lowing example (which is, in fact, used through this article). Let us assume
that we intend to simulate a pine. (Note that the considerations of the actual
structure and workings of pines presented in this article are, due to the lack
of decisive biological knowledge, very probably erroneous and wrong to a
biologist or a forest researcher, but the model of a pine is used because it
provides a complex enough example to outline the method even with a very
naive pine-model.) After some consideration it is possible to find out that
in a pine there are at least three different types of causal processes, namely:

• needles,

• shoots, and

• buds

which could be used to represent any pine. Note that the reproduction mech-
anism and parts below the ground surface have been left out for simplicity’s
sake.

Generally, in any pine, the growth of the tree proceeds according to the
following cycle:

1. a shoot grows a bit, and new needles grow to the growing shoot;

2. after a shoot has grown a while, buds grow to the top of the shoot,
and no new needles appear to the shoot and the shoot does not grow
length any more after its buds have grown (the shoot may still grow
thicker, however), and a shoot dies if it has no needles and no younger
shoots connected to it;

3. a bud changes into a tiny shoot, and the cycle starts again.

After looking at pines it must be noted that generally step three precedes
our first step, and that the climate seems to dictate when the steps occur.
From this we can identify at least one causal interaction — the interaction
between some aspect of the “climate” and the pine (such an interaction is
obvious from our knowledge of plants: a plant requires heat and light in
order to grow and go on living).

The ground can be considered to provide growth potential to the tree
which reduces that potential near itself. Now we have identified a new in-
teraction between our tree and “ground”.

The needles get heat and light from “climate” and the potential from the
shoot the particular needle is connected to. Similarly the needle provides
the shoot with growth energy. Shoots transfer energy and potential to each
others (potential goes upwards and energy downwards) and provide growth
energy to the bud. Now we have identified several simple interactions and
processes for our model.
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According to the formalism of Salmonian models our theory of pines
could be expressed as:

Mpine = (P, I)
in which

Ppine = { < shoot, Vshoot, Fshoot, {} > ,
< needle, Vneedle, Fneedle, {} > ,
< bud, Vbud, Fbud, {} > }

and

Ipine = { < shoot,needle,potential+energy transfer > ,
< shoot,bud, energy transfer > }.

From the pine model it should be noted that there really is no interaction
between all the subprocesses of the pine. Similarly the above model pays no
attention to the interactions between the climate and the needle or between
the ground and the pine.

In order to model the interaction between the ground and the pine we
may introduce the model of “stand” in which

Pstand = { < pine, Vpine, Fpine, {} > ,
< ground, Vground, Fground, {} > }

and the potential-transfer occurs between the processes “pine” and “ground”
instead of occuring between a “shoot” and the “ground”.

Because we consider the causal interaction between “ground” and “pine”
to appear between a more or less homogeneous “ground” and “pine”, we will
consider our “needles” etc to be subprocesses of “pine”. Now the processes
“needle”, “shoot”, and “bud” are on a lower level than “pine” and “ground”.
In other words, the processes in Ppine constitute the process “pine” in the
process “stand”, i.e.

Pstand = { < pine, Vpine, Fpine, Ppine > ,
< ground, Vground, Fground, {} > }

and similarly

Istand = { < shoot,needle,potential+energy transfer > ,
< shoot,bud, energy transfer > ,

< pine,ground, the transfer of potential > }.
Although the relation between Mpine and Mstand is that the model of the

stand includes the model of the pine (this can, obviously, be used to provide
modularity), i.e.

Mstand = (Pstand, Istand).

when Pstand is as above. The transfer of potentiality from “ground” to an in-
dividual “needle” is not clear yet, as no interaction between processes which
belong to Ppine and Pstand, i.e. interactions between levels have been defined.
In order to allow that transfer to happen we have to remember that an in-
dividual process has a set of variables which are used to represent its char-
acteristics. Due to this, we may consider the potentiality to be transfered
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to the “pine” and from the “pine” to the “shoot”. Now we have, however, to
add one interaction to Istand and now

Istand = { < shoot,needle,potential+energy transfer > ,
< shoot,bud, energy transfer > ,

< pine,ground, the transfer of potential > ,
< pine, shoot, the transfer of potential > }.

It is much more problematic to introduce “climate” to the model. For the
sake of consistency we should have “climate” on the same level as “ground”,
but that might present new problems because there is no interaction (at least
according to our thinking as seen later on) between “climate” and “pine”.
Ignoring that we now have

Pstand = { < pine, Vpine, Fpine, Ppine > ,
< climate, Vclimate, Fclimate, {} > ,
< ground, Vground, Fground, {} > }

and

Istand = { < shoot,needle,potential+energy transfer > ,
< shoot, shoot,potential+energy transfer > ,

< shoot,bud, energy transfer > ,
< needle, climate, energy transfer > ,

< pine,ground, the transfer of potential > ,
< pine, shoot, the transfer of potential > }

in which the energy transfer between “climate” and “needle” means both
light and heat. For modularity reasons the interactions “shoot-bud”, and
“shoot-needle” could be included in Mpine and not in Mstand, but for simplic-
ity’s sake they have been defined in Mstand.

At this point we will not specify when a “bud” decides to grow a new
“shoot” during the spring. Being a naive modeler we will consider it to have
at least two different alternatives:

1. there is an interaction between “climate” and “bud”; or

2. growth starts when the energy transfer between “bud” and “shoot” can
happen, i.e. after “needle” has been able to produce energy.

The second alternative is intuitively much more tempting, although the first
alternative is the one used. We will, however, return to this later on.

At this point we have developed the lumped model of our “pine”. (Note,
however, that all the actual variables used to represent a process and func-
tions associated with the characteristics of processes have been left out of
our considerations. We believe it reasonable to leave such details out of the
example model because at this point the example is not intended to produce
a real model which could be used in forest research, but rather as an illus-
trative example of our modeling approach.) Currently we have completed
the act of theory representation related to the third of the model building
steps, we should proceed to the fourth step, the model formation step.



69

In the third step we fitted the domain theory to the modeling approach.
Now we should consider how an actual model could be expressed according
to the modeling approach. In addition to the domain theory, there should be
a method to simulate multiple “pines” at a time by using the same domain
theory. In order to achieve that, we introduce the concept of working model
to our approach. A working model WM is a pair

WM = (M,A)
in whichM is a model as above and A is a set of actualizations or instances9

of the processes modeled in M .
In order to enable the creations of those actualizations the modeling

system has to provide some operators to create and destroy those actual-
izations. In other words, there should be a create-process operator to create
processes. In addition to the process creation operator there should be an
operator for process destruction.

The operators create and delete are required for setting up the simula-
tion and for doing the destruction or creation of certain types of processes
prior to or during the simulation. Such operators (and other operators) could
be included as

1. a separate control section to coherently handle the creation, deletion,
and other things done to the actualizations; and

2. integrated parts of the descriptions of the processes.

The inclusion of a separate control to the working model should be an easy
task, it would require only one additional part to the definition ofWM , which
now is

WM = (M,A,C)
in which C stands for a control block. The inclusion of the operators in
the definitions of the processes in M can be done by allowing the F of the
process definition to include such operators.

At this point we may collate our definition of the model structure to
a single representation. A working model, WM , is a model which is ready
to be implemented. Such a working model is a triple WM = (M,A,C), as
above, in which M denotes the model of the domain theory, A denotes the
set of possible actualizations of processes modeled in the domain theory,
and C denotes a sequence of control operations performed in order to have
the working model behave as intended. The domain theory model is a pair
M = (P, I) in which P is the set of definitions of individual processes of
the model, and I is the set of definitions of the causal interactions modeled.
Now a process Pi can be defined as a tuple

Pi =< Ni, Vi, Fi, Si >
in which Vi is a set of variables used to represent the process, Ni is the
name of the process, Fi is a set of functions used to determine the space-
time related changes, and Si is the set of the subprocesses of Pi. The set of

9Note that the term instance is not used in exactly the same manner as it is used in object-
oriented programming.
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causal interactions can be defined as

I = {< pi,pj, ci,j > |pi ∈ N;pj ∈ N}

in which ci,j denotes the effects of the causal interaction between processes
pi and pj on both processes, and N is the set of the names of processes,
i.e. Ni ∈ N. Note that pi can be of the same process type as pj . Note, also,
that the causal process modeling approach makes no distinction between
discrete and continuous simulation. This enables a wider usage of the ap-
proach.

After the above modifications to the original modeling process steps we
have got the following steps instead the originals:

1. the “real system”, a source of potentially observable data, the real sys-
tem is chosen according to existing scientific theories;

2. the “domain theory formation”, during which the theory of the domain
is created either by using pre-existing knowledge or by experiments
and observations;

3. the “domain theory representation”, during which a comprehensive
model of the system according to the theory is formalized following
the Salmonian approach to the scientific knowledge;

4. the “working model definition”, the domain theory representation added
with the considerations of how the actual system works in the accuracy
of actualizations and the chosen time-frame;

5. the “computer model” which implements the working model in a com-
puter programming language on a machine. For us this means the
implementation of the working model in a special causal process pro-
gramming language.

Above the modeling steps have been redefined according to the causal
process modeling approach. Although the actual implementation technique
has not yet been defined, the developed approach to the model definition
seems to be able to produce the benefits of modularity by providing a way
in which a process can include subprocesses i.e. construct modules (see [8]
about the modularity in process modeling), in addition to a conceptually co-
herent approach to domain knowledge. In the next section we will consider
how to make the theory practically usable.

4.4 Programming with causal processes

In the earlier section we considered a simple way of representing Salmonian
causal processes. In this section we will develop a system for representing
causal processes, implementing them as programs, and we will consider a
very simple example of the adaptability of the modeling system by imple-
menting a simple model of Scotch pine. Note, however, that the model of
the pine is not intended to be an exact model of a pine as an exact model
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would be defined in forest research — the model is intended to be used as
an example of the power of the modeling approach.

Of the generally known knowledge representation techniques, two seem
to have some promise of being useful for the implementation of Salmonian
models. Those techniques are frames and object-oriented programming.

The first technique, frames, proposed by Minsky [31] may be one of the
most powerful knowledge representation techniques developed. A frame is
thought to represent a set of stereotyped situations represented by a net-
work of nodes and relations. This is, at first glance, very promising, but
our concepts of setting up the simulation and instances of models do not
seem to be very well suited for frames because simulations are dynamic and
changing over the simulated period of time. That leaves the object-oriented
programming approach.

From the object-oriented point of view we may consider our theory-
level models to be the definitions of classes and runtime models to be in-
stances. This is not, however, completely satisfactory because objects are
event driven and causal processes are time driven. In the world of objects
(like in an object-oriented program) an event causes something to happen
in the object in question, and the object may send more messages (events)
to other objects which will react to those events. But in the world of causal
processes the driving factor is time, not a set of events. Hence we have to
define a new approach to the implementation of causal process models. In
the following subsection we will outline one approach to the implementation
of our domain models.

4.4.1 Implementing causal process models

The conceptual structure of causal process models has been defined above,
and in order to be able to implement such models we have to develop either
an approach to the implementation using conventional programming lan-
guages like FORTRAN, C, or Pascal, or develop a new programming language
to be used for the implementation of such models. We chose to develop a
simple hybrid language for implementation.10

The working model included three parts: control block, process models,
and actualizations. If we consider the model to be defined as one program
text, the model implementation program is like:

• one or more process definitions;

• a control block definition.

As a syntactical definition this could be expressed as

WORKING_MODEL := {PROCESS_DESCRIPTION}+
CONTROL_DESCRIPTION

in which {. . .}+ denotes one or more PROCESS DESCRIPTION. Because the
original working model definition proceeded from the domain theory defi-

10By a hybrid language we mean that the language includes features of the host language
on which the implementation language has been built.
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PROCESS_DESCRIPTION :=
’A PROCESS’ NAME
’VARIABLES’ NAMELIST
’CHARACTERISTICS’
’INITIAL’
’(’ INITIAL_CHARACTERISTICS_DESCRIPTION ’)’
’CHANGING’
’(’ CHANGING_CHARACTERISTICS_DESCRIPTION ’)’

Figure 4.1: Syntax for process implementation

nition to the control block definition, we will consider the implementation
of processes first.

As above, a process is principally a collection of variables with func-
tions to define the characteristics of the process. In other words, Pi =<
Ni, Vi, Fi, Si > requires a simple syntactical structure as in Figure 4.1 in
which the words between single quotes denote reserved words which are
parts of the implementation language. After ’A PROCESS’ comes the name
of the process, i.e. NAME is Ni, the set of the names of the variables comes
after ’VARIABLES’, and the definition of characteristics comes after ’CHAR-
ACTERISTICS’.

When a process is created it has to have initial characteristics. The char-
acteristics implementation has, therefore, to be divided into two parts: the
initial characteristics implementation, and the implementation of the defini-
tion of the characteristical changes of the variables of the process. Although
the characteristics have originally been developed as a set of functions, it is
much more convenient to allow modelers to implement those characteristics
as program code affecting the values of the variables. No implementation
language for that code is defined because currently the host language is used
to implement such codes, as seen in the following subsection.

In order to make the work of the model implementer easier, the descrip-
tion of causal interactions should be included in the textual structure used
to define the process on which they have their effects. For this we add the
structure

’INTERACTIONS’ INTERACTIONLIST
’INTERACTION DEFINITIONS’ INTERACTION_DEFINITION_LIST
’INTERACTION EFFECTS’ EFFECTS_LIST

to the process implementation syntax in Figure 4.1. The term ’INTERAC-
TIONS’ is followed by a list of the names of the causal interactions which
have their effects on the process being implemented and the other process.
Note that a causal interaction is defined only once, i.e. the interaction be-
tween processes Pi and Pj is implemented in the description of either Pi or
Pj , but not in the description of both processes. The method by which the
description of a causal interaction in the description of the process Pi has
its effect on the process Pj is an implementation dependent choice which is
not relevant to the actual approach in general. This is an implementation
oriented difference to the original definition of working models. The names
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are necessary for the identification of the processes and for the internal
workings of the programming environment. The interaction definition list
is a list defining with which processes the process interacts. This is also for
the internal use of the simulation environment.

In addition to the above structures the relation between different pro-
cesses should somehow be expressed. This is achieved by using the notation

’CONSISTS OF’ ’(’ NAMELIST ’)’

in which the term ’CONSISTS OF’ is followed by the names of the subpro-
cesses. For computational reasons the process description syntax defined
in Figure 4.3 includes the definition

’EVALUATION TYPE’ EVTYPE

which is used to enable the hiding of computations in order to achieve bet-
ter simulation speed. The alternative of choosing between the use of the
speeded-up method and exact computation is given to the developer because
sometimes it may be necessary to compute exact values for every case. The
reserved word ’IMPLICIT’ means that the simulation will not be done if the
result can be estimated. The word ’EXPLICIT’ means that the simulation will
be performed every time. A method to achieve such speed-up is proposed
in [2].

The description of the control block is a fairly easy task. In our simple
process implementation language CONTROL DESCRIPTION is defined as

CONTROL_DESCRIPTION := ’CONTROL’
TARGET_LANGUAGE_EXPRESSION

’ENDCONTROL’

in which TARGET LANGUAGE EXPRESSION denotes a lawful set of sentences
of the host language, i.e. the language which is used as the intermediate
phase between the executable simulation model and the process implemen-
tation description, including predefined simulation and controlling com-
mands which depend on the chosen intermediate language. This is, how-
ever, only a temporarily phase before a complete causal process implemen-
tation language is defined. Such a complete language should include enough
syntactical and semantical power to express all functions and control com-
mands required for the implementation of simulation models, but currently
the approach has been tested by using a hybrid between Smalltalk/V and
the implementation language.

Although the actual syntax (and actual commands) used in the control
block depend on the intermediate language, at least the following operations
should be implemented:

• simulation initialization;

• start time, end time, time step etc, — time related settings;

• report generator initialization;

• process creation and deletion;
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CONTROL
SimulationInstance initializeSimulation: [

SimulationInstance endTime: 96.
FC stepsInYear: 12.
SimulationInstance startTime: 1.
SimulationInstance timeStep: 1.
SimulationInstance time: 1.
Definer initializeDumpStream.
SimulationInstance addProcess: ’climate’.
SimulationInstance addProcess: ’ground’.
(SimulationInstance addProcess: ’pine’)

placex: 1000; placey: 1000; energy: 7000].

SimulationInstance startSimulationExecution: [
SimulationInstance dump: ’pine’ to:
(Definer provideDumpStream) when: [(TIME rem: 6) = 0].
SimulationInstance dump: ’shoot’ to:

(Definer provideDumpStream) when: [(TIME rem: 12) = 0].
SimulationInstance dump: ’bud’ to:
(Definer provideDumpStream) when: [(TIME rem: 12) = 0].
] runCheck: [(TIME rem: 1) = 0]
ifNot: [:proc | (((((FC computeClimate: TIME) at: 1) < 0)

and: [(proc = ’Bud’) or: [proc = ’Needle’]]))].
ENDCONTROL

Figure 4.2: A control block example

• process variable valuation;

• reporting commands; and

• possible simulation controlling commands (which are, of course, im-
plemented only in interactive modeling environments).

Several examples of the usage of these commands can be seen in Figure 4.2
in which the control block of the working model implementation of the pine
model is listed.

The control block in Figure 4.2 is the control block used for simulation
control for our pine example. Because Smalltalk/V was used as the imple-
mentation language for our programming environment (briefly described in
the following subsection), some knowledge of Smalltalk may be required in
order to make the understanding of the example implementation easier. The
first part of the control-block in Figure 4.2 performs the initialization of the
simulation. This is done by a special command defined for that purpose.
The initialization is done by sending a program block to the global variable
SimulationInstance, which performs the actual simulation management.
In the simulation initialization the timing settings are set and the necessary
processes created with suitable values for their variables.

In the second block (a Smalltalk block) the actual simulation is started
with several parameters. The first parameter, a program block, includes the
reporting-oriented code, the second is a timing function used to handle the
connection between direct user control and the simulation, and the third
block is used to determine in which cases it is computationally useful to
skip the simulation execution. This is an implementation dependent choice
before a completely featured modeling language has been defined.
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WORKING_MODEL := {PROCESS_DESCRIPTION}+ CONTROL_DESCRIPTION

PROCESS_DESCRIPTION :=
’A PROCESS’ NAME
’CONSISTS OF’ ’(’ NAMELIST ’)’
’EVALUATION TYPE’ EVTYPE
’VARIABLES’ NAMELIST
’CHARACTERISTICS’
’INITIAL’
’(’ INITIAL_CHARACTERISTICS_DESCRIPTION ’)’
’CHANGING’
’(’ CHANGING_CHARACTERISTICS_DESCRIPTION ’)’
’INTERACTIONS’ INTERACTIONLIST
’INTERACTION DEFINITIONS’ INTERACTION_DEFINITION_LIST
’INTERACTION EFFECTS’ EFFECTS_LIST

NAME := <a character string of alphanumeric characters>

NAMELIST := NAME | ’ ’ | NAME NAMELIST

EVTYPE := ’EXPLICIT’ | ’IMPLICIT’

INITIAL_CHARACTERISTICS_DESCRIPTION :=
TARGET_LANGUAGE_EXPRESSION

CHANGING_CHARACTERISTICS_DESCRIPTION :=
TARGET_LANGUAGE_EXPRESSION

TARGET_LANGUAGE_EXPRESSION := {TARGETEXPRESSION}*

TARGETEXPRESSION :=
<a lawfull expression in the target language>

INTERACTIONLIST :=
NAME NAMELIST

INTERACTION_DEFINITION_LIST :=
(NAME NAMELIST ’(’ NAME ’)’)+

EFFECTS_LIST := (NAME ’(’ ’IF ’ ’(’ TARGETEXPRESSION ’)’
’DO’ ’(’ TARGET_LANGUAGE_EXPRESSION ’)’ ’)’)+

CONTROL_DESCRIPTION := ’CONTROL’ TARGET_LANGUAGE_EXPRESSION ’ENDCONTROL’

Figure 4.3: Implementation language syntax
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A PROCESS climate
CONSISTS OF

none
EVALUATION TYPE EXPLICIT
VARIABLES

heat light a1
CHARACTERISTICS

INITIAL
(
heat := 0. light := 0. a1 := 0.
)
CHANGING
(
a1 := FC computeClimate: TIME.
heat := a1 at: 1.
light := a1 at: 2.
)

INTERACTIONS
none

INTERACTION DEFINITIONS
none ( nil )

INTERACTION EFFECTS
none ( IF ( true )

DO ( nil ) )

Figure 4.4: Implementation of a process without interactions

The complete syntax of the simple working model implementation lan-
guage is in Figure 4.3. From the complete syntax it is obvious that there
are some problems with processes to which the modeler may not want to
implement the interactions. An example of such a process is in Figure 4.4,
in which none is a reserved word used to represent a nonexistent process
and nil is a similarly reserved word used to denote nothingness.

The problem of denoting nothingness will, amongst other semantical is-
sues, be covered in greater detail in the subsection An example: a causal
model of pine. In the next subsection the experimental programming envi-
ronment developed for the implementation of causal models will be briefly
described.

4.4.2 Programming Environment for Causal Process Model-
ing

Now we have defined how to implement causal process models as computer
programs. In order to make the implementation easier we have developed
a programming environment for model development and simulation. Cur-
rently the system is implemented using Smalltalk/V under the OS/2 2.x op-
erating system.

The programming system consists of roughly three parts which are: the
user interface, the process representation compiler, and the simulation man-
ager. Some parts of the programming environment may not be completely
according to the causal process approach to modeling, but those differences
are due to the practical consequences of the environment which has been
used for the programming environment implementation.
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The user interface part of the programming environment is in principle
very simple. The user interface is currently text-oriented, the inclusion of
graphics in the system is on the responsibility of the modeler. Graphics
have been purposely left out because it is not yet clear what type of graphics
would be the most productive tool in the model implementation. Due to the
lack of knowledge concerning the most beneficial graphical tools no such
tools or methodologies were implemented in the programming environment.

Principally the user-interface consists of three different windows which
are the normal Smalltalk Transcript window which allows full access to the
Smalltalk development environment, a message window used to display er-
ror messages, and a programming window which allows users to enter ei-
ther process descriptions or control blocks. The Smalltalk Transcript was
left as-is because it was decided during the design phase of the program-
ming environment that it would be necessary to allow users to implement
their own classes and develop their own interfaces and graphics in order to
manipulate or visualize processes or their simulation.

The error window does not have any special functionality in addition to
a few file oriented choices. The file oriented choices allow the user to save
the contents of the window to a file. The error window is mainly used for
displaying error messages and user-defined runtime or reporting messages.
For the purpose of this paper there is no need to consider possible error
messages and methods to add user-defined functions to the system.

The programming window constitutes the actual interface between the
programming environment and the user. By using the choices present in
the “Control” pull-down menu users can perform a variety of tasks. Some
of those tasks are related to the actual simulations, like “Pause simulation”,
“Begin simulation”, “Stop simulation”, and others are related to actual imple-
mentation of control blocks and processes. The compilation from the causal
model implementation language to runnable Smalltalk code is done by the
choice “Evaluate code” which starts the compilation of the implementation
language expression. The actual implementation of the compiler is not de-
scribed here because the implementation would be different in different im-
plementations. In addition to the causal-process programming choices the
programming windows provide the user with the normal Smalltalk/V Tran-
script features.

The process representation compiler is invisible to the user if the pro-
cess implementation written by the user is correct. If there are errors, the
error messages will be displayed on the error window. The implementation
language compiler compiles the process type descriptions into Smalltalk
classes which inherit methods used in simulation by the environment. The
compiled representation is then compiled by using the internal compiling
abilities of the Smalltalk environment.

Because working models are time-driven the actual simulation is done by
incrementing the time counter by the chosen time step and then performing
a simulation step. The simulation step is as follows:



78

FOR every process actualization DO
perform the changing characteristics block

ENDDO
FOR every process actualization p DO

FOR every actualization of the type T with which
processes of the type in which p belongs can
have interactions DO
IF the condition part of the interaction is true THEN

perform the interaction
ENDIF

ENDDO
ENDDO

Note that there has to be some parameter passing etc between actualiza-
tions during an interaction. This is achieved by introducing a programming
environment implementation language dependent technique. That tech-
nique will be more closely explained from the process implementation side
in the following subsections in which the implementation of the example
model and some simulation results are presented.

4.4.3 An example: a causal model of pine

In this subsection the implementation of the example model, a simple pine
model, will be described. Note that the model is not claimed to be an accurate
model of a pine, it is used to briefly describe the causal process modeling
technique. Although the model is not a very good model in the biological
sense, the results from its use are surprisingly good as will be seen later on.

One of the processes defined in the example model is “ground”, which
may not exactly be a causal process in the Salmonian sense, although any
material thing with substance constitutes a causal process. In that sense
“ground” is a causal process. In the example implementation of the “stand”
model the “ground” process has been implemented as shown in Figure 4.5.

In the implementation there are a few interesting implementation choices.
Although the normal potentiality has been defined to be 10000, it is not
changed in any way later on. This implementation shows how different parts
of the model can be partially implemented during the modeling process. Al-
though “ground” does not have all the defined interactions and characteris-
tics, the behavior of the implemented model is surprisingly promising even
without those features, as will be seen later on.

The implementation of “climate” is in Figure 4.4. The most notable fea-
ture of “climate” is that its characteristic features are used via causal inter-
actions by other processes, as can be seen from the implementation of the
“needle” type of processes. That implementation has been done as in Figure
4.6.

The “needle” implementation includes actual usage of interactions. There
is an energy transfer from “climate” to “needle”, and that interaction has
been named light and heat. Parameter passing required in interactions
between “needle” and “climate” is done by sending the message heat to a
variable climate local to “needle” and receiving the value of the correspond-
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A PROCESS ground
CONSISTS OF none
EVALUATION TYPE EXPLICIT
VARIABLES

normal treeeffects
CHARACTERISTICS

INITIAL
(
normal := 10000.
treeeffects := Dictionary new.
)

CHANGING
(
true. "Do nothing"
)

INTERACTIONS
competitioneffect

INTERACTION DEFINITIONS
competitioneffect ( pine )

INTERACTION EFFECTS
competitioneffect ( IF ( true )

DO (
true. "Do nothing in this version."
) )

Figure 4.5: Implementation of ground-process

ing variable heat from the “climate” process interacted with. This is enabled
by the simulation system which automaticly creates required local variables
for processes (one variable for each of the process types with which the cur-
rent type may have interactions) and setting the process possibly interacted
with as the value of the variable. Similarly the compiler automaticly cre-
ates methods for getting variable values of processes and setting them. Al-
though causal interactions have, according to Salmon, effects on both causal
processes which participate in the interaction, we see only single sided ef-
fects in the light and heat interaction. Although a causal interaction is, in
any case, described in either of the processes, there may be no interactions
defined even in the descriptions of processes which participate in interac-
tions, but the two-sided effects of the interaction are implemented in the
interaction description of the process types interacted with. But in the case
of “climate” there are effects only on “needle”, not on “climate”. This seems
like a violation to the definition of CI and requires closer consideration.

The violation is, however, in the implementation, not in the original do-
main theory. Obviously the transfer of heat and light from “climate” (light
coming from sun and heat also, heat being in the air and light being pho-
tons and their energy) causes a similar part of the energy to be removed from
“climate”. Because “climate” has an unlimited supply of energy (at least con-
sidering the naive model used as an illustrative example), it is unnecessary
to implement such changes in the model. This is, in other words, a practical
solution by which the implementation is made simpler, not a violation of
the principles.

The original “stand” model consisted of three processes: “ground”, “cli-
mate”, and “pine”. Obviously the most complicated of those processes is
“pine” which has to include code to create its subprocesses etc. That “pine”
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A PROCESS needle
CONSISTS OF none
EVALUATION TYPE EXPLICIT
VARIABLES

length x1 y1 z1 x2 y2 z2 consumption birthtime length
age production light heat productionfactor
overproduction

CHARACTERISTICS
INITIAL
(
age := 0. x1 := 0. y1 := 0. z1 := 0.
x2 := 0. y2 := 0. z2 := 0. birthtime := TIME.
production := 0. heat := 0.
productionfactor := 1.
length := 0.04. light := 0.
consumption := 0. overproduction := 0.

)
CHANGING
(
(heat > 0) ifTrue: [

light := light - (upper shadowing).
production := (FC computeNeedleProduction:

productionfactor
heat: heat light: light
length: length).

consumption := FC computeNeedleConsumption: length.
overproduction := (production - consumption) max: 0.
(productionfactor < 0.15) ifTrue: [

self removeItself.
^true].

productionfactor := productionfactor *
(FC randomNumberFrom: 0.75 to: 0.98).

].
)

INTERACTIONS
light_and_heat

INTERACTION DEFINITIONS
light_and_heat (climate)

INTERACTION EFFECTS
light_and_heat ( IF ( true )

DO ( heat := climate heat.
light := climate light. ) )

Figure 4.6: Implementation of needle-process
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type has been implemented as in Figure 4.7. Note that in the implementa-
tions of the longer processes the actual code is replaced by English language
sentences describing what has been done. Those sentences are marked by
*.

The implementation of “pine” is clearly in an incomplete state. Cur-
rently it does not effectively implement the “fromground” interaction which
should represent the transfer of potential (i.e. water and nutrients) from
“ground” to “pine”. Similarly it does not implement any reasonable compe-
tition computations for the competition between actualizations of “pine”.
Those interactions have not yet been fully implemented.

Inside the definition of the changing characteristics of “pine” there are
some implementation oriented issues which are worth a closer look. If the
tree has not yet created any shoots, then a new shoot is created. This is
done by sending the message delayedAddProcess: ’shoot’ to the Sim-
ulationInstance11 , which is a global variable used to enable the usage
of required operands. The message is sent in order to create an actualiza-
tion of “shoot”. That message is used as the way in which actualizations of
processes can cause other actualizations to appear. Note that the checking
for the existence of previously created shoots has to be done by using an
ifTrue: form. If there has been no previous actualization of “shoot”, then
one is created. It is problematic that the first “shoot” is created when the
changing characteristics code is executed and not when the initial charac-
teristics code is executed. That implies that a “pine” can exist before it has
any “shoots”.

The second subprocess of “pine” is “bud”. The implementation of the
“bud” type processes has been done as in Figure 4.8, in which there is only
one interaction. That interaction is used only to cause the actualization
of a “shoot” which replaces the “bud”, i.e. the “bud” disappears after the
actualization of the “shoot”. The interaction between “climate” and “bud”
denotes an energy transfer which causes the “bud” to grow and produce
a “shoot”. The actual energy transfer is not implemented due to reasons
similar to the ones why the energy transfer between “needle” and “climate”
has been implemented from one side only.

The “shoot” created by a “bud” (or a “pine”) is implemented as in the
figure 4.9. The implementation of the “shoot” type processes is obviously
the most complicated in the example model. The complicated implementa-
tion is not so much due to the original definition of “shoot” but much more
because it turned out that some parts of the definition had to be redefined
in order to get any performance out of the testing environment. The func-
tions etc required to compute all possible new values are not presented here
because they are not very relevant to the actual usage of the causal process
modeling approach.

11The delayedAddProcess: message causes a process actualization to be created in a
way which makes it appear in the actual simulation cycle one time-step later. This is done
to make it sure that the new actualization will not participate in causal interactions before
all previously existing actualizations have been checked.
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A PROCESS pine
CONSISTS OF needle bud shoot
EVALUATION TYPE EXPLICIT
VARIABLES

age length competition volume mass initialenergy
coordx coordy competitioneffect competition1 potential
children

CHARACTERISTICS
INITIAL
(
competition := 0. initialenergy := 0.
volume := 2*0.001*(Float pi).
age := 0. length := 0. mass := 0.
children := lower.
)

CHANGING
(
competition := competitioneffect.
age := FC computeAgeChange: age time: TIME.
competitioneffect := 0. competition1 := 0.

* Compute the new maximun length of the tree. Can be done
* by checking the biggest z2 from ``shoot’’s. This is a
* violation to the original process approach, done for execution speed.
* During that it is possible to get the masses etc from shoots and
* needles.

* If the tree has not been yet created any shoots, then create one.

(lower isEmpty) ifTrue: [
self deleteItself. ``No shoots left, the whole tree dies’’
^false].

age := FC computeAgeChange: age time: TIME.
mass := 0.

)
INTERACTIONS

fromground competition
INTERACTION DEFINITIONS

fromground ( ground )
competition ( pine )

INTERACTION EFFECTS
competition

( IF ( (self = pine) not )
DO (

* Compute the competition related values. Not yet implemented.
) )

fromground
( IF ( true )
DO (
true. "DO nothing in this version."
) )

Figure 4.7: Implementation of pine-process
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A PROCESS bud
CONSISTS OF

none
EVALUATION TYPE EXPLICIT
VARIABLES

x1 y1 z1 xk yk zk energyreserve thefirst
p2 a a1 year summer budnumber
alpha beta buds

CHARACTERISTICS
INITIAL
(
summer := 0.
)
CHANGING
(
(((FC computeClimate: TIME) at: 1) < 0.0001) ifTrue: [^false].
((upper ika) < 1) ifTrue: [^false].
x1 := upper x2. y1 := upper y2. z1 := upper z2.

alpha := upper alpha. beta := upper beta.
thefirst ifFalse: [

* Compute the new angles for the new shoot to be created.
].

a := FC computeShootsLength: energyreserve.
upper upper lower add:

((a1 := SimulationInstance delayedAddProcess: ’shoot’)
length: a;
x1: x1; y1: y1; z1: z1;
beta: beta; alpha: alpha;
x2: (x1 + (a * (beta sin)));
y2: (y1 + (a * (alpha sin)));
z2: (z1 + (a * (beta cos)));
thickness: (FC computeShootThickness: a);
runko: thefirst; parent: upper;
gives: (energyreserve - (FC computeShootConsumption: a1));
upper: (self upper upper)); yourself.

upper children add: a1.
self deleteItself.
)

INTERACTIONS
issummer

INTERACTION DEFINITIONS
issummer ( climate )

INTERACTION EFFECTS
issummer ( IF ( climate heat > 0 )
DO ( summer := 1. ) )

Figure 4.8: Implementation of bud-process
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A PROCESS shoot
CONSISTS OF none
EVALUATION TYPE EXPLICIT
VARIABLES shadowing length x1 x2 y1 y2 z1 z2 energyreserve consumption

thickness gives age dying needlenum i mass noBudsYet alpha pillar
a buds beta parent children birthtime

CHARACTERISTICS
INITIAL
(birthtime := TIME. alpha := 0. beta := 0. shadowing := 0.
x1 := 0. x2 := 0. y1 := 0. z1 := 0. z2 := 0. energyreserve := 0.
consumption := 0. parent := nil. children := Set new.
thickness := 0. age := 0. gives := 0. length := 0. dying := false.
mass := 0. noBudsYet := true. pillar := false. needlenum := 0.
a := 0. buds := 0. )

CHANGING
(age := FC computeAgeChange: age time: TIME.
dying ifTrue: [

* If this shoot does not have needles or shoots growing from it,
* then this shoot will be removed, i.e. it dies.

].
((FC isItBudGenerationTime: TIME) and: [noBudsYet]) ifTrue: [

noBudsYet := false.
buds := FC computeBudNumber: (gives / 2).

* Create the new buds which will be given the starting
* value for future growth. One of the buds will be marked as
* the first bud from which a shoot will grow in the same
* direction as the shoot from which it will grow.

].
noBudsYet ifTrue: [ (needlenum < 1)

ifTrue: [
* If there is no new needles i.e. the shoot is a new one,
* then create all those needles which belongs to it.

]
ifFalse: [

* Grow the shoot a bit more (if it can grow), compute new
* coordinates for it and create the new needles.

].
* Grow more thickness and mass for the shoot

consumption := FC computeShootConsumption: self.
lower do: [:each |

((each class) name = ’Needle’) ifTrue:
[gives := gives + (each gives)]].

gives := gives - consumption. dying := (gives < 0.0). )
INTERACTIONS

getshadowing energytransfer
INTERACTION DEFINITIONS

getshadowing ( shoot )
energytransfer ( shoot )

INTERACTION EFFECTS
getshadowing

( IF ((self = shoot) not and: [z2 <= (shoot z2)] )
DO ( shadowing := shadowing +

(FC computeShadowing: self from: shoot). ) ))
energytransfer

( IF ( (shoot = self) not and: [ (self parent = shoot) or:
[shoot parent = self]])

DO (energyreserve := energyreserve + (shoot gives / 2).
shoot gives: (shoot gives / 2). ) )

Figure 4.9: Implementation of shoot-process
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4.4.4 A brief evaluation of the example model

In this subsection the workings of the example model implementation is
briefly discussed. The most interesting feature of the implementation is
that the simulation results are surprisingly good considering the simplicity
and inaccuracy of the model. Although all the functions used in the model
will not be discussed, some considerations of the behavior of the simple pine
model will be presented. Because the model is not exact enough to provide
complete values for all possible variables, only the number of generated
“shoot”s and the length of the generated “pine” will be considered. First we
will consider the number of the generated “shoot”s.

The analysis of the number of the generated “shoot”s shows that al-
though the actual number of the generated “shoot”s is not the same, the
overall shape of the diagrams in Figures 4.1012 and 4.11 is very similar,
although several differences should be noted. The first difference is that
although the actual number of shoots in a tree is not the same, the shape of
the curve representing the number of shoots is surprisingly similar.

In the implemented model, the dying ages of shoots have a very interest-
ing pattern. From Figure 4.12 it is possible to see that in the experimental
mode a great deal of the shoots have died very soon after their birth. This
may imply that in a real pine such shoots are not created at all. If those
shoots were not created in the model, then the growth rate of the number
of the shoots might be much nearer the field-numbers.

12These numbers are from Professor Seppo Kellomäki, Faculty of Forestry, University of
Joensuu.
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Considerations of the length growth of the simulated pine are not easy
because the experimental implementation of the pine model did not turn out
to be very effective in the computational sense. A single reasonably mod-
est simulation (of only one pine) of thirteen years time (with a one month
time-step) took about four days.13 In order to collect enough data about
the accuracy of the simulations, ten simulations were done14 (note that the
model includes several probabilistic features which make individual simu-
lations differ), and computational inefficiency restricted the simulations to
fairly short ones. Such short (thirteen years) simulations do not allow us to
consider the long-term accuracy of the model, at least not using the current
simulation environment. In Figure 4.13 the length is presented as a function
of time. The curve follows the shape of experimental data presented in [34].
Unfortunately our current simulation does not reveal if longer simulations
would also follow empirical data.

13The implementation machine was an Intel 486/33MHz based machine with 16 MB RAM.
Not a very powerful machine in the computational sense. A much more faster implemen-
tation of a partly different version of the model was experimentally written in FORTRAN
on Convex C3420, but those results are not analyzed here. Although the direct FORTRAN
implementation shows it to be possible to implement causal process models by using conven-
tional programming languages, the implementation proved that “by-hand” implementation
of causal process models is very complicated and difficult. In order to enable faster cre-
ation of causal process models a complete implementation language should be defined and
methods of compiling models written in that language into e.g. vectorizing and parallelizing
FORTRAN code.

14All numbers used in the analysis of the simulation models are mean values of those
simulations.
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Generally the exponential curve representing the number of generated
shoots does imply that the causal process modeling may easily produce
models which expand very fast. That type of expansion is unfortunate in
the computational sense, but seems to be a fundamental feature of causal
process models of growth.

Although this simple analysis does not actually prove anything, it seems
possible that with some modifications and additions the example model
might be able to provide reliable simulation of the growth of Scotch pine.

4.5 Discussion

The developed approach to modeling and simulation differs from traditional
approaches by its emphasis on the causal structure of domain knowledge in
addition to the workings of the modeled object or phenomenon in quali-
tative models. The most remarkable feature of the developed approach is
that it combines the usage of the structure, which is normally encountered
in qualitative modeling, to quantitative results. The best differentiation be-
tween the original modeling approach and the developed approach is done
in the section Modeling with causal processes above.

The developed approach has several features worth considering. Some
of them are positive and some are negative. The positive features of the
modeling approach could be summarized as:

• it provides a coherent approach to domain theories — an approach
which is not restricted by the surface structure of a particular theory;

• it allows the modeler to use the same methodology throughout the
modeling process;

• implementation is fairly easy; and

• it may provide a natural connection between models and scientific ex-
planation, i.e. ease the task of explanation generation.

The negative features include the following ones:

• the usage of the approach may require serious restructuring of existing
domain theories;

• successful use may require too much self-control from the modeler;
and last but not least is the fact that

• models generated according to the methodology are easily very de-
manding in the computational sense.

Both negative and positive features are discussed in the following para-
graphs.

Probably the most beneficial feature of the causal process modeling ap-
proach is its universal approach to domain theories. Assuming that the
Salmonian theory of causality and the structure of the world is useful, it is
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possible to approach different domain theories from a meta-theory point of
view. Such a meta-approach helps modelers uncover the underlying struc-
ture of superficially very different domain theory structures and individual
domain theories. This type of uncovering should enable modelers to com-
bine diverse domain theories into one domain theory whose use is planned
for the actual model implementation.

Another very beneficial feature is the possibility of using the same do-
main theory modeling methodology throughout the whole model develop-
ment process. The modeling project steps presented by Zeigler [48] do not
pay any attention to methodology, they only form technical phases of the
project. In order to combine all the steps under one methodology a gen-
eral theory of the structure of domain theories has to be developed, and we
believe that the Salmonian theory provides an acceptable general theory.15

By means of the general theory we have been able to develop a modeling
methodology which stays the same through the whole modeling process.

The ease of the implementation is relative, although it is reasonable to
assume that the coherent approach to the domain modeling will ease the
step from theory to implementation. Especially important in this is the pos-
sibility of using implementation techniques which are in accordance with
the methodological and theoretical issues of the developed approach. We
think that the causal process programming environment provides, even in
its current crude form, an easy way to implement domain models created ac-
cording to Salmonian concepts. This remains, however, only an assumption
as long as no research on the cognitive effects of the usage of our approach
has been done, and such research is outside the scope of this paper.

The connection between explanation generation in expert systems and
the developed modeling approach is very promising. Because the modeling
approach has itself been developed from the point of view of scientific ex-
planation it is reasonable to think that it should be fairly easy to construct
explanations from the implementations of causal process models. There
are some considerations of the explanation generation in [3], where a logic
based theory of explanation (due to [14]) is integrated to the Salmonian the-
ories. Note that currently there is no explanation generation technique im-
plemented in the modeling environment, and we feel that in order to enable
unproblematic generation of explanations the modeling language should be
extended to cover both explanation definitions and actual modeling. This
is left to further research because the current system is developed only to
show the usability of the developed modeling approach.

The first, and probably the worst, problem with the approach is that it
may require severe restructuring of existing domain theories before they can
be turned into implementable causal process models. This is a quite unfor-
tunate effect which may complicate the actual modeling processes. This can,
however, be reliably estimated after several practical modeling projects, and
because the modeling technology has not been tested on various domains,
this question is left open.

15This is, however, open to philosophical discussion. From our philosophical point of view
the Salmonian theory is right and we will not consider its possible philosophical problems.
Such discussion is left to those who are better aware of such matters.
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Because the modeling approach is not, at least yet, supported by a strictly
guiding development system it requires quite a degree of self-control from
the modeler. It is modelers’ responsibility to utilize the approach and con-
cepts defined by it, and that may cause problems because all the concepts
may not be as clear as they should. That is, however, unavoidable because
the modeler is always responsible in the same way as a programmer is re-
sponsible for the readability and correctness of a program. With proper
tools the modeler’s task might be made easier, though.

The computational problem can be avoided by hiding the deepest struc-
ture of the model from normal computations. Such hiding could be done by
using the method described in [2]. If computations are needed, the causal
processes and interactions needed could be created when required and dis-
posed when the need no longer exists. The hiding of the more precise struc-
ture of a model in order to avoid computational problems seems to promise
a solution to the question of the computational effectiveness of causal mod-
els, see e.g. [10].

Although the causal process modeling approach has several disadvan-
tages, we feel that the advantages outweigh the disadvantages. We believe
the most valuable advantage is the possibility of using the same point of
view throughout the whole modeling process, and that this is an element
which has been left out of most discussions about modeling or knowledge
representation.
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Abstract

Explanation has been considered to be one of the most valuable contri-
butions of AI systems. Because the difference between domain knowl-
edge and reasoning knowledge seems to be an acknowledged fact, it is
reasonable to develop different explanation strategies for each of them.
In this paper an approach to the explanation of domain knowledge is
developed. The approach is based on a promising approach to the struc-
ture of knowledge and formalized using a calculus specially developed
for causal explanations. The formalization is achieved by modifying
an event oriented approach and the calculus according to the process
oriented approach.

5.1 Introduction

Many fields of potential AI usage are concerned with physical domains. AI
systems concerned with physical domains are often called expert systems.
At first such systems were developed according to the production system
paradigm, but recently there has been development that seems to turn ex-
pert systems into a different form. That new form has been named model
based reasoning. The basic idea of model based reasoning is to keep the
descriptions of the domain and the problem solving separate. Model based
reasoning can be called a methodology rather than a technique, because it

95
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defines only the approach to problems, not the implementation of the sys-
tem [16].

The idea of model based reasoning has received quite a large amount of
interest. Several works have been related to different aspects or practical
uses of model based reasoning, e.g. de Kleer and Williams [3], Koton [11],
Nardi and Simons [12], Xiang and Srihari [20], Rich and Venkatasubrama-
nian [15], Cross [2], and Adams [1]. The importance of domain models to
intelligent systems seems now to be a well established opinion.

Note, however, that the remarkable importance of the models to the
development of intelligent systems has earlier been advocated by Hayes,
who argued, in a very convincing way, that an approach which is concerned
with just reasoning is not enough [9]. He proposed the use of models of
the physical reality as a method to avoid the problem of too simple and
simplified problem domains. Despite the amount of work concerned with
the ideas proposed by Hayes, the concept of model based reasoning did
not seem to acquire very broad acceptance. The emergence of the model
based reasoning theme, although implicitly proposed by Hayes, acquired its
current importance due to the idea of diagnostic programs designed to find
and analyze faults in physical systems.

Diagnostic systems, or any other type of intelligent systems have to have
a method to reveal the internal workings of the system to possible users.
Such a feature, explanation, has been considered to be one of AI’s most
valuable contributions [19]. Although the importance of explanation has
been agreed, the theoretical structure of explanation of domains has not
often been explicitly studied. In this work the structure of explanations of
a problem domain is considered.

The theory of explanation according to which explanation is done has to
respect the structure of domain knowledge and still provide a strict enough
formalism. The formalism is required in order to enable a system to provide
explanations, and the structure of domain knowledge has to be defined in
a way which allows the use of best scientific knowledge of the domain and
provides a connection to the formalism of adequate explanations. In order
to achieve both of these goals, the probably most successful attempt to
capture the structure of our scientific knowledge is used as a basis to which
a promising formalism for explanations is connected.

This paper consists of two parts, the first part presents both the ap-
proach to scientific knowledge and a language oriented formalism for expla-
nation. The second part of this paper is a proposal of a connection between
these theories.

5.2 Knowledge of physical domains

Often there have not been very strict restrictions on the domains modelled
in an AI system. Models have been thought to be descriptions of either phys-
ical or ideal entities [8]. It may, however, be that the structure of knowledge
of physical domains is different when compared to the structure of knowl-
edge of ideal domains. The theory of the structure of knowledge used in
this work had originally been intended to outline scientific knowledge. Be-
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cause most of the scientific domains are physical domains, it is reasonable
to assume that a theory which is usable with scientific knowledge is usable
with physical domains.

Probably the most promising approach to scientific knowledge is pro-
posed by Salmon [17]. In order to avoid the Humean problem of causality
he proposed the concept of causal processes instead of causal events (the
philosophical basis of processes will not be discussed here. Although such
considerations are, of course, important and worth the effort, they are not
useful in order to achieve our aim). Of causal processes he says that

‘Causal processes propagate the structure of physical world and
provide the connections among the happenings in the various
parts of space time. Causal interactions produce the structure
and modifications of structure that we find in the patterns ex-
hibited by the physical world. Causal laws govern the causal
processes and causal interactions, providing the regularities that
characterize the evolution of causal processes and the modifica-
tions that result from causal interactions.’ [17, p. 132; emphasis
deleted].

The concept of causal processes is not, however, very clear; many of their
features have to be defined with more precision. One reason to define the
features is, of course, the question of the identification of causal processes.
The features of causal processes include mark transmission, structure trans-
mission, principle of causal influence, and causal interaction.

The most important criterion of a causal process is its ability to transmit
a mark. By mark transmission we mean that a causal process can transmit a
mark from pointA to point B (and every point between them) without further
interactions. The mark transmission (MT) is defined, in a more explicit way
[17, p. 148], as:

Let P be a process that, in the absence of interactions with other
processes, would remain uniform with respect to a characteristic
Q, which it would manifest consistently over an interval that in-
cludes both the space-time points A and B (A ≠ B). Then, a mark
(consisting of a modification of Q into Q′), which has been intro-
duced into process P by means of a single interaction at point A,
is transmitted to point B if P manifests the modification Q′ at B
and all stages of the process between A and B without additional
interventions.

Note that marks in a process are, actually, changes in the process itself.
Therefore we can say that a transmission of a mark is a transmission of the
changed structure of the process transmitting the mark, and a process can
always be said to transmit its own structure, changed by a mark or not. The
principle of structure transmission (ST) can be formulated as follows [17, p.
154]:

If a process is capable of transmitting changes in structure due to
marking interactions, then that process can be said to transmit
its own structure.
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The fact that a process does not transmit a particular type of mark does
not mean that it is not a causal process. Consider, as an example, processes
of a hard rubber ball and a particular beam of light (caused by a lamp and
colored white). It is possible to paint a green mark on the surface of the
ball but it is not possible to do the same to the beam of light, although it
is possible to change the color of the beam to green by using a green filter.
Therefore marks must be consistent with the structure and properties of
causal processes — a causal process cannot be marked by every method.

In accordance with the principle of structure transmission there must be
a way to define how a causal process propagates causality from one space-
time locale to another. The principle of causal influence (PCI) can be defined
as [17, p. 155]:

A process that transmits its own structure is capable of propa-
gating a causal influence from one space-time locale to another.

Combined together the concepts MT, ST and PCI define what a causal pro-
cess is. Although a causal process can be very effectively defined by them,
no interactions between processes have been defined. Obviously processes
interact — consider a billiard game with balls colliding with each other —
and interactions constitutes the actual structure of causal relations.

As can be deduced from the definitions of MT, ST and PCI, there ex-
ist, in addition to causal processes, a great deal of non-causal processes (or
pseudo processes). The existence of non-causal processes makes the defini-
tion of causal interaction (CI) between processes quite difficult a task, and
one proposition is made by Salmon [17, p. 171] and is as follows:

Let P1 and P2 be two processes that intersect with one another at
the space-time point S, which belongs to the histories of both. Let
Q be a characteristic that process P1 would exhibit throughout
an interval (which includes subintervals on both sides of S in
the history of P1) if the intersection with P2 did not occur; let R
be a characteristic that process P2 would exhibit throughout an
interval (which includes subintervals on both sides of S in the
history of P2) if the intersection with P1 did not occur. Then the
intersection of P1 and P2 at S constitutes a causal interaction if:

1. P1 exhibits the characteristic Q before S, but it exhibits a
modified characteristic Q′ throughout an interval immedi-
ately following S; and

2. P2 exhibits the characteristic R before S, but it exhibits a
modified characteristic R′ throughout an interval immedi-
ately following S.

The features of causal processes and causal interactions are not easy to
formalize [4]. Although a physical domain may be modelled according to the
concept of causal processes, a strict formalism is difficult to develop due to
the counterfactuals and the non-logical modalities used in the definition of
causal processes. Such a formalism is not presented, and the problem of
explanation is approached using a formal calculus and an event oriented
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approach to explanation. The calculus and the event oriented approach are
modified and used later on to express explanations according to the concept
of causal processes. First the calculus and the event oriented approach are
introduced.

5.3 Formal explanations

A formalism for explanations is required in order to enable expert systems
to provide them. In order to avoid the problem of counterfactuals and non-
logical modalities a language oriented calculus is used, and an event oriented
approach to explanation is presented. The philosophical foundations of the
calculus and the event oriented approach to explanation are not discussed
in this paper, for them we refer to Fetzer and Nute [6] [7] and Fetzer [5].

5.3.1 A framework for explanations

Considering explanations from a language oriented point of view, it is pos-
sible to assume that individual language frameworks exist. Such a language
framework, Lzt, consists of all sentences used or potentially used by a per-
son z at time t. The language framework Lzt includes semantical and syn-
tactical features of the language used by z.

Similarly it is possible to assume a knowledge context, which may be
defined as follows:

Let Kzt denote a collection of the sentences representing the
knowledge possessed by a person z at time t. The set Kzt is
called the knowledge context of the person z at time t. The sen-
tences of Kzt are sentences of Lzt, i.e. Kzt ⊆ Lzt.

For the sentences constituting Kzt we may require different conditions
to be satisfied before accepting a set of sentences stating that a particu-
lar predicate is the case to Kzt. Such conditions may include consistency
(at least in the context of the domain), the requirement of evidence for the
proposition, the method of acceptance, etc. It seems to be the case that the
reasons for accepting sentences into Kzt are always relative to the individ-
ual and the time of the acceptance.

For later purposes it is useful to assume that there exists a kind of com-
mon language framework,L∗, which allows people to understand each other
(and information provided by computer programs). The common language
framework may be defined as follows:

Let z1, . . . , zn be any people, and L∗ a set of sentences for which
it is true that:

1. the language framework Lzit of the person zi includes L∗,
1 ≤ i ≤ n, and

2. the interpretation of the sentences of L∗ is sufficiently iden-
tical in all Lzit.
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The definitions of language frameworks1 and the knowledge context are
not very accurate and cannot be defended by explicit proofs. They are, how-
ever, useful, as will be seen later on.

5.3.2 A calculus for causal explanations

The distinction between the physical causality and the logical implication
suggests that the physical causality requires a new operator. Such a new
operator should be able to capture every possible type of causality and be
able to coexist with normal logic. The coexistence is required because some
uses of such calculus may require both the logical implication and the phys-
ical causality. To achieve this purpose the causal calculus C developed by
Fetzer and Nute [6][7] has been chosen. In this section some features of the
calculus are briefly introduced and the intended interpretations of its new
operators examined. A brief introduction to the calculus C is presented in
the appendix for the convenience of readers.

The calculus C includes the “fork” operator ‘⊃— ’ and several axioms for
it. Although some axioms (A2 and A3 in the appendix) seem to suggest
that ‘⊃— ’ is the same as the logical implication ‘⊃’, it is not the suggested
interpretation. Actually the operator ‘⊃— ’ denotes property projection or
property transfer. The sentence ‘p⊃—q’ is generally interpreted as ‘if p were
the case, then q would be the case’, which could be interpreted in a practical
situation as a less formal sentence ‘if this item is made of wood, then it can
burn, i.e. it has the burning property of wood’. The practical interpretation
of the ‘⊃— ’ operator will be discussed in the next section.

Another interesting new operator is the universal conditional ‘⊃—u ’. The
sentence ‘p⊃—u q’ is interpreted as ‘if p were the case, it would always bring,
i.e. cause, q to be the case’. The last one of the operators is ‘⊃—n ’ which is
interpreted as ‘if p were the case, it would always bring, i.e. cause, q to be
the case with the probability of n’. Formally that probabilistic conditional
can be defined as follows:

Let S be a non-decreasing sequence of finite sets of logically possible
worlds relative to the actual world W, i.e. if i ≤ j then Si ⊆ Sj. Then the
sentence ‘p⊃—n q’ is true of W if and only if ‘almost every sequence’ S of
possible sets of possible worlds satisfies the following condition (I):

lim
k→∞

the number of worlds in Sk in which q is true
the number of worlds in Sk

= n.

Likewise the notion of ‘almost every sequence’ can be made more precise
by: the sentence ‘p⊃—n q’ is true of W only in the case when the following
condition (I*) is fulfilled:

lim
k→∞

the number of members of (Sm|m ≤ k and Sm satisfies (I))
the number of members of k

= n

1The common language framework is essential in order to allow a system to produce ex-
planations understandable by many people. Although the definition of L∗ is philosophically
questionable, we will proceed according to the assumption that it is reasonable.



101

Note that according to the definition of C, it is obvious that ‘p⊃—u q’ and
‘p⊃—1 q’ are not the same thing. Also it is true that ‘p⊃—0 q’ and ‘p⊃—u¬q’
are not the same. Although the frequency of an event suggests probability 1,
it is not certain that the event holds universally [10, p. 5]. Therefore ‘p⊃—1 q’
does not guarantee that q comes after p.

5.3.3 Explanative inferences

Explanations may be considered to be inferences. For such inferences there
have to be constraints and other definitions by which the adequacy of ex-
planations may be evaluated. In this section an event oriented approach to
the definition of adequate explanation is presented.

A principal feature of explanations is the concept of lawlike sentences.
The following definition of lawlike sentences is adapted from Fetzer [5, p.
44]. A sentence S is lawlike within L∗ if and only if

(i) S is completely general, i.e. S is not limited to any finite number of
instances on the basis of syntactical or semantical features of L∗; and

(ii) S is essentially dispositional, i.e. S attributes a permanent dispositional
property X to every member of a reference class K (under an appro-
priate description ‘K’) in L∗.

Note that accidental considerations are not lawlike. If we say that ‘All
cars here are blue’, we do not say a lawlike sentence because a red car can
arrive anytime. That type of non-lawlike sentences is discussed by many
writers (e.g. Popper [14, p. 427-428]). Because all sentences are not lawlike
the concept of lawlike sentences requires further consideration.

We can comfortably assert that the basic form of lawlike sentences is
the one reading 
For all x and all t, if x were K at time t, then x would
be X at t�. Hereafter we will use the symbols ‘
’ and ‘�’ to show intended
interpretations. That type of sentence can be expressed formally by using a
subjunctive conditional “fork” operator as follows:

(∀x)(∀t)(Kxt⊃—Xxt) (5.1)

where the fork makes the sentence mean the same as 
For all x and all t, if
x were K at time t, then x would be X at t�.

Considering lawlike sentences within L∗, we have to note that most of
the sentences claim that the occurrence of an event of kind Ti causes the
occurrence of an event of kind Oi. Some of the dispositions are of statis-
tical strength and some are of universal strength, which causes the causal
conditional to be probabilistic. A probabilistic causal conditional is appli-
cable with degrees of strength n whose values may range through varying
statistical strengths n from zero to one, i.e. ‘⊃—n ’ to universal strength, i.e.
‘⊃—u ’ (not to be confused with probabilities of one, for reasons to be con-
sidered later on), where the appropriate numerical value is determined by
the strength of the disposition that is involved [5, p. 48].

The causal form of lawlike sentences is, therefore, of the form

(∀x)(∀t)(Kxt⊃— (T ixt⊃—n Oixt*)) (5.2)
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which asserts that 
For all x and all t, if x were K at time t, then the strength
of the dispositional tendency for Ti-ing x at t to bring about Oi-ing x at t*
is n�, or, less formally 
For all x and all t, if x were K at time t, then Ti-ing
x at t would either invariably or probably bring about x’s Oi-ing at t*� [5,
p. 48].

Note that the explanatory force of subjunctive conditions and causal
conditionals depends on the precise character of the phenomenon or the
object to be explained. Fetzer differentiates lawlike sentences and their in-
stantiations calling them lawlike sentences and nomological conditionals,
respectively [5, p. 49], and defines scientific conditionals as follows:

Scientific conditionals can be specified as

(A) lawlike sentences

(a) simple forms
(∀x)(∀t)(Kxt⊃—Xxt);

(b) causal forms
(∀x)(∀t)(Kxt⊃— (T ixt⊃—n Oixt*));
(∀x)(∀t)((Kxt ∧ Tixt)⊃—nOixt*);
(∀x)(∀t)(T ixt⊃— (Kxt⊃—n Oixt*));

(B) nomological conditionals:

(a) simple forms
Kbt⊃—Xbt,

(b) causal forms
(Kbt⊃— (T ibt⊃—n Oibt*));
((Kbt ∧ Tibt)⊃—n Oibt*);
(T ibt⊃— (Kbt⊃—n Oibt*)).

It appears to be that a sentence of kind (B) logically entails a corresponding
sentence of kind (A). In order to achieve a kind of consistency amongst our
sentences, restrictions have to be developed. One possibility to achieve the
required consistency is to use the requirement of maximal specificity, which
is proposed by Fetzer [5, p. 50], and define it as follows:

The requirement of maximal specificity: If a nomically relevant
predicate is added to the reference class description of a scien-
tific conditional S which is true in L∗, then the resulting set of
sentences S* is such that either

(i) S* is no longer true in L∗ (because its antecedent is now
self-contradictory), or

(ii) S* is logically equivalent to S in L∗ (because the predicate
was already entailed by the antecedent of S).

Preferring causal explanations we have to adjust the requirement of max-
imal specificity to causal explanations. Fetzer [5, p. 125-126] defines the
requirement of strict maximal specificity in order to be able to define an
adequate concept of explanation incorporating a rule for selecting the ap-
propriate lawlike sentence to include in the explanans for the explanation of
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all such explananda. The language framework in the following definitions
is the language framework of the one (man or machine) who is doing the ex-
plaining, and the definition of the requirement of strict maximal specificity
is as follows:

The Requirement of Strict Maximal Specificity (RSMS): An explana-
tion of why an explanandum event — the possession of a prop-
erty X by an individual c or an outcome response Oi - occurs is
adequate only if every property described by the antecedent con-
dition(s) of any lawlike sentence S in the explanans of that ex-
planation is nomically relevant to the occurrence of its attribute
property X or outcome response Oi, within Lzt.

On the basis of the considerations above a criterion for single case ex-
planations can be advanced. That kind of criterion is for singular events,
and does not require any considerations of the law behind the explanation
— the law can be a universal or a statistical nomological generalization. This
criterion is proposed by Fetzer [5, p. 126-127]:

A set of sentences S, known as the “explanans” provides an ade-
quate nomically significant causal explanation of the occurrence
of a singular event described by another sentence E, known as its
“explanandum”, relative to the language framework Lzt, if and
only if:

(a) the explanandum is either a deductive or a probabilistic con-
sequence of its explanans;

(b) the explanans contains at least one lawlike sentence of (uni-
versal or statistical) ‘causal’ form that is actually required for
the deductive or probabilistic derivation of the explanandum
from its explanans;

(c) the explanans satisfies the requirement of strict maximal
specificity with respect to its lawlike premise(s); and,

(d) the sentences constituting the explanation — both the ex-
planans and its explanandum — are true, relative to the lan-
guage framework Lzt.

Obviously an explanation must include all and only causal (or nomi-
cal) predicates that are relevant to the occurrence of the explanandum phe-
nomenon. In an AI system this would mean that all explanations are mini-
mized.

Universal lawlike sentences used in explanation make the explanation a
creation of deductive powers. As an example we can consider the deductive
universal explanation given by Fetzer [5, p. 127-128]. The phenomenon
explained is obvious on the basis of the following formalisms:

(CL) For all x and for all t, if x were gold at t, then heating x to 1063oC at
t would invariably bring about its melting at t*;

(C1) Jan’s bracelet b is made of gold at t;
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(C2) Jan’s bracelet b is heated to 1063oCat t;

(ES) Jan’s bracelet b melts at t*.

The flow of deduction can be more formally presented as:

(∀x)(∀t)(Gxt⊃— (Hxt = 1063oC⊃—uMxt*))
Gbt ∧Hbt = 1063oC

Mbt*
[u] (5.3)

In the schematization (5.3) the bracketed u means that the deduced conse-
quence is of universal strength, or, in the other words, that the consequence
Mbt* is the only possible. The explanation above is a deductive one, there
are no probabilistic or statistical considerations in it.

Being interested in explanations in AI systems we must note that de-
ductive explanations are not problematic — their structure is so near to the
structure of logical deduction that their use and creation is obvious. Proba-
bilistic explanations are not so obvious.

As an example of a probabilistic explanation for another explanandum
event we will use the example given by Fetzer [5, p. 128-129].

(CL) For all x and all t, if x were polonium218 at t, then a time trial of three
minutes duration at t would bring about the loss of nearly half the
mass of x by t + 3 minutes with strength 0.9.

(C1) Smith brought a sample b of eight grams of polonium218 into the lab
for analysis at t;

(C2) Smith weighted the sample b three minutes after bringing it in;

(ES) The mass of b at t + 3 minutes was approximately four grams total.

The flow of the reasoning can be schematized as follows:

(∀x)(∀t)(Mxt⊃— ((Txt = 3min)⊃—0.9 (Mxt* = 1
2Mxt)))

(Mbt = 8g)∧ (Tbt = 3min)

Mbt* = 4g
[0.9] (5.4)

The double line in the schematization separates the explanans from the
explanandum and indicates that the logical property between them is partial.
The number in brackets indicates the degree of nomic expectability.

The use of probabilities in explanation can cause some problems. It is
not, however, reasonable to consider those problems and paradoxes here,
we just refer to [5, p. 128-136].

Since the explanation facility of any expert system needs to consider and
be able to explain situations which are not actually causal, it is reasonable
to consider non-causal explanations. It is a universal fact that there is a
temperature where paper burns. Now we can know that a book is made of
paper. From the universal fact and from the material used in the book we
can deduce that the book has the property that it burns at the temperature
where paper burns. This can be written as:



105

(CL) For all x and all t, if x were paper at t, then x would burn in the
temperature temp.

(C1) This book is made of paper

(ES) This book burns in the temperature temp;

which can be schematized as follows:

(∀x)(∀t)(Pxt⊃— (Bxt = temp))
Pbt

Bbt = temp
. (5.5)

The reasoning in (5.5) is obviously an explanation for the fact that this book
burns. Note that the explanation is not a causal one. The simple explanation
(5.5) is an example of non-causal explanations which explain why particular
things have specific properties at certain times by invoking simple lawlike
sentences.

The concept of non-causal explanation requires a more accurate def-
inition. Since the concept of adequate causal explanation is specified as
Fetzer does, another specification proposed by Fetzer [5, p. 141-142] will
do, namely: A set of sentences S, known as the “explanans” provides an
adequate nomically significant non-causal explanation for the occurrence of
a singular event described by another sentence E, known as its “explanan-
dum”, relative to the language framework Lzt, if and only if:

(a) the explanandum is either a deductive consequence of its explanans;

(b) the explanans contains at least one lawlike sentence of the simple form
that is actually required for the derivation of the explanandum from
its explanans;

(c) the explanans satisfies the requirement of strict maximal specificity
with respect to its lawlike premise(s); and

(d) the sentences constituting the explanans are true, relative to the lan-
guage framework Lzt.

The example (5.5) and the definition of adequate nomically significant
non-causal explanations tells what kind of sentences can be used in non-
causal explanations. Fetzer [5, p. 140-161] considers the adequacy of non-
causal explanations and achieves a conclusion according to which non-causal
explanations are adequate. As a general definition of adequate explanations
he gives one which connects the concept of non-causal and causal explana-
tions.

A set of sentences S, known as the “explanans” provides an adequate
nomically significant explanation for the phenomenon — whether singular
or general — described by another sentence E, known as its “explanandum”,
relative to the language framework Lzt, if and only if:

(a) the explanandum is either a deductive or a probabilistic consequence
of its explanans;
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(b) the explanans contains at least one lawlike sentence (of either causal or
simple form) that is actually required for the deductive or probabilistic
derivation of the explanandum from its explanans;

(c) the explanans satisfies the requirement of strict maximal specificity
with respect to its lawlike premise(s); and

(d) the sentences constituting the explanation — both the explanans and
its explanandum — are true, relative to the language framework Lzt.

The definition of an adequate nomically significant explanation does not
satisfy the requirement of respect to the structure of domain knowledge.
The seemingly versatile nature of the calculus C does, however, suggest that
by proper modifications the calculus can be used in explanations which do
respect the structure of domain knowledge. In the following section such
modifications are presented.

5.4 Formal explanation and the concept of causal pro-
cesses

In the above sections adequate explanations and the form of causal expla-
nations have been considered. The formalism is explicit and usable for ex-
planative inferences, but it does not respect the structure of domain knowl-
edge. Although the approach to domain knowledge seems to include a large
amount of counterfactuals, extensional conditionals, and non-logical modal-
ities, it is possible to use a formal mechanism of generating adequate expla-
nations which respect earlier considerations of domain knowledge.

5.4.1 Formal explanations of causal processes

Fortunately we do not have to reformulate the concept of causal processes
in order to be able to provide explanations which respect that concept. It
seems to be sufficient to create a formally usable method to generate ex-
planations of causal processes, and leave the processes themselves to their
current state. As the method to deal with causal processes, the promisingly
versatile calculus C seems to require only some modifications to be used
for such a purpose. The modifications mostly seem to concentrate on the
interpretation of the calculus, and not so much on the calculus itself, as will
be seen later on.

At first it is useful to reconsider the previous example of heating a piece
of gold to the temperature of 1063oC. We propose that the schematization
(3) should be written in a form which could be interpreted according to the
concept of causal processes. One possibility would be:

(∀x)(∀t)(Gxt-⊃— (Hxt = 1063oC⊃—uMxt+))
Gbt-∧Hbt = 1063oC

Mbt+
[u]. (5.6)
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When reading the schematization (5.6) we should say that 
For all causal
processes x and all t, if x were characterized by being gold at time interval
t- before a causal interaction at t, then the strength of the dispositional
tendency for a causal interaction, which causes x to have a mark of being
heated to the temperature 1063oC to be imposed on it, at t to bring about
the changed characteristic, melted form, for the causal process x at time
interval t+ after the causal interaction at t is universal�. The example shows
that we can interpret explanations expressed in the form of causal calculus
as explanations using the concept of causal processes as the basis.

According to the spirit of the example above, the basic form of lawlike
sentences is the one reading 
For all causal processes x and all t, if x were
characterized by K at time t, then x would be characterized byX at t�. That
type of sentence can be expressed formally as follows:

(∀x)(∀t)(Kxt⊃—Xxt). (5.7)

Note that although the sentence (5.7) looks exactly like (5.1), it reads as 
For
all causal processes x and all t, if x were characterized by K at time t, then
x would be characterized by X at t�.

Although (5.7) looks like (5.1), its new interpretation is different, as will
be seen later on. It is possible that the basic form of lawlike sentences would
be cognitively more tempting if it were not read according to the concept of
causal processes — but it must, anyway, be noted that the causal process
interpretation of the basic form of lawlike sentences respects the structure
of domain knowledge better. The causal process interpretation outlaws all
uses of pseudo-processes and defines what kind of things the sentence is
about.

Similarly the causal form of the lawlike sentences can be formulated
according to the example above, as:

(∀x)(∀t)(Kxt-⊃— (T ixt⊃—n Oixt+)). (5.8)

The sentence (5.8) asserts that 
For all causal processes x and all t, if x were
characterized by K at time interval t- before a causal interaction at t, then
the strength of the dispositional tendency for a causal interaction, which
causes x to have a mark Ti to be imposed on it, at t to bring about the
changed characteristic Oi for the causal process x at time interval t+ is n�.

Interpretations of (5.7) and (5.8) imply that restrictions and definitions
created for event oriented explanative sentences can be used in a modified
form when speaking of causal processes and their interactions. Although
sentences (5.7) and (5.8) are useful for explanations which respect the con-
cept of causal processes, some other features of explanation do not hold
any longer.

The probabilistic explanation provides some problems. Considering the
example of polonium218 (and its schematization (5.4)) it must be noted that
the provided explanation is senseless when considered according to the
causal process approach. Obviously the tendency to lose mass is charac-
teristic to the causal process of polonium218, in which case there has not
been a causal interaction. The original lawlike sentence
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For all x and all t, if x were polonium218 at t, then a time trial of
three minutes duration at t would bring about the loss of nearly
half the mass of x by t + 3 minutes with strength 0.9.

has to be written in another form. Because the tendency to lose mass is
characteristic to polonium218, the new form is the one saying that:

For all causal processes x and all t, if x were characterized by
being polonium218 at time t, then x would be characterized by
having the tendency to lose nearly half the mass of x by t + 3
minutes with strength 0.9.

The new form is essentially the same as (5.7). The schematization of an ex-
planation of loss of mass of a sample of polonium218 would use the charac-
teristics of polonium218 and look like (5.5) with notations changed to proper
forms.

The fact that characteristic features like the one above are not expressed
as causal sentences any longer does not mean that probabilistic features
could be thrown away. Consider, as an example, a situation in which a coin
is standing on its edge, not laying on its side. If something hits the coin at
the top, there is a probability of 0.5 to have heads on the upper side of the
coin after the hit. That may be written as:

(CL) For all causal processes x and all t, if x were characterized by being a
coin and standing on its edge at time interval t- before a causal inter-
action at t, then the strength of the dispositional tendency for a causal
interaction, which causes x to have a mark, in this case of being sub-
jected to kinetic force making it change its stability, to be imposed on
it, at t to bring about the changed characteristic, in this case to end up
laying on its either side, for the causal process x at time interval t+ is
0.5;

(C1) The coin c has been standing on its edge during a time interval t-;

(C2) The coin is hit on its top, i.e. subjected to kinetic energy, at time t;

(ES) The coin that has been standing on its side is lying with its head side
up during the time interval t+ with the probability of 0.5.

The flow of reasoning in the example has essentially the schematization (5.4)
with notations changed to proper forms.

The reasoning above is not very accurate in the physical sense, but the
intended interpretation should be clear. Considering the reasoning it has
to be noted that it can be made more and more accurate, finally using very
precise reasoning with elementary particles. Such a possibility suggests that
explanations and causal processes form hierarchies. That possibility is not,
however, in the scope of this work.

Our previous scientific conditionals may now be written into forms which
take causal processes into account. Scientific conditional can now be speci-
fied as
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(A) lawlike sentences

(a) simple forms
(∀x)(∀t)(Kxt⊃—Xxt);

(b) causal forms
(∀x)(∀t)(Kxt-⊃— (T ixt⊃—n Oixt+));
(∀x)(∀t)((Kxt-∧ Tixt)⊃—n Oixt+);
(∀x)(∀t)(T ixt⊃— (Kxt-⊃—n Oixt+));

(B) nomological conditionals:

(a) simple forms
Kbt⊃—Xbt,

(b) causal forms
(Kbt-⊃— (T ibt⊃—n Oibt+));
((Kbt-∧ Tibt)⊃—nOibt+);
(T ibt⊃— (Kbt-⊃—n Oibt+)).

It appears to be that a sentence of kind (B) logically entails a corresponding
sentence of kind (A), as in the original definition of scientific conditionals.

The original requirement of strict maximal specificity is not very useful
under new interpretations. Therefore it could be written in the form of
modified requirement of strict maximal specificity (MRSMS), as follows:

An explanation of why an explanandum characteristic — the pos-
session of a characteristic X by an individual causal process c or
an outcome characteristic Oi of a causal process after a causal
interaction — occurs is adequate only if every characteristic and
causal interaction described by the antecedent condition(s) of any
lawlike sentence S in the explanans of that explanation is causally
or characteristically relevant to the occurrence of its attribute
characteristic X or outcome characteristic Oi, within Lzt.

Due to the changes, the definition of an adequate nomically significant
explanation is no longer more useful than the original requirement of strict
maximal specificity. According to the new interpretations the definition may
be written as:

A set of sentences S, known as the “explanans” provides an ade-
quate characteristically or causally significant explanation (ACCSE)
for the existence of a characteristic of a causal process (a char-
acteristic describing one process or common to many processes,
i.e. singular or general) described by another sentence E, known
as its “explanandum”, relative to the language framework Lzt, if
and only if:

(a) the explanandum is either a deductive or a probabilistic con-
sequence of its explanans;

(b) the explanans contains at least one lawlike sentence (of ei-
ther causal or simple form) that is actually required for the
deductive or probabilistic derivation of the explanandum
from its explanans;
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(c) the explanans satisfies the modified requirement of strict
maximal specificity (MRSMS) with respect to its lawlike premise(s);
and,

(d) the sentences constituting the explanation - both the ex-
planans and its explanandum - are true, relative to the lan-
guage framework Lzt.

5.4.2 The role of modifications in C

Considering the original causal calculus and its parts, we have to note that
the calculus S does not require any modifications. That is easy to note from
the fact that the formulations (5.1) and (5.7) are essentially the same. Hence
the calculus S can be used in its original form, only its interpretation changes
into the form of (5.7).

The cases of U and C require closer examination. The sentences of causal
processes are more or less the same as (5.8). The problem with that form
is, essentially, that Kxt-, Tixt, and Oixt+ include a variety of references
to time. The distinction between the use of references to time in S versus
sentences of the type (5.8) is that simple forms of lawlike sentences refer to
one time-point each, and sentences of the type (5.8) refer to two different
time intervals and a time-point between them. If the use of sentences of the
type (5.8) does not obligate us to make syntactic modifications to the causal
calculus C, we should be able to use the calculus C in its current form.

Fortunately the problem is not a severe one. The original definition of
causal calculus C did not define the types of predicates used in sentences.
Hence it is the case that the original causal calculus can be safely used for
sentences of causal processes, only if the interpretation of the calculus is
changed.

5.5 Discussion

Although ACCSE provides a theoretical foundation for explanations of do-
main models, it leaves several interesting questions open. The questions
include probabilistic explanations and possible paradoxes of probability,
and the relativization to L∗, and the relation of formal basis to explana-
tions given by actual systems, and the implementation of domain models
that respect the concept of causal processes.

Problems with probabilities originate from the interpretation of proba-
bility. The frequency interpretation of probability leaves open a possibility
that ‘qb ’ happens to be the case and the available explanations use either
‘p⊃—1 qa’ or ‘p⊃—0 qb’. Although we can refer to the fact asserted by Kol-
mogorov [10, p. 5], an explanation (of the case ‘qb ’) which uses ‘p⊃—0 qb’
is not tempting. The actual use of probabilities in explanations requires
further study.

Knowledge has to be considered with some respect to the relativity of
language. In that respect our considerations of adequate explanations are
much more closely connected with the works of Tuomela [18] and Fetzer [5]
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than Salmon [17]. But it may not be reasonable to try to get rid of the rel-
ativity. Given the linguistic character of arguments and explanations there
seems to be no way to avoid the relativization to a language. Unfortunately
we still lack explicit proofs and definitions of L∗ and other required linguis-
tic features, and we have to depend on more or less defended assumptions,
not on proven facts.

The use of user models may be necessary in order to enable efficient
use of ACCSE. Although ACCSE provides a formalism according to which
explanations should be generated, it does not provide solutions to problems
that concern the interface between users and intelligent systems. It may be
the case that the definition of ACCSE would be best used in the internal
activities of the system, and that explanations provided to a user could vary
greatly on the basis of available user models.

The definition of adequate explanations that respect the structure of do-
main knowledge may suffer from incomplete formalization, which follows
from the fact that the concept of causal processes is not formalized. For-
tunately causal processes seem to be able to be modelled. The modelling
of causal processes does not require the use of logic formalisms in order
to be possible, and the structure and implementation of models of causal
processes may vary depending on the case. The use of the concept of causal
processes is left to the knowledge engineer(s) and the domain expert(s) who
develop the domain model.

Despite the outlined weaknesses of our definition of adequate explana-
tions it seems to be reasonable to say that the definition does provide a
mechanizable theoretical basis on which the explanation abilities of intelli-
gent systems may be based. Note, however, that the basis is for explanations
of the physical domain only. Explanations of reasoning may require a dif-
ferent formalism.
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APPENDIX: A brief overview of the causal calculus C

Let us assume the familiar set of primitive symbols and formation rules for
constructing the calculus, namely:

(i) countably many sentence letters A, A′, . . . , B, B′, . . . ;

(ii) the logical signs ¬ and ⊃, which will be interpreted as usual; and

(iii) parenthesis, brackets and braces for punctuation,

i.e. the primitive signs of a classical sentential calculus. To the calculus we
add a new operator ‘⊃— ’ to those above and define the well formed formu-
lae x as: an object x is a formula of calculus S iff x belongs to every set
which contains every sentence letter and also contains ‘¬p’, ‘p ⊃ q’ and
‘p⊃—q’ whenever it contains ‘p’ and ‘q’. Let ‘∧’, ‘∨’ and ‘≡’ have their stan-
dard contextual definitions, and let us define the modal operators ‘�p’ and
‘�p’ contextually as ‘¬p⊃—q’ and ‘¬(p⊃—¬q)’, respectively. The rules of
inference for calculus S are modus ponens (MP) and the Gödel rule of neces-
sitation (NEC), i.e. NEC: if ‘p’ is a theorem, then ‘�p’ is a theorem.

A formula of S is an axiom of S iff it is tautologous or has one of the
following forms:

A1. �(p ⊃ q) ⊃ (�p ⊃ �q) ;

A2. �(p ⊃ q) ⊃ (p⊃—q) ;

A3. (p⊃—q) ⊃ (p ⊃ q);
A4. (p⊃— (q ⊃ r)) ⊃ ((p⊃—q) ⊃ (p⊃— r));

A5. (�(p ⊃ q)∧ (q⊃— r)) ⊃ (�(p ∧ q) ⊃ (p⊃—q));

A6. ((p⊃— r)∧ (q⊃—r)) ⊃ ((p ∧ q)⊃— r).

The calculus S is actually an extension of a calculus developed by Nute
[13]. For any well formed formula ‘p’ and the set Γ of wffs, ‘�S p’, ‘Γ �S p’,
‘Γ is S-consistent’, and ‘Γ is maximally S-consistent’ are defined in the usual
way. For our reasons it is sufficient to present the following theorems, for
proofs we refer to [6]. We will not, actually, present the theorems required
for the exact definition of S or the following U and C, we will only mention
the results achieved by those theorems and refer to the original sources.

According to [6], it is possible to show that the following are theorem
schemata for S:

a. �S p⊃—q;

b. �S �p ⊃ (q⊃—p);

c. �S �¬p ⊃ (p⊃—q);

d. �S �p ⊃ ((p⊃—q) ⊃ ¬(p⊃—¬q));
e. �S ((p⊃—q)∧ (q⊃—p)) ⊃ ((p⊃—r ≡ (q⊃— r));
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f. �S ((p ∧ q)⊃— r) ⊃ (p⊃— (q ⊃ r));
g. �S (p⊃— (q ∧ r)) ⊃ ((p ∧ q)⊃— r);

h. �S (p⊃—¬q)∨ ((p⊃— (q ⊃ r)) ⊃ ((p ∧ q) ⊃ r)).
In the same paper they have shown that the calculus S is consistent. The con-
sistency result is, of course, very important when considering the usability
of the calculus.

It is also possible to develop a model theory for the calculus S, according
to which it is possible to define the truthness of a wff ‘p’, i.e. to say when
‘p’ is true in an S-model. We will say that a wff ‘p’ is S-valid just in case ‘p’
is true in every S-model. The model theory for S is related to S in the usual
ways. In particular, it is possible to obtain soundness and completeness
results for S. For those results we refer to [6].

For reasons to be considered later, we will not propose an interpretation
for the calculus S at this point. Before giving any interpretation we will
present two extensions to S. The first one has an additional operator ‘⊃—u ’
and the same inference rules as S. In addition to the axioms A1-A6, the
following wffs are axioms of the calculus U:

A7. (p⊃—u q) ⊃ ¬�(p ⊃ q);
A8. (p⊃—u q) ⊃ ¬(¬q⊃—u¬p);
A9. (p⊃—u q) ⊃ (p⊃—q);

A10. (p⊃—u (q ⊃ r)) ⊃ ((p⊃—u q) ⊃ (p⊃—u r));

A11. (�(p ⊃ q)∧ (p⊃—u q)) ⊃ (�(p ∧ r) ⊃ ((p⊃—u r)∨�(p ⊃ r)));
A12. ((p ∧ q)⊃—u r) ⊃ ((p⊃—u r)∧ (q⊃—u r));

A13. (p⊃— (q⊃—u r))∧�(p ∧ r) ⊃ (((p ∧ q)⊃—u r)∨�((p∧ ⊃ r)));
A14. ((p⊃—u q)∧�(q ⊃ r)) ⊃ ((p⊃—u r)∨�(p ⊃ r)).
For any well formed formula ‘p’ and the set Γ of wffs, ‘�U p’, ‘Γ �U p’, ‘Γ
is U-consistent’, and ‘Γ is maximally U-consistent’ are defined in the usual
way.

It is possible to show that the following are theorem schemata for U:

a. �U ¬�(p⊃—u q);

b. �U (p⊃—u q) ⊃ (�p ∧�¬q);
c. �U (p⊃—u q) ⊃ ¬(p⊃—u¬q);
d. �U (p⊃—u q)¬�(p ⊃ ¬q);
e. �U (p⊃—u (q ⊃ r)) ⊃ (�q ⊃ (p⊃—u r));

f. �U (p⊃—u (q ⊃ r)) ⊃ (�(p ⊃ q) ⊃ (p⊃—u r));

g. �U (p⊃—u q) ⊃ (p⊃—u (p ∧ q));
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h. �U ((p⊃—u q)∨ (p⊃—u r)) ⊃ ((p⊃—u (q∨ r))∨�(p ⊃ (q ∨ r)));
i. �U ((p⊃—u q)∧ (p⊃—u r)) ⊃ (p⊃—u (q∧ r)).

In addition to the proof of the theorem schemata, Fetzer and Nute [6] have
shown that the calculus U is, in fact, consistent.

As in the case of the calculus S, it is possible to develop a model theory
for the calculus U, according to which it is possible to define the truthness
of a wff ‘p’, i.e. to say when ‘p’ is true in a U-model. We will say, as in the
case of S, that a wff ‘p’ is U-valid just in case ‘p’ is true in every U-model.
The model theory for U is related to U in the usual ways. In particular, it
is possible to obtain soundness and completeness results for U. For those
results we refer to [6].

The other extension to S is actually an extension to U, too. The new
calculus C is obtained by introducing a new operator ‘⊃—n ’, wheren ∈ [0,1].
The inference rules are the same as for S and U. In addition to the axioms
A1-A14, the following wffs are axioms of the calculus C:

A15. (p⊃—n q) ⊃ (¬(p⊃—q)∧¬(p⊃—¬q));
A16. (p⊃—n q) ⊃ ¬(¬p⊃—m ≠ q);

A17. ((p⊃—u q)∧�(p ⊃ q)) ⊃ ((p⊃—n (q ⊃ r)) ⊃ (p⊃—n r));

A18. ((p⊃—1 q) ⊃ ((p⊃—n (q ⊃ r)) ⊃ (p⊃—n r))) for n ≠ 0;

A19. ((�(p ⊃ q)∧ (p⊃—n r))∧¬(p⊃—¬r)) ⊃ ((p⊃—n r)∨ (p⊃—r));

A20. ((p ∧ q)⊃—n r) ⊃ (((p⊃—q)∨ (p⊃—1 q)) ⊃ (p⊃—n r));

A21. ((p⊃— (q⊃—n r))∧¬(p⊃—¬r)) ⊃ (((p ∧ q)⊃—n r)∨ ((p ∧ q)⊃— r));

A22. (p⊃—n q) ≡ (p⊃—1−n¬q);
A23. (p⊃—n q) ⊃ ¬(p⊃—m q) for m ≠ n;

A24. ((p⊃—u q)∨ (p⊃—1 q)) ⊃ ((p⊃—n r) ⊃ (p⊃—n (q ∧ r)));
A25. (((p⊃—m q)∧ (p⊃—n r))∧ (p⊃—k (q ∧ r))) ⊃

((p⊃—(m+n)−k (q ∨ r))∨ (p⊃—m (q∨ r)));
A26. �¬(p ∧ q) ⊃ (((r ⊃—mp)∧ (r ⊃—n q)) ⊃

((r ⊃—m+n (p ∨ q))∨ ((r ⊃— (p ∨ q))))).
For any well formed formula ‘p’ and the set Γ of wffs, ‘�C p’, ‘Γ �C p’, ‘Γ is
C-consistent’, and ‘Γ is maximally C-consistent’ are defined in the usual way.

Note that according to the definition of C, it is obvious that ‘p⊃—1 q’ and
‘p⊃—u q’ are not the same thing. Also it is true that ‘p⊃—1 q’ and ‘p⊃—u ≠ q’
are not the same. Although the frequency of an event suggests probability 1,
it is not certain that the event holds universally [10, p. 5]. Therefore ‘p⊃—1 q’
does not guarantee that q comes after p.

The following are theorem schemata for C:

a. �C (p⊃—n q) ⊃ (¬�(p ⊃ q)∧¬�(p ⊃ ¬q));
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b. �C (p⊃—n q) ⊃ (¬(p⊃—u q)∧¬(p⊃—u¬q));
c. �C (p⊃—n q) ⊃ (�p ∧�¬q);
d. �C (p⊃—n q) ⊃ �(p ∧ q).

The required proof for the theorem schemata can be found from [6], there
is also a proof for the consistency of the calculus C.

The matter of a model theory for C differs from the developmet of model
theories for S and U. Fetzer and Nute have themselves developed more than
one model theory for the calculus C, but, as the authors say, the difference
between the theories is much in the intended interpretation, and the choice
of the interpretation is not clear. It is, anyway, possible to develop a model
theory for C, in which case it is more or less easy to say that a wff ‘p’ is true
in a C-model just in the case that an appropriate condition is fulfilled. It is
possible to say, in the same way, that a wff ‘p’ is C-valid just in case ‘p’ is
true in every C-model.

Although it is possible to show that every theorem of the calculus C is
C-valid, it may be impossible to obtain a completeness result for the calculus
C, at least with current methods used in such proofs [6]. It seems, however,
that the impossibility is more due to the nature of the procedures by which
such results are achieved. It seems to be the case that new techniques will
be called for before a completeness proof may be possible.
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Abstract

Model-based reasoning and industrial fault diagnosis offer intriguing
possibilities for solving forest health problems that have proven very
complicated. The first requirement for the use of MBR is to build object-
oriented models of trees, plants, and various harmful agents. Unfortu-
nately, an object oriented model of a live tree is very heavy in the com-
putational sense because such a model must span over several hierar-
chical levels. The problem of computational complexity may, however,
be relieved by using simulation in cases that have not been encountered
earlier. This can be achieved by using a simple method which allows the
system to “learn” from its earlier behavior. In this paper such a method
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is presented. The use of MBR for diagnostic tasks in ecology is also
discussed.

6.1 Introduction

Biological systems are inherently very complex and their behavior is often
difficult to predict. The very name of the chaos theory is the best manifest
of this. Yet the workings of the individual basic units, such as leaves of a
tree, are well understood. The difficult issue is the composition of the whole
from the parts. Already in the fifties, a theory of hierarchy was created to
deal with these issues. Later it has been shown how simple rules give rise
to complex structure and behavior (Lindenmayer 1968, 1987, Mandelbrot
1982, Prusinkiewicz and Hanan 1989).

Scientists that work with computer aided decision making in the fields of
agriculture, forestry, and other natural resources management are increas-
ingly turning to knowledge-based systems to be able to do better planning
among all the agents that interact in the natural environment (Stone and En-
gel 1990). Individual problems such as animal/habitat interaction (Saaren-
maa et al. 1988, Saarenmaa and Nikula 1989, Stone 1990), tree growth sim-
ulation (Lorenz et al. 1989), and forest fire management (Cohen et al. 1989)
have been solved with object-oriented programming and multiple agents
working on a geographical platform. But making true model-based multi-
agent multi-model planning work in natural resources management requires
taking control over the complexity of the whole natural environment. This
requires models of natural objects that span over several hierarchical levels
and are instantiable to any of these.

The requirements that are set for these natural objects are transparency
and scalability, and a true correspondence of the model representation with
the natural objects. Transparency of these biotic agents is necessary because
they must be accessible to the external planners for manipulation and expla-
nation. Scalability means that the models must be zoomable from a large to
a miniature level of abstraction. For instance, a silviculturist planner must
be able to look at the forest as a whole, as a tree, as parts of tree such as
trunk attributes, and finally as the foliage elements that may show symp-
toms of damage. The third requirement, the one-to-one representation rises
from these two first ones: scalability has meaning only if the planner can
assume to find a meaningful set of objects at a more detailed level should it
be necessary to dive therein.

The logical consequence of this modeling approach is that the models
embed a complex topology, and that the computational burden becomes
overwhelming. Yet the whole computation is rarely needed, because the
likelihood that a planning agent would need the data from a particular object
is small. Some solutions to this are massive data-parallelism and concurrent
object-oriented languages (Agha 1990). Other solutions for general purpose
hardware and software are also needed. In this paper we present a simple
method how a complex hierarchical model that describes the topological
structure of a tree can be made to learn from its previous behavior. This
way, the computation burden can be reduced without compromising the
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true topological representation of the tree and its functioning.

6.2 Model structure

DEEP-TREE is a model-based diagnostic system of forest damage (Saarenmaa
1988). The goal of the DEEP-TREE project is to have a single representation
of a tree’s structural topology and functioning that can be used by differ-
ent consultation and planning systems. The architecture of the DEEP-TREE
model derives from the model-based diagnosis of industrial devices (DeK-
leer and Williams 1987, Herbest and Williams 1987). Some of the goals are
causal explanation of the mechanisms of forest damage and predictions for
growth and development, but also general issues of forest management.

������
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����������	

Figure 6.1: The class and object hierarchy of the DEEP-TREE model and its
topological structure in a slot graph. The initial classes and the growth of
the tree during the two first years is shown.

DEEP-TREE is a prototype that has been written in KEE. Its class hierarchy
is apparent from the smaller two windows in Figure 6.1. There are three
hierarchy levels which are 1) the whole tree, 2) tree part compound objects
(trunk, foliage, etc.), and 3) individual organs (buds, shoots, leaves, etc.).
While a single tree is one object, and all the tree parts total about ten objects,
individual organs cumulate up to tens of thousands in a mature tree. The
tree is not built ready as full grown. Instead, it is always generated from
a seed, a single object. The topology of the tree is formed by methods of
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Class Generates Connected to

BUDS SHOOTS, BUDS SHOOTS
LEAVES - SHOOTS
SHOOTS LEAVES BUDS, LEAVES, TRUNK, BARK
TRUNK a sink SHOOTS, ROOTS, BARK
BARKa) TRUNK TRUNK, SHOOTS, ROOTS
ROOTS FINE-ROOTS TRUNK, BARK, FINE-ROOTS,

ROOT-TIPS
FINE-ROOTS - ROOTS
ROOT-TIPS FINE-ROOTS, ROOT-TIPS ROOTS
SEED ROOT-TIPS, BUDS detaches after germination
LITTER a sink -

a) New, not in Figure 6.1.

Table 6.1: Tree organs and the topology they create with their methods.

organs (Table 6.1). The development of the structural topology of the organs
of a two year old tree is shown in figure 6.1.

In a live tree, each of the organs also functions. Currently, DEEP-TREE is
made to simulate the effects of carbon/nutrient (mainly nitrogen) dynamics.
C/N balance is the most important factor that determines how palatable the
tree is to herbivores such as moose, voles, and harmful insects (Bryant et
al. 1983, Tuomi et al. 1984). A detailed description of the mechanisms and
effects of the C/N balance on pest susceptibilty is beyond the scope of this
paper, but it is necessary to know that it varies by season, age of organ,
soil type, damage in organ, and damage elsewhere in the tree. To be able to
perform diagnostic reasoning of the tree model, the C and N levels of the
target objects must be known at all times as well as the damage status of
the organs.

From this design raises the problem that we need to compute the func-
tioning and status of all organs. For instance, a herbivore attack to leaves on
the upper crown leaves causes N levels to rise at the lower crown because
now there is more N available. This rises the susceptibility of the lower
crown leaves to further defoliation. On the other hand, the tree defends it-
self with C-based compounds, and induces their synthesis after defoliation,
causing further N-excess, but also a higher level of defence in the whole tree.
This example shows that on a sudden disturbance the needs for computa-
tion become very large . Even by combining all the leaves connected to a
shoot into a single object, there are tens of thousands of leaves in a mature
tree. They all need to be recomputed in this case.

So far, DEEP-TREE has been designed for quantitative models of tree
physiology, mainly outlined by Landsberg (1986). Qualitative modeling and
reasoning will be studied in future, because of the explanations and robust-
ness they provide.
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6.3 The Method

From the brief description of the tree model it is easy to see that the com-
putational effort used to compute required values may be enormous. One
tempting escape from the computational complexity is to use previously
computed values to approximate the function of the objects of the model.
Since the use of the described type of models may be defended by their abil-
ity to behave correctly in very different situations, it is obvious that such ap-
proximations are useful only in cases which have a very close resemblance to
previously encountered cases. One possible method of performing such an
approximation without losing the positive effects of the use of hierarchical
object-oriented models may be to use a simple method by which the system
can “learn” from its earlier function. In the following text the notation X
denotes an n-ary vector.

Algorithm FIND-APPROX:
1) IF there are previously computed values for parameters (hereafter

denoted by V ), according to which an object functions, within
a chosen range THEN

2) RETURN(compute-approx(V ))
3) ELSE
4) the state of the specific level, denoted by value = compute-value(V );

“compute values by using the objects themselves”
5) save-approx(value, V ); “save sufficient information for later use”
6) RETURN(value) “return the value computed using the actual objects”
7) ENDIF
8) END.

The algorithm FIND-APPROX is called every time an object of any object-
class present in the model is intended to be used. The aim is to use the
actual object only in cases when previously computed values do not pro-
vide a possibility of calculating an accurate enough approximation of the
behavior of the actual object. In practice this means that if we already know
how a shoot behaves in certain conditions, we can approximate its behav-
ior without computing the exact behavior of the shoot and its leaves etc. If
the function of an object is explicitly computed, then information of the pa-
rameters and the computed values are saved into a balanced binary tree for
further use. Before the actual saving of the information required for later
use is done, the algorithm SAVE-APPROX computes values which are later
used to compute approximations of almost similar cases.

Algorithm SAVE-APPROX(v,V ):
1) dl = change(v, V ,−);
du = change(v,V,+);
“dl and du are vectors which will be used when computing approximations”

2) save in balanced btree(v,V ,dl,du);
3) END.
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The function CHANGE returns vector which has as many dimensions as v,
and each of the dimensions of the returned vector du is computed by

dui = −
vi − nearest value(V ,vi,+)
Vi − nearest point(V ,+)

in which the function NEAREST VALUE returnsvi in case that there is no pre-
viously computed point p for which Vi ≤ pi ≤ Vi + εi holds when i ranges
over the dimensions of p, and where the symbol ε denotes the chosen ap-
proximation shift (i.e. a half of the range for which the current approxima-
tion may be used). The function NEAREST POINT returns pi in the case that
such a previously computed point exists in the direction dictated by ‘-’ or ‘+’
(note that the direction is same for NEAREST VALUE and NEAREST POINT).1

In a similar way, each of the dimensions of dl is computed by

dli =
vi − nearest value(V ,vi,−)
V i − nearest point(V ,−)

in which the function NEAREST VALUE returns vi in the case that there is
no previously computed point p for which Vi − εi ≤ pi ≤ Vi holds.

The algorithm SAVE IN BALANCED BTREE saves its parameters to a bal-
anced binary tree. The balancing and other operations performed to the tree
are managed by commonly known binary-tree algorithms.

Algorithm COMPUTE-APPROX()
1) out = {};
2) (v,p,dl, du,direction) = return from btree(nearest point(V));

“At this point the earlier values, the parameters according to
which the values were computed, the vectors used to compute the
approximation, and the direction in which the new parameters are when
compared to the earlier parameters, are returned from the tree”

3) IF direction = ‘+’ THEN
d = du

ELSE
d = dl

4) FOR i ranges over the dimensions of v DO
5) outi = vi + di|Vi − pi|

“compute the approximated value for every dimension of the value vector”
6) ENDDO
7) RETURN(out)
8) END.

The actual approximation algorithm COMPUTE-APPROX searches the nearest
previously computed point and saves the values found from the tree to local
variables. In addition to the saved values, the function RETURN FROM B-
TREE returns the direction in which the new point is compared to the nearest

1If the dividend turns out to be zero, then zero is returned automatically and the divisor
will not even be computed.
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previously computed value. From the direction in which the new parameters
are the vector dl or the vector du is chosen. The values of the dimensions
of the chosen vector are then used to compute the values of the returned
approximation. The chosen vector provides values from which it is possible
to guess the difference between the value computed at p and the value at V ,
i.e. the value at V is approximated by using the previously computed value
at p, and an estimate of the amount of the change which depends on the
difference between V and p.

One obvious feature of the method is that if ε is large, we lose accuracy
but obtain more improvement in the computational sense. In this respect,
the choice of ε depends on the nature of the modelled phenomenon or ob-
jects. If the behavior of the modelled phenomenon or object has very rapid
changes, the approximation shift ε has to be kept small.

An unfortunate feature of the method is that it may require a large
amount of space for the binary tree in which the previously computed val-
ues and other information are saved. The requirement of space for saved
information may cause one to be tempted to use a larger ε, in which case
some accuracy is lost, but space saved. Obviously it is important to find
a balance between the requirement of accuracy versus the requirement of
small space for generated information and computational savings. Further
improvements include improving the method used to compute the approx-
imation or creating a mechanism by which different approximation shifts
and spaces defined by such shifts may be combined, the usability of the
proposed method may obviously be improved from its current state.

6.4 Discussion: the tasks in ecological fault diagno-
sis

The forest damage that the model is intended to diagnose can be caused by
biological agents such as insects, or it may be the effect of environmental
change. The knowledge that describes these types of “faults” in the forest
ecosystem is stored in two class hierarchies that can be loaded next to the
DEEP-TREE model. The actual problem solving knowledge is also stored in
its own class hierarchy. Detailed description of these is provided elsewhere
(Saarenmaa 1988; Saarenmaa et al 1991), but their use with the present
model is briefly discussed here.

The biological agents that may attack trees form one taxonomy that is
arranged according to the Linnean classification. For each taxa, such as the
family of bark beetles or a disease such as root-rot, the classes of those tree
parts that the agents attack are specified. This knowledge, as well as other
pertinent information of the agent’s distribution, life cycles, appearance,
symptoms, etc. is stored in the slots of the classes built with KEE (figure
6.2).

The conditions and symptons of abiotic disturbances, such as nutrient
deficiences, air pollution, etc. are also stored in a similar class hierarchy.
All these are prototypical knowledge of various faults.

The problem-solving knowledge is stored in yet another class hierar-
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Figure 6.2: The class hierarchy of the DEEP-PEST knowledge base.

chy, called “expert agents”. These perform the reasoning that match the
pests and disturbances with the observed symptons. Each expert agent has
a problem solving agenda. The agenda of a diagnosis expert has the follow-
ing steps:

1. gather initial data;

2. reason possible causes from among the protypical faults and pests
with forward chaining;

3. compare the symptons in the tree with those of the prototypical faults
and pests with backward chaining; and

4. reason the causality and create the explanations.

The fourth step is particularly complex, since it requires generate-and-test
experimenting with the present DEEP-TREE model. This is where the present
algorithm has a central role.

Let us consider a case in which the system performs a generate-and-
test diagnosis for a large number of trees. If every feature of every object
presented in the system has to be explicitly computed, the overall usabil-
ity of the system might be questionable due to computational reasons. But
in an actual simulation several similar objects function in almost similar
conditions, and if the function of one object in such conditions has been
computed, then the function of such objects in similar conditions may be
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approximated by using the previously computed values. At first such ap-
proximations can be done for some of the leaves of one tree, and after that
for some of its shoots, etc. Finally the functioning of trees may be approxi-
mated by using previously computed knowledge of the functioning of trees
in similar conditions. Currently, we are working on steps 3 and 4 mentioned
above.

After the diagnosis expert agent has done its job, any prescriptions of
silvicultural measures will be made by the silviculturist expert agent. This
agent is supposed to deal with the real causes of the problem as determined
by the diagnosis expert. In essence, it is planned to solve and remedy the for-
est health problem by the cooperation of multiple experts reasoning about
the multiple simulations and fault models. This kind of MBR systems have
been proposed and designed for a variety of industrial problems (see, e.g.,
DeKleer and Williams 1987), but they have not been tried in natural resource
management (Stone and Engel 1990). Since natural ecosystems are open,
chaotic, and poorly known in many cases, applying industrial fault diagno-
sis methodology in this field represents a formidable challenge.
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