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Department of Computer Science and Statistics

University of Joensuu

P.O.Box 111, FIN-80101 Joensuu, FINLAND

villeh@cs.joensuu.fi

University of Joensuu, Computer Science and Statistics, Dissertations 22

Joensuu, 2008, 126 pages

Abstract

AUTOMATIC speaker recognition is a very active area of research. The goal
of speaker recognition is to either verify, based on voice only, that the user
is who he claims to be or to identify unknown person from the voice sample.

However, given the potential of the speaker recognition technology itself, it is still not
widely used in commercial applications. The reason is that the speaker recognition
is still an immature technology, where baseline technology is not very robust to
various mismatches between training and testing conditions.

Currently, improvements to speaker recognition methodology are aimed either
to pattern recognition techniques or signal processing and feature extraction proce-
dures. In this thesis, the focus is mainly in the pattern recognition part.

Cluster analysis is the basic technology utilized in the speaker modeling. The first
three publications improve the clustering results by speeding up the agglomerative
clustering algorithm, developing an outlier removal technique, and creating a robust
variant to the cluster centroid estimation.

A vector quantization based maximum a posteriori speaker model adaptation
is also formulated. The adaptation strategy increases the accuracy of the vector
quantization system to the same level as the state-of-the-art GMM-UBM system,
while being 20 times faster in speaker training.

Mismatch compensation in speaker recogntion can be done for example by tech-
niques from factor analysis. These recent techniques require external speech data,
where statistical techniques will estimate the nuisance attributes. In this thesis, we
propose a novel speaker matching and modeling method. The method is based on
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graph matching and does not use any external training data.
Finally, we also propose a new voice activity detector for speaker recognition. We

also systematically try out several speaker matching and feature extraction methods
for the long-term average spectrum feature.

Keywords: Text-independent speaker recognition, vector quantization, cluster anal-
ysis, outlier detection, affine invariant matching, maximum a posteriori adaptation,
unsupervised learning
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P2. V. Hautamäki, I. Kärkkäinen and P. Fränti, “Outlier detection using k -nearest
neighbour graph”, in Proceedings of the 17th International Conference on Pat-
tern Recognition (ICPR 2004), Vol. 3, pp. 430–433, Cambridge, UK, August
2004.
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P6. T. Kinnunen, V. Hautamäki and P. Fränti, “On the use of long-term average
spectrum in automatic speaker recognition”, in Proceedings of the 5th Inter-
national Symposium on Chinese Spoken Language Processing (ISCSLP 2006),
Vol. 2, pp. 559–567, Singapore, December 2006.
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Chapter 1

Introduction

BIOMETRIC person recognition from voice is a highly active research field [11].
The voice biometric has some advantages over more common biometric tech-
nologies, such as fingerprint, iris and DNA recognition. A person can be

authenticated by his voice without him noticing it, as in border control usage sce-
nario, where voice biometric system can run in the background while an officer
is interviewing the passenger. Voice biometric system can also perform realtime-
recognition [101, 113], for example, in call center operations, a user can be recog-
nized while he is interacting with the system. The change of a user in the middle of
the call can be detected and also more speech material can be collected during the
whole call. Face recognition possesses similar properties but it is restricted to the
operating situations where there is visual line of sight to the user.

Unfortunately, speech biometric is also inherently more difficult than more tra-
ditional means of person authentication using physical characteristics. Speech is
a highly variable phenomenon. Variability is mostly due to the following aspects:
(1) speaker himself (mood and health differences), (2) technical conditions (changes
in environmental acoustics, transmission line and microphones, microphone setups)
(3) linguistic factors (speech content, language, dialect and situation variations) [98].
The challenge in designing an automatic speaker recognition system is to make a
system robust against the above mentioned variability and still retaining a good
speaker discrimination ability.

An automatic speaker recognition system consists of the following components:
voice activity detector (VAD), feature extraction, speaker modeling, pattern match-
ing and speaker database. An overall system diagram is presented in Fig. 1.1. The
speaker recognition task implemented in a complete system, is either verification or
identification. In verification task, system is given an uknown speech sample and
claimed speaker identity, the task is to decide whether unknown speech sample was

1



uttered by the claimed speaker. In the identification task, system will give speaker
label to the unknown speech sample. Finally, the decision logic of the system returns
the best scoring speaker or decision that the speaker is unknown.

VAD

Speech
segments

Feature 
Extraction

Speaker
models

Non-speech
segments

Speaker
modelling

Pattern
matching

ScoreSpeech signal

Training

Recognition

Should we
chase?

Figure 1.1: Structure of a speaker recognition system.

Training a new speaker to the speaker database and matching an unknown audio
extract to the claimed model are basic operations in all speaker recognition systems.
Typically, feature extraction produces a so called “feature cloud”, which needs to be
modeled somehow. Statistical techniques are commonly used in the modeling part
of the system and data clustering is an essential tool therein.

The rest of the thesis is organized as follows. In Chapter 2, clustering is con-
sidered as an optimization problem, its computational complexity is analyzed and
algorithmic solutions are reviewed. Gaussian mixture models and outlier detection
methods are also discussed in the same chapter. Chapter 3 reviews the speaker
recognition literature and shows how the clustering is applied in the speaker model-
ing. Summary of original research papers is given in Chapter 4 and the main results
are summarized in Chapter 5. Finally, conclusions are drawn and future work out-
lined in Chapter 6. The original research papers are attached at the end of the
thesis.
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Chapter 2

Clustering

ONE can state that the intuitive goal of clustering is to find natural clusters
from the input data without using any additional information [83, 185]. In
machine learning, this type of learning problem is also known as unsuper-

vised learning in contrast to supervised learning where additional class labels are
provided with the data. The lack of additional information means that in order to
be able to solve the clustering problem, one has to assume a clustering model. The
algorithmic problem can be stated as; given a data set, find a set of model parame-
ters that minimize (or maximize) a given objective function. If the data set includes
class labels, the clustering algorithm can be objectively evaluated by checking for
each pair of data vectors, whether they have been assigned to the same cluster or
not [149]. Unfortunately, there is no way to know whether the results obtained with
labeled training data will generalize to the unsupervised case.

Clustering is performed on the input data set (or training set) X = {x1,x2, . . . ,

xN} of N vectors in RD. The task is to partition X into k disjoint subsets (or
partitions) Si such that

⋃k
i=1 Si = X and Si ∩ Sj = ∅ for all j 6= i. In the above

definitions, each observation belongs to only one cluster. It is sometimes called crisp
or hard clustering to distinguish from soft clustering definitions where an observa-
tion belongs to certain clusters by some membership degrees. There are number
of soft clustering definitions including for example fuzzy [110], probabilistic [37] and
possibilistic [109] clusterings.

Intuitively, each cluster should be internally as homogeneous as possible and, on
the other hand, between-cluster similarity should be minimized [185]. Clustering, as
defined above, does not include any hierarchy of clusters. Some clustering algorithms
produce a successive hierarchy of clusters as a by-product. In the hierarchy, a child
cluster is totally contained in its parent. Such a clustering can be represented by a
dendrogram.
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In the following sections, we will formalize the notion of cluster homogeneity. It
uses the concept of inter-observation dissimilarity measure d(xi, xj) or a proximity
measure and the definition of the clustering optimization criterion [66]. The criterion
will assign cost f : (S1, . . . , Sk) → R for each partitioning of the training set.

2.1 Proximity measures

Intuitively, if a group of observations are close to each other and far away from
the other observations, then they should form a cluster. Now, we need a formal
definition of “closeness”. In the case of clustering, a dissimilarity measure d(xi, xj)
is a metric [29] if it fulfills the following axioms:

1. d(xi, xj) ≥ 0 (non-negativity),

2. d(xi, xj) = 0, if and only if xi = xj (identity of indiscernible),

3. d(xi, xj) = d(xj , xi) (symmetry) and

4. d(xi, xk) ≤ d(xi, xj) + d(xj , xk) (triangle inequality).

In clustering, triangle inequality is usually required, such a dissimilarity measures is
called a semimetric [164]. In the rest of the thesis, we will refer to any dissimilarity
function as a distance function and simply a distance.

All pairwise distances of the data set can be given a graph theoretic interpre-
tation. Distances can be seen to form a distance matrix A, where elements aij are
distances between data objects xi and xj . It follows immediately from axiom 3 of
metric spaces that A is a symmetric matrix. It can be interpreted as an adjacency
matrix of a weighted complete undirected graph G = (V,E). Here, V is the set of
input vectors and E is the set of all

(
N
2

)
edges. In this way, we can interpret the

clustering problem as a graph clustering problem [157]. However, by analyzing the
distance matrix, we can see that typically some vector pairs can never be in the same
cluster. For that reason, as a preprocessing step, large distances are sometimes set
to infinity and thus eliminated them from further processing [65].

Above mentioned simple thresholding scheme is one possibility, a more compli-
cated scheme will compute a new subgraph from the original G. Subgraphs used
in the literature are for example minimum spanning tree (MST) [30] and k-nearest
neighbour graph (kNNG) [46]. A k-nearest neighbour graph is an undirected graph,
where an edge is retained between vertices a and b if either b is one of the k-nearest
neighbours of a or vise versa. An example of 1NNG in Euclidean plane is shown
in Fig. 2.1. From a complete graph, a kNNG can be trivially computed in O(N2)
time. In Euclidean space, it is possible to compute kNNG in O(N log N) time, but
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with constants that are exponential with respect to the dimensionality of the data
set [20, 28, 174]. It is an open problem whether a fast variant without large hidden
constants is possible.
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Figure 2.1: Directed 1NNG (left) and the undirected variant (right).

A commonly used metric between two vectors in a D-dimensional vector space
is the lp-norm or Minkowski metric [40]:

lp(x, y) =

(
D∑

i=1

|xi − yi|p
)1/p

= ‖x− y‖p. (2.1)

The most common special cases are l1-, l2- and l∞-norms. The l2-norm is also known
as the Euclidean distance. From the Minkowski metric it is natural to define the
proximity measure for the clustering problem, which we call squared error:

d(x, y) := lp(x,y)2 = ‖x− y‖2
p. (2.2)

When p is set to two, we get the squared Euclidean distance or just squared error.
Generalized variant of the squared error is used in robust statistics, where exponent
2 is replaced by a user selectable parameter α [192].

2.2 Squared error criterion

In a centroid model, each cluster Si ((i = 1, 2, . . . , k)) is represented by a vector
(called centroid or prototype) ci ∈ RD, where C = {c1, c2, . . . , ck}. The goal is to
find such clustering where the error given by the following criterion is minimized:

1
|X|

∑

x∈X

‖x− cj‖α
2 , j = 1, . . . , k. (2.3)
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Fortunately, the clustering criterion can be simplified in the case of the squared
error criterion; the optimal prototype c for a given vector xi is its nearest prototype.
Criterion (2.3) can be written in a form which is commonly called the mean squared
error (MSE) [60]:

1
|X|

∑

x∈X

min
c∈C

‖x− c‖2. (2.4)

Given a particular partitioning, the mean vector is the optimal representative to all
vectors in the same cluster. If on the other hand, we set α to one, then the optimal
cluster prototype c is the spatial median element [192]. It is found to be more robust
to outliers than the mean vector but its computation is more involved [192]. It can
be computed as a solution to transportation problem. In the rest of the thesis, we
fix p and α to 2.

On the other hand, the total squared error of a cluster can be represented
by [161]: ∑

x∈Sj

‖x− c‖2 =
1
|Sj |

∑

xi,xh∈Sj

‖xi − xh‖2, (2.5)

where |Si| is the cardinality of the cluster Si. In this way, the squared error clustering
criterion can also be formulated as a graph clustering problem. However, in graph
partitioning formulation, a cluster is represented by partitioning the labels of the
observations. The squared error criterion gives another possibility to represent the
solution. In particularly, it can be represented by the centroid set C. Conveniently,
in the model parameter estimation setting, we can form a long parameter vector
Θ = (ct

1, c
t
2, . . . , c

t
k)

t, as was defined in [P4]. A minor problem in the parameter
vector interpretation is that each parameter has a fixed position in the Θ while the
clustering remains the same even if their positions are shuffled [12].

2.2.1 Computational complexity

Globally and locally optimal solutions of the clustering problem posed in (2.3) are
characterized by the centroidal Voronoi diagram (CVD) [39]. A Voronoi tessellation
or diagram is a partition of the feature space into regions (cells), where each region
is represented by one site (vector) called generator. The feature space is partitioned
in such a way that each vector is mapped to its nearest generator. This mapping
produces Voronoi cells that are polyhedra where each hyperplane is equidistant
from two generators and the points of intersections are equidistant of at least three
generators [8]. A centroidal Voronoi diagram is a structure where generators and
region centroids coincide in each region. Example of the centroidal Voronoi diagram
is shown in Fig. 2.2 on the right and for contrast also a Voronoi diagram that is not
centroidal is shown on the left.
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Figure 2.2: Two examples of Voronoi diagrams. A generators are marked by closed
circles and region centroids by open circles. Random clustering with 2.46 MSE (left)
and the corresponding CVD with 1.04 MSE (left).

Each centroidal Voronoi tessellation of the data set is a locally optimal solution,
and the minimum of all locally optimal solutions is the globally optimal solution.
Unfortunately, globally optimal solution for the clustering problem is not unique.
For a given data set and number of clusters many different solutions might exist
with the same minimum criterion value [60]. However, when the data set contains
a non-overlapping clustering structure, optimal clustering is unique and one can
calculate the bound on how close a given clustering is from the optimal one [131].

The number of all possible Voronoi diagrams with k generators can be shown
to be O(NkD) [82]. This result yields a polynomial time algorithm to a clustering
problem when k is fixed. Enumerating all possible Voronoi diagrams turns out take
O(N (kD+1)) time [82]. On the other hand, when k is a part of the input, for example
k = f(N), clustering has been proved to be an NP-complete problem [38, 121].
However, when clusters are restricted to be of equal size, the problem becomes
polynomial [35, 81]. Also when clustering in a 2-dimensional space, k being part
of the input, the problem is NP-complete but if k is fixed, clustering is solvable in
O(N6k) time [24]. It is clear, in which ever way we view the problem, that it is not
practical to find the exact solution, for that reason we have to resort to approximate
or heuristic solutions of the clustering problem.

2.3 Other criteria

Many clustering criteria were summarized in [34], of which most of them were found
to be NP-complete. Some clustering cost functions are briefly mentioned in the
following.
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Complete linkage agglomerative clustering algorithm uses as its cost function
the maximum within cluster dissimilarity, which is called the minimum diameter
clustering [65]. The objective can be formalized by finding the partitioning P ∗

k =
{S1, S2, . . . , Sk} from the collection of all k-partionings Pk such that [65]:

min
Pk∈Pk

max
q=1,...,k

max
xi,xj∈Sq

d(xi, xj). (2.6)

In other words, the goal is to find such a clustering where the maximum inter-cluster
distance over all clusters is minimized. It has been shown that for k ≥ 3, the problem
is NP-complete by reduction from the graph coloring problem [58, 65].

A simple algorithm to cluster graph vertices is to calculate the minimum span-
ning tree of the graph and cut k−1 longest edges from it [5, 62, 186]. MST clustering
by cutting turns out to be the same as single linkage agglomerative clustering al-
gorithm [62]. Edges in the MST that will be retained after clustering are called
consistent edges, and the edges that will be cut out are called inconsistent edges.
If the number of clusters is unknown, then one needs to find out the position in
the sorted edge list where inconsistent edges end and the consistent edges start.
Modeling consistent edge lengths by a truncated normal distribution, and then au-
tomatically obtaining the cut threshold was proposed in [77].

In the k-median problem [78], the goal is to find k input vectors that minimize
the following expression: ∑

x∈X

min
c∈C

‖x− c‖2, (2.7)

where C ⊂ X. The problem is also known as the discrete median problem, in contrast
to the spatial median case where prototypes are not restricted to be from the input
data set. The problem is NP-complete in Euclidean space [139]. In practice, this
version of clustering cost is used when the optimal prototype is either difficult or
meaningless to compute. A practical heuristic in that case is the partition around
medoids (PAM) method [93], which is also known as the k-medoids algorithm. It
is otherwise exactly the same as k-means, but the step for determining the optimal
centroid has been replaced by a step where such an input element in the cluster is
selected as the prototype that it minimizes the cluster distortion (2.7).

A clustering cost function that is specifically designed for hierarchical clustering
is proposed in [45]. The goal is to generate such a graph partitioning where the
length of the minimum spanning tree inside each cluster is minimized. It is shown
in [45] that such a clustering problem is NP-complete. An approximation algorithm
is also proposed that working in O(N log N) time and is within a factor of 3.42 from
optimal clustering.

Previously, we have considered a case where the weights of the graph consist
of real numbers, as defined by the lp distances. However, one can also cluster
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unweighted graphs, for example when clustering a social network data. In that case,
distances between the observations are binary, a person x either knows a person y

or does not. The squared error criterion is not sound in this case. Possible clustering
criteria for this kind of data are modularity cost [15] and a objective function based
on dominant sets [141]. The graph clustering problem is NP-complete for both of
these objectives.

2.4 k-means algorithm

Perhaps, the most well-known clustering algorithm is the k-means [123], mainly
because of its simplicity. It is also known as generalized Lloyd algorithm (GLA) [115],
hard c-means and Linde, Buzo, Gray (LBG) algorithm. It has been applied in
numerous different fields, such as statistics [165]. It is a practical solution to the
optimization problem posed in (2.3).

The operation of the k-means algorithm is based on the fact that a globally
optimal solution has to fulfill two necessary conditions [60]:

• Nearest neighbour condition: given cluster centroids C, optimal assignment of
a data vector to the cluster is to its closest cluster prototype:

c∗ = arg min
c∈C

‖x− cj‖. (2.8)

• Centroid condition: given a partition Si = {x1,x2, . . . , x|Si|}, the optimal
prototype is the partition centroid:

ci =
1
|Si|

|Si|∑

j=1

xj . (2.9)

There are several different strategies to prove the centroid condition (see [60] for
three proofs). An interesting proof, which does not employ a direct use of derivatives,
is obtained by considering the following equality [161]:

|Sj |∑

i=1

‖xi − z‖2 =
|Sj |∑

i=1

‖xi − cj‖2 + |Sj |‖cj − z‖2, (2.10)

where z is any vector in RD. Since, the last term is non-negative, the minimum
distortion is obtained when cj = z.

The third necessary optimality condition is called zero probability condition [60].
It states that observations at the Voronoi face, occur at zero probability. If it
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happened, there would be more than one cluster where the input vector could belong
to, and the order of processing the data set will affect the solution. In practice, with
real valued feature vectors the zero probability condition is true.

The k-means algorithm is a local search heuristic where the current solution is
iteratively improved by alternating between nearest neighbour condition and cen-
troid condition until convergence. When converged, centroids are generators of the
centroidal Voronoi diagram [39]. The algorithm starts from an initial solution C,
which can be randomly drawn vectors from X, or an output of any clustering al-
gorithm minimizing the squared error. The effectiveness of different initialization
strategies has been studied empirically for example in [142]. In case of more ad-
vanced clustering techniques, everything can be seen as an initialization to k-means,
which as a local search heuristic can never give a worse solution. In any iteration, a
lower bound on the locally optimal solution can be calculated in O(N log N + ND)
time [191].

Convergence in finite number of steps follows from the fact that in each iteration
the cost strictly reduces, so each solution can be seen only once during the execu-
tion of the algorithm. Since each solution induces a Voronoi diagram, for which we
already have upper bound O(NkD), k-means will converge in at least this many iter-
ations. However, convergence to a globally optimal solution is not guaranteed. Ac-
tually, examples can be generated where the performance of the k-means is arbitrary
bad, depending on the initialization [4, 67]. In practice, it is better to run k-means
multiple times in parallel with different random initialization, and pick the solution
with the least cost. This approach is known as the multi-start k-means [70]. The
algorithm can be made significantly faster by using the lower bound on the locally
optimal solution and stopping early if the current random start will not provably
lead to a better solution than the best of previously computed solutions [191].

The time complexity of the standard version of k-means is O(NkI), where I is
the number of iterations needed for the convergence. It is an interesting task to try
to analyze the worst case and the average case convergence speed of the algorithm.
Har-Peled and Sadri [67] analyzed the one-dimensional case and found out that the
upper bound on the number of iterations O(N∆2), does not depend on the number
of clusters, but it depends on the spread of the data set ∆. In one-dimensional case,
if the distance between the closest pair is normalized to unity, ∆ is the diameter of
the input data set. Recently, Arthur and Vassilvistkii [3] constructed an example,
where k-means takes 2Ω(

√
N) iterations.

In [14], it was proven that the convergence behaviour of the k-means is the same
as Newton optimization algorithm. For a quadratic cost function, Newton algorithm
finds the optimal solution in one step. Unfortunately, in finding a non-quadratic case
locally optimal solution demands a super-linear time, and this analysis applies to k-
means [14]. It has been noted that the convergence speed is affected by the initializa-
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tion strategy, if initialization is performed more intelligently than random sampling
from uniform distribution, then less iterations are needed for convergence [4].

Standard implementation of the k-means uses O(kN) time per iteration. The
nearest centroid search can be performed faster by placing the centroids to a spatial
indexing structure [61, 90, 120, 134, 144]. Although, spatial indexing structures
such as kD-tree [57] do scale well to a large number of cluster centroids, they do not
scale to a high-dimensional case when D > 8 [144]. Then nearest centroid search
will approach linear time instead of logarithmic time as promised by the search
structure. The number of distance computations can also be reduced by considering
that movement of a centroid is a local operation and it affects the neighbouring
clusters only. A method utilizing this property is known as code vector activity
detection [95]. Using the triangle inequality, bounds for both the partition and the
centroid step can be computed resulting additional saving in the number distance
calculations [43].

2.5 Exact and approximation algorithms

In addition to the exact clustering algorithm proposed by Inaba et al. [82], a number
of other exact algorithms have also been proposed. One of the first exact algorithms
for the squared error clustering problem was a dynamic programming algorithm
by Jensen [85]. A branch-and-bound algorithm was proposed in [55, 107]. An
optimization theoretic approach for (2.3) was formulated as an integer programming
problem [150] and a constrained hyperbolic 0/1-program [132]. An interior point
method was used in [132] to solve the problem with the help of branch-and-bound
and numerous other mathematical programming tools. Interestingly, the authors
managed to obtain optimal clustering to fairly large data sets, e.g. Fisher’s iris
data set consisting of 150 vectors. A method with much simpler implementation
was designed by Brusco [18]. His method uses the repetitive branch-and-bound to
achieve similar efficiency as in [132]. In [145], it was proven that the clustering
problem can be formulated as a concave minimization problem, where every local
minima is an integer solution. Relaxed version of the above mentioned algorithm
yields a non-optimal but practical algorithm [145].

However, some recent theoretical work in approximation algorithms has shown
that, at least theoretically, a polynomial time approximation scheme (PTAS is possi-
ble for the clustering problem [1, 49, 129, 137]. A PTAS is an algorithm, which takes
as its input a data set and a user selected parameter ε. Parameter ε gives the desired
maximal error of the approximation. A PTAS has polynomial time complexity, with
all values of ε [176]. Unfortunately, none of the PTAS clustering algorithms have
turned out to be practical because of large hidden constants [67] and, therefore,

11



practitioners use heuristic algorithms without performance guarantees. There is a
big gap between theory and practice in the field of clustering algorithms [137].

On the other hand, practical clustering algorithms with proven worst case ap-
proximation ratio, have been published. Randomized local search (RLS) [53] is a
clustering algorithm where local optima are avoided by perturbing the solution by
swapping one centroid to a new location. A deterministic variant of the swapping
algorithm was analyzed in [91] and it turns out to be (25 + ε)-approximation algo-
rithm. However, authors also propose a multi-swap variant, which achieves (9 + ε)-
approximation in the worst case [91]. Improving the randomized initialization of
the k-means algorithm yields in terms of expectation an 8(ln k + 2)-approximation
algorithm [4].

2.6 Agglomerative algorithms

An agglomerative clustering [13, 88] algorithm constructs the clusters by a sequence
of merge operations. The agglomeration process starts by initializing each data vec-
tor as its own cluster. Two clusters are merged at each step and the process is re-
peated until the desired number of clusters has been obtained. Ward’s method [182],
also known as pairwise nearest neighbour (PNN) [47], selects the cluster pair to be
merged in such a way that the square error criterion is least increased. In total,
O(N) iterations are needed, and in each iteration just enumerating all pairwise dis-
tances take O(N2), and so yields O(N3) time complexity in total. When considering
the operations in the iterations, it turns out that most computation originates from
distance calculations [158]. For arbitrary dimension D, this leads to O(DN3) time
complexity. We call this method exact PNN [47].

Several speed-ups have been proposed in the literature to the exact PNN. One
possibility to reduce the distance calculations is to use a matrix of pairwise distances.
The matrix is upper triangular as the merge costs are symmetric. When two parti-
tions Si and Sj are merged, only row i and column j must to be recalculated, which
leads to O(N) update operations. Authors in [177] propose to use exact PNN variant
with distance matrix for color quantization. Kurita [111] proposed to use distance
matrix for updates and a heap structure for finding the minimum pairwise distance
in O(log N) time. The time complexity for Kurita’s method is O(N2 log N), but
unfortunately, keeping all pairwise distances in the heap and in the distance matrix
the causes space complexity to O(N2).

Fast exact PNN [52] has linear space complexity, but is still an order of magnitude
faster than the previous versions of PNN. Here, the idea is to maintain the nearest
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neighbour pointer nn() to all partitions:

nn(Sa) = arg min
i∈[i,N ],i6=a

dPNN(Sa, Si) (2.11)

and use it to find the cluster pair to be merged fast. To find the minimum distance
only O(N) steps are needed in each iteration. After a merge operation, the nearest
neighbour pointers must be updated to point to a new possibly closer cluster. This
method is faster than the previous ones but its time complexity is still Ω(τN2),
where τ denotes the number of partitions whose nearest neighbour pointer must be
updated. A similar idea was presented in [135, 42]. In their approach, a cluster pair
to merge is searched from on the list of nearest neighbour pointers, and such clusters
pairs (Sa, Sb) are merged which are nn(Sa) = b and nn(Sb) = a. Unfortunately, the
authors did not provide any time complexity analysis of their method.

Another possibility to speed up the operation of PNN is to use a dynamic closest
pairs data structure, where update cost is O(N log2 N) [44]. The total time com-
plexity for clustering is then O(N2 log2 N) and the space complexity is O(N). A
Speed-up of around 35% can also be gained compared to the fast exact PNN by
deferring the distance computations until necessary [94, 25]. Practical methods to
achieve 10 to 15% reductions in running time have been proposed in [180]. All these
methods still require quadratic time.

The O(N2) time complexity barrier can be broken by introducing an approxi-
mation to the search for the minimum merge cost [P1]. The idea is to restrict the
search for the closest cluster pair on the k-nearest neighbours of each cluster. The
time complexity of the algorithm is then improved from O(τN2) to O(τN log N) at
the cost of a slight increase in distortion.

2.7 Graph clustering

There also exists a number of graph clustering algorithms [157] that are based on
graph theoretic properties instead of optimizing some defined optimization crite-
rion. Properties that have been used are for example, connectivity [17], Szemerédi
Regularity [162] and scale-free minimum spanning tree [138].

Graph clustering based on connectivity starts with taking the complete graph
and restricting it based on some rule. A typical restriction is the k-nearest neigh-
bour graph. The clusters are then defined to be the connected components of the
graph [17]. Mutual k-nearest neighbour graph (MkNNG) based clustering [17] defines
a new graph based on a directed k-nearest neighbour graph where directed edges
are turned to undirected by removing all those edges that point to one direction,
only. Then, connected components of the graph are clusters and isolated vertices are
outlier points. It has been shown that if clusters are separated, setting k = log(N)
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will give a correct clustering [17]. MkNNG clustering algorithm was generalized to a
mutual range graph in [27]. Range graph is a proximity graph where all data objects
that are closer than a user specified threshold from the object in question are con-
sidered neighbours. In this variant of MkNNG, a directed range graph is calculated
first and it is then converted into a mutual one.

In CHAMELEON [92], a k-nearest neighbour graph is formed from the similarity
matrix. Clustering is then performed in two stages: the k-nearest neighbour graph is
divided into a relatively large number of sub-clusters and small sub-clusters are then
iteratively processed with agglomerative clustering to obtain the final clustering.
Graph theoretic clustering algorithm by Jarvis and Patrick [84] on the other hand
defines, instead of kNNG, a shared neighbourhood graph. Shared neighbourhood
between two elements stands for the number of same elements contained in their
k-nearest neighbour lists. As in CHAMELEON, clustering is then performed on
the shared neighbourhood graph. In a sense, the shared neighbourhood graph is a
weighted version of MkNNG.

2.8 Gaussian mixture modeling

Another way to think of clustering is to assume that the data set has been sampled
from a parametric generative distribution. This is called model clustering or in
the statistics literature density estimation. The most common mixture model is
Gaussian mixture models (GMM) [12], which is our concentration from here onwards.
The most popular cost function is maximum likelihood (ML), where such a model is
found that maximizes the likelihood of the observations. Gaussian mixtures can also
be estimated by optimizing some information theoretic criteria, such as minimum
message length (MML) [51]. By minimizing the message length, it is possible to
simultaneously solve the number of components and the GMM parameters. In the
following, we will only discuss the maximum likelihood case.

In this section, we assume that data has been sampled from k multivariate
Gaussians, which together form a mixture model. Each Gaussian component is
parametrized by its prior weight, mean vector and covariance matrix θi = (πi,µi,Σi),
and the full parametrization of the whole model is Θ = (θi)k

i=1. Diagonal covariance
matrices are mostly used in situations where there is a need to optimize the speed of
the computation. The reason is that, computing the log-likelihood needs the inverse
of the covariance matrix.

We also make the so called incomplete data assumption, where each data vector is
assumed to be generated by one of the Gaussians but the class label is not available,
hence the term incomplete data. The form of the Gaussian probability density
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function is:

p(x|Θ) =
k∑

i=1

πip(x|θi), (2.12)

where x is a vector in RD. Then, given N independent and identically distributed
(i.i.d.) samples, the complete-data log-likelihood is expressed as:

log p(X|Θ) = log
N∏

j=1

p(xj |Θ)

=
N∑

j=1

log
k∑

i=1

πip(xj |θi), (2.13)

where
∑k

i=1 πi = 1. Now, the maximum likelihood parameter estimate Θ̂ML can be
expressed as:

Θ̂ML = arg max
Θ

log p(X|Θ) (2.14)

Unfortunately, no closed form solution exists to (2.14), and therefore an algo-
rithmic solution has to be devised to solve the problem. A locally optimal iterative
scheme is known as expectation maximization (EM) algorithm [37]. Even though
global optimality of the ML cost function cannot guaranteed [12], something is
known theoretically about the global optimality. If Gaussian components are well-
separated, then the mean vectors can be tractably estimated by projection based
methods [2, 31, 178] and even using EM [32].

EM can also be seen as a generalization of k-means algorithm [12]. It works by
alternating between two steps, finding the posterior probabilities (responsibilities) for
each observation and re-estimating the model parameters given previously obtained
responsibilities [12]:

• E step: evaluates responsibilities using the current parameter values:

γ(zij) =
πjN(xi|µj , Σj)∑k

j=1 πjN(xi|µj , Σj)
. (2.15)

• M step: Re-estimates the model parameters given the current responsibilities:

µnew
j =

1
Nj

N∑

i=1

γ(zij)xi, (2.16)

Σnew
j =

1
Nj

N∑

i=1

γ(zij)(xi − µnew
j )(xi − µnew

j )T , (2.17)
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πnew
j =

Nj

N
, (2.18)

where

Nj =
N∑

i=1

γ(zij). (2.19)

In the above, γ(zij) is the responsibility of vector xi belonging to the Gaussian
component j. It can be seen as the generalization of the discrete partition labeling
of the hard clustering. In the hard clustering case, γ(zij) = {1, 0}; it is one when
the observation belongs to the cluster, and zero when it does not.

The EM algorithm provides a locally optimal solution to the log-likelihood max-
imization problem. The quality of the solution generated by EM depends on the
initial solution [130]. To overcome this problem, a number of heuristics have been
proposed. The most common way to initialize the EM algorithm is to first run
hard clustering algorithm (e.g. k-means) on the data set and then to interprete
each cluster as a Gaussian component. Component parameters are calculated from
relative numbers of observations (mixing weight) and centroid (mean vector), and
the covariance matrix is calculated from the observations in the cluster.

log p(X|Θ) = −26.8 log p(X|Θ) = −26.6

Figure 2.3: Example of GMM with diagonal covariance matrices: random initializa-
tion tuned by 10 k-means iterations (left) and a locally optimal output of the EM
algorithm (right).

The Split-and-merge EM (SMEM) algorithm [173] performs the EM algorithm
after local convergence and selects three components for a split-and-merge proce-
dure. One of these component is split in two halves, and the other two components
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log p(X|Θ) = −26.6 log p(X|Θ) = −26.5

Figure 2.4: Example of GMM with full covariance matrices: random initialization
tuned by 10 k-means iterations (left) and a locally optimal output of the EM algo-
rithm (right).

are merged. Minagawa et al. [133] noted that the acceptance rule of the SMEM
algorithm is incorrect, resulting to an accidentally discarded globally optimal solu-
tion. Merge is defined in a theoretically sound manner in the SMEM algorithm,
whereas split is a heuristic operation. For this reason, a merge based algorithm was
proposed by Verbeek et al. [179]. Their algorithm iteratively inserted components
into the mixture until a desired number of Gaussian components is obtained. After
each merge, EM is run again until convergence.

Genetic algorithms (GA) have also been used to estimate the GMM parame-
ters [128] when maximum likelihood is used to measure the fitness of a solution. A
genetic algorithm using Minimum description length (MDL) based fitness function
has also been proposed in [146] where the number of components is automatically
set. In these approaches, GMM parameters were encoded into the chromosome, but
a different encoding is proposed in [166]. A chromosome codes the indices of the
generating mixture components for the vectors. In a sense, the proposed approach
tries to estimate the Gaussian mixture parameters directly by encoding the latent
variables in the individuals of the GA.

It has been noted that sometimes EM converges slowly to a locally optimal
solution [50, 26]. Especially, EM will slow down considerably if it hits almost the
plateau part of the fitness landscape [163]. Alternative strategies that maximize the
parameters sequentially, instead of simultaneously, have been proposed as Space-
alternating generalized EM (SAGE) [50] and Component-wise EM [26].
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2.9 Outlier detection

Outlier detection refers to methodologies for eliminating observations from the input
data set that adversely affect the statistical modeling [76]. Inliers, on the other hand,
are the observations one is looking for, and those should be retained for the modeling.
Numerous clustering methods include outlier detection as an additional step in the
modeling process [17, 41, 63, 64, 76, 86, 189]. In general, an input data object is
designated as an outlier if it does not fit to the model being constructed [76].

Another point of view to outlier detection is to see them not as noise to be
eliminated but as interesting and surprising observations in need of more study.
This approach is taken in data mining and knowledge discovery. A mixed case
can also happen, where inlier observations are corrupted by noisy observations, and
the task is still to find surprising observations [119]. Some applications of outlier
detection in knowledge discovery include intrusion detection in computer network
security [112, 114, 140] and abnormal human-activity detection [188].

Outlier detection methods can be divided into two categories: supervised or
unsupervised. Supervised methods require external training data, where data vectors
are labeled as inliers or outliers. Supervised outlier detection is also known as
novelty detection [127]. Examples of the two-class classification approach applied to
outlier detection are for example neural networks [118, 184], neural networks with
radial basis function (RBF) with principal component analysis (PCA) dimensionality
reduction kernel [117] and k-NN classifier [114].

The two-class classification approach has problems; it is implicitly defined that all
relevant types of outliers have already presented in the training data set. One-class
training is the other possibility where only examples from the inlier class are used
in the training. In the classification step, an unknown observation is scored against
the inlier class and the observation is decided to be an outlier if its score is below
a user specified threshold. These methods are for example one-class support vector
machines (SVMs) [122, 167] or one-class SVM with kernel maximum likelihood linear
regression (MLLR) adaptation [188]. A hybrid method is one where the classifier
does not rely on outlier examples on training step but can improve the classification
accuracy if examples are available [23].

In unsupervised outlier detection, we have a data set without any separate train-
ing set with labeled examples. In practice, unsupervised methods need an exact def-
inition of what is an outlier. The differences between the methods are then mostly
related to the differences in the definitions. Intuitively, an outlier should be an
observation that is far from other observations, as an example see Fig. 2.5. The
figure represents astronomical observations of different stars. Ground truth labeling
of the observations to inliers and outliers was done by a trained astronomer. Inlier
observations represent stars in the so called main sequence and outliers are stars,
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Figure 2.5: Example of a data set with normal observations and an outlier obser-
vations. Shown also outliers detected by [P2] with two different neighbourhood
sizes.

which do not fit to that pattern.
Definitions of unsupervised outliers fall roughly into five categories [87]: i)

distribution-based, ii) clustering-based, iii) depth-based, iv) distance-based and v)
density-based. Distribution-based methods originate from statistics where an obser-
vation is considered as an outlier if it deviates too much from the underlying distribu-
tion. For example, in normal distribution an outlier is an observation whose distance
from the average observation is three times of the variance [56]. The problem is that
in real world cases the underlying distribution is usually unknown and cannot be
estimated from the data without outliers affecting the estimate. Clustering-based
methods work similarly: the whole data set is clustered and observations that do
not fit to the overall clustering pattern are decided as outliers [86, 187, 190][P3].
As in distribution-based methods, outliers affect the clustering model. Depth-based
outlier detection methods compute different layers of D-dimensional convex hulls of
the data set. Outliers are then defined to be in the outer layers of these hulls [87].

Distance-based methods [105, 106] define an outlier as an observation that is
at least at distance dmin away from p percentage of observations in the data set.
The problem is then finding an appropriate settings of dmin and p such that outliers
would be correctly detected with a small number of false detections. This pro-
cess usually needs domain knowledge [106]. Typical distance-based methods require
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O(N2) distance computations, but a faster implementation has been reported in [9].
In density-based methods, outliers are detected from local density of observa-

tions. These methods use different density estimation strategies. A low local den-
sity of the observation is an indication of a possible outlier. Ramaswamy et al. [147]
proposed a method, in which n largest kNN distances are considered as outliers.
This can be seen as sparseness estimate of a vector, in which the n sparsest vectors
are considered as outliers. Other methods based on k-neighbourhood are presented
in [16, 9, 87, 108, 190]. Graph theoretic methods infer the local density by using a
k-nearest neighbour graph [17][P2]. As with distance-based methods, computation
of the local density for all observations can be slow. Speed-up can be obtained by
pruning the nearest neighbour search [87].
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Chapter 3

Speaker Recognition

IN speaker verification [11], an unknown speech utterance is introduced to the
system accompanied by a claim. The task is to decide whether the claim was true
or false, by matching the unknown test utterance to a previously stored model. In

speaker identification, on the other hand, the unknown speech utterance is matched
against a database of known speakers. Output of the speaker identification system
is the identity of the speaker in question, or in the case of open-set identification,
the decision that the speaker is unknown to the system. Speaker recognition tasks
can be further classified into text-dependent and text-independent tasks.

In text-dependent systems, the spoken text or password is fixed. In text-inde-
pendent recognition, the user is free to speak anything as the enrollment utterance,
and also in the using of the system. Applications of the text-dependent recognition
are restricted to security and access control whereas text-independent recognition
can be used in continuous recognition as well.

A speaker recognition system consists of two main components: i) front-end
processing component and ii) pattern recognition component. Front-end process-
ing reads audio data, preprocesses it, applies voice activity detection and feature
extraction. The pattern recognition subsystem, handles features modeling and pat-
tern matching. Feature extraction produces a sequence of feature vectors X =
{x1, x2, . . . ,xN} ⊂ RD. Each feature vector describes short-term signal statistics.
The feature cloud from the utterance contains speaker discriminative information.
The front-end system and pattern recognition system can be separately tuned.
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3.1 Front-end processing

3.1.1 Voice activity detection

In the general terms, voice activity detector (VAD) [10] is a binary classifier that
labels segments of the signal either as speech or non-speech. It is usually needed as
the first component in voice-based applications such as automatic speech recogni-
tion, speech enhancement [148], forensic speech skimming [172] and speaker recog-
nition [152]. A common property of these applications is that only human sounds
(typically only speech) are of interest to the system, and it should therefore be
separated from the background. In different applications, the granularity of the
voice activity decision varies. We call frame level VAD a system which produces per
frame decisions, and end-point detector a system which detects continuous speech
segments.

Voice activity detection is an essential part of any speaker recognition sys-
tem [169]. It is clear that including non-speech frames in the modeling process
would bias the resulting model, especially if the number of non-speech frames is sig-
nificant. It is also known that not all speech frames have equal discriminative power
as voiced phonemes are more discriminative than unvoiced phonemes [156]. It has
been found that depending on the speech corpus, a badly optimized VAD can lead
to a catastrophic detection accuracy: from 17% error rate to nearly the accuracy
of just coin flipping [P7]. A similar result has been recently seen in the speaker
diarization systems [171] where the biggest source of diarization error is contributed
by errors made by the VAD preprocessing component [80].

Numerous approaches for voice activity detection exist in the literature and ex-
haustive categorization of all those approaches is not easy. However, voice activity
detectors fall into two categories: i) those that threshold short-term signal statistics,
and ii) those that use machine learning approaches. The VADs in the first group
perform thresholding according to spectral likelihood ratio [89], periodicity [P7], en-
ergy [170] and long-term spectral divergence (LTSD) [148] just to mention a few.

3.1.2 Feature Extraction

In speaker recognition, features that capture the anatomical and behavioral char-
acteristics of the speaker are desired. Speech itself is highly complex signal, which
carries several features mixed together [154]. Because of the high complexity, it is
difficult to realize the features that robustly capture the speaker individuality [97].

Features can be divided into three categories: segmental, suprasegmental and
high-level [151]. Segmental features contain speech signal characteristics computed
over short segments of 10-30 milliseconds in duration. Suprasegmental features, on
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the other hand, contain information that spans multiple segments, sometimes the
whole utterance. High-level features are discrete in nature, for example linguistic
features such as idiosyncratic word usage or phonetic features such as pronunciation
style. In the following, we concentrate on the segmental and suprasegmental features.

3.1.3 Segmental features

In segmental feature extraction, the speech signal is analyzed in short segments or
frames where local stationarity is assumed. Frame length is typically 10-30 millisec-
onds, and frames overlap 25-50% of the frame length [98]. A single feature vector
is computed from each frame individually. The mel-frequency cepstral coefficients
(MFCCs) [33] are the most popular spectral features used in speaker recognition
systems [19].

The steps in the MFCC processing are summarized in Fig. 3.1. Time-windowing
is performed first to suppress discontinuities at the frame boundaries, followed by
the magnitude spectrum computation using discrete Fourier transform (DFT) [136].
Magnitude spectrum is obtained from the complex valued Fourier coefficients by tak-
ing the absolute value of it. Filterbank processing provides dimensionality reduction
by creating a smoother version of the original magnitude spectrum. Non-linear fre-
quency warping is obtained by placing the center frequencies of each filter according
to the defined warping function. It is designed so that it will emphasize lower fre-
quency part of the spectrum. Warping function used in MFCC is the so called mel
or melody scale [69]. The cepstrum is finally obtained by first applying logarithm
and then the discrete cosine transform (DCT). The zeroth coefficient corresponds
to the frame energy, and it is dropped. Typically 10-20 low-order coefficients are
retained for further processing.
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Figure 3.1: Work flow of the MFCC signal processing.

3.1.4 Suprasegmental features

Suprasegmental features are typically calculated over the whole utterance. Long-
term average spectrum (LTAS) [79] is defined as an average magnitude spectrum of
the whole utterance. An estimate of the average magnitude spectrum can be com-
puted by first dividing the speech signal into overlapping frames and then computing
the magnitude spectrum for each frame separately, followed by time averaging [183].
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LTAS is a n-dimensional feature vector where n is the FFT binsize. It has been
mostly used in forensic speaker recognition [155] as it is easy to compare two dif-
ferent LTAS vectors [116] visually. Example on how different LTAS vectors can be
visually evaluated is shown in Fig. 3.2. It shows four LTAS vectors calculated from
four different subjects over telephone line. It has also been used in early automatic
speaker recognition studies [126, 68]. However, LTAS is of lower accuracy than
MFCC, and does not provide substantial improvement when used in combination
with (classifier fusion) MFCC [P6]. In terms of speaker modeling and matching,
LTAS is straightforward to compute. LTAS vectors can be directly matched using
any similarity or dissimilarity measure. Similarity functions that have been used in
LTAS based speaker recognition include Euclidean distance, cosine similarity, cor-
relation and Kullback-Leibler divergence [P6] and also a recent study [175] used
standard deviation of difference distribution (SDDD) [68] index.

1000 2000 3000 4000

−20

−18

−16

−14

−12

−10

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

Speaker 1017 (female)
Speaker 5047 (female)
Speaker 1002 (male)
Speaker 5633 (male)

Figure 3.2: Example of LTAS calculated from four different speakers.

Long-term features calculated from the so called prosodic parameters have also
been used in speaker recognition. Prosody refers to the rhythm, stress and intona-
tion of speech. Most common prosodic features describe syllable length, loudness
and pitch (or F0). F0 and intensity contours have been used in text-dependent
speaker recognition [6]. In the text-independent case, long-term F0 distributions
contain speaker discriminative power [99]. Distributions can be matched, either by
their parameter vectors or by histogram matching [99]. Histogram matching with
Kullback-Leibler divergence was found to be more accurate. However, a histogram is
a discrete model of the long-term distribution and a continuous model such as kernel
density estimator could provide better accuracy [104]. In [36], prosody features were
extracted by first segmenting the whole utterance into pseudo-syllables using energy
contour. From each pseudo syllable, a sixth-order Legendre polynomial was fitted
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to the log F0 and log energy contours. Legendre polynomial coefficients, in addi-
tion to segment duration, were then modeled by GMM using a session variability
compensation [96].

3.2 Speaker modeling

Speaker recognition systems have typically used generative models such as vector
quantization [11, 160] (aka the centroid model) and Gaussian mixture models [153],
or discriminative models such as support vector machines (SVMs) [21] and neural
networks [48]. Approaches that combine the generative and discriminative models
have been recently introduced [22]. When using generative models we assume that
there is an unknown distribution where the feature cloud is sampled from. The
goal in the modeling is then to estimate the parameters as well as possible. In
discriminative training, the goal is to find decision boundary that classifies unseen
samples as well as possible. The basic difference is that discriminative modeling
needs examples from the negative (or impostor) class, whereas generative approach
works only with the speakers own feature vectors. In the following, we restrict the
discussion to the generative models.

Feature 
extraction

Speaker 
model

Clustering

Figure 3.3: Speaker model training in the maximum likelihood approach.

A generative model is typically trained using the maximum likelihood (ML) prin-
ciple where the speaker model is optimized by only analyzing the training data
provided by the user. In the case of GMM training, statistical independence of the
feature vectors is assumed, and the log-likelihood (2.14) is therefore used. In VQ,
mean squared error (2.4) is the cost function to be optimized. System diagram of
the maximum likelihood approach is shown in Fig. 3.3. The ML approach usually
does not generalize well to unseen speech data with a finite amount of training
material [12].

The size of the centroid set C (number of Gaussian components, in the case of
GMM) defines the model order, and it is a user-selectable parameter. Increasing
the model order creates more accurate estimation of the underlying distribution and
decreases recognition errors with increased processing time. Too large models will
over-fit the training data and degrade the speaker recognition accuracy [102, 103].

Maximum a posteriori (MAP) training [59] attacks the problem of limited train-
ing data by restricting how closely the model is allowed to be optimized for the
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training data. In the MAP approach, prior knowledge of the distribution of the
model parameters is incorporated into the modeling process. Even if some areas
of the feature space are less represented in the training data, the prior information
about the parameters can help to overcome the problem. However, incorporating
the prior information is not trivial because prior parameter distribution has its own
parameters, known as hyperparameters, which can be difficult to estimate. In the
GMM case, universal background model (UBM) [152] was proposed as a practical
way to set the hyperparameters. In VQ, similar approach with UBM as a hyperpa-
rameters to the centroid set is proposed in [P4]. A system diagram of the maximum
a posteriori approach using UBM-based prior distribution parameters is shown in
Fig. 3.4.

The UBM for GMMs is calculated by optimizing the maximum likelihood prin-
ciple using EM algorithm. In VQ, the UBM is calculated by optimizing the MSE
cost function. Individual speaker models are then adapted from the UBM using a
modified MSE criterion by applying k-means or EM algorithm.

3.3 Mismatch compensation

Errors in speaker recognition accuracy are mostly due to mismatch between testing
and training conditions. With TIMIT corpus, which can be obtained from Linguistic
Data Consortium (LDC)1 , which contains only noise free and single microphone
recordings, a MFCC based system is able to achieve 0% error rate [97]. On the other
hand, when channel mismatch is present, the error rate can increase considerably.
For a practical speaker recognition system it is necessary to include some form of
mismatch compensation technology.

1http://www.ldc.upenn.edu/
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Various approaches have been proposed for tackling the channel mismatch prob-
lem, including robust feature extraction [125], feature normalization [143], model
transformation [96, 181, 168], and match score normalization [7, 152]. Feature and
speaker model transformations, including affine transformation, have been stud-
ied by different authors [124, 125, 181, 159]. Most common mismatch compensation
techniques are eigenchannel [96] for Gaussian mixture models and nuisance attribute
projection (NAP) [19] for SVMs. In both cases the model parameters are tuned using
the parameters of the channel and session variability transformation.

Above mentioned channel compensation methods usually require either parallel
training data recorded simultaneously through various handsets, or a large number
of training utterances collected from multiple recording sessions from a number of
speakers. These data sets are then used for estimating the transformation param-
eters. Instead of learning the transformation parameters from an external corpus,
another approach is to design a matching scheme that is invariant to certain transfor-
mations in the feature space. For example, the method proposed in [P5] is designed
to be invariant to rotation, translation and uniform scaling.
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Chapter 4

Summary of the Publications

IN the first paper [P1], we proposed a fast agglomerative clustering method
using a k-nearest neighbor graph. The graph is used to restrict the search of
the cluster pair with the smallest agglomerative merge distance. Agglomerative

clustering is a well known method for its ease of implementation and quality in
terms of MSE. Unfortunately, the original method is slow, O(N3), which has later
been lowered to O(τN2). In this work, we managed to break the O(N2) time
complexity barrier by introducing an approximation to the search of the minimum
merge cost. The time complexity of the algorithm is improved from O(τN2) to
O(τN log N) at the cost of a slight increase in distortion. Here, τ denotes the
number of nearest neighbor updates required at each iteration. According to our
experiments, a relatively small neighborhood size is sufficient to maintain the quality
close to that of the full search.

In the second paper [P2], we apply the k-nearest neighbour graph from [P1]
to unsupervised outlier detection. We define an observation to be an outlier if, in
a directed k-nearest neighbour graph, it is not a neighbour of other observations.
We also propose a modification to the existing kNN distance -based method, so
that user does not need to know in advance the number of outliers present in the
data set. We compared the methods with real and synthetic data sets. The results
show that the proposed method achieves reasonable results with synthetic data and
outperforms comparative methods with real data sets when the input data set is
small and performs comparatively for large datasets.

In the third paper [P3], we extend the k-means algorithm to robust mean vector
estimation, and incorporate outlier removal into the process. In the case of overlap-
ping symmetric mono modal distributions, k-means will include bias to the estimate
of the mean. In this paper, we consider the overlapping areas of the distributions
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as noise (or outliers), which is removed from the clustering process step by step.
We present an outlier removal clustering (ORC) algorithm that achieves the above
mentioned goal. The method employs both the clustering and outlier discovery
operations to improve the estimation accuracy of the centroids of the generative
distribution. The ORC algorithm consists of two stages. The first stage performs
pure k-means algorithm, while the second stage iteratively removes vectors that are
far from their cluster centroids. We ran a set of experiments on three synthetic data
sets and three map images that were corrupted by lossy compression. The results
indicate that the proposed method has a lower estimation bias on data sets with
overlapping clusters than the compared methods.

In the fourth paper [P4], we formulate the speaker modeling task as a maximum
a posteriori (MAP) adaptation of the VQ model. We rigorously formulate MAP
adaptation for the VQ when the speaker model is adapted from UBM generated by
any clustering algorithm. We show experimentally that VQ is comparable to GMM
in terms of verification accuracy. Furthermore, the proposed speaker adaptation can
be up to 20 times faster when using VQ than in the case of GMM.

In the fifth paper [P5], we design a speaker recognition system that tries to over-
come technical mismatches between training and testing conditions. We propose
a matching scheme, which is invariant to feature rotation, translation and uniform
scaling. Channel compensation methods, such as eigenchannel [96] and NAP [19],
need external training material to learn the channel factors. Whereas, we attempt to
design a mismatch invariant system that operates without learning channel factors
from the external training material. The proposed approach uses a neighborhood
graph to represent the global shape of the feature distribution. The reference and
test graphs are aligned by graph matching and the match score is computed us-
ing conventional template matching. Experiments on the NIST-1999 SRE corpus
indicate that the method is comparable to the conventional GMM- and VQ-based
approaches.

In the sixth paper [P6], we concentrate on the feature extraction part of the
speaker recognition system. Most speaker recognition systems use the mel-frequency
cepstral coefficients (MFCCs) to describe the spectral properties of speakers. In
forensic phonetics, the long-term average spectrum (LTAS) has been used for the
same purpose. It provides an intuitive graphical representation, which can be used
for visualizing and quantifying differences between speakers. However, few studies
have reported the use of LTAS in automatic speaker recognition. Thus, the purpose
of the paper is to systematically study how to use the LTAS in automatic speaker
recognition. We found out that it provides only marginal additional discriminative
information in respect to the MFCC-based system. However, LTAS is very simple
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to implement and it is order of magnitude faster in matching than MFCC-based
system.

In the seventh paper [P7], importance of voice activity detection (VAD) for the
performance of speaker recognition system is studied. We propose an improved
voice activity detector based on periodicity information. A design requirement of
the voice activity detector is that it needs to work in realtime environment, and
to make speech/non-speech decisions without processing delay. Performance of the
proposed method is compared against two existing methods: a realtime method
based on long-term spectral divergence (LTSD) and a simple energy based method.
The periodicity-based method outperforms the other realtime method (LTSD), and
performs comparably with the energy-based method when applied for NIST 2001
and 2006 speaker recognition evaluation corpora. The method was also tested for
speech-non-speech segmentation on surveillance, voice dialog and forensic recordings.

The contributions of the author of this thesis can be briefly summarized as follows.
In [P1], the author designed, implemented and tested the first version of the method.
In [P2, P7], author designed the algorithm, conducted most of the experiments
and wrote the paper. In [P3, P4, P5], author was the main responsible of the
algorithm development, implementation, writing the paper, and also participated in
the experimentation. In [P6], author contributed in running the experiments and
writing of the paper.
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Chapter 5

Summary of the Results

IN this chapter, main results of the original publications [P1]-[P7] are summarized.
Each paper included in this thesis contribute to some part of the general speaker

recognition system. The proper place of each of the paper in the complete system
is shown in Fig. 5.1. In this Figure, papers are denoted by [P1]-[P7]. Majority
of the contributions are focused on the speaker modeling by cluster analysis [P1]-
[P4], but contributions are also given in the voice activity detection [P7], feature
extraction [P6] and pattern matching [P5] subsystems.

VAD

Speech
segments

Feature 
Extraction

Speaker
models

Non-speech
segments

Speaker
modelling

Pattern
matching

ScoreSpeech signal

Training

Recognition

Should we
chase?
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[P1, P2, P3, P4, P6]
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Figure 5.1: Original publications in the speaker recognition system.
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Summarized results

P1: Over 120 times faster and the same clustering performance for BIRCH2 data
set with DLA+k-means than with the PNN+k-means algorithm.

P2: Zero detection error with the ODIN method when applied to HR, NHL1 and
NHL2 data sets and comparable performance with intrusion detection data set
(KDD).

P3: About 1.5 - 2 times more accurate centroid estimation with the ORC method
than with the baseline k-means.

P4: Twenty times faster speaker adaptation speed with NIST 2006 corpus using
VQ-MAP than using GMM-MAP, while having exactly the same recognition
accuracy (17% equal error rate (EER)).

P5: About 13% relative improvement in speaker identification performance when
graph matching is fused with the GMM-MAP system.

P6: Over 300 times faster speaker identification with LTAS than with MFCC fea-
tures. About 4% relative improvement in speaker verification accuracy when
LTAS is fused with MFCC than for MFCC alone.

P7: About 63% relative improvement in speaker verification with NIST 2006 corpus
if using VAD in comparison of not using VAD, and 53% relative improvement
of using period VAD than using LTSD VAD.

Speech Corpora

In the speaker verification experiments, four different telephone corpora were used.
All corpora were originally used as a part of the annual National institute of stan-
dards and technology (NIST) speaker recognition evaluations1 . All data are conver-
sational speech, with the sampling rate of 8 kHz and quantization 8-bit µ-law, which
is a commonly used bit quantization technique in telecommunications. Corpora are
summarized in Table 5.1. Difficulty of the evaluation has been increased after each
new iteration of the competition.

1http://nist.gov/speech/tests/spk/
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Table 5.1: Summary of the speech corpora

Description Subset of Subset of NIST-2001 NIST-2006
NIST-1999 (I) NIST-1999 (II)

Language English English English Multiple
Speakers 80 230 174 816
No. trials 950 52900 22418 53966
Telephone type Land-line Land-line Mobile Mobile
Handset mismatch No No Yes Yes
Non-speech removed Yes Yes Some No
Train speech 60 sec. 60 sec. 2 min. 5 min.
Test speech 60 sec. 60 sec. 30 sec. 5 min.
Publications [P5] [P6] [P4, P6, P7] [P4, P7]
where used
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Chapter 6

Conclusions

A PRACTICAL speaker recognition system consists of signal processing, mod-
eling, matching and decision logic modules. In this thesis, we have studied
all but decision logic, with special concentration on speaker modeling and

matching based on vector quantization. One of our contributions is the formaliza-
tion of a maximum a posteriori (MAP) vector quantization matching system using
a universal background model. It achieves similar verification accuracy as Gaussian
mixture model based systems but the adaptation is 20 times faster.

In our MAP adapted VQ system, the universal background model is estimated by
a clustering algorithm that optimizes the model based on the squared error criterion.
We gave contributions to UBM construction by designing a novel sub-quadratic time
agglomerative clustering algorithm. We also contributed to the robust estimation of
cluster parameters by outlier removal, first by using the k-nearest neighbour graph,
and second by using a modified k-means algorithm.

Feature extraction issues were studied by experimenting on a long-term average
spectrum feature with different matching techniques. We found out that LTAS is
only marginally useful when combined with state-of-the-art GMM-MFCC system,
but it is computationally efficient. We proposed a new realtime voice activity detec-
tion method for speaker recognition, and experimented with the effect of the voice
activity parameters on the speaker recognition accuracy. Contrary to the earlier
reports, we found out that the accuracy of the whole system is greatly affected by
proper tuning of the VAD parameters. We noticed that the voice activity detector
should be tuned so that as few non-speech frames are accepted as possible.

The performance of the speaker recognition system is affected by any kind of
mismatch between the audio material used to train the speaker model and the test
utterance. Mismatch can happen, for example, when transmission channel (micro-
phone or audio coding system), language or emotion is different. In this thesis, we
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contributed to the field of mismatch compensation by designing a restricted affine
invariant modeling and matching scheme using the graph matching methodology.

As future work, one should study different ways to overcome exponential time
complexity of the graph matching approach. By using a graph matching algorithm
based on the spectral graph theory one could apply linear algebra techniques instead
of combinatorial optimization methods. We would like to improve on the combi-
natorial matching algorithm where matching is now done by reduction to a clique
problem and then solving the clique by a local search algorithm. Direct local search
solution makes it possible to use larger graphs in matching. Another direction of fu-
ture research would be to match SVMs using the MAP adapted vector quantization
models. Eigenchannel channel compensation technique, originally proposed for the
Gaussian mixture models, could be adapted to the vector quantization framework
as well.
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