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Abstract. State-of-the-art automatic speaker recognition systems use
mel-frequency cepstral coefficients (MFCC) features to describe the spec-
tral properties of speakers. In forensic phonetics, the long-term average
spectrum (LTAS) has been used for the same purpose. LTAS provides
an intuitive graphical representation which can be used to visualize and
quantify speaker differences. However, few studies have reported the use
of LTAS in automatic speaker recognition. Thus, the purpose of this pa-
per is to systematically study how to use the LTAS in automatic speaker
recognition. We will also find out whether it provides additional discrim-
inative information in respect to the MFCC-based system.

1 Introduction

Differences in our voices arise from both physical factors (anatomy), and be-
havioral factors (the way of speaking). Both of these factors give rise to sev-
eral measurable quantities that can be used as features in speaker recognition.
In state-of-the-art automatic speaker recognition systems, multiple features are
used in parallel to complement each other. In this study, we focus on spectral
features because they give the best accuracy among several high- and low-level
features [1].

In automatic speaker recognition, spectral features are computed from short
frames (20-40 milliseconds) with the rate of 50-100 frames per second. The most
commonly employed features are mel-frequency cepstral coefficients (MFCC) [2],
appended with their first and second order delta coefficients. The short-term
feature computation is followed by statistical modeling of the distribution of
the vectors; each speaker produces a characteristic “cloud” in the feature space.
The state-of-the-art model is the Gaussian mixture model (GMM) [3]. In GMM,
the “feature cloud” is modeled by fitting a finite set (256-2048) of Gaussian
distributions to the training data so that they characterize the data as well as
possible.
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Fig. 1. Examples of LTAS computed from NIST-2001 corpus (window length = 50 ms,
frequency spacing = 16 Hz).

There might be a simpler and computationally more efficient way than MFCC
+ GMM to describe the spectral characteristics of a speaker. In forensic phonetics
[4], one approach to describe the resonance characteristics of a speaker is long-
term average spectrum (LTAS). It is computed by time-averaging the short-term
Fourier magnitude spectra, resulting in one feature vector for the whole speech
sample (see Fig. 1).

The advantage of LTAS from a forensic perspective is that it has more or
less direct physical interpretation, relating to the location of the vocal tract
resonances. This makes LTAS more justified as an evidence than MFCC coef-
ficients, which do not have direct phonetic interpretation. LTAS vectors of the
questioned speech sample and the suspects speech sample can be plotted on top
of each other for visual verification of the degree of similarity [5]. LTAS and
other features can be complemented by auditory analysis and (semi-)automatic
methods.

The advantages of LTAS from automatic speaker recognition perspective
would be simple implementation and computational efficiency compared with
the GMM. In particular, there is no separate training phase included; the ex-
tracted LTAS vector will be used as the speaker model directly and matched
with the test utterance LTAS using a distance measure.

This study has two main objectives. First, although LTAS is used in forensic
casework, we are not aware of systematic studies reporting the effect of the con-
trol parameters. LTAS is affected by changes in channel conditions, and robust
matching and score normalization are important when LTAS is considered for
telephony speaker recognition. Thus, the first goal of this paper is to study the
parameters of LTAS extraction, matching, and score normalization.

The second objective of the study is to find out the usefulness of LTAS in
automatic recognition. In particular, we want to answer the following questions:

– How does recognition accuracy of LTAS compare with MFCC+GMM?
– How does computational cost of LTAS compare with MFCC+GMM?



– Can LTAS and MFCC+GMM be fused for improved accuracy?
– Is there any reason to use LTAS in automatic recognition?

The rest of the paper is organized as follows. In Section 2, we describe the
computation and matching of LTAS. Section 3 gives the details of the datasets
used, and the experimental results are given in Section 4. Finally, conclusions
are drawn in Section 5.

2 Computation and Matching of LTAS

From a signal processing point of view, LTAS computation belongs to the class
of power spectral density (PSD) [6] estimation methods. We consider two alter-
native methods for computing LTAS. The first one is based on a single trans-
formation followed by spectrum size reduction, and the second one is based on
time-averaging of the short-term spectra.

In the single-transformation LTAS, we first compute a single fast Fourier
transform (FFT) over the whole signal. This is preceded by Hamming windowing
and zero padding to the length of the next power of two. Note that the length
of the spectrum varies depending on the input. To get a fixed-length LTAS
vector, the number of power spectrum points is reduced by averaging neighboring
frequency bins, which corresponds applying a uniformly spaced filterbank. The
single-transformation method is used, for instance, in the open-source Praat3

speech analysis program, and it will be used here as a reference method.
Another method to compute LTAS is to divide the signal into overlapping

frames, compute the power spectrum of each frame, and to average the spectra.
As in the single-transformation LTAS, we apply Hamming windowing, and set
the FFT size to the next power of two of the frame length. The short-term
averaging method is also known as Welch’s method [7], and it is better suited
for practical applications.

The LTAS vector elements are nonlinearly compressed by applying logarithm.
Log-compression balances the spectrum, and, according to our experiments, it
systematically outperforms the LTAS represented in linear amplitude scale.

Finally, we need a distance measure between two LTAS vectors. We consider
four simple distance measures: Euclidean distance, correlation coefficient, cosine
measure and Kullback-Leibler (KL) divergence [8]. For the KL divergence, the
LTAS vector is considered as a probability mass function. In order to meet the
probabilistic constraints, the vector elements are translated to positive values,
followed by normalization so that the elements sum to 1.

To increase robustness against acoustic mismatch, the raw match score is
normalized by other speakers’ scores. For this, we apply the test normalization
(“T-norm”) method [9]. The unknown LTAS vector is matched against a set of
pseudoimpostor models (T-norm cohort), and the mean and standard deviation
are obtained. The normalized match score is obtained from the raw score by
subtracting the mean and by dividing by the standard deviation.
3 http://www.praat.org



3 Experimental Setup

We use the NIST-1999 and NIST-2001 speaker recognition benchmarking cor-
pora for our experiments [10]. Both corpora consists of conversational telephony
data, NIST-1999 being recorded over the landline network and NIST-2001 over
the cellular network. The NIST-1999 corpus is used for studying the effect of the
feature extraction parameters, and comparing the distance measures. The NIST-
2001 corpus is used for validating the results, studying score normalization, and
comparing the accuracy and time consumption with the standard MFCC+GMM
recognizer [3].

We use the training files of the male speakers of the NIST-1999 corpus for
parameter tuning. This subset consists of 230 speakers, each represented by two
audio files labeled as “a” and “b”. Both samples have a duration of one minute.
We consider the “a” samples as the reference samples, and the “b” samples as
the unknown ones. We report both the identification and verification accuracies.
We use closed-set identification error rate (IER) to measure the identification
accuracy, and equal error rate (EER) to measure the verification accuracy. Equal
error rate corresponds to the verification threshold for which the false acceptance
and the false rejection rates are equal.

For the NIST-2001 corpus, we report verification accuracy on the 1-speaker
detection task. The detection list provided by NIST consists of 9350 male trials
(850 genuine + 8500 impostor) and 13068 female trials (1188 genuine + 11880
impostor). There are two minutes of training data per speaker, and the length
of the test segments varies from a few seconds up to one minute. The NIST-2001
development set consisting of 60 speakers is used as the T-norm cohort set.

For the MFCC+GMM recognizer, we use the MFCC coefficients 1-12, ap-
pended with the delta and double-delta coefficients. Utterance-level mean sub-
traction and variance normalization are applied to the features. The universal
background model of 512 components is trained from the NIST-2001 develop-
ment set. The target speaker models are trained by adjusting the background
model mean vectors towards the speaker’s training data, see details in [3]. The
fast C-top scoring algorithm described in [3] is used for matching.

4 Results

4.1 Summary of the Tuning Results

For the single-transformation LTAS, the number of FFT bins was varied in
powers of two between 32-2048. For the short-term averaged LTAS, the frame
length was varied between 30-320 milliseconds with a step of 10 milliseconds,
and the window overlap was fixed to 50%. Table 1 summarizes the best, the
worst and the average (mean± standard deviation) accuracies. For completeness,
verification accuracies of the single and short-term methods are compared in the
detection error tradeoff (DET) curve of Fig. 2.

We observe that the single-transform and short-term variants are equally
good. For instance, Fig. 2 shows that the short-term variant outperforms the



Table 1. Results for the tuning set.

Eucl. Corr. Cos. KL dist.

Best

EER (single) (%) 30.0 (64 bins) 30.9 (64 bins) 18.3 (128 bins) 18.2 (128 bins)
EER (short-term) (%) 20.4 (120 ms) 20.4 (400 ms) 19.6 (170 ms) 18.2 (190 ms)

IER (single) (%) 76.1 (512 bins) 54.8 (512 bins) 48.7 (128 bins) 48.7 (128 bins)
IER (short-term) (%) 52.6 (40 ms) 45.2 (50 ms) 47.8 (50 ms) 47.0 (4000 ms)

Average

EER (single) (%) 31.8±1.3 22.2±1.0 18.7±0.5 18.7±0.5
EER (short-term) (%) 21.3±0.5 21.2±0.3 20.3±0.4 19.2±0.5

IER (single) (%) 77.8±1.9 57.1±3.3 51.4±3.1 51.4±3.1
IER (short-term) (%) 58.4±1.8 47.8±1.4 49.8±1.1 50.2±1.7

Worst

EER (single) (%) 32.8 (256 bins) 23.5 (32 bins) 19.6 (2048 bins) 19.6 (2048 bins)
EER (short-term) (%) 22.2 (320 ms) 21.4 (110 ms) 21.2 (50 ms) 20.0 (80 ms)

IER (single) (%) 80.9 (32 bins) 63.9 (32 bins) 58.3 (32 bins) 58.3 (32 bins)
IER (short-term) (%) 60.9 (200 ms) 47.8 (250 ms) 51.0 (280 ms) 53.0 (30 ms)

single-transformation variant for low false acceptance rate (secure end) of the
DET curve but the situation is reversed for low false rejection rate (user-convenience
end). The equal error rates are close to each other.
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Fig. 2. Comparison of single-transformation and short-term variants for LTAS compu-
tation (KL divergence).

4.2 T-norm and Comparison with MFCC+GMM

Next, we validate our results using the NIST-2001 evaluation set. We use the
short-term averaging variant with 200 millisecond window to compute LTAS.
The verification results with and without score normalization are given in Table



2. The error rates are higher than for NIST-1999, for which the likely reason
is that test segments are in general much shorter and trials include channel
missmatch for the NIST-2001. Score normalization improves accuracy in all cases
as expected. However, the KL measure does not give the best result as opposed
to the NIST-1999 results. The reason for this is unknown.

Table 2. Equal error rates (%) for the NIST-2001 corpus.

Normalization Eucl. Corr. Cos. Kullb.-Leib.

None 31.7 28.0 27.2 31.7
T-norm 30.4 24.2 24.9 29.0

Next, we study the effect of channel mismatch to LTAS and give the MFCC
+ GMM baseline as a reference. To study the effect of channel mismatch, NIST-
2001 detection list was divided into “matched” and “mismatched” trials. The
matched and mismatched trials refer to the trials with same and different phone
model with the training and test files, respectively.

The left and right panels of Fig. 3 show the DET curves for the matched
and mismatched channel cases, respectively. Not surprisingly, channel mismatch
degrades the accuracy of both the LTAS and the MFCC+GMM recognizers.
The MFCC+GMM recognizer outperforms LTAS without a doubt, as expected.
Note that, because of computational reasons, we did not apply T-norm for the
MFCC+GMM system. The MFCC+GMM error rate would be expected to de-
crease further by including T-norm.
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Fig. 3. Verification results for the NIST-2001 corpus, matched channel type (left),
mismatched channel type (right).



4.3 Time Consumption

Next, we study the computation times of LTAS and MFCC+GMM. All the
experiments are carried out in 3GHz Intel Pentium 4 with 1024 MB of memory.
All algorithms were implemented and run in Matlab 7. Tests were performed
by first enrolling all speakers into a database and then perfoming the NIST-
2001 evaluation protocol on the enrolled speakers. Running times are reported
in seconds averaged over all test cases.

The speaker enrollment times are summarized in the Table 3. The running
times of the single-transformation and short-term variants are practically the
same, and LTAS is about 13 times faster than the MFCC+GMM recognizer.

Verification times are summarized in Table 4. Overall matching time of LTAS
without score normalization is about 10 times faster than that of the MFCC +
GMM. Adding score normalization increases the processing time of LTAS, and
the baseline MFCC+GMM matching is faster than LTAS + T-norm. However,
even with score normalization, overall processing time of LTAS is smaller, which
is due to much faster feature extraction.

Table 3. Comparison of CPU times for enrollment (seconds).

Feature extraction Modeling Total

single-transf. LTAS 1.0±0.0 - 1.0
short-term avg. LTAS 0.9±0.1 - 0.9
MFCC+GMM 9.2±1.1 4.4±0.1 13.6

For identification performance, the matching times should be multiplied by
the number of speakers enrolled in the database. For example, identification with
the short LTAS would take on average 0.2 + 0.1 = 0.3 seconds and with the
MFCC+GMM system 2.6 + 104.4 = 107.0 seconds. Thus, there is a remarkable
difference in the processing time required.

Table 4. Comparison of CPU times for verification (seconds).

Feature extraction Matching Total

single-transf. LTAS 0.3±0.1 < 0.01 0.3
single-transf. LTAS+T-norm 0.3±0.1 1.8±0.2 2.1
short-term avg. LTAS 0.2±0.1 < 0.01 0.2
short-term avg. LTAS+T-norm 0.2±0.1 1.8±0.2 2.0
MFCC+GMM 2.6±1.1 0.6±0.9 3.2

4.4 Combining LTAS and MFCC+GMM

Finally, we want to find out whether it is advantageous to combine LTAS and
MFCC+GMM recognizers. We use weighted sum to combine the classifier output



scores so that sfused = w · sMFCC+GMM + (1 − w) · sLTAS, where 0 ≤ w ≤ 1.
Here, sMFCC+GMM is the average log likelihood ratio from the MFCC+GMM
recognizer, and sLTAS is the T-normalized correlation coefficient from the LTAS
recognizer. The EER as a function of w and the DET curve for w = 0.96 are
shown in Fig. 4.
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Fig. 4. ERR as a function of fusion weight (left) and Fusion results (right).

Combining LTAS and MFCC+GMM gives a slight improvement to the MFCC
+ GMM baseline over all detection thresholds. However, according to Fig. 4, the
weight selection is critical; for this corpus, the best result is obtained in the
range [0.94− 0.97], and this is likely to be different for other corpus. Moreover,
as the relative gain of combining LTAS with MFCC+GMM is only marginal, we
conclude that it is not worth combining these two recognizers.

5 Conclusions

In this paper, we have studied the use of long-term average spectrum feature for
automatic speaker recognition. We compared two different methods for comput-
ing LTAS, a single-transformation variant and a short-term averaging variant.
We also compared the LTAS performance with the baseline MFCC+GMM sys-
tem, and attempted to combine the two recognizers.

Our experiments indicate that the accuracy and computational load of the
single-transformation and the short-term averaging variants are practically the
same. However, from the memory and real-time processing consideration view-
points, the short-term averaging variant would be the recommended method.

The current study suggest that LTAS does not bring improvement to the
standard MFCC+GMM configuration. However, the method is trivial to imple-
ment and it is computationally efficient. One possible application in automatic
recognition could be speeding up speaker identification from a large database
[11]. For instance, LTAS could be used to prune out speakers who have a very



large distance from the unknown sample. After this, the remaining candidate
speakers could be scored more accurately by the MFCC+GMM recognizer.

To sum up, we conclude that LTAS has little use in automatic speaker recog-
nition if the recognition accuracy is the only motivation.
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