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Abstract 

We consider a criterion-based approach to solve dynamic 
clustering problems. We propose two novel improvements for 
reducing the work load to find the correct clustering. The first 
idea is to use stepwise clustering algorithm that utilizes the 
previous solution when solving the next clustering with different 
(one more or one less) number of clusters. The second idea is to 
use a heuristic stopping criterion in the algorithm that solves a 
single clustering. The stopping criterion estimates potential 
further improvement on the basis of the improvement achieved so 
far. The iteration will automatically stop if the estimated 
improvement stays below a predefined threshold value. By 
experiments we have found out that any threshold value 0.1 % or 
less results in the correct clustering with a confidence of more 
than 99%. Their effect on the run time and clustering quality is 
studied. 

1. INTRODUCTION 

Clustering is an important problem that must often be 
solved as a part of more complicated tasks in pattern 
recognition, image analysis and other fields of science and 
engineering [1, 2, 3]. Clustering aims at solving two main 
problems: how many clusters there are in the data set and 
where they are located. We define the problem here as 
static clustering if the number of clusters is known 
beforehand, and as dynamic clustering if the number of 
clusters must also be solved. Clustering is also needed for 
designing a codebook in vector quantization [4]. 
Static clustering problem can be solved by methods such as 
Generalized Lloyd algorithm (GLA) [5], simulated 
annealing [6], deterministic annealing [7,8], genetic 
algorithm [9, 10], agglomerative methods [11], and local 
search [12, 13] among many others. The Randomized 
Local Search (RLS) [12] is a simple and effective method 
for solving the problem iteratively. It is based on trial-and-
error approach, where the location of the clusters are 
tentatively changed using random swapping. Thus, it 
corrects the location of misplaced cluster one by one. The 
ease of implementation makes it possible to tailor the RLS 
algorithm for various clustering applications with different 
distance metrics and evaluation criteria. For example, 
stochastic complexity [14, 15] has been successfully 
applied with the RLS method as the evaluation function for 
the classification of bacteria in [16]. 

Dynamic clustering problem can be solved using heuristic 
methods to determine the number of clusters. For example, 
competitive agglomeration [17] decreases the number of 
clusters until there are no clusters smaller than a predefined 
threshold value. The drawback is that the threshold value 
must be experimentally determined. Divisive clustering, 
such as the X-means in [18], uses an opposite, top-down 
approach for generating the clustering. The method starts 
with a single cluster, and new clusters are then created by 
dividing existing clusters. The splitting continues until 
a predefined stopping criterion is met. The divisive 
approach typically requires much less computation than the 
agglomerative clustering methods but are far less used 
because of inferior clustering results. 
Criterion-based approach, on the other hand, divides the 
problem in two parts. First a suitable evaluation function is 
defined, which includes the number of clusters as 
parameter. Static clustering problems are then solved for all 
reasonable numbers of clusters by using any existing 
clustering algorithm. The resulting solutions are compared 
using the evaluation function, and the final result is the 
clustering that minimizes the evaluation function. Criteria 
such as Davies-Bouldin index [19], variance-ratio F-test 
[20], stochastic complexity [15], or minimum description 
length [21] can be applied as the evaluation function 
among many others [22]. The advantage of the criterion-
based approach is that the existing solutions for the static 
clustering can be utilized as such. 
In this paper, we consider the criterion-based approach, and 
generalize the RLS method to the dynamic clustering 
problem where the number of clusters is unknown. We 
propose two variants: (1) brute force algorithm, and (2) 
stepwise algorithm. The brute force algorithm applies the 
RLS method independently to every reasonable number of 
clusters. It guarantees that the optimal solution will be 
found if the evaluation criterion is properly designed, and if 
the RLS method is iterated sufficiently long.  
The brute force algorithm is general but not very efficient. 
For example, we can solve static clustering problem for 
a data set with 5000 data vectors and 32 clusters in about 
40-50 seconds on a 500 MHz Pentium-III machine. 
However, to solve the dynamic clustering problem when 
the number of clusters is varied from 1 to 50, the total run 
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time would be about 40 minutes. We propose two methods 
to speed-up the brute force method. 
The first speed-up idea is the stepwise algorithm. It is 
based on the idea that if we have already found a solution 
for m clusters, then this solution can be utilized when 
searching for the solution of m + 1 clusters. It is expected 
that these two solutions do not differ greatly from each 
other and, therefore, fewer iterations would be needed. The 
proposed method starts by finding solution for m = 2, and 
then repeating the process until a predefined number 
m=Mmax. At each step, one new cluster is added and the 
RLS algorithm is then applied. In principle, any other 
iterative clustering algorithm could also be applied within 
the method. We consider three possible algorithms: the 
GLA, LBG-U, and the RLS. 
The second speed-up idea idea is to use a heuristic stopping 
criterion instead of a fixed number of iterations in the RLS 
algorithm. The stopping criterion estimates the potential 
further improvement on the basis of the improvement 
achieved so far. The iteration will stop if the estimated 
improvement stays below a predefined threshold value (e.g. 
0.1 %). With the brute force algorithm, the RLS is iterated 
about 179-209 times, on average, and with the stepwise 
method only about 64-84 iterations. More importantly, the 
method removes the need for manual tuning of the number 
of iterations. 

2. STATIC CLUSTERING PROBLEM 

Static clustering problem can be defined as follows. Given 
a data set X of N vectors xi, partition the data set into M 
disjoint classes so that similar vectors are grouped together 
and dissimilar vectors belong to different classes. Partition 
P defines the classification by giving each vector an index 
pi of the class to which the vector is assigned to. Each class 
is represented by its representative vector cj, which is here 
defined as the centroid of the cluster. 
We assume that the vectors of the data set are normalized 
and that they are in metric space, so that we can use 
Euclidean distance to estimate the distances between the 
vectors. This allows us to estimate the goodness of solution 
of M clusters by calculating the distances from vectors to 
their cluster centroids. We also assume that all clusters are 
spherical, so all we need to do is to measure the distance to 
the centroid when calculating the distance to a cluster. 
A well-known clustering algorithm for minimizing MSE is 
the Generalized Lloyd algorithm [6], also known as the 
LBG. It is simple to implement and can be applied to any 
initial solution. It proceeds by changing the representation 
between centroid and mapping descriptions of the 
clustering using two optimization steps until the solution 

does not improve anymore. It has been shown that the 
algorithm converges to a local or global optimum. 
Another virtually as simple clustering method is the 
randomized local search (RLS), which has been shown to 
outperform most of the comparative algorithms [12]. The 
RLS proceeds from a given initial solution by replacing 
a randomly selected centroid with a random data vector, 
and then fine-tuning the solution using the GLA. The initial 
solution is a random set of centroids. Our experiments 
indicate that it is better to apply only a few of GLA-
iterations than to allow the GLA to converge to the local 
optimum [23]. Pseudocode for the RLS is presented in 
Fig. 1. 

 
RLS(X, C, P, M) return C, P 
FOR all i � [1, N] DO  
        

� �p di
k M

i k�

� �

arg min ,
1

x c ; 

FOR a � 1 TO NumberOfIterations DO 
        Cnew �C; 
        j � random(1, M);  i � random(1, M); 
        cj

new � xi; 
        Cnew, Pnew � GLA(X, Cnew, M); 
        IF MSE(X, Cnew, Pnew) < MSE(X, C, P) 
        THEN C � Cnew;  P � Pnew; 
END FOR 
Return C, P; 

Fig. 1: Pseudocode for randomized local search. 

3. DYNAMIC CLUSTERING PROBLEM 

We consider the dynamic clustering problem, where also 
the number of clusters must be solved. We recall first two 
suitable criteria for evaluating the clustering in Section 3.1. 
The brute force algorithm (BF) for finding the best 
clustering is then introduced in Section 3.2, and the 
stepwise clustering algorithm (Step) in Section 3.3. Three 
stopping criterion are then proposed in Section 3.4. 

3.1. Evaluation criteria 

MSE has the flaw that it does not take into account the 
number of clusters. It has the property that the greater the 
number of clusters is, the lower values we get; the limit 
being the case where the number of clusters equals the 
number of data vectors and the MSE-value will be zero. 
Therefore, we cannot use MSE to determine the number of 
clusters. 
We consider two criteria: Davies-Bouldin index (Davies 
and Bouldin [19]), which has been used in [22, 23, 24], and 
variance-ratio F-test [20]. Davies-Bouldin index (DBI) 
measures for each cluster the ratio of the intracluster 
distortion relative to the inter cluster distance of the nearest 
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cluster. This is denoted here as the mixture of the two 
clusters j and k, and is calculated as: 

),(,
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Here d is the distance between the cluster centroids, and 
MAEj and MAEk are the mean absolute errors within the 
clusters j and k. The higher the intracluster distortion and 
the closer their centroids, the higher is the index R. 
The mixture of a cluster j is defined as the maximum 
mixture between cluster j and all other clusters. The overall 
DBI-value is then calculated as the average mixtures of the 
clusters: 
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The second criterion we use is based on a statistical 
ANOVA test procedure [20], which we have modified 
slightly. We omit checking the obtained values against 
F-distribution and use the values directly instead. We refer 
this criterion as F-test. 
In brief, the idea is to evaluate all potential clusterings with 
an evaluation criteria, and determine the one with the 
minimum value. This procedure is demonstrated for the 
data set 3 (see Section 4) using the F-test in Fig. 2 as 
a function of the number of clusters. In this example, there 
is clear downward peak in the graph. It is noted, that the 
individual clustering obtained might be suboptimal and, 
therefore, it is not guaranteed that the method will always 
find the correct number of clusters. 

3.2. The Brute Force (BF) algorithm 

The simplest search strategy is to go through a specified 
range of number of clusters, and find the best solution for 
every possible number. The solutions are then evaluated 
and the one that minimizes the chosen evaluation function 
is the final result of the clustering. This search strategy can 
use any clustering algorithm to find the individual solutions 
but we will use the RLS due to its benefits discussed in 
Section 2. The algorithm is expected to find the correct 
number of clusters, provided that the chosen evaluation 

function can distinguish it. The main drawback of the 
algorithm is that it is time-consuming to generate all 
possible clusterings in the range �Mmin, Mmax�. 
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Fig. 2: Values of variance-ratio F-test as a function of the 

number of clusters. 

3.3. Stepwise algorithm 

We next describe how to speed up the brute force algorithm 
without sacrificing its thoroughness. Since we can freely 
decide the initial solution that is passed on to the RLS, we 
can utilize the previous solution. If, for example, we have 
gained a good solution with m clusters, then this solution 
can be used as a starting point for finding the solution with 
m+1 clusters. We perform this by adding a new cluster 
centroid, performing repartitioning of the data vectors, and 
then starting the RLS iterations from this solution. 
We expect that the clusters in the solution with m+1 
clusters are located mainly in the same places as in the 
solution with m clusters. This is demonstrated in Fig. 3 as 
a sequence of clusterings with different number of groups. 
Cluster centroids are shown as white circles. The clustering 
results are similar for the three middlemost images. Thus, 
the hypothesis is that fewer number of iterations are needed 
for optimizing the solution because most of the clusters are 
already in their correct location. 
The stepwise algorithm involves two main design 
questions: whether we should add or remove clusters, and 
how the clusters are modified. The first design question can 
be divided into two approaches. In the first approach 
(denoted as Step+), we start with a solution of Mmin clusters 

......

m=1 m=14 m=15 m=16 m=30

Step+ Step-

 
Fig. 3: Location of different number centroids (white dots) in the data. 
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and add new clusters one at a time in the main loop. In the 
second approach (denoted as Step-), we start with a solution 
of Mmax clusters and remove the clusters one at a time. With 
brute force algorithm, it does not matter whether we 
increase or decrease the number of clusters in the loop; the 
result will be the same as the solutions are generated 
independently from each other. In the stepwise approach, 
however, the direction can have an effect on the expected 
number of iterations needed. 
The second design question is to define how we add or 
remove the clusters. We derive the method directly from 
the original RLS algorithm and perform the change 
randomly. This is argued by the fact that the correct place 
of the clusters must be optimized by a series of random 
swap operations anyway. Thus, the Step+ algorithm inserts 
new cluster into a random location. The Step- algorithm 
removes a randomly chosen cluster. Pseudocode for the 
Step- algorithm is shown in Figure 4.  

 
Step-(X, Mmin, Mmax) return C, P 

C, P � RandomSolution(X, Mmax); 
Cbest, Pbest � RLS(X, C, P, Mmax); 
FOR m � Mmax – 1 DOWNTO Mmin DO 
        C � Remove random centroid 
        C,P � RLS(X, C, P, m); 
        IF f(X, C, P) < f(X, Cbest, Pbest) THEN 
                Cbest � C; Pbest � P; 
END FOR 
return Cbest, Pbest; 

Fig. 4: Stepwise algorithm Step- for  
decreasing number of clusters. 

3.4. Stopping criterion 

In general, it is not clear how many iterations we need to 
perform the RLS in order to find the correct clustering. 
This question arises both in the brute force and in the 
stepwise-algorithms. In the stepwise-algorithm the question 
is even more important because the aim is to decrease the 
number of iterations and yet obtain the correct number of 
clusters. We consider next few simple heuristics that can be 
used for estimating whether it is still worthwhile to 
continue improving the solution by the RLS. If we had an 
algorithm that always improves the solution in each 
iteration this would not be needed as we could check 
against the previous value and stop if difference were small 
enough. Since this is not the case (most likely the best 
solution remains the same) we can take this into account in 
the first criterion. 
We call the first heuristic T-times, as it stops after the 
solution has been iterated T times since the last 
improvement to solution occurred. For example, if T is 3 
and the previous improvement occurred in the iteration 

number 100, we will stop in iteration 300 if there will 
appear no further improvement. We also need a minimum 
number of iterations that must be performed so that we do 
not stop right at the beginning. Let fi be the value of the 
solution after iteration i, i.e. the f-value for the currently 
best C and P, and let k be the current iteration number. 
Stopping condition is: 

� �0/min ���� kTk ffTk  (3) 

Second heuristic is called as 50-50 ratio, as it stops when 
the improvement for the latter half (fk/2 - fk) divided by the 
improvement that occurred in the first half (f1 - fk/2) falls 
below certain limit. Taking first and second halves is 
a consequence of the fact that the solution doesn’t improve 
in every iteration. The following formula gives the 
appearance of smoothly decreasing error: 
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Here L is the predefined threshold value. As with the first 
heuristic, we need to specify the minimum number of 
iterations, otherwise we might stop immediately. Fig. 5 
shows howthe values relate to the number of iterations. 
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Fig. 5: Values used with stopping criteria. 

 
Third heuristic is called as Estimate, as it tries to estimate 
the future improvement of f relative to the improvement so 
far. The estimated value is shown in Fig. 5 as f3k/2. We 
calculate the estimated value by assuming that the relative 
slowdown of the improvement of the solution from k 
iterations to 3k/2 iterations when compared to the 
slowdown from k/2 iterations to k iterations is the same as 
that for ranges from k/2 to k and 1 to k/2. The estimated 
value is: 
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We calculate the ratio of the estimated future improvement 
and the total improvement (f1 - fk) in order to make the 
heuristic independent of the range of values of the criterion 
function f. We must perform some minimum number of 
iterations in order not to stop right away. The heuristic is: 

� �k

k

ff
fLTk
�

���

1

2/3
min  (6) 

The numerator estimates how much the solution would 
improve if the number of iterations would increase by half, 
presuming that the rate of improvement decreases at the 
same rate as it decreased between first half and second half. 
The denominator normalizes the value so that we get the 
relative improvement estimation in respect to the total 
improvement obtained so far. Thus we do not need to take 
into account the range of values of the evaluation function. 

4. TEST RESULTS 

We use the four data sets shown in Fig. 6 with varying 
complexity in terms of spatial data distributions. The test 
sets have 5000 data vectors randomly scattered around 15 
predefined clusters with a varying degree of overlap 
between the clusters. 
 

 
Data set 1 Data set 2 

 
Data set 3 Data set 4 

Fig. 6: Two-dimensional data sets. 
 
We first study the parameter setup of the proposed method 
by finding out how many iterations the proposed algorithms 
need to be run in order to find out the correct number of 
clusters. This describes the minimum amount of work that 

must be performed. We perform clustering for all four data 
sets using the different clustering algorithms, evaluation 
and stopping criteria. 

4.1. Fixed number of iterations 

In order to estimate the minimum work load, we first study 
the work load required by the brute force algorithm (BF) 
when manually fixing the number of iterations. 
The results are summarized in Figures 7 and 8 for the data 
set 3 by showing the percentage the algorithm found out the 
correct number of clusters. In the case of F-test, the brute 
force algorithm requires approximately 100 iterations to 
consistently reach the correct answer (Fig. 7). 
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Fig. 7: The percentage the algorithms found out the 

correct answer, as a function of the number of iterations. 
 
The stepwise algorithm does not start from scratch as BF 
but it uses the previous solution as a starting point. The 
quality of the result may therefore depend on the search 
range of the number of clusters applied. This might have an 
effect on the quality of the result in case if only a small 
number of iterations is applied, and when the search range 
is limited. However, Fig. 8 indicates that the results are 
virtually the same regardless of the range and direction of 
the search. For example, the choice between Step+ and 
Step- do not have any significant effect on the result. To 
sum up, there are no significant differences between the 
three algorithms (BF, Step+ and Step-) when a fixed number 
of iterations were applied.  

4.2. Using stopping criteria with brute force 

In the previous chapter we studied the minimum work load 
required by the different algorithms. In practice, the correct 
clustering is not known beforehand and the number of 
iterations cannot be manually tuned. The use of a proper 
stopping criterion is therefore important for minimizing the 
work load. The aim is to get the correct clustering with the 
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smallest number of iterations as possible. The results in 
Table 1 can be used for estimating the lower limit of this 
work load. 
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Fig. 8: The percentage the algorithms found out the 

correct answer, as a function of the number of iterations. 
The results are for the Step+ (top) and Step- (bottom) 

algorithms with different search ranges using F-test with 
data set 3. 

 
 
Table 1: The minimum number of iterations required to 
find out the correct answer with 100% of the cases. 

 F-test DBI 
 BF Step+ Step- BF Step+ Step- 
Data set 1 130 60 60 90 100 70 
Data set 2 70 60 70 1200 900 800 
Data set 3 70 80 70 N/A N/A N/A 

 
The brute force and stepwise algorithms were tested using 
the three stopping criteria presented in Section 3.4 (T-times, 
50-50 ratio, Estimate). The threshold parameter was 
experimentally set to T=3 for T-times, and L=0.001 for the 
other two criteria. These criteria require also some 
minimum number of iterations before the stopping criterion 
is allowed to take effect. We studied the performance of the 
criterion by varying the minimum number of iterations 
from 10 to 90. The results are summarized in Table 2 as the 
average number iterations applied with the first parameter 

setup that were able to produce the correct clustering in all 
runs. 
The results show that the number of iterations remains 
reasonably low when F-test is used as the evaluation 
function. For example, the BF was iterated only 122-162 
times (on average) in the case of the 50-50 ratio test, and 
179-209 times in the case of the Estimate in order to get the 
correct clustering. The corresponding numbers for the 
Stepwise are 88-183 (with 50-50 ratio test) and 81-121 
(with Estimate). The average number of iterations behaves 
basically in the same way with the stepwise algorithms as 
with the brute force algorithm. The T-times performed less 
consistent in these tests as it keeps iterating unnecessarily 
long with the more difficult test sets (Set 3 and 4). 
With DBI the results are not as good as with the F-test. The 
correct results is found only in the case of the data set 2, 
and even then, the algorithm sometimes iterates 
unnecessarily long. The average value of the stepwise 
algorithms is affected by a single large iteration count, 
where for 28 clusters the RLS algorithm performed 
244,053 iterations. As the threshold value was set to T=3, it 
means that the last improvement has occurred at the 81,351 
iteration, after which there has been no improvement 
whatsoever. In the case of the data set 3, on the other hand, 
the methods were unable to keep the algorithm iterating 
long enough in order to find the correct number of clusters 
for the data set 3. 
 
Table 2: Average number of iterations applied when using 
a stopping criterion (for data set 3). 

 T-times 50-50 
ratio 

Estimate

Brute force 881 122 209 
Step+ 282 88 92 
Step- 497 1078 65 

 

4.3. Behavior of the stopping criteria 

Despite the fact that the minimum number of iterations in 
Table 2 may be half of what is required in comparison to 
Table 1, the average number of iterations may yet be much 
higher. The stopping criteria try to determine when the 
solution has ceased to improve, not when enough work has 
been done to find the correct number of clusters. Another 
reason is that not all cluster counts require the same amount 
of iterations. The less there are clusters, the less iterations 
are needed. After the correct number of clusters has been 
passed, the number of iterations increases noticeably. This 
is illustrated in Fig. 9. For T-times there is a general rising 
trend after the correct number of clusters has been 
exceeded. Similar trend can also be observed for Estimate. 
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The graphs in Fig. 9 show marked jaggedness. This is due 
to the random nature of the underlying algorithm. Since the 
RLS does not necessarily improve the solution in every 
iteration, it is possible that a noticeable drop happens just 
before the stopping criterion would stop the iterations and 
the limit is increased. With T-times this means that the 
number of iterations can grow to be extremely large. 
Regardless of the stopping criterion used, the differences in 
average values of the error functions are small despite the 
number of iterations used. In all cases the solutions are 
equal to three significant digits. We can therefore conclude 
that finding the optimal solution and the correct number of 
clusters are practically the same thing. In other words, if we 
iterate long enough to find the correct number of clusters, 
we have also found the optimal solution. Therefore, further 
iteration for the solution with the correct number of clusters 
does not seem to be necessary. 
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Fig. 9: Average number of iterations as function of the 

number of clusters. 

4.4. Comparison with the existing algorithms 

We next compare the following approaches: 
�� Stepwise with GLA 
�� Stepwise with LBG-U 
�� Stepwise with RLS (the proposed method) 
�� Competitive agglomeration (CA) 
�� Brute Force (BF) 

The Stepwise GLA combines the Step- approach with the 
GLA [5] as follows. It generates Mmax=30 random clusters, 
and then proceeds to decrease the number of clusters by 
removing each cluster in turn. There are M different 
choices for the cluster removal, and every of them are 
iterated by the GLA until convergence. As a result, we 
obtain a set of candidate solutions, of which we keep the 
best one for the initial solution for next cluster removal. 
The Stepwise with LBG-U is implemented in the same 
manner as the Stepwise GLA but the LBG-U algorithm [13] 
is used instead. The LBG-U is also similar to that of the 
RLS but it uses deterministic choice for replacing the 

location of the cluster, whereas the RLS uses random 
choice. This also means that we do not need to repeat the 
RLS for every possible cluster removal but we can simply 
start from random starting point as the algorithm will 
anyway optimize the cluster locations. With the GLA and 
LBG-U, however, the repeats are done as there are no 
randomness in this part and all possibilities can be 
explored. 
The competitive agglomeration [17] uses competitive 
learning for optimizing the location of the clusters. The 
algorithm starts with a predefined number of initial 
clusters, and then removes all clusters that are smaller than 
a predefined threshold value �. The process continues until 
there are no more clusters to be removed and the solution 
has converged to optimum. The initial number of clusters is 
set to 100, and the threshold value was experimentally 
determined by varying it from 10-6 to 10-1. 

 
Table 3: The number of times the correct clustering 
was found (among 100 repeats) by the three Stepwise 
variants, Brute force, and by Competitive 
agglomeration. 

 DBI  
 Stepwise

GLA
Stepwise 
LBG-U 

Stepwise 
RLS 

Brute 
Force 

CA 

Data set 1 14 % 94 % 98 % 95 % 70 % 
Data set 2 19 % 53 % 96 % 100 % 8 % 
Data set 3 28 % 72 % 76 % 82 % 0 % 
Data set 4 31 % 36 % 33 % 52 % 0 % 
Iris data 0 % 0 % 0 % 0 % 5 % 

 F-test 
 Stepwise 

GLA 
Stepwise 
LBG-U 

Stepwise 
RLS 

Brute 
Force 

Data set 1 22 % 94 % 98 % 98 % 
Data set 2 30 % 74 % 100 % 98 % 
Data set 3 39 % 80 % 100 % 100 % 
Data set 4 51 % 92 % 100 % 100 % 
Iris data 100 % 100 % 100 % 100 % 

 
The results for the data sets 1 to 4, and for the Iris data set 
[25] are summarized in Table 3. When F-test is used as the 
criterion, the proposed method (Stepwise RLS) finds the 
correct clustering almost in all cases. The Stepwise with 
LBG-U works fine most of the times but the Stepwise GLA 
gives significantly worse success rate with all data sets. 
When DBI is used, the results are worse with all variants. 
The relative performance of the different methods is similar 
to that of the F-test. The CA, on the other hand, fails to find 
the correct clustering except in the case of the more 
difficult data sets. It tends to remove too many clusters no 
matter of the parameter setup. The results in Fig. 10 show 
that, besides the LBG-U, the algorithms performance is 
consistent on the change in the dimensionality. 
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Fig. 10: Comparison of the algorithms as a function of the 
data set with varying dimension (from 2 to 6). 

5. CONCLUSIONS 

We have introduced stepwise clustering algorithm for 
finding the correct clustering in a case when the number of 
groups is unknown. The method generates solutions for all 
cluster counts within a given search range.  
According to the experiments, the work load can be 
reduced down to about 200 iterations per cluster count with 
the Brute Force approach. With the stepwise algorithm, the 
algorithm iterates only about 65-85 times on average. The 
results indicate that there is obvious dependency between 
the number of iterations and the spatial complexity of the 
data set (clusters overlap). The choice of the evaluation 
function seems also to be important. 
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