

Dynamic local search for clustering with unknown number of clusters

Ismo Kärkkäinen and Pasi Fränti

Department of Computer Science, University of Joensuu
Box 111, FIN-80101 Joensuu, FINLAND

Abstract

Dynamic clustering problems can be solved by finding
several clustering solutions with different number of
clusters, and by choosing the one that minimizes a given
evaluation function. This kind of brute force approach is
general but not very efficient. We propose a new dynamic
local search that solves the number and location of the
clusters jointly. The algorithm uses a set of basic
operations, such as cluster addition, removal and
swapping. The clustering is found by the combination of
trial-and-error approach of local search, and the local
optimization capability of the GLA. The algorithm finds the
results 30 times faster than the brute force approach.

Keywords: clustering, number of clusters, vector
quantization, optimization.

1. Introduction

Clustering is an important problem that must often be

solved as a part of more complicated tasks in pattern
recognition, image analysis and other fields of science and
engineering [1, 2]. It aims at answering two main
questions: how many clusters there are in the data set and
where they are located. We denote the problem here as
static clustering if the number of clusters is known
beforehand, and as dynamic clustering if the number of
clusters must also be solved.

Static clustering problem can be solved by methods
such as the Generalized Lloyd algorithm (GLA) [3],
simulated annealing [4], deterministic annealing [5],
genetic algorithm [6] among many others. Randomized
Local Search (RLS) is a good choice for the clustering
because of its competitive performance according to the
results [7] in terms of optimizing the evaluation function
value. Its simplicity makes it easy to generalize for the
dynamic clustering problem.

The RLS method can also be generalized to the case
where the number of clusters is unknown. The method is
applied to every reasonable number of clusters and the
correct solution is the one that minimizes the given
optimization function. This method (referred to as Brute
Force) is general but inefficient. A more efficient approach
(referred to as stepwise local search) is to utilize the
previous clustering (with m clusters) when solving the
current one (with m+1 clusters), and by defining

appropriate stopping criterion for the iterations [8]. The
algorithm still uses most of the time for optimizing
solutions with completely wrong number of clusters.

In this paper, we propose a more efficient approach
called dynamic local search (DLS). It optimizes the
number and the location of the clusters jointly. The main
motivation is that most of the computation should be spent
on solutions with the correct, or nearly correct number of
clusters. We first derive a set of basic operations cluster
addition, cluster removal and cluster swapping. We then
study how the operations should be applied in order to
achieve the correct clustering in most efficient way.

The main problem in the dynamic local search is the
following. In static clustering, the RLS can find the correct
clustering starting from any initial solution. The longer the
algorithm is iterated, the likely if that the correct result is
reached. In the dynamic approach, however, the
optimization function can have local minima with the
changes of M. The algorithm must therefore be able to
reallocate more than one cluster at a time. This can be
major source of inefficiency if not properly designed.

2. Clustering Problem

Clustering aims at partitioning a given set of N data

vectors into M groups so that similar data vectors are
grouped together and dissimilar data vectors to different
groups. We assume that the data set is normalized so that
some standard distance metric, e.g. Euclidean distance, can
be applied. This allows us to estimate the goodness of a
solution of M clusters by calculating the mean square
error (MSE) of the distances from data vectors to their
cluster centroids. We also assume that the clusters are
spherical with equal variances.

2.1 Algorithm for static clustering

The static clustering problem can be solved reliably

using Randomized Local Search (RLS), which provides
simple and effective method for finding the correct
location of the clusters [7]. The method is based on trial-
and-error approach as follows. New candidate solutions are
generated by random swap operation, which reallocates a
randomly chosen cluster to another part of the vector

1051-4651/02 $17.00 (c) 2002 IEEE

space. The new cluster is located to the position of
a randomly drawn vector from the data set. The partition is
then modified according to the change in the clustering
structure, and few iterations of the GLA are applied as
fine-tuning. The new solution replaces the previous one
only if it decreased the error value. The longer the
algorithm is iterated, the better is the clustering.

2.2 Determining the number of clusters

In many cases, the number of clusters is not known

beforehand but solving the correct number of clusters is
part of the problem. The simplest approach is to generate
solutions for all possible number of clusters M in a given
range [Mmin, Mmax], and then select the best clustering
according to a suitable evaluation function f. This approach
is referred here as Brute Force (BF) algorithm. It allows us
to use any static clustering algorithm in the search.

The choice of the evaluation function is a vital part of
the clustering; several candidates were presented in [9]. In
principle, any function could be used to guide the search; if
the evaluation function and the clustering algorithm are
properly chosen, BF will find the correct solution but the
algorithm will be slow.

In [8], we considered an improved approach that utilizes
the best solution for the previous number of clusters m
when searching for the solution of m+1 clusters. The
algorithm adds one more cluster in the previous solution
and applies any iterative algorithm such as the GLA or
RLS. The rationale for this is that the previous solution is
close to the best solution for current number of clusters and
therefore fewer iterations are needed.

3. Dynamic Local Search

We next generalize the RLS method so that it solves the

number and the location of the clusters jointly. We refer
this algorithm as Dynamic Local Search (DLS). The input
are the data set (X), an initial solution (C, P), and the
search range for the number of clusters (Mmin, Mmax). The
algorithm applies elementary operations to the current
solution and proceeds as the RLS, see Figure 1. There are
two main differences to RLS. First is that the only
operation is not the random swap, but we may add or
remove clusters. The second is that we must use an
evaluation function to solve the correct number of clusters.

3.1. Elementary operations

Changing the solution is done in two ways. First way is

to use GLA iterations inside DLS to improve the solution
towards the closest minimum. The second way is to apply
an operation that alters the solution. This change, unlike
GLA-iterations, does not necessarily result in better
solution in itself, but it allows the search to proceed away

from local minimum. We use the following elementary
operations for modifying the current solution:

�� Cluster swapping,
�� Cluster addition,
�� Cluster removal.

DLS(X, C, P, Mmin, Mmax) return C, P
C, P � RandomSolution(X, Mmin);
FOR all i � [1, N] DO pi � j such that xi is nearest to cj;
FOR a � 1 TO NumberOfIterations DO
 Cnew ��Operation(C, Mmin, Mmax);
 Cnew, Pnew � GLA(X, Cnew, M);
 IF f(X, Cnew, Pnew) < f(X, C, P) THEN
 C � Cnew;
 P � Pnew;
END FOR
Return C, P;
Figure 1. Pseudocode for the dynamic local search.

The cluster swapping operation is the same as random

swap in RLS. Cluster addition creates new clusters by
randomly selecting vectors from the data set. Cluster
removal deletes randomly chosen clusters centroid from
the current solution. Figures 2 and 3 illustrate the addition
and removal processes. These operations allow the
algorithm to adjust the number of clusters.

�

Figure 2. Adding four random centroids.

�

Figure 3. Removing four centroids randomly.

3.2. Amount of change

In the algorithm, in each iteration we first select the

operation that is applied. We use the following
probabilities: cluster swap 50%, cluster addition 25%,
cluster removal 25%. Next we select the number of
clusters that are added or removed. In the case of cluster
swap, swapping single cluster is enough [7]. In principle,
adding or removing one cluster would also be enough to

1051-4651/02 $17.00 (c) 2002 IEEE

reach all possible number of clusters. Since the evaluation
function may have local minima, bigger changes must take
place.

A simple way to control the amount of change is to
select the number of clusters to be added or removed (�M)
randomly so that small changes have higher probability.
Let L be the limit (Mmin or Mmax), which we may not go
beyond. Current number of clusters is M. We get

� �LMrM �����
�1 (1)

where evenly distributed random number r in the range
[0, 1[is raised to power �. The case � = 1 gives even
distribution. For larger values of �, the distribution is
skewed towards small values.

3.3. Stopping criterion

There still remains the question of how many iterations

we must perform in order to find the correct number of
clusters. Obviously, if we iterate long enough we will
eventually find the correct solution, but the amount of
work varies from one data set to another.

We designed three heuristic stopping criteria for the
static clustering in [8]. A criterion referred as 50-50 ratio
halts the search when the improvement for the latter 50%
of the iterations divided by the improvement made during
the first 50% of the iterations drops below a given
threshold value and a given minimum number of iterations
has been performed.

4. Test Results

First we use three synthetic two-dimensional data sets

with varying numbers of circular clusters. Cluster counts
are 20, 35 and 50 for data sets 1, 2 and 3. The graphs of the
evaluation function for the data sets are shown in Figure 4.
The range [Mmin, Mmax] was set to [2, 75].

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

2 12 22 32 42 52 62 72

Number of clusters

Ev
al

ua
tio

n
fu

nc
tio

n

Data set 1
Data set 2
Data set 3

Figure 4. Evaluation function values for the data sets.

4.1. Finding the correct number of clusters

We study how much faster the DLS can find the correct

solution than BF search. The general test procedure was to
fix the parameters, repeat the algorithm 100 times and
calculate how many times the correct number of clusters
was found. The number of GLA-iterations used in both BF
and DLS was two per iteration.

We ran BF with four different iteration counts for all
data sets. The results are shown in Table 1. The total
number of iterations clearly shows that while BF will find
the correct number it comes at the cost of high total
number of iterations. If the range that is searched is wide,
then the search will take a long time.

Table 1. Percentage the correct clustering is found by BF.

Iterations:
(total)

100
(7400)

200
(14800)

300
(22200)

500
(37000)

Data set 1 83 100 100 100
Data set 2 26 65 83 98
Data set 3 9 22 43 73

We tested the DLS algorithm with 1000 and 2000

iterations using the Eq. (1). Results are shown in Table 2.
It can be seen that the Eq. (1) gives good results provided
that the �-parameter is set high enough. It is also noted that
1000 iterations is not sufficient for all data sets.

Table 2. Percentage of correct clustering is found by DLS.

1000 iterations
�=1.0 �=1.5 �=2.0 �=2.5 �=3.0

Data set 1 80 99 100 100 100
Data set 2 3 37 77 92 98
Data set 3 0 4 26 49 75

2000 iterations
�=1.0 �=1.5 �=2.0 �=2.5 �=3.0

Data set 1 98 100 100 100 100
Data set 2 26 87 99 100 100
Data set 3 2 36 88 95 100

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0 10 20 30 40 50 6

Number of clusters

Ev
al

ua
tio

n
fu

nc
tio

n

0

Run 1
Run 2
Run 3

Figure 5. Development of search for data set 1 for three

different runs of the DLS algorithm.

1051-4651/02 $17.00 (c) 2002 IEEE

Comparison to BF shows that we can find the correct

number of clusters with approximately 3% of the amount
of work needed by BF. This is significantly better than
what was obtained by the Stepwise algorithm in [8]; it
decreases the number of iterations to about 40%.

Figure 5 shows three examples of how the best solution
develops as the search proceeds.

4.2. Stopping criterion

From the previous results we can see that the DLS will

find the correct number of clusters when iterated long
enough (2000 iterations in the case of test sets used here).
It would be useful for the algorithm to stop when the
solution has stabilized. We test next whether the stopping
criterion introduced in Section 3.3 can be reliably used
with DLS. We set the minimal number of iterations to 400,
and then apply the static 50-50 ratio with the threshold
value of 10-5. Results are shown in table 3.

Table 3. Number of times (%) the correct clustering is found

by DLS using Equation (1). The numbers in parentheses
are the average number of iterations performed.

 �=2.0 �=2.5 �=3.0
Data set 1 98 (861) 98 (670) 99 (626)
Data set 2 93 (1932) 94 (1422) 90 (1295)
Data set 3 91 (3479) 89 (2488) 98 (1906)

We see that the static 50-50 ratio can be reliably used in

the case of the first data set. In the case of the other two
data sets, the results are slightly worse although the
algorithm keeps iterating longer. It seems that the static 50-
50 ratio works quite well but the optimal choice for the
parameters is not trivial.

0
10
20
30
40
50
60
70
80
90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data dimensionality

%

DLS
CA
Stepwise/LBGU
Stepwise/GLA

Figure 6. Percentage of finding the correct clustering with

different algorithms as function of the dimensionality.

4.3. Comparison with other approaches

We next compare the proposed DLS algorithm with the

Competitive agglomeration (CA) [10], GLA [3] LBG-U
[11] when integrated into the Stepwise approach as in [8].
The results are summarized in Fig. 6. The main
observation is that DLS clearly outperforms the other
approaches, of which CA works also reasonably well for
these data sets, which are similar to those used earlier
except the dimensionality varies and there are 9 clusters.

5. Conclusions

Dynamic local search algorithm was proposed to solve

efficiently clustering problems with unknown number of
clusters. The algorithm seeks both the correct number of
clusters and the optimal positions for the centroids. The
algorithm is much faster than simple brute force search.

References

[1] Everitt B.S., Cluster Analysis, 3rd Edition. Edward

Arnold / Halsted Press, London, 1992.
[2] R. Dubes and A. Jain, Algorithms that Cluster Data,

Prentice-Hall, Englewood Cliffs, NJ, 1987.
[3] Y. Linde, A. Buzo, R.M. Gray, “An algorithm for

vector quantizer design”, IEEE Transactions on
Communications 1980; 28(1): 84-95.

[4] Zeger K, Gersho A, 1989. Stochastic relaxation
algorithm for improved vector quantiser design.
Electronics Letters 25(14), 896-898.

[5] Rose K, Gurewitz E, Fox G, 1990. A deterministic
annealing approach to clustering. Pattern Recognition
Letters 11, 589-594.

[6] Fränti P, Kivijärvi J, Kaukoranta T, Nevalainen O,
1997. Genetic algorithms for large scale clustering
problems. The Computer Journal 40(9), 547-554.

[7] P. Fränti and J. Kivijärvi, “Randomized local search
algorithm for the clustering problem”, Pattern
Analysis and Applications 2000; 3(4): 358-369.

[8] I. Kärkkäinen and P. Fränti, “Stepwise clustering
algorithm for unknown number of clusters”, Univ. of
Joensuu, Dept. of CS, Report A-2002-5. (submitted)

[9] Bezdek JC, Pal NR, 1998. Some new indexes of
cluster validity. IEEE Transactions on Systems, Man
and Cybernetics 28(3): 302-315.

[10] Frigui H, Krishnapuram R, Clustering by Competitive
Agglomeration. Pattern Recognition 1997; 30(7):
1109-1119.

[11] Fritzke B, The LBG-U method for vector quantization
� an improvement over LBG inspired from neural
networks. Neural Processing Letters 1997; 5(1):
35-45.

1051-4651/02 $17.00 (c) 2002 IEEE

	1. Introduction
	2. Clustering Problem
	2.1 Algorithm for static clustering
	2.2 Determining the number of clusters

	3. Dynamic Local Search
	3.1. Elementary operations
	3.2. Amount of change
	3.3. Stopping criterion

	4. Test Results
	4.1. Finding the correct number of clusters
	4.2. Stopping criterion
	4.3. Comparison with other approaches

	5. Conclusions
	References
	ICPR 2002
	Return to Menu

