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ABSTRACT

We present a new method for performing vector
quantization of binary vectors. The proposed method
varies the distance metric and updates the centroids in an
optimal manner regarding the current metric. The
corresponding centroids change from “soft”, allowing
variables of codevectors to have values between zero and
one, to hard, pure binary codevectors.

1. INTRODUCTION

We consider the clustering problem in binary vector
quantizer design. The aim is to find a set of codevectors
(codebook) for a given data or  training set so that the
average pairwise distance between the data vector and
corresponding codevector is minimized.

There is a multitude of methods for codebook
generation [1], among the most used is generalized Lloyd
algorithm (GLA) [2]. Unfortunately GLA is not well
applicable to binary data since it is a descent method that
improves the codebook gradually until a local optimum is
reached. This is due to binary vectors having only two
values, zero and one, which means that gradual changes in
codevectors will not happen easily. The same problem
also occurs with simulated annealing [3], pairwise nearest
neighbor [4] and iterative splitting method [5].

1.1. The soft centroids method

In [6] the use of soft centroids was proposed. Instead
of using binary codevectors the variables are allowed to
have values in range [0, 1]. Euclidean distance is used and
the codevectors are the mean vectors of each partition.
Euclidean distance is a special case of Ld distance with d =
2. The Ld distance between a data vector xi and centroid cj
of dimensionality K is given by:
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For pure binary vectors, raising to power d has no
effect since the difference is either 0 or 1.

Distortion between a data set X and a codebook C is
expressed with mean error. Let pi be the index of the
codevector that is closest to xi. Distortion is then:
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Rounding to pure binary values occurs after the
solution is obtained from the algorithm.

In this work, we generalize the method so that the soft
centroids will turn gradually into hard centroids. Thus we
avoid the sudden change that occurs when rounding is
performed and let the softness disappear smoothly.

2. PROPOSED METHOD

The soft centroid method can be generalized by varying
the metric used in distance calculations and by updating
the codevectors so that they are optimal to the current
metric. The exponent of the Ld metric (1) is changed by
gradually decreasing it from a large value to 1 during the
algorithm. The method is best suited for iterative
algorithms such as GLA. The exponent d is decreased
until it reaches one. Decrease can be e.g. linear or
exponential. Note that d need not to be an integer.
Especially when changing d from 2 to 1, several steps
must be performed. Otherwise the result is practically the
same as rounding the soft centroid in a single step as in
[6].

Pseudocode for the proposed method applied to GLA
is shown in Figure 1. Initially d is set to the maximum
value and then decreased until the final value is reached.

Create initial solution.
Set d to dmax.
While d > dmin, do:
        Perform one GLA iteration.
        Decrease d.
Set d to dmin.
Iterate GLA until solution has converged.
Return final solution.

Figure 1. Pseudocode for the proposed algorithm.
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To find the optimal value of the kth scalar of the jth
centroid, for a given partition, we find the zero of the
derivative of the internal distortion. In the following, for
partition j and dimension k, we have qjk zeroes and rjk
ones. For binary data, the internal distortion for one
variable is:

( )djkjk
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Deriving this with respect to cjk, and set to zero we get:
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Now, let:
( )1/1 −= dα (5)

Note that d must be greater than 1. Solving for cjk, we get:
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Thus, the required update formula for d > 1 is:
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For d = 1, cjk is set to 1 if qjk ≤ rjk, zero otherwise. If d
= 2 the result of formula (7) simplifies to the mean value
of the variable, since α = 1, as seen from (5). Then (7)
becomes number of ones divided by the sum of the
number of ones and zeroes in one dimension, which is the
number of vectors in the partition.

If decresing of d is done in linear manner, then the
step value is subtracted from the previous value of d and
the algorithm continues until d reaches 1. If change is
exponential, dmin is subtracted from d, then the difference
is multiplied with a constant g and then dmin is added to the
result. Thus dmin is approached slowly in the end
regardless of the value of dmin. Update formula is:

( ) minmin1 dddgd ii +−= − (8)
The effect of d on the cjk is that for large values of d,

even a few differing values in the partition tend to pull the
result towards 0.5. Therefore the centroids are all initially
close to each other at the center of the space and then
move towards corners as d decreases, each settling to a
corner of the space when d = 1. Figure 2 shows how value
of cjk changes as function of d as d decreases from 6 to 1.

It can be clearly seen that initially c is quite close to 0.5
regardless of how many zeroes and ones there are. Once d
approaches 1 all curves approach the dominant value. In
the case of q = r the value of c remains at 0.5 until it is
rounded to 1 in the end. The mean of q and r can be seen
at d = 2.

Since the exponent of the metric needs to be changed
during the process, the method is really suitable only for
iterative algorithms. When using hierarchical algorithms
the results from previous levels would need to be updated
or left to contain sub-optimal values if d would change as
clusters are joined. The optimal location of the centroid
changes during the iterations as a result of (7) even if the
partitioning would remain the same. Therefore, we cannot
expect that e.g. GLA would converge before d has reached
the final value. During testing we performed additional
iterations after d had reached the final value to ensure that
the solution has converged.
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Figure 2. Effect of d to the centroid values.

3. TEST RESULTS

The four binary data sets used in testing were Bridge,
Camera, CCITT-5, and DNA. Bridge and Camera are 4×4
pixel blocks taken from gray-scale images after a BTC-
type quantization into two levels according to the mean
value of the block [7]. CCITT-5 is obtained by taking 4×4
pixel blocks from the standard CCITT-5 binary test image.
Data set characteristics and the size of the codebook used
are shown in Table 1 and the original images in Figure 3.

Table 1. Binary data set statistics
Data set Dimensionality Vectors Codebook

size
Bridge 16 2813 256
Camera 16 3172 256
CCITT-5 16 1784 256
DNA 58 270 4
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Bridge Camera CCITT-5
Figure 3. Images used for the binarized image data sets.

For testing the effect of changing the Ld metric we used
GLA and simulated annealing (SA). After d has changed,
we update the partitions and centroids during a single
iteration of GLA or SA. After d no longer changes we
iterate GLA until the solution converges, which usually
required only one or two additional iterations. We
compare the results of our algorithm to those computed in
[6]. The algorithms using Euclidean distance and
distortion given in (2) are GLA, simulated annealing,
pairwise nearest neighbor (PNN) and iterative splitting
method (Split).

To study the effect of the range of d, we tried several
ranges of d so that the minimum and final value of d was
always 1. Table 2 shows average distortions obtained with
GLA and SA. Columns marked linear mean that d was
changed by subtracting the given value until d reached 1.
Columns marked exponential had d changed using (8) and
the value given is g. Values are averages of 100 runs each.
We see that exponential decrease of d gives better results
than linear for GLA. Also slower decrease yields better
results in general. Using greater starting value d0 than 2 is
apparently required for better results since the distortion
drops considerably when d0 grows from 2 to 3. Table 3
shows the same results for DNA. They are similar to those
in Table 2. The results for the two remaining data sets are
also similar.

Table 2. Average distortion with different parameter
combinations for Bridge

GLA SA
Linear Exponential Exponential

d0 0.05 0.1 0.25 0.95 0.99 0.95 0.99
2 1.325 1.335 1.359 1.318 1.314 1.278 1.254
3 1.319 1.327 1.346 1.312 1.310 1.269 1.245
4 1.318 1.325 1.344 1.310 1.309 1.268 1.246
5 1.317 1.324 1.344 1.311 1.309 1.270 1.249
6 1.318 1.323 1.342 1.311 1.307 1.271 1.252

We present distortion values along with the results from
[6]. All original results for SA are averages from 10 runs
and for GLA averages from 100 runs. For the proposed
method, results for SA are from 100 runs. For comparison,
results with pure binary centroids are also included.

Table 3. Average distortion with different parameter
combinations for DNA

GLA SA
Linear Exponential Exponential

d0 0.05 0.1 0.25 0.95 0.99 0.95 0.99
2 6.679 6.718 6.728 6.646 6.668 6.571 6.571
3 6.646 6.688 6.701 6.628 6.641 6.570 6.570
4 6.685 6.644 6.647 6.643 6.641 6.570 6.570
5 6.662 6.661 6.671 6.630 6.627 6.570 6.570
6 6.663 6.643 6.659 6.637 6.682 6.570 6.570

Results for Bridge and Camera, see Figures 4 and 5,
show improvement when using the proposed method. SA
with the variable metric outperforms all other algorithms.
Also simple GLA with variable metric outperforms Split
and PNN, for which the proposed method is not
applicable.
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Figure 4. Results for Bridge data set.
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Figure 5. Results for Camera data set.

With CCITT-5 the results with GLA using variable metric
are worse than even those of binary GLA, as can be seen
from Figure 6. SA gets quite close to the best result by
PNN. Split underperforms badly for some reason. Results
for DNA data set are shown in Figure 7. SA with variable
metric outperforms Split and gets very close to PNN.
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Figure 6. Results for CCITT-5 data set.
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Figure 7. Results for DNA data set.

Table 3 shows how the best results for each data set with
different manners of decreasing d relate to the best results
obtained using either pure binary centroids or soft
centroids. Negative numbers indicate that the solution was
better than one obtained with binary centroids or soft
centroids. The best results are taken over all ranges that
were used for the specific method of changing d. This
clearly shows that GLA can get quite close to other
methods using variable metric with the exception of
CCITT-5 data set where the results are clearly worse with
over 70 % greater distortion. Using variable centroids
produces considerably worse results even when compared
to GLA with binary and soft centroids, as seen from
Figure 6.

Table 3. Percentage of distortion difference relative to the
best distortion obtained using binary or soft centroids.

GLA SA
Linear Exponential Exponential

Data set 0.05 0.1 0.25 0.95 0.99 0.95 0.99
Bridge 1.91 2.38 3.90 1.35 1.18 -1.84 -3.64
Camera 1.37 1.91 3.28 0.80 0.70 -1.48 -3.14

CCITT-5 75.1 76.1 78.9 74.4 71.9 13.9 2.67
DNA 1.16 1.12 1.17 0.89 0.86 0 0

Comparing the results to the best of all results, shown in
Table 4, we see more clearly that slow exponential
decrease of d gives the best results for both GLA and SA.
Considering the fact that GLA will not converge until d
has converged, there are no practical speed advantages of
using GLA instead of SA.

Table 4. Percentage of distortion difference relative to the
best distortion obtained using binary or soft centroids.

GLA SA
Linear Exponential Exponential

Data set 0.05 0.1 0.25 0.95 0.99 0.95 0.99
Bridge 5.76 6.24 7.83 5.18 5.01 1.87 0
Camera 4.66 5.22 6.63 4.07 3.97 1.72 0

CCITT-5 75.1 76.1 78.9 74.4 71.9 13.9 2.67
DNA 1.16 1.12 1.17 0.89 0.86 0 0

4. CONCLUSIONS

We have presented a way of performing vector
quantization on binary data so that the problems arising
from the use of pure binary codevectors can be decreased.
Transition to pure binary vectors occurs naturally as the Ld
metric is gradually changed to Manhattan distance and no
rounding step is needed. We have shown that for SA this
produces better results in all cases and for GLA better
results in most cases than using soft centroids and then
rounding the results. Future work includes investigating if
the idea is suitable also for non-binary data.
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