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Abstract

State of the art speech recognition systems are concentrating on modeling
the speech variances among different speakers such as dialects or accents
of the spoken language, the speaker gender, as well as some physiological
variances such as differences in vocal tract length. These variations lead to
difficulties in modeling large-scale speaker-independent systems. This thesis
focuses on recognizing the dialect or accent of a given speech utterance, and
demonstrates how parameter tuning affects the system performance.

In this thesis, we construct a baseline dialect recognition system based on
frame-based spectral modeling techniques and describe how we can improve
the system performance by tuning the baseline system parameters. Then
the performance of the baseline system is compared with identity vectors
(i-vectors) based dialect recognition system. The main contribution of this
study is to observe the sensitivity of the evaluation metrics on parameters of
the designed dialect and accent recognition system.

Our experiments are based on Callfriend corpus, and from this corpus
English, Mandarin and Spanish languages were selected. For each experi-
ment, three different evaluation metrics are used, identification error rates,
equal error rates and the detection cost function.

The best results achieved in i-vector based dialect recognition system for
all of three selected languages. The English language achieved its best re-
sults at minimum detection cost function of 0.0807, identification error rate
of 28.43% and equal error rate of 11.31%, Mandarin language achieved its
best results at minimum detection cost function of 0.0543, identification error
rate of 23.56% and equal error rate of 8.41%, and finally Spanish language
achieved its best result at minimum detection cost function of 0.0569, identifi-
cation error rate of 28.24% and equal error rate of 9.12%. The results indicate
that Mandarin dialects have the most distinctive characteristics compared to
other two languages. Moreover, Regarding the sensitivity of the results to
tuning parameters, the recognition system is more sensitive to changes in
number of GMM components and VAD thresholds than other tuning param-
eters. VILN, RASTA filtering, addition of mel-cepstral coefficients to SDC
feature vectors, and feature normalization appear in next orders, respectively.

keywords: Dialect and Accent Recognition, Spectral Modeling, Phono-
tactic modeling, Shifted Delta Cepstral Coefficients, Universal background
Modeling, Vocal Tract Length Normalization, Identity Vectors.
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Chapter 1

Introduction

1.1 Background

Dialect/accent refers to different ways of pronouncing/speaking a language
within a community. Examples could be American English vs. British En-
glish speakers or the Spanish speakers in Spain vs. Caribbean.

During the past few years, there have been significant attempt to auto-
matically recognize the dialect or accent of a speaker given his or her speech
utterance [5, 7, 9, 30]. Recognition of dialects or accents of speakers prior
to automatic speech recognition (ASR) helps in improving performance of
the ASR systems by adapting the ASR acoustic and/or language models ap-
propriately [44]. Moreover, in applications such as telephone-based assistant
systems, by recognizing the dialect or accent of the caller and then connect-
ing the caller to agent with similar dialect or accent will produce more user
friendly environment for the users of the application [45].

This thesis provides the following contributions. First, a baseline dialect
and accent recognition system is designed so that new ideas could be de-
veloped on it. Second, the system recognition sensitivity to front-end and
back-end parameters are experimented. Regarding the designed baseline sys-
tem, a new modeling approach, identity vectors (i-vectors), is coupled with
baseline system so that the system get closer to the state of the art dialect
and accent recognition systems.
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1.2 Research problem, objectives and ques-
tions

The main objectives of this research are to find the effect of parameters of
the base-line dialect and accent recognition system, observing the effects of
the a new modeling techniques added to the baseline system, and finally
compare the recognition performance of selected dialects. This comparison
shows that which language dialects have the most distinctive characteristics
in their phonemes, and other dialect or accent dependent attributes.

The study attempts to find answers to the following research questions:

e What are the optimal tuning parameters for the base-line dialect and
accent identification system?

e How does the overall system performance change when VTLN and i-
vectors are added to the base-line system?

e Does the identification performance significantly vary among the se-
lected languages? If yes, which of the languages give the highest and
lowest recognition accuracies?

1.3 Thesis Structure

In chapter 2, we will look at the automatic dialect and accent recognition
systems by reviewing what has already been done in literature and describing
how the baseline system is developed and what components have been used
to construct it. Then in Chapter 3 which is the most important chapter of
this thesis, we will present our different experiments we have done in this
study together with analysis of these experiments. Finally, in Chapter 4
conclusions and future works are explained.

14



Chapter 2

Dialect and Accent Recognition

In this chapter, we will look at the theory behind the dialect and accent
recognition systems. The first part of this chapter, we describe the differ-
ences between dialects, accents and the styles of speakers, how the linguistics
differentiate dialects as well as reviewing different approaches in automatic
dialect and accent recognition systems. Finally, in the end of this chapter,
we discuss which approach has been used in our research and will justify the
reason behind this selection.

2.1 Dialects vs. Accents vs. Styles

In this section, we describe three different linguistic variations that appear in
any language. Two of these categories are specified by regional variations as
in pronunciations (accents), word selection and grammar (dialects), and by
sociological variations as in different speaking styles due to age, situation and
gender. Knowing all of these variables creates insight into social, historical
and geographical factors of language being used in the society [9].

2.1.1 Dialects

Dialects are varieties of speech within a specified language. The Oxford En-
glish Dictionary (OED) describes dialects as “one of the subordinate forms
or varieties of a language arising from local peculiarities of vocabulary, pro-
nunciation and idiom”. These variations can exist at all linguistic levels, i.e.
vocabularies, idioms, grammars and pronunciation. Some examples in case
of South and North English dialects are

e South: "Howdy”; North: ”"Hello”
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e South: ”Fixin to”; North: ” About to”
and in case of Canary Island and Madrid Spanish dialects are [1]

e Madrid: pronunciation of ¢ and z like the sound ”th”, as in Los centros
sounds like ”Los thentros”.

e Canary: pronunciation of ¢ and z like the sound ”s”, as in Centros
sounds like ”sentros”.

Dialects of the specific language differ from each other, but they are
still understandable to the speakers of another dialect of the same language.
Differences among dialects are mainly due to regional and social factors and
these differences vary in terms of pronunciation, vocabulary, and grammar
[3]. For example, the sentence ”she were wearing a sunglass” might sound
unusual, but in some dialects in northern England and the Midlands, many
speakers use the past tense of "to be” by saying "I were, you were, he, she
and it were, we were and they were”. This means that the verb is unchanged
for person, while speakers of Standard English use ”I was and he, she and it
was”. This example indicates how standard grammars of a language might
be influenced by regional dialect differences. On the other hand, social factor
shows that members of a specific socioeconomic class such as working-class
dialects, might have different dialects compared to high-class businessman.
So the way a person speaks his/her language is highly influenced by both
his/her social status and his/her region of origin.

2.1.2 Accents

Accents are defined as varieties in pronunciations of a certain language and
refers to the sounds that exists in a person’s language. Therefore, everybody
has an accent. Generally, accents differ in two subjects, phonetic and phono-
logical [10, ]. When accents differ in phonetic, there are same set of phonemes
in both accents, but some of these phonemes are realized differently. For ex-
ample, the phoneme e’ in dress is pronounced as '3’ in England, and e’ in
Wales. Another example, the phoneme "u’ in strut is pronounced as 'A’ in
England, and "’ in Wales. Differences in stress and intonation are also refer
to phonetic category.

On the other hand, phonological refers to those accents which have dif-
ferent number of phonemes from another and often the identity of phonemes
are also different. Examples are made or waste which are pronounced as e’
in England and as ’e:” in Wales [10].

What is clear in accent description is that unlike the dialects, accents only
cover a small group of variations which could occur in a certain language.
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2.1.3 Styles

Another type of linguistic variation in a certain language is caused due to
different styles of speakers within that language. Styles generally refer to the
mood of the speaker and the situations in which the speaker is placed. This
factor differs from dialect and accent variations so that dialect and accent
is the way a certain language is spoken among many people of a society,
whereas styles refer to the spoken language of the same person in different
situations.
As mentioned, styles of a speaker depend on situational factors such as

e who is he/she speaking with
e what is the spoken topic about
e where is the conversation taking place

In all of these situations, one speaker might select a different tone of voice
in his voice. For example, in careful styles, more attention is paid to speech,
whereas in casual styles, there will be less attention on the monitoring of
speech [10].

2.2 Approaches in Dialect and Accent Recog-
nition Systems

How do the the automatic dialect and accent recognizer systems work? In
general, these system uses two different approaches, phonotactic and spectral
approaches. In the following section, I will briefly review the core idea behind
these approaches and will explain that which of these techniques has been
used in this study and for what reason the approach is selected.

2.2.1 Phonotactic Approaches

The phonotactic approach in dialect and accent recognition recognition is
based on the hypothesis that dialects or accents differ in their phone sequence
distributions. In other words, texts of a same language can be recognized by
these character distributions. Using the probabilistic frameworks such as the
ones mentioned in [15] and assuming that the phonemes prior distributions
are uniform, the dialect or accent recognition problem can be written as

arg max P(Q|D;)
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P(Q|D;) denotes the conditional probability of the @ given D;, where @
represents the sequence of phonemes and D; represents the target dialect .

As explained above, dialect differences are mostly due to regional and
social factors, and these differences are seen in vocabulary, grammar and
pronunciation. In fact, phone sequence recognizers capture these subtle dif-
ferences within the dialects of a certain language.

One of the methods which uses the phonotactic approaches is PRLM
(Phone Recognition followed by Language Modeling) [14]. In this method, for
dialect or accent recognition, the phones of the training speech utterances of
a specific dialect or accent are first recognized using a single phone recognizer.
Then an N-gram model, 7;, ! is trained on the detected phone sequences.

During the recognition process, The phone sequences ,(), are extracted
from the given test utterance, and then the likelihood of each phone sequence
is computed given the trained N-gram dialect models. As an example, if
N = 3, then the likelihood is computed as [14]

k
P(Q = 44,92, -, qxn:) = P(Q1|77i)P(q?|77i)HP(Qj|Qj—1»Qj—2a77i)

J=3

The dialect with the N-gram model that gives the maximum likelihood is
selected as the hypothesized dialect of the given speech utterance.

Phonotactic-based approaches have been the baseline system of some new
conducted research in dialect and accent recognition area. For example, [12]
mentioned that, due to small differences in phonemes of different dialect
or accents of a specific language, it is essential to choose a small subset of
discriminative features that can be robustly estimated. At the same time
non-discriminative and noisy features can be removed. This feature subset
selection led to more than 20% relative improvement in accent recognition
rate irrespective to the choice of classifier. In another work, [4] introduces
an approach to dialect recognition task which is based on context-dependent
(CD) phonetic differences between dialects as well as phonotactics. This ap-
proach demonstrates which phones in what contexts considerably distinguish
between dialect pairs. The method tested on four spontaneous telephone
speech Arabic dialects with 30s length utterances [46]. Since the number of
available speakers were different in each of these four dialects, the equal num-
ber of utterances were used for testing procedure. The Results indicated that
this approach performs considerably better than the GMM-UBM system and
also PRLM system at 5% absolute equal error rate (EER).

lan N-gram is an adjacent sequence of n items from a given sequence of text or speech.
An N-gram could be any combination of letters, phonemes or syllables.
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2.2.2 Spectral Approaches

The spectral modeling approach for dialect and accent recognition is based on
the hypothesis that dialects or accents discriminates in terms of their spectral
(acoustic) features. In this approach, speech utterances are represented by
a set of spectral feature vectors and the recognition is based on maximum
likelihood estimation.

Most spectral-based dialect and accent recognition systems apply a gaus-
sian mixture model (GMM) [49] to model the spectral distribution of each
dialect or accent. In this approach, the spectral vectors are assumed to be
statistically independent and the feature space is represented by mean vec-
tors, u, the covariance matrix, C' and the mixture weights, w.

During recognition, given an utterance spectral feature vector, a model
will be selected so that gives the maximum likelihood according to the fol-
lowing equation

T
arg max H P(a¢|D;)
t=1

where a; is the feature vector at frame ¢, D; is the target dialect i, and T is
the total number of frames.

Spectral-based approaches have also been the baseline approaches in many
recent dialect and accent recognition systems. [27] has argued that GMM-
based language recognition systems are sensitive to feature variability caused
by non-language factors, such as speaker and channel distortions. In this
work, he proposed a new feature-space transform based on constrained max-
imum likelihood linear regression (CMLLR) for compensation of these distor-
tion effects. In another work, [11] used a discriminatively trained Gaussian
mixture models and feature compensation using eigen-channel decomposition
to compensate the channel and speaker distortions. By using these tech-
niques, they were able to increase their system performance by 10% relative
improvements in equal error rate.

The advantage of using back-end classifiers on acoustic scores were inves-
tigated in [13], where, it was shown that the use of back-end classifier leads
to a consistent improvement for GMM-UBM systems. In fact back-end clas-
sifiers train discriminative models based on dialect or accent model scores,
where correlated scores are clustered in the same category. So that during
recognition process, given a new test utterance model score, a model will
be selected so that gives the maximum likelihood. Conceptually, back-end
classifiers categorized the correlated scores in the same clusters.

A new set of spectral features are introduced in [8], where perceptual
minimum variance distortionless response (PMVDR), were concatenated to
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shifted delta cepstral coefficients (SDCs)?, and the concatenated feature vec-
tors were trained using generalized maximum likelihood estimation (MLE)
framework. As most of the dialect or accent discriminative features exist
at the upper spectral envelope at the perceptually important harmonics,
PMVDR method has the ability to better track the upper spectral envelope
of speech spectrum compared to mel-frequency cepstral coefficients (MFCCs)
[47]. The key factor in PMVDR computation is that the lterbank is removed
and mel-frequency warping directly applied on the fast Fourier transform
power spectrum. This novel feature extraction method reported +26.4%
relative improvement in dialect recognition rate.

It should be noted that most of the trends in recent spectral approaches
in dialect and accent recognition task are towards to channel and speaker dis-
tortion compensations. In the coming sections, we will mention the two tech-
niques in which we have used to compensate distortions. These techniques
were both applied at feature extraction and dialects modeling processes.

2.3 The modeling approach selected in this
Thesis

The approach that we considered in this study is based on spectral modeling
techniques. In spectral approaches the dialect identification task is based
on the whole utterance including speech and non-speech frames, whereas in
phonotactic based approaches the decisions are based on the single phonemes.
On the other hand, phonotactic based approaches use Hidden Markov models
(HMM) that adds more complication to the dialect and accent recognition
task. It should be noted that the current state-of-the-art dialect and accent
recognition systems have used phonotactic modeling approaches for years,
but in recent years spectral modeling approaches coupled with identity vec-
tors® have conquered the best phonotactic systems [21, 40].

28DCs are discussed in Chapter 3.
3i-vector systems will be discussed in details in Chapter 3.
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Chapter 3

Spectral Dialect and Accent
Recognition System

In this chapter, we will discuss the Spectral-based dialect and accent recogni-
tion system developed in this study. We will review the different components
of the baseline system and we will move on with describing the state of the
art dialect and accent recognition system components which we have used in
this research.

The system components can be generally divided into front-end and back-
end processing parts. In front-end processing section, we will look at those
components which are used during feature extraction process, while in back-
end processing section, modeling and classification components are described.

21



3.1 Front-end Processing

3.1.1 Mel-frequency Cepstral Coefficients (MFCCs)

Conventional automatic speech recognition (ASR) systems are constructed
in two stages: feature extraction and modeling. Often, the modeling stage
is based on hidden Markov models (HMM) or Gaussian mixture models
(GMMs) as depicted in Fig. 3.1.

Speech Feature MFCC Modeling Trained models
— Extraction based on
GMM or HMM

Fig. 3.1: Demonstration of a conventional ASR system.

The feature extraction process is usually a non-invertible (lossy) trans-
formation. Such transformation does not lead to a perfect reconstruction of
speech signal, i.e., given only the feature vectors, it is not possible to recon-
struct the original speech signal which was used to generate those feature
vectors. Fig. 3.2 represents the block diagram for computing MFFCs.

; Output
eech | Pre- Hammin i MFCCs
P —|emphasig—s| Windovx?_’ DFT f— 89 Sl—{ LoG |—| bcT |—
Mel-scald

Fig. 3.2: The block diagram of MFCC computation.

Regarding feature extraction process, speech signal is segmented into
overlapped frames of length 20 to 30 ms, and then the speech signal is passed
into a high-pass filter according to [50]

yln] = a[n] = faln —1]

where z[n] is the input speech signal, y[n| is the pre-emphasized output
speech signal and 3 is an adjustable parameter which is usually between
0.9 and 1. The goal of pre-emphasis is to compensate the high-frequency
components of input signal which have been smothered during the sound
production mechanism of humans. Moreover, it can also amplify the impor-
tance of high-frequency formants in a given speech signal [50].
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The next step is to multiply each frame by a windowing function to keep
the continuity of the first and the last points in the frame.

y [n] = y[njw(n]
Where w(n] is a windowing function and y[n| is the frame of pre-emphasized
speech signal from the previous step. This multiplication has a good effect
on eliminating the distortions appeared in the spectral analysis of the signal
once a section of the signal (frames) are cut for spectral analysis.

There are various smoothing functions available, but Hamming window-
ing function [50] is usually used in speech signal processing. Experiments
have shown that Hamming windowing has the property to cause less amount
of distortions in the spectral analysis of the speech signals [50]. The gen-
eral form of Hamming window with a control parameter « is given in below
equation [50].

wln,a] = (1 —a) —acos (2rn/(N —1)), 0<n< N -1

In fact a controls the amount of curvature in the shape of hamming win-
dow. In Fig. 3.3 different curves for the hamming window with respect to
different values of « is shown.

a=0
0.9 2=0.05 |
' a=0.1
a=0.15
038 a=0.2 [|
a=0.25
0.7 a=03 ||
a=0.35
a=0.4
0.6 0=0.45 |
a=0.5
051
0.4
03
02
01
0 1 | | | 1 1 | | |
0 10 20 30 40 50 60 70 80 90 100

Fig. 3.3: Different curves for the hamming window with respect to different values of a.
In this study we used the value of 0.46 for the a.
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After windowing, frames are ready for spectral analysis in the MFCC
process. Fast Fourier Transform (FFT) is applied on the signal to obtain the
magnitude frequency response of each frame.

In the next phase, the magnitude frequency response of FFT is multiplied
by a set of N, usually 20, triangular bandpass filters to get the log energy
of each triangular bandpass filter. The positions of these filters are equally
spaced along the Mel frequency, which is mathematically related to the signal
linear frequency f by the following equation [49]

mel(f) = 1000 log,, (1 + f/1000)

Above equation follows a general form of conversion between Hertz to Mel
frequency. Some researchers use different multiplication coefficient as in [41].
Mel-frequency is proportional to the logarithm of the linear frequency, and
it generally represents the similar effects in which human’s ears mechanism
capture the voice signals leading to our aural perception. Fig. 3.4 plots the
relationship between the mel and the linear frequencies.

Linear Frequency Vs. Mel-frequency
3500 T T T T T

3000 : B —
2500 k- rroer . e . . i . . . IR B [ o
2000 Fvoer . e . i . . . . IR B [ o

1500 : : , -

Mel-Frequency (Mel)

1000 : : : : J

0 I i i i I I i i i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency (Hz)

Fig. 3.4: Plot of linear frequency Vs. Mel-frequency.

Practically there are two reasons for using triangular bandpass filters:
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1. Smoothing the magnitude spectrum such that the harmonics are flat-
tened in order to obtain the envelope of the spectrum. This indicates
that the pitch of a speech signal is generally not presented in MFCCs.
As a result, a speech recognition system will behave more or less the
same when the input utterances are of the same timbre but with dif-
ferent pitch.

2. Reduce the number of features.

An example of a filterbank is shown in Fig. 3.5.

alphat

1 T IH I T
IR=N 3

08k

0EH
05H

0.4 H
03 '
02§ | u
IR S «

0 1 L

1 1 1 1
a 500 1000 1500 2000 2500 3000 3500 4000
Frequency [Hz]

Gain

Fig. 3.5: Demonstration of filterbanks.

The next step is to apply discrete cosine transform (DCT) on the log
energies F, of the triangular bandpass filters to obtain M mel-scale cepstral
coefficients.

N
Cm =Y _cos[m(b—05)r/N|E,, m=1,2,3,...,M
b=1

where N is the number of triangular bandpass filters and M is the total
number of mel-scale cepstral coefficients.

By taking the DCT, the higher coefficients are removed and simultane-
ously the spectral shape of the signal is taken. It should be noted that if
Fourier transform outputs are directly used as final feature vectors, they
usually will not do such a good job of returning the important information
in the lower coefficients. Usually lower-order coefficients represents the spec-
tral shape, while the higher-order coefficients are more noise-like features,
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moreover in speech analysis the particular amplitude at different frequencies
are less important than the general shape of the spectrum.

Finally it is often advantageous to include the time derivatives of MFCCs
as new features, which shows the velocity and acceleration of each MFCC
feature vectors. These extra added feature vectors are named delta and
double delta features. In the simple form, the formula to compute the delta
features is as follows:

d[n] = xz[n + 1] — x[n]

where z[n| and z[n + 1] are the consecutive MFCC features of frame n, and
d[n] is the corresponding delta features for that frame. Double delta are
obtained by replacing the MFCC features with delta features in the above
equation.

In this study, we have used the delta features to compute a new set of
feature vectors named as shifted delta cepstral coefficients (SDC). SDC fea-
tures have reported significant performance in language recognition systems
[16]. In the following sections, the process of SDC feature extraction method
will be discussed in more detail.

MFCC features are the core of many feature extraction methods in dialect
and accent recognition system, including building up SDC feature vectors.
But they are also used as stand alone feature vectors for dialect recognition
tasks in speaker and speech recognition systems. As in [12], authors used
a set of 12 mean normalized cepstral coefficients and the mean normalized
log-energy to build their dialect models.
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3.1.2 Feature Normalization and RASTA Filtering

A common problem with speech processing of the signals is that the char-
acteristics of the channel or environment might vary from one session to
the other. Examples are a change in frequency characteristics of a channel
by changing to a new microphone or recording device. The goal in feature
normalization is to reduce the effects of these irrelevant information in final
extracted feature vectors from speech signals.

The frequency characteristics of communication channels are assumed to
be fixed or only show slow variations in time so if the speech representation
is considered invariant of these slow changes in the cepstral domain, then
channel effects might not cause a serious problem.

One of the ways to deal with environmental and channel distortion effects
is to consider them as a simple linear filter:

yln] = aln] * hfn)

where h[n] is the linear filter impulse response of the channel, * denotes the
convolution and z[n] is the representative of speech signal in discrete time
domain, where, n is an integer value and denotes the sequential values of time.

Based on signal representation in frequency domain, we can write

where k is integer value which denotes the sequential values of frequency.
Taking the logarithm of the above equation leads to

log Y[k] = log X[k] + log H|[k]

This equation indicates that the effect of channel distortions is added as a
additive value to the signal amplitude in the log domain. By applying cepstral
processing, for a given signal z[k] we can write (subscript ¢ indicates cepstral

domain)
O k] = IFFT {In[FFT{x[k]|h[k]}]}

where FFT{.} and IFFT{.} are the fast Fourier and inverse fast Fourier
transforms. So in cepstral domain we have:

Oc[k] = Hc[k] + Ic[kL

indicating that the effect of environment and channels is just adding a con-
stant value in cepstral domain. So robustness can be achieved by estimating
he[k] and subtracting it from the observed O.[k].
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But the important question rises here is that how to remove the effect
of hy from the observed cepstral features. Since speech usually varies at a
faster rate than acoustic environment impulse response, the channel impulse
response is reasonably considered as constant over a short amount of time.
By taking the average of O.[k] over a short amount of time yields to:

O,=H,.+7Z.

where h, and T. are the short-time means of h.[k] and z.[k], respectively.
By assuming that the short-time mean of speech cepstrum is zero', previous
equation yields to O, = h.. Therefore the clean speech cepstrum will be
given as

Oc[k] = Oc[k] - 60

Subtracting the short-time cepstral mean removes the direct-current (DC)
component from the cepstral coefficients while returning the fast varying com-
ponents. Conceptually, this idea indicates that the cepstral coefficients are
being high-pass filtered. This technique is known as cepstral mean subtrac-
tion.

The basic idea behind the RASTA filtering comes from the fact that
human hearing perception is not sensitive to slow variations of speech signals,
so that the aim in RASTA filtering is to keep only the information that are
due to speech sound. In RASTA processing, first the spectral coefficients
of the speech signal are compressed by a non-linear compression rule. This
non-linear compression may be the logarithm of the spectral coefficients.
Then, the compressed values are band-passed filtered by a filter with a sharp
spectral zero at the zero frequency. This filter removes the slow changes of
the speech signal. The band-pass filter is usually an infinite impulse response,
IIR, filter with the transform function [19]:

2427t — 239,

H(z)=0.1z*
(2) i 1— 09851

The high-pass portion of the above filter removes the effect channel noise,
where as the low-pass portion smooth the fast spectral changes appeared in
the frame-to-frame analysis of speech signal. After band-pass filtering, the
spectral coefficients are expanded by a non-linear function which is usually

an exponential function. More information about RASTA processing can be
found [19].

'Tn the very short time analysis, it can be assumed that the number of times the signal
goes up is equal to the number of times signal goes down in frequency axis with the same
amplitude in both directions
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In this study, one of our experiments relates to include and exclude
RASTA processing in cepstral processing. We report the results in the ex-
perimental chapter of this thesis.
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3.1.3 Shifted Delta Cepstra Coefficients

Feature vector extraction method for dialect or accent identification sys-
tems is typically performed by constructing a feature vector at frame time
t consisting of cepstra and delta cepstral coefficients. As previous studies
have shown significant improvements can be achieved by using shifted delta
cepstra (SDC') feature vectors created by stacking delta cepstra coefficients
computed across multiple speech frames [20]. Fig. 3.6 shows how the SDCs
are computed over a speech frame. Four parameters determine the SDC
feature extraction, N, D, P and K. N is the number of cepstral coefficients
computed at frame ¢, D represents the time advance and delay for delta com-
putation, P is the time shifted between consecutive blocks and K represents
the number of blocks whose delta coefficients are concatenated to from the
final feature vector.

t-d t t+d t+P-d t+P t+P+d  tH(k-1)P-d t+(k-1)P t+(k-1)P+d

i N \

y ! y
Ac(t) Ac(t + P) Ac(t+ (k — 1)P)

Fig. 3.6: Computation of the SDC feature vector at frame ¢ for parameters N, D, P
and K.

SDCs add more time-related information of the signal to feature vec-
tors. Already delta cepstral coefficients includes time-relationship between
consecutive frames, however SDCs can be seen as a compact representation
of these time-relationships in one feature vector. Mathematically, KN pa-
rameters are used for each SDC feature vector, as compared with 2N for
conventional cepstra and delta-cepstra feature vectors. The final vector at
frame time ¢ is given by the concatenation of all the Ac (¢ + ip), where

Ac(t)=c(t+ip+d)—c(t+ip—d)

i=0,1,....,T—1

where T is the total number of frames in speech signal.

SDCs have been the main feature vectors of many works in dialect and
accent recognition (in general language recognition) field. One of the recent
successful studies is the NIST LRE 2011 Language Recognition System [21]
of MIT Lincoln laboratory, where many state-of-the-art techniques such as
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feature nuisance attribute projection (fNAP) [22] and vocal tract length nor-
malization (VTLN)! have been applied on SDCs to create the final feature
vectors for recognition process.

Tt will be described in the following sections.
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3.1.4 Vocal Tract Length Normalization

Automatic dialect and accent recognition systems should be able to deal
with inter-speakers variabilities caused by physiological differences between
speakers, such as gender and differences in vocal tract length. Vocal tract
length normalization (VTLN) is inspired from the fact that vocal tract length
varies across different speakers from 18 ¢cm in males to approximately 13cm
in females [24]. VTLN is a technique to compensate these variations among
different speakers or utterances by warping the frequency axis of spectral
features so that observations become more similar across all speakers in terms
of VTL. This procedure reduces speaker-dependent variations in formant
frequencies by a simple linear warping of the frequency axis.

Several approaches have been proposed in literature to find warping fac-
tors for vocal tract length normalization [24, 25]. The most common method
is based on choosing a warp factor that gives the maximum likelihood (ML)
criterion through a grid search over a range of warp factors [24]. Then warp
factors will be chosen to maximize likelihoods from a reference model trained
from Gaussian mixture models (GMMs) or hidden Markov models (HMMs).

However, there are some other approaches which find warp factors by con-
sidering correlation between laryngeal size and vocal tract length as stated in
[43]. In this approach, a joint distribution of pitch and warp factors is esti-
mated during training as P (v|F). This distribution denotes the probability
of warp factor v given the mean of pitch over a speaker speech frames and
it is used to select the most probable warp factor given a speaker’s average
pitch. While formant frequencies might be good indicators of vocal tract
length, accurate formant extraction is difficult - especially in noisy signals.
On the other hand, formant frequencies are not directly proportional to VTL
as discussed in [26].

Maximum Likelihood Warp Factor Estimation

We followed a maximum likelihood (ML) approach to estimate the warp
factors using mixture of multivariate Gaussians (GMM) model. This en-
ables warp factor selection to be moved entirely into front end processing
by varying the spacing and width of the filter-banks and keeping the speech
spectrum unchanged. For example, in order to compress speech signal in
frequency domain, we can compress the filter-bank frequencies to stretch the
signal frequency scale while the frequency scale of speech signal remains the
same. Regarding ML estimation, for a speaker i, let X} be spectral observa-
tion feature vectors with a frequency axis scaled with warp factor v. Given
observed data X; and a reference GMM spectral model A, the probability of
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warp factor v can be described in terms of acoustic likelihoods:
P(XY1N)

P(v]|X;,\) = m

Then the optimal warp factor is estimated by a grid search over a range of v
values typically between 0.88 to 1.12 with increment 0.02,

vy = argmaz P (v| X[, )

1

This equation indicates that optimal warp factor for each observed utterance

XY is selected so as to maximize its likelihood in the reference GMM. In

this report v is used to modify the mel-scaling used to compute filter-bank
centers, as follows [30]

(10+f)

mel = 2595 * [
Jmel *10d10 7000

Algorithm

Below is the algorithmic procedure of computing warp factors which we
use [24]:

1. Divide the training dialects into two sets, training (T) and aligning (A)
subsets.

2. Compute unwarped features for the training set.
3. Train a GMM Ap using the unwarped features of the training set.

4. For each utterance in the alignment set compute the likelihoods for
each warp factor by matching it against the trained GMM from the
previous step.

5. Select the optimal warping factor for each utterance i in the set align-
ment to maximize P (X! |Ar)

6. Swap the sets, and iterate this process of training a GMM with half of
the data, and then finding the best warping factor for the second half.

7. Repeat this process until there is no significant change in s between
two consecutive iteration.
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8. Finally, for the test utterances, compute the feature vectors for different
warp factors and select the one which gives the maximum likelihood
once it is matched to the normalized GMM computed from training
procedure.

VTLN has been a main component in most of state-of-the-art dialect and
accent recognition systems. As in [36] which the focus is on Arabic dialect
identification, or in [27] in which the CMLLR method is combined with
VTLN to observe the effects on the performance of the recognition system.
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3.1.5 Front-end Configuration

One of the important issues in dialect and accent recognition systems is the
order in which the feature processing components appear in the recognition
system. Fig. 3.7 demonstrates how feature processing is usually performed
in dialect and accent recognition systems. We also built the front-end part
of our baseline dialect recognition systems based on the configuration shown
in this figure, however as we will show in experimental chapter, in one of our
experiments feature normalization order is shifted in this process to see its
effect on the overall recognition performance.

Filterbank
Anaysis < VILN

X
RASTA
Filtering

X
Cepstra
Analysis

¥

Feature
Normalization

1

SDC

¥

Feature
VAD — \ectors

Fig. 3.7: The order in which components appear in feature processing part.
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3.2 Back-end Processing

3.2.1 Multivariate Gaussian Mixture Models

Gaussian mixture model (GMM) is a statistical method used to model speaker
(in our case dialect) specific features. It consists of a number of individual
Gaussians to provide multi-modal density representation for each model. In
pattern recognition applications, GMMs are used to generate speaker (di-
alect) models and also to match different patterns against the trained mod-
els.

In fact many phenomenon can be described by Gaussians pdf, i.e that
their occurrences follow the behavior of Gaussians!. Multi-variative Gaussian
distribution is represented as

B 1 1 Sa1
P(xwm) - (27T)p7"'/2d€t(2m>1/2 CeXp (-5(1' - /’Lm) Em (.I’ - /’Lm))
where S denotes the transpose operation, x = z[0], z[1],. .., z[IN — 1] repre-

sents N — 1 independent observations from a mixture model, 6,, = (ttm, Xm)
represents the mean vector and covariance matrix of the my;, component, and
Pm Trepresents the my, mixture weight. In creating models for dialects or ac-
cents, we have a set of observations (our feature vectors), z[0], z[1],..., x[N —
1] and we look for a Gaussian, or better to say Gaussian mixture models,
which statistically describe these observations.

But the important question is that how we can statistically describe a set
of observations since there are not any prior information about the statistical
distributions such as their mean or variance?

In order to answer this question, we form a likelihood function:

L(X;0) = Hp(wi;m

Where 6 is estimated by Mazimum Likelihood Estimation (MLE) approach:
Oyrip = arg max L(X;0)

a Gaussian Mixture Model which consists of k£ components is formulated
as
k
p(x) = 1N (@; pa, 01)+j2 N (5 po, 02) 4 - 45N (@5 s, 04) §Zji =1,7>=0

i=1

!Gaussians have rare probabilities on the tails, and most of the events’ probabilities
happen around the mean of phenomenon.
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In this equation, 6 is the statistical parameters of the individual component
¢ which are components weight, j;, components mean, p; and components
variance, o2.

A two dimensional Gaussian Mixture Model is shown in Fig. 3.8. One
of the properties of Gaussians is that most of the data are centered around

their mean value, so that rare events are unlikely to happen.

Fig. 3.8: Demonstration of a two dimensional Gaussian Mixture Model.

Maximum Likelihood Estimation of Parameters of GMM

The approach of estimating the parameter #, which is also known as train-
ing a specified model, is based on ezpectationmazimization (EM) algorithm.
This technique applies an iterative procedure to find maximum likelihood
or alternatively mazimum a posteriori (MAP) estimates of parameters in
statistical models [28]. The algorithm follows the rules given below:

1. Make initial guess of parameters, c;, u;, 0;. This is usually done by use
of k-means algorithm [29].

2. Knowing parameters of 6, find probability of sample x; belonging to

4" component.

p(yli] =7 | z[i];0) fori=1,2,..., N = no. of observations

for 7 =1,2,..., M = no. of components

3. e = 08 pyli] = j | «[i]; 0)



4. Mnew _ Ziil zi-p(yli]=j | =[i];0)

j SN p(ylil=5 | il;0)

2\new __ Zg\]:1(zi—lzi)2-17(y[i]:j | =[4];6)
2 (o) = SiLyp(ylil=5 | [i];6)

6. Go back to (2) and repeat until convergence, usually 10 iteration is
enough.

yli] is defined as y[i] = 1 if z[i] belong to component 1, y[i] = 2 if z[i] belong
to component 2, and so on.
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3.2.2 Universal Background Modeling

In dialect recognition systems, the UBM is a dialect-independent Gaussian
mizture model (GMM) trained with speech samples from a large set of di-
alects to represent general dialect characteristics. By considering a test case
as X, the basic hypothesis test in dialect recognition systems can be written
as follows:

P (X|M;): This denotes the likelihood of X coming from hypothesized
model 7.

In order to decide to which model the test case X belongs (here two
models are considered, M, denotes the correct hypothesis model and M;
denotes the incorrect hypothesis.), the following test should be evaluated:

P (X[ M)

P ¢

So that If ¢ is greater than a threshold, then we will accept this test and
report that the test case is coming from the first model, M.

Mathematically, M, is characterized by a model denoted as €, that
is trained from the feature vectors of X. For example, we could assume
that a Gaussian mixture model best represents the distribution of feature
vectors for M so that (2,, will be represented as a set of mean vectors and
covariance matrices and weights of the feature vectors. Alternatively, we
could characterized the M; by a model denoted as €. Then the likelihood
P(X[Qnyp)

P(X[Q5-)"

Often the log-likelihood of this statistic is used for testing the hypothesizes

as follows:

ratio statistic is

Iy = log (P (X|Qnyp)) — log (P (X|Q55))

While the model €2, can be estimated by using the training samples, the
model 2 is less well-defined since it should represent the entire space of
all hypothesizes. The concept of UBM is defining and modeling Q7. UBM
is constructed by pooling out the data from all dialects training utterances

and training one universal model [23].

The main advantage of this strategy is that we build a single dialect-
independent model once and then use it for all hypothesized test cases in the
experiments.

In this study, UBMs are constructed per language, i.e. for each language
available in our corpus, one UBM is constructed. However, the second option
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could be build a unique UBM for all three languages available by pooling out
all training utterances of dialects.
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3.2.3 Model Adaptation

Unlike the standard maximum likelihood approach for training both target
and non-target models, construction of UBMs leads to a more efficient way in
training the models which is so called adaptation. As Fig. 3.9 demonstrates,
the core idea behind adaptation is to update the well-trained parameters of
the target and non-target models in the UBM [23].

Speaker training data
QD O, ‘)
<~/ 9
O OUBM Ty 7 )Spesker Model
] N e

Fig. 3.9: The adapted mixture parameters are derived using the statistics of the new
data and the UBM mixture parameters.

Adaptation process provides a tighter coupling between the dialects model
and UBMs, which not only produces better performance than decoupled
models, but also as discussed later in the next section, allows for a fast-
scoring technique.

Like the EM algorithm, the adaption consists of two steps of estimation
process [23]. In the first step, sufficient statistics are estimated for each
mixture in the UBM and in the second step these new sufficient statistics are
coupled with the old sufficient statistics from the UBM mixture parameters
to create parameters of the adapted target model .

Let’s have a look at the mathematics behind adaptation process. Given
the UBM and the training vector from the hypothesized model, X = [z, zo, ...
for each mixture i in the UBM, we calculate

JiPi ()
Zi]\il Jibi (mt)

where T denotes total number of frames, j;andj, represents the mixture
weights at corresponding index, P (i|x;) represents the probability of frame
x; given the mixture probability, M denotes the number of mixtures, and
finally P (i|z;) represents the probability of mixture ¢ given the frame z;. By

P (ifz,) =
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using this probability, sufficient statistics are computed as

n; = ZP(z\xt)
B () = %ZP(i]xt)xt

2 RS , 2
E; (z%) = o ;P(Hajt)xt
As shown in above formula, sufficient statistics are computed from the models
training data. n; represents the posterior probability of the mixture i, so that
it is called count moment. E;(x) represents the first order moment, which
equivalently indicates the expectation value of the iy mixture coming from
speech frames. F;(2%) is the second order moment, which represents the
variance the probabilities of i;;, mixture coming from speech frames. Applying
the sufficient statistics, the adapted parameters for mixture 7 in the UBM
are computed as
WO = [afn /T + (1 — o) w;] vy

i = "B, (2) + (1 — o)

~ ~

=l (a?) + (1 —af) (0f + ) — 417

The parameters [af, af", a¥] control the balance between the old and new
sufficient statistics. These are data-dependent adaptation coefficients which

are defined as:
n;

n; +rf

Where r? is a fixed relevance factor for parameter p. As an example in
language recognition system r” is considered as a number between 6 to 16.
The use of parameter-dependent relevance factors allows tuning of different
adaptation rates for the weights, means, and variances so that one of the
experiments of this research is to analyze the impact of different r” on the
overall performance of the system. The scale factor, ~, is computed over all
adapted mixture weights to ensure they sum to unity.

p
i

(0}

Universal background modeling together with adaptation process have
been used the baseline system of many studies in language, dialect, and
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speaker recognition systems, so that researches usually compare their de-
signed system performance with this baseline system. We also built our
baseline recognition system based on the idea of adaptation and universal
background modeling presented in [30].
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3.2.4 Fast Scoring Method

As discussed earlier, adaptation of models parameters based on UBMs allows
for a faster method to evaluate the scores of the models. The fast scoring
method is based on two facts, first, when dealing with large GMMs, only a
few of the components in the mixtures have significant impact on the log-
likelihood values and secondly, during the adaptation process, feature vectors
which are close to particular components in the UBM will also be close to the
corresponding component in the target model. Using these two observations,
for each feature vector, first we determine the top H scoring components in
the UBM and compute UBM likelihood using only those top H components.
Next, we score the test vector against only the corresponding H components
in the adapted dialect or accent model to get the utterance’s likelihood [23].
The pseudocode of this method is as follows:

For each frame t =1,2,...,T

For each components k=1,2,..., M compute

Pubm (kat) = jk x N (xt‘;uky Ek)
End

sort Py (k) across t and select the top H scores
Where N (z¢|pu, 2) is calculated as follows:

1
P (x| M) = =

) 1 1 _
T Jk eXP{—g(xt —Mk)s Ekl (xt —Mk>}

D 1
= (2m) % |2

WE

Where T is the total number of frames, S denotes the transpose operation,
M the is number of Gaussian components, D is the dimension of feature
vectors and j; is the components weights.
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3.2.5 Identity Vectors

Identity vector (i-vector) systems have been the current state-of-the-art lan-
guage recognition systems [31]. The idea behind the i-vector systems is to
consider between-class variability in the space of model parameters (we have
different model parameters for each language or dialect) and also the within-
class variability (parameters of a specific language or dialect can change from
utterance to utterance because of differences in channels, speakers, reverber-
ation, etc) in one global variable namely as total variability space. But how
this global variability, between-class variability and within-class variability
variability, can be modeled? Regarding the GMM-UBM adaptation process,
we can create supervectors from GMM models for each utterance. Super-
vectors are high and fixed dimensional data built from concatenation of all
GMM components means (Fig. 3.10). Conceptually the GMM supervector
can be consider as a mapping between an utterance and a high-dimensional
vector [32].

my
ma

GMM-UBM

Map Adaptation

M2048

GMM Supervector

Feature Extraction

Input Utterance

Fig. 3.10: GMM supervector systems.

Given a dialect utterance supervector, and based on the joint factor analy-
sis (JFA) approach [33], a statistical method is used to demonstrate observed
variability in form of lower number of unobserved variables named factors.
In this model, the dialect-dependent supervector, p; is defined as

pi =m+ Vy, +Ux; + Dz,
where

e Vector m is a dialect independent supervector (from the pre-trained
UBM).
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e Matrix V is the eigen-voice matriz.

e Vector y contains the dialect factors. Assumed to have N(0,1) prior
distribution.

e Matrix U is the eigen-channel matrix.

e Vector = contains the channel factors. Assumed to have N(0,1) prior
distribution.

e Matrix D is the residual diagonal matrix.

e Vector z contains the speaker (dialect) specific residual factors, as-
sumed to have N(0,1) prior distribution.

The above equation shows that each dialect model can be ideally split
into a set of independent objects which accounts for the global variability
matrix which we already discussed. [35] found that the subspaces U and V
are not completely independent, therefore a combined total variability space
was introduced in [34]. In this approach, there is no distinction between
the between-class variability and within-class variability in the dialect de-
pendent GMM supervector p;. Therefore, the new dialect dependent GMM
supervector is rewritten as follows:

M=m+Tw

, where m is the dialect-dependent supervector, T is called the total vari-
ability matrix and w corresponds to the i-vectors which controls an eigen-
dimension of the T'. For a given utterance, w is defined by its posterior distri-
bution conditioned to the Baum-Welch statistics. The posterior distribution
is a Gaussian distribution and the mean of this distribution corresponds to
the i-vectors.

Given the UBM and the training vector from the hypothesized model,
X =[x, 2o, ..., 2], for each mixturei = 1,2, ..., M in the UBM, we calculate

. w; P (»Tt)
P (i) = —37
o Zj:l w; Pj ()

By using this probability, sufficient statistics are computed as

T

n; = Z P (i]xy)

i=1
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E;(x)= %ZP (1] ) x4
E, (%) = %ZP(ﬂxt)xt

First order Baum-Welch statistics are also needed in order to estimate w.

Ep = P(ilz)(x —m)

t=1

Where m; is the mean of UBM mixture component 1.
Finally, the i-vector for a given utterance is computed as

w=(I+ TS n(u)T) TS E(u)

Where n(u) is a diagonal matrix of dimension MT x MT with diagonal el-
ements n;J (i = 1,...,M). E(u) is a supervector of dimension MT x 1
obtained by stacking all first-order Baum-Welch statistics E; for a given
utterance u. X is a diagonal covariance matrix of dimension MT x MT com-
puted during factor analysis training and it models the residual variability
not estimated by the total variability matrix T.

There are two popular methods for scoring the estimated i-vectors. The
first method uses linear discriminant analysis (LDA) and cosine scoring ap-
proach as described in [35]. In the second approach, the distributions of
i-vectors for individual dialect is modeled by Gaussian distributions with a
full covariance matrix shared across all dialects. For a given i-vector w corre-
sponding to a test utterance, the log-likelihood for each dialect is computed
as [42]:

1 1
Inp(w|d) = —inE_lw + WIS g — E,ugZ_l,ud

where p4 is the mean of dialect d and X is common covariance matrix and S
denotes the transpose operation.
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3.2.6 Evaluation Metrics

In this study, the performance results are reported based on three evaluation
metrics, identification error rate (IDerror), equal error rate (EER) and mini-
mum detection cost function (minDCF). Identification error rate is a binary
classification between the correct and incorrect dialects hypothesises and is
computed by dividing number of incorrect hypotheses over all test utterances.
Equal error rate is the point on a DET curve where the false acceptance rate
and false rejection rate are equal. Lower equal error rate indicates the better
performance in the recognition systems. DET curve or detection error trade-
off curve is the plots of the error rates for binary classification systems which
plots false rejection rates vs. false acceptance rates. Finally minimum detec-
tion cost function is defined as a weighted sum of the miss and false alarm
error probabilities or equivalently minDCF represents the expected cost of
making a detection decision [38]. Mathematically, minDCF is defined as the
minimum value of Cp,; from the equation below

CDet = CMiss (PMiss ’Taﬂ“get) PTaTget+

.. -CFalseAlarm (PFalseAlarm | NOnTC”’get) PNonTarget

where Chyiss and Craisealarm are relative costs of detection errors, Prgyger is
the prior probability of the target hypothesis, and Pnonrarget 15 1 — Prarget-
The value of Clyyiss and Craiseatarm are considered 1 in this study.
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Chapter 4

Experimental Results

In this chapter, the results of different experiments conducted in this study
are presented. The experiments are divided into two parts, experiments focus
on tuning the parameters of the front-end processing, and the experiments
focus tuning the parameters of back-end processing. All the experiments
reports are drawn in three tables corresponding to three languages used in
this study. Analysis of experiments are discussed in the last section of this
chapter.

The evaluation metrics considered for reporting the results, are based
on identification error rate (IDerror), equal error rate (EER) and minimum
value of the detection cost function (minDCF).

4.1 Data Preparation

We used the CallFriend corpus [2] to test the performance of our designed
system. This database is collection of unscripted conversations for 12 lan-
guages. It includes two dialects for each language available. The audio files
have been recorded over telephone lines so that two channels (stereo audio
files) have been used for recordings, one for the interviewer and the other for
participants.

The corpus has three different partitions, each organized for specific tasks,
training folder is for training the dialect models, development folder is used
for testing the dialect models and parameter tunings and, finally, evaluation
folder is for reporting the final test accuracies of the system.

We selected three languages from the corpus. These languages are En-
glish, Mandarin and Spanish. Each of these languages has two dialects: North
and South for English, Mandarin and Taiwanese for Chinese, and Caribbean
and Non-Caribbean for Spanish. Each audio file samples in the corpus are
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about 30 minutes chunks. For purpose of this work, each of the speech utter-
ances available has been partitioned into 30 seconds length. Table 1 shows
some statistics regarding the corpus. In this work, we used the train subset
utterances for training the dialect models, and evltest subset utterances for
reporting the system performance.

Table 4.1: Number of data available in CallFriend Corpus dialects after splitting
into 30s length.

| Dialects | EN/EN_SOUTH MA/MA_T SP/SP_CAR |

train 4425/3975 3416/4151 4110/4145
devtest 4406,/4427 4037/4658 4445/4685
evltest 4082/4146 4375/4256 4172/4122

4.2 Results

In this section, experimental results are given. Each experiment has its own
run-specific configuration. But a couple of common specifications among all
experiments are as follows, the N-d-P-K parameters of SDC method are 7-
1-3-7, respectively, creating feature vectors of dimension 49, CO included in
cepstral coefficients, by feature normalization we mean cepstral mean vari-
ance normalization (CMV) method [39], number of iteration in adaptation
process is 1 and dialects log-likelihood scores are calibrated with multi-class
logistic regression method from FoCal Multi-class Toolkit [6].

Voice activity detection experiment

In voice activity detection (VAD) experiment, the aim is to observe the
effect of VAD threshold! on the dialect recognition performance. In this
Experiment, non-speech frames are removed from SDC features with 20%,
50%, 70% and 100% thresholds. Specifically, 100% VAD threshold means
that all non-speech frames are removed from the SDC feature vector.

The run-specific configurations of this experiment are as follow: feature
normalization method is applied on MFCC features, RASTA filter is on,

IThe output of the voice activity detection is a set of 0’s and 1’s for each the SDC
frame. 0’s indicate the non-speech parts and 1’s indicate the speech parts for each frame.
In order to decide whether a whole SDC frame is a speech or non-speech frame, we define
a threshold based on the number of 1’s (speech parts) in the frame. If it is larger than
a defined threshold, we consider the frame as a speech frame. For example, for a defined
20% threshold, if the number of speech parts (1’s) divided by total number of speech and
non-speech parts is greater than 20%, the frame is considered as speech frame and its
cepstral features are kept in the final feature vector.
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VTLN is off, the relevance factor in adaptation process is 6, and number of
GMM components is 2048.

Tables 2, 3 and 4 demonstrate the results of this experiment for English,
Mandarin and Spanish languages, respectively. The first row of each table
corresponds to the experiment in which, non-speech frames are first removed
prior to cepstral analysis, in contrast to remove non-speech frames from the
final SDC feature vectors in VAD experiment. This experiment is referred
as No-VAD experiment in future usages.

Table 4.2: Experimental results for English language in VAD experiment.

] Experiments [ EER IDerror . minDCF ||

No-VAD 17.45%  35.63% 0.1194

20% VAD threshold 17.75%  37.67% 0.1223
50% VAD threshold 17.16%  36.15% 0.1144
70% VAD threshold 15.51%  35.32% 0.1089
100% VAD threshold || 14.48% 34.62% 0.0913

Table 4.3: Experimental results for Mandarin language in VAD experiment.

’ Experiments H EER IDerror minDCF H

No-VAD 17.03%  31.72% 0.1114

20% VAD threshold 14.66%  28.98% 0.0972
50% VAD threshold 13.98%  28.41% 0.0899
70% VAD threshold 13.11%  27.57% 0.0826
100% VAD threshold || 11.39% 27.44% 0.0716

Table 4.4: Experimental results for Spanish language in VAD experiment.

] Experiments [ EER IDerror  minDCF ||

No-VAD 17.69%  33.95% 0.1246

20% VAD threshold 15.87%  34.74% 0.1094
50% VAD threshold 15.84%  33.01% 0.1075
70% VAD threshold 15.26%  32.28% 0.1063
100% VAD threshold || 12.00% 32.25% 0.0742

Mel-frequency cepstral coefficients concatenated to shifted delta
cepstral coefficients

The aim of this experiment is to concatenate mel-frequency cepstral co-
efficients (MFCCs) to shifted delta cepstral coefficients. We refer to the
experiment as MFCCs-added-to-SDCs in future usages.

The run-specific configurations of this experiment are as follow: 7 first
MFCCs are concatenated to SDCs to from the final feature vectors creating
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feature vectors of dimension 56, feature normalization is applied on MFCC
features, RASTA filter is on, VTLN is off, the relevance factor in adaptation
process is 6, and number of GMM components is 2048.

It should be noted that, in order to have a baseline comparison, a second
experiment conducted in which SDC feature vectors are used as stand-alone
features for building the dialect models. We refer to this experiment as SDC
in future usages. It should be noted that in both of these two experiments,
non-speech frames are removed from MFCC feature vectors.

Tables 5, 6 and 7 demonstrate the results of these experiments for English,
Mandarin and Spanish languages, respectively.

Table 4.5: Experimental results for English language in MFCCs-added-to-SDCs

experiments.
’ Ezxperiments H EER IDerror minDCF H
MFCCs-added-to-SDCs || 15.67% 33.82%  0.1044
SDC 17.45%  35.63% 0.1194

Table 4.6: Experimental results for Mandarin language in MFCCs-added-to-SDCs

experiments.
’ Ezxperiments H EER IDerror minDCF H
MFCCs-added-to-SDCs || 14.43% 30.09%  0.0941
SDC 17.03%  31.72% 0.1114

Table 4.7: Experimental results for Spanish language in MFCCs-added-to-SDC's

experiments.
] Experiments [ EER IDerror  minDCF ||
MFCCs-added-to-SDCs || 16.82% 33.42% 0.1181
SDC 17.69% 33.95% 0.1246

Feature Normalization applied on shifted delta cepstral coefficients

The aim of this experiment is to apply CMV feature normalization method
on final SDC feature vectors. We refer to the experiment as SDC-FN in fu-
ture usages.

The run-specific configurations of this experiment are as follow: fea-
ture normalization is applied on the final shifted delta cepstral coefficients,
RASTA filter is on, VTLN is off, the relevance factor in adaptation process
is 6, and number of GMM components is 2048.

It should be noted that, in order to have a baseline comparison, a second
experiment conducted in which CMV feature normalization is applied on
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MFCC feature vectors. We refer to this experiment as MFCC-FN in future
usages. It should be noted that in both of these two experiments, non-speech
frames are removed from SDC features with 100% VAD threshold.

Tables 8, 9 and 10 demonstrate the results of these experiments for En-
glish, Mandarin and Spanish languages, respectively.

Table 4.8: Experimental results for English language in SDC-FN experiment.

’ Ezxperiments H EER IDerror minDCF H

SDC-FN 14.97%  35.01% 0.0982
MFCC-FN 14.48% 34.62%  0.0913

Table 4.9: Experimental results for Mandarin language in SDC-FN experiment.

’ Ezxperiments H EER IDerror  minDCF H

SDC-FN 12.49%  29.00% 0.0776
MFCC-FN 11.39% 27.44% 0.0716

Table 4.10: Experimental results for Spanish language in SDC-FN experiment.

’ Experiments H EER IDerror minDCF H

SDC-FN 14.96%  34.76% 0.0954
MFCC-FN 12.00% 32.25%  0.0742

RASTA experiment

The aim of this experiment is to turn RASTA filter off during front-end
processing. We refer to the experiment as RASTA-off in future usages.

The run-specific configurations of this experiment are as follow: RASTA
filter is off, feature normalization is applied on MFCC features, VTLN is
off, the relevance factor in adaptation process is 6, and number of GMM
components is 2048.

It should be noted that, in order to have a baseline comparison, a sec-
ond experiment conducted in which RASTA filter is kept on during front-on
processing. We refer to this experiment as RASTA-on in future usages. It
should be noted that in both of these two experiments, non-speech frames
are removed from SDC features with 70% VAD threshold.

Tables 11, 12 and 13 demonstrate the results of these experiments for
English, Mandarin and Spanish languages, respectively.

Table 4.11: Experimental results for English language in RASTA experiment.

’ Ezxperiments H EER IDerror  minDCF H

RASTA-Off 18.31%  36.60%  0.0982
RASTA-On | 15.51% 35.32%  0.1089
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Table 4.12: Experimental results for Mandarin language in RASTA experiment.

’ Ezxperiments H EER IDerror  minDCF H

RASTA-Off 14.99%  27.84% 0.1016
RASTA-On | 13.11% 27.57% 0.0826

Table 4.13: Experimental results for Spanish language in RASTA experiment.

’ Experiments H EER IDerror minDCF H

RASTA-Off 16.68%  31.02%  0.1161
RASTA-On | 15.26% 32.28%  0.1063

Vocal tract length normalization experiment

The aim of this experiment is to apply vocal tract length normalization
(VTLN) on front-end processing. We refer to the experiment as VI'LN-on
in future usages. The run-specific configurations of this experiment are as
follow: VTLN is on, feature normalization is applied on MFCC features, the
relevance factor in adaptation process is 6, and number of GMM components
is 2048.

It should be noted that, in order to have a baseline comparison, a sec-
ond experiment conducted in which VTLN is not included during front-on
processing. We refer to this experiment as VIT'LN-off in future usages. It
should be noted that in both of these two experiments, non-speech frames
are removed from SDC features with 70% VAD threshold.

Tables 14, 15 and 16 demonstrate the results of these experiments for
English, Mandarin and Spanish languages, respectively.

Table 4.14: Experimental results for English language in VI'LN experiment.

’ Ezxperiments H EER IDerror  minDCF H

VTLN-Off 1551%  35.32% 0.1089
VTLN-On 14.91% 32.93%  0.1007

Table 4.15: Experimental results for Mandarin language in VTLN experiment.

’ Ezxperiments H EER IDerror  minDCF H

VTLN-Off 13.11%  27.57% 0.0826
VTLN-On 12.20% 25.82% 0.0770

Table 4.16: Experimental results for Spanish language in VTLN experiment.

’ Ezxperiments H EER IDerror  minDCF H

VTLN Off 15.26%  32.28%  0.1063
VTLN On 15.16% 31.55%  0.1082
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Number of GMM components experiment

The aim of this experiment is to vary the number of GMM components
in training the UBMs. We refer to the experiment as GMM Component in

future usages.

The run-specific configurations of this experiment are as follow: number
of GMM components vary by 256, 512, 1024 and 2048, feature normalization
is applied on MFCC features, non-speech frames are removed from SDC
features with 70% VAD threshold, VTLN is off and the relevance factor in

adaptation process is 6.
Tables 17, 18 and 19 demonstrate the results of these experiments for

English, Mandarin and Spanish languages, respectively.

Table 4.17: Experimental results for English language in GMM Component experiment.

’ Ezxperiments H EER IDerror  minDCF H
256 GMM Components 20.68% 38.04% 0.1474
512 GMM Components 19.20%  37.85% 0.1404

1024 GMM Components 17.70%  36.74% 0.1256
2048 GMM Components || 15.51% 35.32%  0.1089

Table 4.18: Experimental results for Mandarin language in GMM Component

experiment.
’ Experiments H EER IDerror minDCF H
256 GMM Components 16.77%  29.21% 0.1198
512 GMM Components 15.43%  28.82% 0.1060

1024 GMM Components 14.27%  27.66% 0.0941
2048 GMM Components || 13.11% 27.57% 0.0826

Table 4.19: Experimental results for Spanish language in GMM Component experiment.

] Experiments [ EER IDerror  minDCF |
256 GMM Components 18.74% 33.56% 0.1421
512 GMM Components 17.97%  33.17% 0.1331

1024 GMM Components 16.93%  32.78% 0.1214
GMM Components-2048 || 15.26% 32.28%  0.1063

Relevance factor experiment

The aim of this experiment is to vary the value of relevance factor, r in
models adaptation process. We refer to the experiment as r-value in future
usages.
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The run-specific configurations of this experiment are as follow: the value
of relevance factor in adaptation process is varied by 6, 11 and 16, feature
normalization is applied on MFCC features, non-speech frames are removed
from SDC features with 70% VAD threshold, RASTA filter is on, and VTLN
is off.

Tables 20, 21 and 22 demonstrate the results of these experiments for
English, Mandarin and Spanish languages, respectively.

Table 4.20: Experimental results for English language in relevance factor experiment.

’ Ezxperiments H EER  IDerror minDCF H
r-Value-6 15.51%  35.32% 0.1089

r-Value-11 15.61%  35.30% 0.1093
r-Value-16 15.62%  35.30% 0.1096

Table 4.21: Experimental results for Mandarin language in relevance factor experiment.

Experiments H EER  IDerror minDCF H
r-Value-6 13.11% 27.57% 0.0826
r-Value-11 13.02%  27.08% 0.0820
r-Value-16 13.13%  27.08% 0.0820

Table 4.22: Experimental results for Spanish language in relevance factor experiment.

Experiments H EER  IDerror minDCF H
r-Value-6 15.26%  32.28% 0.1063
r-Value-11 15.91%  32.40% 0.1083
r-Value-16 15.97% 32.37% 0.1087

Identity vector experiment

Our last experiment is aimed at applying identity vector (i-vector) system
on the back-end processing of our dialect and accent recognition system.

The run-specific configurations of this experiment are as follow: In the
front-end processing SDC feature vectors of dimension 49 corresponding to 7-
1-3-7 SDC parameters are used. Then the features are normalized by VTLN
and CMV normalization methods. The threshold considered for VAD is 70%.

On the other hand, in i-vector system configurations we considered 5
iterations in T-matrix training, i-vectors are of dimension 600 and 2048 GMM
components are used in UBM training. We used the train files folder in
UBM training. Moreover, in estimating the T-matrix, we used the sufficient
statistics of CallFriend corpus for capturing the total variabilities. As an
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example, in case of English language, the T-matrix is built up from 1000
sufficient statistics of Mandarin and Spanish chunk utterances.

Table 23 demonstrates the result of this experiments for each of the three
languages available.
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Table 4.23: Experimental results of identity vector experiments for each of the three
languages.

’ Languages H EER  IDerror minDCF H

English 11.31%  28.43% 0.0807
Mandarin 8.41%  23.56% 0.0543
Spanish 9.12%  28.24% 0.0569

4.3 Analysis of Experiments

In this section, we have a closer look at the experimental results summarized
above. Then, we continue by analyzing the outputs of the experiments. The
analysis consists of mentioning the contribution(s) of each each experiment,
as well as comparing the the outputs of related experiments, together with
reviewing literature which is related to the each experiment. In experiments
analysis, we selected the identification error rate and minimum detection cost
function in order to compare the relevant experiments. In case no logical con-
clusion is not drawn from these too metrics, we use the equal error rate to
compare the relevant experiments. However, we could use other evaluation
metrics pairs for this purpose, but it would not pose any difference in exper-
iments analysis.

Voice activity detection experiment

Fig. 4.1 and Fig. 4.2 demonstrate the plot of minimum detection cost
function and identification error rate at different VAD thresholds, respec-
tively. As these plots indicate, performance results are improved as VAD
threshold increases, so that at threshold 100% best performance is resulted
for each of three languages available. As already explained, thresholds mean
that how much non-speech frames are removed from the feature frames. So
that 100% VAD threshold means that all non-speech frames are removed and
the recognition process is based on only speech frames.

Moreover, it can be observed from these figures that, Mandarin language
shows lower identification error rate and minimum detection cost function
compared to the other two languages. This indicates that there are more
distinctive characteristics in Mandarin dialects than the other languages.
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VAD experiments vs. No-VAD experiment

In Tables 4.24 and 4.25, we compared the minimum detection cost func-
tion and identification error rates of VAD experiment and No-VAD exper-
iment, respectively. In the case of VAD experiment, we selected the 100%
threshold corresponding to the best system performance in VAD experiment.
As these tables demonstrate, VAD experiment win over No-VAD experiment
both in minDCF's and identification error rate. In case the of minDCFs, the
minimum and maximum relative improvements are approximately 0.02, 0.04,
respectively, and in the case of identification error, the minimum and maxi-
mum relative improvements rate are 2% and 4%, respectively.

VAD experiments conclude that as more non-speech frames are removed
from the frames, the lower error rates are achieved. As discussed in the theory
chapter of this thesis, dialects bear very little similarity in their phonemes,
so that it makes it difficult even to truly discriminate between dialects of
the same language. It can be inferred that as more non-speech frames are
removed from the signal, more important and discriminative features remain
for dialects modelling.

Table 4.24: Minimum detection cost function comparison between 100% threshold
VAD experiment with No-VAD experiment.

’ Languages H VAD experiment  No-VAD experiment ‘

English 0.0913 0.1194
Mandarin 0.0716 0.1114
Spanish 0.0742 0.1246

Table 4.25: Identification error rates comparison between 100% threshold VAD
experiment with No-VAD experiment.

| Languages || VAD experiment  No-VAD experiment |

English 34.62% 35.63%
Mandarin 27.44% 31.72%
Spanish 32.25% 33.95%

MFCCs-added-to-SDCs experiment Vs. SDC experiment

In Tables 4.26 and 4.27, we compared the minimum detection cost func-
tion and identification error of SDC experiment vs MFCCs-added-to-SDCs
experiment, respectively. As these tables demonstrate, MFCCs-added-to-
SDCs experiment win over SDC experiment both in minDCFs and identi-
fication error rate. In case of minDCFs, the minimum and maximum im-
provements are approximately 0.01 and 0.02, respectively and in case of
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identification error rate they are 1% and 2 respectively.

Table 4.26: Minimum detection cost function comparison between
MFCCs-added-to-SDC's experiment with SDC' experiment.

’ Languages H MFCCs-added-to-SDCs experiment SDC experiment ‘

English 0.1044 0.1194
Mandarin 0.0941 0.1114
Spanish 0.1181 0.1246

Table 4.27: Identification error rate comparison between MFCCs-added-to-SDCs
experiment with SDC' experiment.

| Languages || MFCCs-added-to-SDCs experiment  SDC experiment |

English 33.82% 35.63%
Mandarin 30.09% 31.72%
Spanish 33.42% 33.95%

SDC-FN experiment vs. MFCC-FN experiment

In Tables 4.28 and 4.29, we compared the minimum detection cost func-
tion and identification error of these two experiments, respectively. As these
tables demonstrate, feature normalization applied on MFCC feature vectors
before forming the SDC features outperforms slightly feature normalization
applied on final SDC feature vectors. Specially, in the case of Spanish di-
alects, this improvement is clearer than the other two languages.

As discussed in [39], most of the normalization methods are applied on
the Mel-frequency cepstral coefficient (MFCC) speech features. However, to
best knowledge of author, no attempts have been made to see the effect of
feature normalization on SDCs or other features formed from mel-cepstral
coefficients. The reason behind why feature normalization applied on MFCC
feature vectors before forming the SDC features outperforms slightly feature
normalization applied on final SDC feature vectors, might originate from
the fact that feature normalization methods are used in speaker and dialect
recognition systems to compensate the effect environmental distortions. So
as these negative effects are compensated earlier during front-end processing,
other components of the system will be less effected by the distortions.
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Table 4.28: Minimum detection cost function comparison between feature
normalization on MFCCs with feature normalization on SDCs.

’ Languages H MFCC-FN experiment SDC-FN experiment ‘

English 0.0913 0.0982
Mandarin 0.0716 0.0776
Spanish 0.0742 0.0954

Table 4.29: Identification error rate comparison between feature normalization on
MFCCs with feature normalization on SDCs.

| Languages | MFCC-FN experiment SDC-FN experiment |

English 34.62% 35.01%
Mandarin 27.44% 29.00%
Spanish 32.25% 34.76%

RASTA-off experiment vs. RASTA-on experiment

In Tables 4.30 and 4.31, we compare the minimum detection cost function
and identification error rate of these two experiments. Concerning minDCF's
and identification error rate, no clear conclusion can be made, because in
case of Mandarin and Spanish languages, once the RASTA filter is on, the
system performance increases, while English does not benefit from RASTA.
The same condition happens in case of identification error rate. So we shift
our comparison metric to equal error rate. As Tables 4.32 represents, once
the RASTA filter is on, there is a considerable improvement in EER values,
so that the at least 1% absolute improvement is achieved for all the three
languages.

Although RASTA filtering technique has reported significant improve-
ment in automatic speech recognition (ASR) systems [5], but no previous
works independently concentrated on RASTA filtering of dialect utterances
in dialect and accent recognition task. To sum up, RASTA filtering improves
the recognition performance of the dialect and accent recognition system.

Table 4.30: Minimum detection cost function comparison between RASTA-off
experiment with RASTA-on experiment.

’ Languages H RASTA-off experiment RASTA-on experiment ‘

English 0.0982 0.1089
Mandarin 0.1016 0.0826
Spanish 0.1161 0.1063
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Table 4.31: Identification error rate comparison between RASTA-off experiment
with RASTA-on experiment.

’ Languages H RASTA-off experiment RASTA-on experiment ‘

English 36.60% 35.32%
Mandarin 27.84% 27.57%
Spanish 31.02% 32.28%

Table 4.32: Equal error rate comparison between RASTA-off experiment with
RASTA-on experiment.

’ Languages H RASTA Filter off RASTA Filter on ‘

English 18.31% 15.51%
Mandarin 14.99% 13.11%
Spanish 16.68% 15.26%

VTLN-on experiment vs. VI'LN-off experiment

In Tables 4.33 and 4.34, we compared the minimum detection cost func-
tion and identification error rate of these two experiments, respectively. In
general, VTLN has improved both minDCFs and identification error rate
in all the languages available. But considerable improvements are observed
in EER values, so that the minimum and maximum absolute improvements
are 2% and 3%, respectively. Although VTLN considerably increases the
process time of the recognition process, but it has been a main component
in state-of-the art dialect and accent recognition systems [36, 27]. Further-
more, our result show that how VTLN could benefit dialects which have less
discriminative characteristics, such as English and Spanish dialects in our
experiments.

Table 4.33: Minimum detection cost function comparison between VTLN-off
experiment and VTLN-on experiment.

’ Languages H VTLN-off experiment VTLN-on experiment ‘

English 0.1089 0.1007
Mandarin 0.0826 0.0770
Spanish 0.1063 0.1082
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Table 4.34: Identification error rate comparison between VTLN-off experiment
and VTLN-on experiment.

’ Languages H VTLN-off experiment VTLN-on experiment ‘

English 35.32% 32.93%
Mandarin 27.57% 25.82%
Spanish 32.28% 31.55%

Table 4.35: Equal error rate comparison between VTLN-off experiment and
VTLN-on experiment.

| Languages || VTLN-off experiment VTLN-on experiment |

English 18.31% 15.51%
Mandarin 14.99% 13.11%
Spanish 16.68% 15.26%

Number of GMM components experiment

Fig. 4.3 and Fig. 4.4 demonstrate the plot of minimum detection cost
function and identification error rate for four different number of GMM com-
ponents, respectively. As these plots indicate, performance results are con-
stantly improved as number of GMM components increases, so that at 2048
value the best performance is resulted for each of the languages available.

As the number of GMM components increases, it takes a longer time
for the systems to report the performance. So that some researchers as in
[27] preferred to use 512 GMM components for models training, in some
other works as in [30], 2048 GMM components have been used. Our research
contributes that as the number of GMM components increases, significant
improvements can be achieved with the cost of increased time complexity.

Moreover, it can be observed that Mandarin language shows better results
compared to the other two languages. This indicates that there are more
distinctive characteristics in Mandarin dialects than in the dialects of the
other two languages.
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Relevance factor experiments

Fig. 4.5 and Fig. 4.6 demonstrate the plot of minimum detection cost
function and identification error rate for three different relevance factors,
respectively. As these plots indicate, no considerable changes are observed in
neither minimum detection cost function values nor identification error rates.

One of the interesting property observed is that Mandarin language is still
showing better performance over other two languages. To the best knowledge
of the author, no specific experiments were conducted in the literatures to
mention the optimized value of relevance factor in adaptation process. So
one of the contributions of this study is that in the tasks of dialect and accent
recognition, the system performance is not sensitive to the value of r during
the adaptation process.
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Fig. 4.5: Minimum detection cost function at three different relevance factors.
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[dentification error rate at three different relevance factors
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Fig. 4.6: Identification error rate at three different relevance factors.
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Chapter 5

Summary and Conclusion

As discussed in the introduction, the goal we considered in this research was
to tune different parameters in front-end and back-end processing to see their
effects in the performance of the system. Another goal that we were looking
for in this research was to make our system to get closer to the state-of-the-art
dialect and accent recognition systems by adding VTLN and i-vector systems
to the front-end and back-end processing part of our designed system.

In the previous chapter, we conducted a number of comparative experi-
ments. A summary of our research achievements are listed below

1.

The best performance achieved refers to i-vector system with at least
3% absolute improvements both in equal error rate and identification
error rate.

Mandarin dialects show the best distinctiveness characteristics compar-
ing to the other two language dialects. Spanish dialects and English
dialects are placed in the next positions, respectively.

. As the number of GMM components increases, the performance of the

system is drastically improved.

Performance of the system was less sensitive to relevance factor varia-
tions in the adaptation process so that no significant changes are ob-
served in the evaluation metrics.

Voice activity detection applied on final SDC feature vectors help in
improving the results, so that at 100% VAD threshold best performance
is achieved regarding VAD experiment.

Concatenating mel-frequency cepstral coefficients to shifted delta cep-
stral coefficients to from the feature vectors, improves the performance
of the system.

68



7. Vocal tract length normalization improves the overall performance of
the system.

8. Applying cepstral mean variance feature normalization on mel-cepstral
coefficients outperforms applying this normalization on final SDC fea-
ture vectors.

9. RASTA filtering of the features helps improving the performance re-
sults.

10. Regarding the sensitivity of the results to tuning parameters, the sys-
tem is more sensitive to changes in number of GMM components and
VAD thresholds than the other parameters. VILN, RASTA filtering,
concatenation of mel-cepstral coefficients to SDC feature vectors, and
feature normalization appear in next orders, respectively. On the other
hand, the least sensitivity belongs to relevance factor variations.

However, we did not evaluate the performance of our dialect and accent
recognition system on other available dialect speech corpuses, and from this
viewpoint, it was one of the limitations we faced during this study. Regarding
future work, we are going to expand the analysis of the system on other
available corpuses such as available dialects in the Miami corpus or Latin
American Spanish accent speech database. Furthermore, we want to focus
on the control parameters of the i-vector system, and how to improve the
performance of i-vector system. It would also be interesting to couple our
dialect and accent recognition system with ASR systems.
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