

University of Eastern Finland

School of Computing

Master’s Thesis

Detecting user actions in MOPSI

Radu Mariescu-Istodor

26
th

 of September, 2013

I

ABSTRACT

Computing devices are becoming highly mobile. A study made by ABI Research
1

predicts that by the end of 2013 approximately 1.4 billion smartphones will be in use.

Most devices have built-in GPS sensors which can estimate user’s geographical position

with uncertainty of a couple of meters.

User actions describe a user’s behavior at a certain time. Location-based actions take the

user location into account. For example:

1. Andrei is in Joensuu, Finland;

2. Pasi and Mohammad met at Science Park.

MOPSI
2
 is a software application that helps users to find where their friends are and what

is around. It allows photo sharing, easy tracking, and chatting between friends. The user

actions described in this thesis are tailored for the MOPSI application as part of its action

detection module. Example actions include login (logout), recording routes, publishing

photos and meetings between users. Problems such as loss of network connectivity and

poor location accuracy are also identified and dealt with.

MOPSI users are notified in real-time when a user action is detected. Publish-subscribe

is a software architecture where the sender of a message, called publisher does not

specifically identify a receiver. Instead, the messages are categorized into classes for

which subscribers may express their interest. A particular user may find only a subset of

all detected actions relevant. MOPSI users can therefore subscribe to get notifications

when a particular type of action happens. For example, a user can subscribe to receive

notifications when somebody takes pictures and records routes. These subscriptions are

handled by the notification module.

The action detection and notification modules provide MOPSI users a way to keep up to

date with what their friends are doing. The goal is to provide useful information in an

easy way.

Keywords: user action, notification, agglomerative clustering, publish-subscribe, mobile

user, location-tagged services

1
 http://www.businessinsider.com/15-billion-smartphones-in-the-world-22013-2

2
 http://cs.uef.fi/mopsi

http://www.businessinsider.com/15-billion-smartphones-in-the-world-22013-2
http://cs.uef.fi/mopsi

II

ACKNOWLEDGEMENTS

I am grateful to the University of Eastern Finland and to all the teachers who helped me

to gain experience in different areas of computer science. I was given the chance to be

part of the IMPIT program and meet many students from different cultures, however,

having similar background. Participating in countless activities and projects meant many

unforgettable experiences. I want to express my thanks to all the organizers of IMPIT,

2011 for making all of it possible.

I wish to thank my supervisor, Professor Pasi Fränti, for his guidance together with the

literally hundreds of observations and advices to both my research and work. I believe

my time management, problem solving and presentation skills improved significantly

thanks to his efforts. In addition I would like to thank every member of the MOPSI group

for making me feel as part of a team.

I want to express my deepest gratitude to my girlfriend, family and friends for their moral

support and encouragement. They are always by my side, supporting me, no matter the

circumstances.

I would also like to thank my high school computer science teacher, Ionel Piț-Rada, for

showing me a possible career to pursue in life, and for always making time when I

unexpectedly drop by during his work hours to discuss life choices and philosophy.

In the end, I would like to dedicate this thesis to my aunt, who regretfully passed away

earlier this year. She will always be alive in my heart.

III

TABLE OF CONTENTS

1 Introduction .. 1

2 MOPSI Application.. 6

2.1 Data Collection ... 6

2.2 Search ... 9

2.3 Recommendation .. 11

2.4 Users Tracking and Actions ... 13

3 User Actions ... 15

3.1 Login and Logout ... 16

3.2 Taking and Uploading Photo .. 17

3.3 Completing Tracking .. 18

3.3.1 Move type detection .. 19

3.3.2 Novelty estimation .. 21

3.4 Creating Service ... 24

3.5 Changing City ... 26

3.6 Visiting Places .. 28

3.6.1 Link Method.. 29

3.6.2 Visiting and Leaving ... 30

3.6.3 Passing by ... 32

3.7 Users meeting ... 33

3.7.1 Clustering overview .. 35

3.7.2 Single-Link Clustering .. 36

3.7.3 Distance function .. 39

3.7.4 Updating links ... 41

3.7.5 Detecting meeting groups ... 43

3.8 O-MOPSI actions ... 45

4 Notifications ... 47

4.1 Push notifications ... 47

4.2 Pull notifications ... 51

5 Experimental results ... 55

6 Conclusions .. 61

REFERENCES ... 63

1

1 Introduction

Computing devices have become ubiquitous and increasingly mobile in the past decade

as we can see in studies such as the one made by ABI Research
3
, a leading market

intelligence company. Another study by ABI Research
4
 shows that 85% of the devices

ship with GPS sensors. Therefore, most devices can have access to their geographical

position consisting of the latitude and longitude.

Car navigation systems use road data and suggest a path to a specific destination. Modern

digital cameras such as Canon EOS 6D can store location information as meta-data in the

image file. This data is standard and can be interpreted by other applications where it can

be useful. For example digital photo albums can group photos according to their location

or place them on exact location in a digital map.

Smartphones have different ways of obtaining the location information:

- GPS;

- Network;

- Wi-Fi.

Global Positioning System (GPS) is a navigation system that relies on satellites to obtain

location and time information. The satellites transmit timing signals and position data. A

GPS receiver decodes these signals and interprets the arrival times in terms of latitude,

longitude and altitude with an uncertainty which may be as small as a couple of meters. A

minimum of four satellites is required for the receiver to handle the calculations using

trilateration
5
.

The Network and Wi-Fi systems work when the device is sensed by the network. The

location is calculated based on the strength of the signal and the round-trip time to each

tower. Accuracy is much lower than when using GPS and no altitude information is

available. Using cell tower triangulation it is possible to determine a phone location to

within an area of about ¾ of a square kilometer
6
. Better accuracy is achieved in densely

populated urban areas where the cell towers are closer together.

3
 http://www.businessinsider.com/15-billion-smartphones-in-the-world-22013-2

4
 http://www.microwave-eetimes.com/en/majority-of-smartphones-to-feature-gps-accelerometers-and-

gyroscopes-by-2013.html?cmp_id=7&news_id=222901138
5
 http://electronics.howstuffworks.com/gadgets/travel/gps.htm

6
 http://searchengineland.com/cell-phone-triangulation-accuracy-is-all-over-the-map-14790

http://www.businessinsider.com/15-billion-smartphones-in-the-world-22013-2
http://www.microwave-eetimes.com/en/majority-of-smartphones-to-feature-gps-accelerometers-and-gyroscopes-by-2013.html?cmp_id=7&news_id=222901138
http://www.microwave-eetimes.com/en/majority-of-smartphones-to-feature-gps-accelerometers-and-gyroscopes-by-2013.html?cmp_id=7&news_id=222901138
http://electronics.howstuffworks.com/gadgets/travel/gps.htm
http://searchengineland.com/cell-phone-triangulation-accuracy-is-all-over-the-map-14790

2

Because GPS is not available indoors, the other two methods still have a purpose.

Smartphones with positioning capabilities usually use all the three methods described

above.

Figure 1: GPS positioning vs. Network / Wi-Fi positioning
7

User actions are statements describing a user’s behavior at a certain time. Detecting

location-based actions is important in various situations. It can help social interaction by

keeping users aware of how, when and where others interact. For example, social

networks such as Facebook
8
 allow users to share their current location or explicitly name

the place they are visiting and the people they are meeting with. We aim to detect these

actions automatically and notify other users about their presence.

Figure 2: An example of user actions on Facebook

7
 http://www.e-cartouche.ch/content_reg/cartouche/LBStech/en/html/LBStechU2_poslabel1.html

8
 http://www.facebook.com

http://www.e-cartouche.ch/content_reg/cartouche/LBStech/en/html/LBStechU2_poslabel1.html
http://www.facebook.com/

3

Another example is optimizing military configurations by detecting unexpected situations

automatically. Any unplanned action can be notified to the supervisor who can take

immediate action and give new orders. This example is nicely illustrated in strategy

games such as Warcraft where the player is notified of different actions such as attacking

and retreating of the enemy army.

Observation of animal migrations and interactions is important to wildlife researchers.

Animals are at constant threat due to fencing, highways, housing development,

agriculture, energy development, wind turbines and many other manmade factors.

Because of this it is important to keep track of their whereabouts and identify movement

patterns which pose a potential risk and take action. Herds can be monitored by tracking a

small sample of the population.

Figure 3: Herd of Buffalo
9

Digital tour guides are a used at different tourist attractions. They help tourists organize

themselves and manage tours without the help of a human guide. Digital guides can

inspect the user actions to detect his or her interests and suggest a path for the rest of the

visit or warn when a must see artifact is close and not yet visited. As an example we take

a visitor who appears to be interested in art of the renaissance and is leaving the Louvre

museum. If he or she has not seen the Mona Lisa, a gentle reminder could be issued and

directions to the painting can be pointed out.

9
 http://wallpaperweb.org/wallpaper/animals/aerial-view-of-a-herd-of-african-buffalo-botswana_38390.htm

http://wallpaperweb.org/wallpaper/animals/aerial-view-of-a-herd-of-african-buffalo-botswana_38390.htm

4

Notifying actions in real-time is needed when the information needs to reach others at the

moment it happens. The military and wildlife examples mentioned above need the

notifications system in order to be useful. Publish-subscribe is a software architecture

widely used when senders of messages, called publishers do not specifically target a

receiver. Instead, the messages are categorized into classes for which subscribers may

express interest. A particular user may find only a subset of all detected actions relevant

and will therefore subscribe to that subset. The only drawback of publish-subscribe

architecture [1] is that users performing an action can expect the information to reach a

certain user which may not be subscribed to that particular action type.

MOPSI
10

 is a software application that helps users to find where their friends are and

what is around. It allows photo sharing, easy tracking, and chatting between friends. This

thesis documents the action detection and notification modules of the MOPSI system.

Many researchers have studied the detection and notification of user actions using mobile

devices. In [2] and [3] the authors describe how publish-subscribe architecture can be

extended to support mobile and location-dependent applications. The authors introduce

location-dependent subscriptions as a way to filter actions keeping the ones related to the

current location of a mobile user. In MOPSI we use the same mechanism to allow users

to subscribe to notifications of actions happening nearby. The GUIDE system [4] was

developed to provide city visitors with a hand-held tourist guide. The authors solve the

issues that arise from the development and deployment of a context-aware electronic

tourist guide in a practical real-world environment: the city of Lancaster. O-MOPSI
11

is a

mobile orienteering gaming system which uses the location of entities from MOPSI. A

game is defined by a set of goals that players need to reach as fast as possible and in no

particular order. Similarly as in [4], we record actions when the player reaches the goals.

In [5], the authors describe a method for inferring user similarity based on similar actions.

They find places where users visit by first detecting stopping points in their trajectory and

then trying to map the stop to service locations from a separate database. This visit

detection system works for old data, collected over a period of time because it relies on

finding significantly long stops in user movement. In MOPSI we approach the problem in

a different way. Let us consider the following action:

 Andrei was at Pullapuoti yesterday.

It can be important to users who might think that it is worth to go there because Andrei

appears to visit frequently. Our aim is to identify the visits in real-time:

 Andrei is at Pullapuoti.

10

 http://cs.uef.fi/mopsi
11

 http://cs.uef.fi/o-mopsi/

http://cs.uef.fi/mopsi
http://cs.uef.fi/o-mopsi/

5

Actions detected in real-time are significantly more important. Another user might see

that Andrei is at Pullapuoti and might even consider joining if it is close enough.

JEDI [6] stands for Java Event-based Distributed Infrastructure and is an object-oriented

infrastructure which supports a flexible interaction among distributed software

components. JEDI allows mobile application components to produce notifications by

connecting to a logically centralized notification dispatcher that has global knowledge of

all subscription requests and user actions. The benefit when using this mechanism is

preserving the identity of the users when distributing user actions. In MOPSI, private

users can exist, which share information with a subset of all other users. It is essential we

also hide their identity from others and show their location to users entitled to see it.

Data loss can also be an issue. In [7], the authors address this problem but only for

stationary users. In MOPSI we analyze the feedback from attempts of sending

information and upon failure choose to resend the data.

In MOPSI, some user actions are detected by noting user interactions with other users or

places. Examples are several users traveling together or a particular user visiting a certain

place. Clustering
12

 is a method for organizing objects into clusters (groups) based on a

similarity measure so that objects inside a cluster are similar to each other while

dissimilar to the objects in the other clusters. Clustering is solved by various algorithms

which can be classified based on the cluster model [8]. MOPSI users are considered to

form meetings (groups) when they are within a fixed small distance to each other. We can

find these groups by using clustering.

Because the thesis is strictly linked to the MOPSI application, the following section better

explains what MOPSI is and what data is available inside the system.

12

 http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/

http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/

6

2 MOPSI Application

MOPSI is a locator assistant that helps individuals to know where their friends are and

what is around them. It supports photo sharing, easy tracking, and chatting with friends.

MOPSI can be found on the web at http://cs.uef.fi/mopsi and mobile applications for all

major platforms can be downloaded from http://cs.uef.fi/mopsi/mobile.php.

MOPSI is developed by the Speech and Image Processing Unit
13

, School of Computing

in the University of Eastern Finland
14

. The name originates from a Finnish abbreviation

for Mobiilit PaikkatietoSovellukset ja Internet which is translated into English as Mobile

Location-based Applications and Internet. In Scandinavian and Slavic languages the pug

dog
15

 is called mops (mopsi). MOPSI project provides location-based services such as

search, recommendation, data collection, bus transportation, users tracking and the

relatively new action notifications which are the main subject of the thesis. In the

following sub sections the main features of MOPSI are described in more detail.

2.1 Data Collection

In MOPSI two types of user collected data are stored: geo-tagged photos and routes.

Photos may have an associated description which users can type when the photo was

taken. Upon photo upload, location (latitude and longitude) is also sent and stored in the

database. A route is a sequence of points recorded at a fixed interval. The system

distinguishes the following modes of transportation: walk, run, bicycle and car [9].

Figure 4 shows both types of results (routes and photos) for a selected user, Pasi. His

entire collection until 25.4.2013 has over 800 routes consisting of over 1.5 million points.

To display such a massive amount of data the system uses polygonal approximation and

bounding box solutions as described in [10]. Pasi also has over 5000 photos. They are

placed on the map at the locations they were taken. To avoid overlapping elements, the

photos are clustered using a grid-based method
16

. Photos appear also in the timeline view,

on the top of the web page, clustered by time.

13

 http://uef.fi/en/sipu
14

 http://uef.fi
15

 http://en.wikipedia.org/wiki/Pug
16

 http://cs.uef.fi/pages/franti/sipu/MSc_Thesis_Chen_Jinhua.pdf

http://cs.uef.fi/mopsi
http://cs.uef.fi/mopsi/mobile.php
http://uef.fi/en/sipu
http://uef.fi/
http://en.wikipedia.org/wiki/Pug
http://cs.uef.fi/pages/franti/sipu/MSc_Thesis_Chen_Jinhua.pdf

7

Figure 4: MOPSI on web showing the entire data collection of user Pasi.

Map is focused over Joensuu

Figure 5: MOPSI on mobile (Windows Phone) showing a photo (left) and a route (right)

8

The mobile provides a simplified interface for viewing a user’s collection. Linear access

by time is implemented, most recent collection being shown first. Figure 5 shows how a

photo and a route from Pasi’s collection appear on MOPSI for Windows Phone.

A route can also be analyzed by automatic segmentation and the detection of the

movement type is done for each segment [9]. Figure 6 shows a route belonging to user

Radu. The route is segmented and classified as mostly cycling activity with several stops.

Figure 6: Analyzed route containing mostly cycling activity

9

2.2 Search

The popular search engines Google, Bing and Yahoo provide fast and relevant

information. However, they don’t utilize one important aspect of relevance: the location

of the user. One reason for this is that location was not as widely available in the past as

nowadays when GPS technology is integrated in most smartphones. Another reason is

that web pages are rarely attached with location information [11]. The following example

shows location inside HTML META tags which are machine parsable.

 <HTML>

 <HEAD profile="http://geotags.com/geo">

 <META name="geo.position" content="62.35; 29.44">

 <META name="geo.region" content="FI">

 <META name="geo.placename" content="Joensuu">

Location-based search engines such as Google maps and Yellow pages use databases

where the entries have been geo-referenced beforehand. The downside is that the data

must be collected from providers (service owners and administrators) which need to put

efforts to keep the location information up-to-date [11].

MOPSI search combines the traditional location-based service and search engine. It

retrieves data from the local database, then queries relevant data from the user collections

and finally performs location-based search from web as originally proposed in [12], and

later implemented as summarized in [13]. The key idea is to use ad-hoc geo-referencing

of the web pages based on address detection within the body text [14], rather than relying

on geo-tags or address tags which rarely exist.

A user may access MOPSI search from the web
17

 as illustrated in Figure 7. Location can

be selected by dragging the marker to the desired place on map or by typing an address in

the appropriate field. Keyword must also be specified. The MOPSI mobile solutions
18

also provide access to the search. Figure 8 shows this feature on Windows Phone. Here

location information is automatically detected by the phone. The only needed input by the

user is the keyword.

MOPSI search engine allows the user to find nearby services and photos from user

collection. Services represent a variety of categories such as restaurants, bars, cafeterias,

grocery stores, museums, pharmacies and ATM machines. They are verified by

administrators and are illustrated with green color coding. The information associated

with them contains the title, location, photo, description, web link, keywords and user

ratings. Photos are part of user collections and are marked with yellow coding.

17

 http://cs.uef.fi/mopsi
18

 http://cs.uef.fi/mopsi/mobile.php

http://cs.uef.fi/mopsi
http://cs.uef.fi/mopsi/mobile.php

10

Figure 7: MOPSI web - searching for kahvila in Joensuu

Figure 8: Searching for pizza in Joensuu using MOPSI for Windows Phone

11

2.3 Recommendation

Recommendation systems try to predict what the user is interested in and provide

personalized search relying on a variety of contextual information. For example,

Amazon
19

 gives recommendations based on last purchases and user ratings (Figure 9).

Figure 9: Books recommended by Amazon

In MOPSI four aspects of relevance [15] are used: content, time, location and user social

network. The system recommends trusted services, geo-tagged photos and routes. The

goal is to offer personalized recommendations [16] by combining the three different data

sources as described in subsection 2.2. Binary search is used by doubling or halving the

radius depending if too few or too many results are found. The process continues until

enough results are found or until the radius covers the entire planet. A minimum of 10

results is the threshold for stopping the search, see Figure 10.

Figure 10: Changing radius to find results when nothing is close

19

 http://www.amazon.com/

http://www.amazon.com/

12

A user may ask for recommendations using the MOPSI web page (Figure 11). In addition

to time and location, the results also depend on the user profile and automatically

obtained preferences. If the user is not logged in the results are the same except user

interests which are excluded from the search criteria. Recommendation does not require

additional user input, as opposed to the keyword required by the MOPSI search.

A MOPSI user can also use recommendation on the mobile trough a single tap of a button

(Figure 12). Location is automatically detected from the GPS sensor. Time and user

identity are directly available in the application.

Figure 11: MOPSI web showing recommendations in Joensuu

Figure 12: MOPSI for Windows Phone showing recommendations in Joensuu

13

2.4 Users Tracking and Actions

By users tracking we refer to the ability to see the locations of other users in real-time. In

Figure 13, the users are listed on the left side of the screen sorted according to how recent

was their last activity in MOPSI. In addition, three most recent user actions are displayed

for each user. On the map, users are clustered shown by a bubble with the name of the

most recently active user.

Figure 13: MOPSI web showing users’ locations and actions in real-time

The mobile solutions also provide access to this information. Figure 14 shows the user

list, clusters on the map and recent user actions on three different pages. This separation

is needed because the screen size is significantly smaller on smartphones. The user

actions will be discussed more detailed in section 3.

14

Figure 14: Windows Phone MOPSI showing (from left to right):

friends list, friends clustered on the map and recent actions

15

3 User Actions

In addition to the data (routes and photos), other user actions are also recorded such as:

login / logout, completing tracking, taking / uploading photos, changing city, visiting,

passing by or leaving a service, adding a service and meetings between users.

We classify these user actions in two categories:

- Triggered actions;

- Concluded actions.

Triggered actions are recognized upon a single HTTP request made to the server by the

mobile device of a user. They do not require additional system information to be

recognized. User actions that fit in this category are:

- Login;

- Logout;

- Taking / uploading photos;

- Completing tracking;

- Adding a service.

Concluded actions need additional system information when being generated. Similarly

as in [17] the state of the system at different past moments is needed when making these

conclusions. Therefore we store this information and use it when recognizing these

actions. We check if actions can be concluded periodically (every 30 seconds). User

actions that fit in this category are:

- Logout (due to missing connection with the server);

- Changing city;

- Visiting a place;

- Passing by a place;

- Leaving a place;

- Meeting between users.

In the following subsections each action is discussed in detail. We describe the methods

and reason why they are most suitable for the MOPSI environment. Time and memory

complexities are analyzed when relevant.

16

3.1 Login and Logout

Anybody can start using MOPSI by first creating an account. This can be done from the

web page or any mobile application. A user logs in to the mobile version of MOPSI by

entering valid credentials. The user logs out by pressing the logout button or by closing

the application. These actions are triggered directly by the user. However, for

determining the status of being online/offline this method alone is not sufficient mainly

because of connection issues.

Missing connection between the mobile device and the server can happen because of

several reasons including:

- Network specific: such as internet connection time-out or signal fluctuations;

- Device specific: such as battery loss or firmware error;

- Application specific: crashing or malfunctioning;

- Server specific: if the server is closed, busy or system error occurs.

Keep-alive mechanisms (Figure 15) send signals (messages) to a server at fixed time

intervals. The server expects these signals from all connected users. Typically on the

server a user is marked as offline if no signal is received from that particular user.

Figure 15: Keep-alive mechanism

In MOPSI we use a keep-alive mechanism to conclude logout actions. The devices send

the signal to the server every 30 seconds. If a user fails to signal, it is marked as idle (still

appears to be online to other users). After two minutes, an idle user status is set to offline.

Figure 16 illustrates how the connection is evaluated in time.

Because mobile devices have a tendency to lose connection for brief periods of time, we

concluded two minutes of inactivity to be sufficient to logout a user. Smaller values yield

frequent changes of the online status and larger makes user to appear (in the idle state)

17

longer, even though he or she cannot be reached. Both cases can cause confusion for the

users.

Figure 16: Concluding login status in MOPSI

3.2 Taking and Uploading Photo

Because of issues with server connectivity, in MOPSI we differentiate two separate

actions when a photo reaches the server similarly as in [18]:

- Photo taking;

- Photo uploading.

We want to avoid confusion such as:

 Pasi published a photo. It’s from Kenya! But I saw him just this morning in Joensuu...

We also want to stress the importance of a photo being taken right now:

 Mohammad took a photo? He’s back! Maybe we can play football in the afternoon.

 Karol took a photo? Ah I see, he’s at Koli, I know that place!

 Andrei uploaded 5 photos? He probably shares holiday pictures. I’ll watch them later.

Both actions are triggered in the same way, when uploading of a photo to the server

completes. The difference is made by analyzing the difference between two timestamp

values:

- Photo timestamp, the time the photo was taken;

- Upload timestamp, when the photo is successfully stored in server.

18

Due to connectivity problems or the usage of offline mode, photos may be buffered a

significant amount of time before they are sent to the server. When the photo reaches the

server, the two timestamps are compared. If the difference is smaller or equal to a

threshold (10 minutes in MOPSI), the action of taking a photo is recorded. If it is not the

case, the photo upload action is recognized (Figure 17).

Figure 17: Decision between taking a photo and uploading a photo

3.3 Completing Tracking

Tracking refers to recording a traveled path. MOPSI users can perform tracking so that

points are recorded at fixed time intervals, which can be chosen as a parameter in the

settings. Default value is 4s (seconds) but 1s or 2s can provide better accuracy. Higher

values are not meaningful because the route reduction procedure [19] can decrease the

amount of data while keeping the accuracy in a given threshold.

Figure 18: Point batch buffering

Tracking in MOPSI is real-time. An ideal system would behave so that any new point is

immediately sent to the server. Because of the possibility of connection loss with the

19

server, buffering (Figure 18) is implemented on the mobile device. This ensures that no

points are lost during the upload process and also sending points individually would

overwhelm the network, which is the biggest reason for battery running out. Because of

this new points are sent in fixed sized batches (20 points each). When a user turns off

tracking on the mobile device, the remaining points are sent in one batch. This batch is

marked as the final and when it arrives on the server it completes the route.

Movement type analysis [9] is then made on the complete route. The tracking completed

user action is triggered. Here are some examples of corresponding notations:

 Oili completed Walking tour of 7 km 204 m.

 Pasi completed Running tour of 27 km 686 m.

3.3.1 Move type detection

The first challenge of the movement type detection is to split the route into several

segments based on similar speed. The second part is to classify the segments in one of the

5 move types: stop, walk, run, bicycle or car.

The algorithm divides the route into segments with similar speed while automatically

calculating the number of segments. Input is a route , where

 , and the corresponding speeds are . For a given segment

number m, we define a cost function that minimizes the sum of the inner speed variance

in all the segments:

where ij and ij+1 are the indexes of the start and end points of the segment j, and is the

speed variance between the points j to j+1 in route R.

This minimization process is solved by a dynamic programming process in O(n
2
m) time

and O(nm) space, where the speed variance can be calculated in O(1) time by using pre-

calculated accumulated sums. Optimization is done in the state space using

dynamic programming as follows:

where , , with an initial condition , and is the

index for backtracking. The number of segments m0 is determined by

20

where , are regularization parameters.

Figure 19: A priori probabilities for soft classification of the route segments

After we have the segments we perform soft classification of each segment as stop, walk,

run, bicycle or car using the a priori probabilities shown in Figure 19. A second order

hidden Markov model (HMM) is used where the hidden states represent the movement

types and the observed data are the features for each segment. Correlations are made both

to the previous and the next segment.

For the cost function of the 2
nd

 order HMM we use:

where mi={stop, walk, run, bicycle or car} in the state of segment i, Xi is its feature

vector, mi-1, mi+1 are the states of the previous and the next segment. The probability that

a segment would have a hidden state mi depends on the previous state, the next state and

its feature vector. After Equation 4 has been maximized, the most likely sequence of the

hidden state m0, m1, …, mM is determined.

Assuming the feature vector Xi is uncorrelated with mi-1 and mi+1, this cost function can

be concerted by applying Bayesian inference:

21

where , and are all prior information. In the

implementation of the algorithm, dynamic programming is employed for maximizing the

cost function (5).

3.3.2 Novelty estimation

We have designed methods for calculating route similarity and estimating the novelty of a

route. The similarity of two routes is defined as the number of intersecting points relative

to the points in one route:

where route is represented as a set of points .

Formula 6 typically gives different outcome if the parameters are reversed
 . The only case is possible when the two routes have

equal number of points . Two points are considered a match if the distance

between them is less than a threshold, currently set to 50 meters. Distances between

points on the earth’s surface are calculated using the haversine distance

where

 , are the latitudes of and respectively;

 , are the longitudes of and respectively;

 r is the radius of the earth (~6373 km).

Figure 20: Pasi’s route (gray) is matched to Sebastien’s route

Red represents the matched and blue non-matched part

22

In Figure 20, a sample route from Pasi’s collection (recorded on 29.8.2013) is taken

as a reference, 30 similar routes exist 19 which belong to Pasi and 11 to others. One of

the similar routes belongs to user Sebastien . The similarity of Sebastien’s route with

respect to Pasi’s route is 62%, meaning that 62% of the points in Sebastien’s route are

mapped to Pasi’s route (red segments with a total length of 3.2 km).

Matching the other way around we see that Pasi’s route is only 24% similar to

Sebastien’s route . In Table 1 all similar routes to the reference route

are shown.

Table 1: Routes similar to Pasi’s from 29.8.2013.

Date Time User

 14.8.2013 17:30-18:56 Pasi 73%_ 54%_

 20.6.2013 18:05-19:56 Pasi 59%_ 54%_

 20.6.2013 18:05-19:56 chait 59%_ 54%_

 26.5.2011 17:57-19:24 Pasi 55%_ 53%_

 8.9.2011 19:07-20:18 Pasi 73%_ 43%_

 3.9.2009 18:05-19:09 Pasi 48%_ 40%_

 7.6.2012 17:49-18:49 Pasi 63%_ 33%_

 29.8.2013 17:20-18:06 karol 73%_ 25%_

 29.8.2013 18:12-19:52 sebastien 62%_ 24%_

 30.4.2012 16:04-18:08 Pasi 11%_ 23%_

 24.3.2013 13:18-15:04 Pasi 18%_ 22%_

 2.1.2011 13:40-15:19 karol 17%_ 22%_

 30.7.2011 11:47-14:56 Pasi 11%_ 21%_

 7.6.2012 17:40-19:48 Low2 31%_ 21%_

 24.8.2013 15:15-17:47 Pasi 8%_ 18%_

 8.9.2011 18:21-20:23 Low2 51%_ 18%_

 8.9.2012 09:51-13:01 Pasi 6%_ 17%_

 11.8.2012 11:27-14:39 Pasi 7%_ 17%_

 25.6.2010 09:16-11:23 Pasi 10%_ 16%_

 21.7.2012 14:39-17:12 Pasi 6%_ 12%_

 24.6.2013 15:03-15:04 chait 52%_ 11%_

 11.7.2010 10:04-12:01 karol 11%_ 9%_

 22.5.2010 09:29-11:07 Pasi 4%_ 6%_

 6.4.2013 18:12-18:17 matti 76%_ 5%_

 16.8.2012 17:59-18:27 Pasi 35%_ 5%_

 27.7.2011 11:22-13:36 Pasi 2%_ 5%_

 27.7.2011 12:31-13:36 Low2 5%_ 4%_

 4.6.2011 08:29-11:32 Pasi 1%_ 4%_

 6.4.2013 18:34-18:40 matti 10%_ 1%_

 10.9.2011 11:19-12:48 Pasi 1%_ 1%_

Using the route similarity we next define novelty, to estimate how original a given route

is. We calculate the novelty of a route with the following formula:

23

where is the total number of routes in the system.

The most similar route to Pasi’s reference route belongs to him also, see Figure 21. The

novelty is 46%, meaning that at most 54% of the route can be matched to another route

from the database. If a user records a route in a location where no other MOPSI user has

been, it is 100% novel.

Figure 21: Most Similar route and Novelty

At the moment we cannot calculate the similarity in real-time. The implementation relies

on a cron job which runs every midnight and calculates the similarity for the new routes

recorded during the previous day. The algorithm compares the new routes (M) with all

other routes in the database (N). For each comparison the distance between every point of

a route to every point of all other routes is calculated using Formula 7. This task takes

 time, where P is the average number of points in a route.

In MOPSI, an average of M=8 routes have been recorded daily during 1.12013 –

20.9.2013. On 20.9.2013 approximately N=9000 routes exist in the system with an

average of P=750 points per route, meaning a total of 40,500,000,000 distance

calculations performed daily. Even if we avoid checking similarity between routes whose

bounding boxes do not intersect the complexity decreases only slightly, and is far from

being real-time. The novelty calculation is therefore not used in the MOPSI actions

currently.

24

3.4 Creating Service

MOPSI services contain a variety of categories such as restaurants, bars, cafeterias,

grocery stores, museums, pharmacies and ATM machines. They are created by any

MOPSI user but need to be approved by system administrators so that we can guarantee

correct information.

One can create a MOPSI service (from the web page) in two ways as shown in Figure 22.

The first way is to move the user marker at a specific location on a map and clicking on

it. An information window appears with the option to add a service. The second way is to

upgrade a photo from the user collection to a service.

Figure 22: Adding a service at specific location (left), upgrading photo to service (right)

Figure 23: Window for adding service information

25

In both cases, clicking the Add Service and the Upgrade buttons, the window in Figure 23

opens and the user fills in the relevant information associated with the service. The

difference is that by clicking the Upgrade button the title, location and photo are

automatically obtained from the user collection. Only the web link, keywords and

description (optional) need to be added.

A service is created when the admin user presses the Save button. The job of

administrators is to periodically check the newly added services to verify that the

information is correct and then confirm the service using the interface shown in Figure

24.

Figure 24: Interface for confirming services

When a service is confirmed, the creating service user action is triggered. This action

contains the service name and the name of the user who created it. For example:

 Radu created service Ranch.

26

3.5 Changing City

Changing City happens when users travel. It can have relevance to other users in the

following ways:

 Sandy is in my home town! Will let her know what is worth to visit there!

 Matti arrived in Joensuu! Let’s see if he’s free in the evening…

To find out the city name we use the geo-coding API from Google
20

. The API offers a

limited number of requests (2500) per day, which works unless there are an

overwhelming number of users traveling simultaneously. Because of this we try to use

rarely, only for users that move a considerable distance.

Alternative solution is to use a free mapping service such as Open Street Maps
21

 or

purchase a professional package from Google. For Finland, we use own database

obtained from the Digiroad service
22

.

Figure 25: Google maps showing information outside Drobeta-Turnu Severin

20

 https://developers.google.com/maps/documentation/geocoding
21

 http://www.openstreetmap.org
22

 http://www.digiroad.fi

https://developers.google.com/maps/documentation/geocoding
http://www.openstreetmap.org/
http://www.digiroad.fi/

27

Different countries use different policies to define city borders. For example, in Romania

rural areas are not part of any city, whereas Finland is completely divided into municipals

that cover the entire country. When the geo-coder does not return any city name (Figure

25), we therefore assume the user is in a rural area.

Figure 26: Situations encountered when traveling

To detect that a MOPSI user changes the city, we first select a subset of the user

collection, by excluding offline and stationary users. An exception is new MOPSI users

for which the action is recorded on first use of the application.

A mobile user makes one request to the Google geo-coder per traveled kilometer. The

city name is then compared to the previously stored value. When the values are different

the user has arrived in some city and the city changed action is concluded (Figure 26).

28

3.6 Visiting Places

In MOPSI the services represent a variety of categories such as restaurants, bars,

cafeterias, grocery stores, museums, pharmacies and ATM machines. They are physical

places that can be visited. Three action types can be concluded when a user comes in

contact with a place:

- Visit: when staying at the respective place for a considerable amount of time;

- Leave: when moving away from a place the user was previously visiting;

- Pass-by: when the user is near the service for a short time before moving away.

Detecting these scenarios is not trivial due to inaccuracy in GPS signal which can make it

look like a user is moving away from a place he/she actually continues to visit. We solve

this problem by using the link method described in the next subsection.

The location of a service is represented by a point in the database. To conclude any of the

above actions we need to know which service is nearest to a user’s location. To do this

we perform two steps:

- Database query for a list of near services;

- Search for the service in the list with minimum distance to the user.

The SQL query is used to find the services inside a bounding box relative to a user

location:

 SELECT id, latitude, longitude FROM services

 WHERE `latitude` > Sbound

 AND `latitude` < Nbound

 AND `longitude` > Wbound

 AND `longitude` < Ebound

The S, N, W and E bounds are meters away from the user location. The query response

is a set of nearby services. This process is shown in Figure 27 where the set contains s1,

s2, s3 and s4. The near services are then found by calculating distances (Formula 7) to

each service in the resulting set and choosing the service with distance below a .

We consider a service near a user if the distance is less than . In MOPSI, we set = 25

meters. A smaller value would cause miss-detection when GPS signal is inaccurate

whereas a greater value tends to increase the number of falsely detected actions. In Figure

27, services near to user u are s1, s2 and s3. The smallest distance is then found to be the

distance to s3, which is concluded as the nearest.

29

Figure 27: Services near to the user (s1, s2 and s3), nearest service is s3

3.6.1 Link Method

Because of fluctuations in the GPS accuracy, a user location can slightly change even

when standing still. As a result, on the server it may appear that a user is getting farther or

closer to the location of a service when the user is not actually nearby at all.

A link is a virtual connection established between a user and the nearest service. The goal

of defining the link is to deal with the effects of GPS data. To this end, we associate a

strength value (from 0 to 10) to the link. When the link is formed, the strength is neutral

(initialized to 5) allowing it to change in both directions. In the course of time, the

strength value increases if the service remains nearest to the user and decreases

otherwise.

Figure 28 shows the way a link is being established and how the strength changes in time.

At t3 the user is nearest to service s and a link of strength 5 is formed. The strength then

increases and reaches the value of 7 at t5. Then, the link becomes progressively weaker

because the user gets farther from the service. At t12 the user is unlinked from the service

when the strength reaches 0. Since the time difference between two successive

timestamps is 30 seconds, the link in the example existed for a total time of 4 minutes.

30

Figure 28: User-to-Service link

3.6.2 Visiting and Leaving

A visit is concluded when the link strength reaches 10. This corresponds to the user

staying at the location of the service for a considerable amount of time (typically around

3 minutes, depending on user movement and GPS accuracy).

Figure 29: Visit detection

31

Figure 29 shows a link created at t6. The strength of the link increases and reaches the

maximum at t11 where the link strength becomes 10. At this moment, the link is removed

and a visit is formed.

Similarly to the link, the visit has an associated strength value, however, it only spans

from 0 to 5 and is initialized with the maximum value. We consider the visit strong as

soon as it is created because of the confidence given by the previously existing link

strength. The strength of the visit varies in time like the link strength: at each time step it

increases if the service is nearest to the user and decreases otherwise. If the strength

reaches the value of 0, the visit will end and a leave action is concluded.

Figure 30 shows how the visit, detected at t11, maintains strength of 5 until t55 and then it

starts to decrease. The strength reaches 0 at t59 concluding a visit that lasted 24 minutes.

Here, the leave action is detected.

Figure 30: Leaving a service

Figure 31 shows how we detect a visit using the link method despite bad GPS accuracy.

At t6 a link is formed between the user and service s. The link strength continues to

increase, however, at t10 the user location is outside the threshold, therefore, s is not

nearest to the user and the link weakens.

32

Without using the link method, at t10 it may look like the user is leaving the service. That

would be a wrong assumption because analyzing the following locations (at t11, t12 …) we

realize that the location at t10 was probably inaccurate. We note the visit is detected at t13.

Two inaccurate location updates (t14 and t15) slightly decrease the visit strength, however,

they are not enough to terminate the visit and conclude the leave action.

Figure 31: Flexibility of the link method in handling bad GPS accuracy

3.6.3 Passing by

The pass by user action is concluded when a user goes near a service without staying

nearby long enough so that visit cannot be concluded. Using the link method, the pass by

action is detected when the link strength reaches 0. Figure 32 shows a link being

established at t1 and a pass by concluded at t6. At that moment the link is removed.

Figure 32: Passing by a service

33

3.7 Users meeting

By meeting we mean multiple users being in close proximity to each other, in other

words, part of a group. The concept does not require the participants to be stationary.

Meetings can happen when users are standing still, walking, riding bicycles, or traveling

by any motorized vehicle. A meeting can be formed by a minimum of two users and does

not restrict the number of participants.

To detect meetings, a similar method is used as when detecting visits. The difference is

that while a user can only visit a single service at a time, the user can meet several people

at once. Therefore we need to change the link definition. User links are formed between a

user and all other nearby users as opposed to the links between a user and a single

(nearest) service.

Figure 33: User-to-user meeting detection

34

In Figure 33 we notice how at t0, u1 is linked to the three other users: u2, u3 and u4. The

strength values increase at each time step for links where users are near each other. At t3

we notice the link between u1 and u2 is slightly weakened and as a consequence, at t5, u1

is not part of the group meeting between u1, u3 and u4. After one minute (at t7) all four

users are meeting.

Although user u appears to be tying the others together as part of a group, it is not really

the case. The example omits displaying links which do not concern u1 for the sake of

simplification. If the traveling users create a pattern, such as people cycling on a narrow

street or traveling by train, this solution alone will not work. Because of this, we prefer to

have the nearby users defined in another way. Figure 34 shows users u1 and u7 linked

because intermediate links exist between them. It is natural that the seven users in the

image should be part of the same group even though not all users are inside a threshold

(25 meters in MOPSI). To find these groups and update the user links we use

agglomerative clustering. We describe this process in the next subsections.

Figure 34: Nearby users

35

3.7.1 Clustering overview

Clustering is a method of unsupervised learning that given a data set of D-dimensional N

data points

 D

, partitions the data set into M clusters (groups) based

on similarity measures, so that objects inside a cluster are similar to each other while

dissimilar to points in the other clusters. Figure 35 shows the result of a cluster analysis

where three clusters are detected. Partition

 defines the

clustering by giving for each data point the index of the cluster where it is assigned to. A

cluster Sa is defined as the set of data points that belong to the same partition:

 .

The clustering is represented by the set

 , where M is the number of clusters.

Figure 35: Clustering with |S|=3

Hierarchical clustering seeks to build a hierarchy of clusters. There are two approaches

of doing this:

- Agglomerative clustering;

- Divisive clustering.

Agglomerative clustering [20] is a bottom up approach where initially all the data points

are clustered individually . Then an iterative process starts where at

each step, two clusters are selected based on a distance criterion to be merged. Divisive

clustering [21] is the top down approach, starting with everything in one cluster,

36

 , and then performing a split at each step. Both methods yield a hierarchy as

illustrated in Figure 36.

Figure 36: Hierarchy of clusters are shown using a dendrogram (left) and

nested clusters (right) for agglomerative and divisive clusters accordingly

3.7.2 Single-Link Clustering

Single-link method is an example of agglomerative hierarchical clustering. Initially, each

point is placed in a separate cluster, and at each step two clusters are selected for merge.

The selection of the two clusters is made based on proximity. For the single link method,

the distance of two clusters is defined as the minimum of the distance between any two

points in the two clusters:

Here Sa and Sb are two clusters and d is a merge criterion, which will be discussed in the

next subsection. A distance matrix is used to avoid recalculating the distances at

each step. Consequently the matrix needs to be updated when two clusters merge by

deleting the rows and columns corresponding to Sa and Sb and adding a new row and

column for the newly formed cluster Sab. The algorithm assumes we know the number of

clusters M. A pseudocode for the single-link method can be written as follows.

37

 SingleLink(X, M) -> S

 Step 1. Calculate distance matrix for all data points.

 Step 2. REPEAT

 Step 2.1: Find closest pair (Sa,Sb) to be merged.

 Step 2.2: Merge the pair (Sa,Sb) -> Sab.

 Step 2.3: Update distance matrix.

 UNTIL |S| = M

Figure 37 illustrates the steps of the single-link method. In step 1, a cluster is created for

each data point. Step 2 shows merging of two clusters. The algorithm repeats the process

of merging two nearest clusters until all the points are inside a single cluster (at step 8).

This builds the entire hierarchy. Typically the entire hierarchy is not needed and the

algorithm simply stops when .

Figure 37: Single-Link clustering

38

In order to detect nearby users in MOPSI, we use the single-link method. We do not

know the number of clusters. Instead, the algorithm stops when the distance between the

closest cluster pair exceeds a threshold =25 meters. In this way, every point in a cluster

is connected to at least one other point of the same cluster by a link of at most meters.

This corresponds to our definition of the groups formed by nearby users illustrated in

Figure 34.

Pseudocode of the single link method is below:

 SingleLink(X,) -> S
 Step 1. Calculate distance matrix for all data points.

 Step 2. REPEAT

 Step 2.1: Find closest pair (Sa,Sb) to be merged.

 Step 2.2: d <- Distance between the closest pair.

 Step 2.3: IF d > THEN
 Step 2.3.1: Merge the pair (Sa,Sb) -> Sab.

 Step 2.3.2: Update distance matrix.

 Step 2.4: END IF

 UNTIL d >

Figure 38 shows a dataset clustered using the single-link method, stopping under the

threshold. By definition, a single point cannot form a group. Each remaining cluster is a

group of users. For every pair of users in every group links will be updated. The exact

method is shown in subsection 3.7.4.

Figure 38: User groups

Single-link as described above can be easily implemented with time complexity of

 . Algorithms with better time complexity exist for mean square error criterion. In

[22], the authors use a k-nearest neighbor graph to reduce the number of distance

calculations. Time complexity of their proposed algorithm is where is the

39

number of nearest neighbor updates per iteration. In MOPSI, corresponds to the

number of online users.

3.7.3 Distance function

Distance calculation needs to take into account mobile users. Point to point distance

calculated using Formula 7 will not work as expected. Let us consider two users moving

together at a constant speed, sending location updates to the server every 30 seconds.

Usually the users do not send this data at the same time as that would imply that they start

the application at the same time. Let us assume a 10 second offset.

Figure 39: Users moving together with 10 second offset in location updates

In Figure 39 we observe that because of the offset, the users never appear to be less than

 meters away (25 meters in MOPSI), even though traveling together. Simply increasing

the value of does not offer a good solution. Depending on transportation means, in 10

seconds a user can travel a significant distance (500 meters by train and even more than a

kilometer by plane). Increasing so much will yield many miss-classifications.

As shown in Figure 40, we use interpolation in order to approximate the location of u1 at

the moment when we know the location of u2. In other words we need to find ,

when knowing the location and time at A, B and C. To achieve this, the following

formulas are used

Where

 tP is the times component of point P;

 xP and yP are the location components of point P.

40

In our example

 because of the 10 second offset between points A and C and the

30 second update interval between points A and B.

Figure 40: Interpolation method

41

3.7.4 Updating links

Based on the groups of users resulting from clustering, we can increase the strength of the

links at each time step. A linked list is assigned to every user to keep track of the user-to-

user links and the associated strength values. Each node of the list represents a user-to-

user link and contains two pieces of information: a pointer to the linked user and a

strength value.

In Figure 41 we consider four users at t0. None of the users are inside a cluster and

because of this the linked lists assigned to each of the users are empty. At t1, u2 and u3 are

clustered together and as a result the linked list assigned to u2 has one element pointing to

u3 and showing a strength value of five. At t2, u1 and u4 are also clustered together and as

a result u4

appears in the linked list assigned to u1. Meanwhile, the u1 – u3 link strength

increases to six. At t3, the u1 – u2 link is created and added to the linked list of u1. At this

time the other existing links are strengthened.

The link is reversible, meaning that if u1 is linked to u2 then u2 is linked to u1. Because of

this we store the information just once and assign it as a node to the linked list of the user

with smaller user index in database. This is why at t3 the linked list assigned to u4 is

empty even though u4 is linked to u1. In fact, because u4 has the highest user index in the

example, the assigned linked list will always be empty.

Linked lists are used instead of an adjacency matrix in order to save memory space.

Because of the reversible property of the link, half of the matrix would not be necessary

since it would only store redundant information. In addition, the user-to-user links are

few and would result in having a sparse matrix.

At t6 a user-to-user meeting is established between u2 and u3 because the link strength

reaches the maximum value of 10. At t7 the u1 – u4 link is upgraded into a meeting and at

t8 a user – user meeting is formed between u1 and u2.

Storing the user-to-user meetings is possible, however, it would require quadratic

memory, and further processing when the group of users is later required. Instead we

store the group of users meeting at a certain time. For example, the group {u1, u2, u3, u4}

is stored at t7.

The method for detecting the meeting groups starts by defining a graph where edges are

the user-to-user meetings. The task then becomes equivalent to the problem of finding

connected components. A detailed description follows in the next subsection.

42

Figure 41: Increasing link strength

In Figure 42, the users: u1, u2 and u3 are clustered together at t0 and a link with strength 5

exists between u1 and u4. At t1, u1 and u4 are not clustered together so the u1 – u4 link has

to weaken. We handle the link strength updates in two steps:

- Increase the strength of the links between the users in the same cluster by 2;

- Decrease the strength of all links by 1.

43

Figure 42: Strength increase for u1-u2, u1-u3 and decrease for u1-u4

The effect is that links between nearby users are strengthened by 1 and all other links are

weakened by 1. The maximum possible number of user-user links is

, when all

users in the system are clustered together. Therefore, updating the strength value of the

links has a time complexity of .

3.7.5 Detecting meeting groups

A subsample of the linked lists which contains just the user-to-user meetings are used to

form adjacency list and define a graph (Figure 43). The edges of the graph are the one to

one meetings. The task of finding the groups of users that are meeting is equivalent to

searching for the connected components of the graph

It is straightforward to compute the connected components of a graph in linear time using

either breadth-first search
23

 or depth-first search
24

. A search begins at some particular

vertex in the graph and will find the entire connected component before returning.

Marking the elements belonging already to a connected component is required. To find

all the connected components, a loop through the vertices is made, starting a new breadth

first or depth first search whenever the current vertex is not marked as part of any

component. We choose to ignore connected components containing only one vertex.

Therefore Figure 43 shows two connected components. The users meeting as part of a

23

 http://en.wikipedia.org/wiki/Breadth-first_search
24

 http://en.wikipedia.org/wiki/Depth-first_search

http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Depth-first_search

44

group are found inside each connected component which we use in order to identify two

meetings:

 Users: u6 and u7 are meeting.

 Users: u1, u2, u3 and u4 are meeting.

Figure 43: One to one meetings form a graph

45

3.8 O-MOPSI actions

O-MOPSI [23]

is a mobile orienteering gaming system which provides a fun way to

interact with the photo collection and services from MOPSI.

A game is defined by a set of goals that players need to reach as fast as possible and in no

particular order. When all goals are visited, the game ends and time is used for ranking.

In Figure 44 we see the results of the SciFest
25

 O-MOPSI game of 2013. Anybody can

play the game by downloading a mobile version of O-MOPSI from the mobile downloads

page, http://cs.uef.fi/mopsi/mobile.php. If no games exist nearby, anybody can create

own game using the O-MOPSI website.

Figure 44: O-MOPSI website
26

 showing results of the SciFest2013 Easy game

From the game actions, we consider the following four as relevant:

 Creating a game;

 Starting to play a game;

25

 http://www.scifest.fi/
26

 http://cs.uef.fi/o-mopsi/

http://cs.uef.fi/mopsi/mobile.php
http://www.scifest.fi/
http://cs.uef.fi/o-mopsi/

46

 Finishing a game;

 Breaking a record;

The action of creating a game is triggered when a user creates a new O-MOPSI game by

selecting a set of goals from the MOPSI photo collections and services. For example:

 Radu created a game Severin 1.

O-MOPSI users can choose to play any created game. When a user joins a game the

started to play action is triggered. For example:

 Pasi started to play SciFest2013 Hard.

When the last goal is reached the game is considered finished and two actions may occur

based on time. If a best time is achieved the break record user action is triggered,

otherwise the finish game user action is triggered. Some examples are:

 Noora broke the record for SciFest_Easiest.

 Mikko finished Areena Long Track 2.

47

4 Notifications

Notifications are a subset of actions that are relevant to a user at a given time. They have

three important motives. The first is to point out actions at the moment they are

happening. This way, users know what others are doing in real-time. The second motive

is to present an easy to access summary of what friends have been doing recently. Third

motive is to help users to navigate inside the application by providing shortcuts to the

respective action.

4.1 Push notifications

Push notifications are messages sent by the server in real-time. If all actions were

included, the number of notifications can be overwhelming when many users are active.

In addition, some user actions might not be of interest to other users. Because of these

reasons we filter the actions so that only a subset reaches a particular user.

The push notification system is implemented based on the publish/subscribe architecture.

A user can subscribe to an information channel provided by the server. Whenever new

actions are available on one of the channels, the server pushes that information to the

user. In MOPSI there is a channel for each action type:

- Taking/Uploading photo;

- Completing tracking;

- Changing city;

- Visiting service;

- Passing by service;

- Leaving service;

- Users meeting;

- O-MOPSI actions.

A user may subscribe to each channel individually. In addition to the filtering by action

type, there is a possibility to filter by distance. A user may set a value in kilometers (x) so

that if an action happens farther away than x km it will not be notified. For example, a

user can choose to get notifications of users meeting only if they are less than 5

kilometers away so that he or she could participate in that meeting. Another example is

the O-MOPSI create game user action so that a user is notified when new games are

created nearby.

48

Major mobile operating systems (Android, iOS and Windows Phone) provide a service

for handling push notifications. All platforms are similar in functionality. In the following

we describe how the Windows Phone push notifications service
27

 is used by MOPSI.

The Windows Phone push notification service is an asynchronous, best effort service that

offers third-party developers a channel to send data to a Windows Phone app (MOPSI

mobile application) from a cloud service (MOPSI server) in a power-efficient manner. It

is an asynchronous service because when a new notification appears it does not block the

interface and allows a user to continue doing what he/she was doing. It is a best effort

service because the notifications are not delivered with 100% certainty. It is possible that

some notifications never reach their destination.

Figure 45: Using the Windows Phone notifications framework

Figure 45 shows how a push notification is sent to the MOPSI mobile application. The

process consists of the following steps:

1. MOPSI requests a push notification URI from the Push client service;

2. The Push client service negotiates with the Microsoft Push Notification Service

(MPNS), which returns a notification URI to the Push client service. For example:

http://db3.notify.live.net/throttledthirdparty/01.00/AAFW10y...MkUxREQ

3. The Push client returns the notification URI to the MOPSI application;

4. The MOPSI application sends the notification URI to the MOPSI server. Here the

URI is associated to the MOPSI user;

27

 http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402558(v=vs.105).aspx

http://db3.notify.live.net/throttledthirdparty/01.00/AAFW10y...MkUxREQ
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402558(v=vs.105).aspx

49

5. When the MOPSI server needs to send information to a specific user that is not

online it uses the associated URI to send a push notification to MPNS;

6. MPNS routes the push notification to the mobile device.

Depending on the format of the push notification and the payload attached to it, the info

is delivered as raw data to an application, the app’s Tile is visually updated, or a toast

notification is displayed (Figure 46).

Figure 46: Toast and Tile notifications on SoftLayer
28

 application

In MOPSI we use the toast notification to display the notification even when the

application is closed. In Figure 47, on the left, a Windows Phone toast notification is

shown. Tapping the notification opens the MOPSI application and in this case displays

Radu’s photo (right).

MPNS returns a response code to the MOPSI server after a push notification is sent

indicating that the notification has been received and will be delivered to the device at the

next possible opportunity (when device is on and internet connection exists). Although

MPNS does not provide an end-to-end confirmation that the push notification was

28

 http://www.softlayer.com

http://www.softlayer.com/

50

delivered to the phone, it is possible for MPNS to return a response or error code to the

MOPSI server which indicates that the device is unreachable and the notification will not

be delivered yet.

Figure 47: Toast notification (left) and MOPSI opened to show the content (right)

51

4.2 Pull notifications

Pull notifications are requested by the client side (website or mobile). This request can

happen periodically or upon request. In the MOPSI mobile application, recent

notifications are requested upon application start. Every 30 seconds a request is made to

the server to get updates in notifications. In Figure 48 we see that when new notifications

exist, the Windows Phone version of MOPSI shows the actions button with a red color. A

sound is also played the moment new notifications are retrieved.

Figure 48: Red actions button when new notifications

Pressing the button opens the actions page (Figure 49), were the user can scroll through

the list of recent actions. This is a summary of what friends were doing, sorted by time.

Tapping any element of the list has a different behavior depending on the action type. For

example, when tapping the Radu took a photo element, the photo is opened in the photo

viewer. On the other hand, tapping Pasi passed by Aura shows the service details of the

Aura restaurant. In addition to the notifications displayed inside the actions page, the new

symbol is used on the friends page to indicate unseen elements from a particular user

collection. Users Oili and Pasi have new elements in their collections (elements not seen

yet by the mobile user).

52

Figure 49: Recent user Actions (left) and new collection elements (right)

The actions page is useful because it provides navigation shortcuts inside the MOPSI

application. To see the photo that Radu has taken requires only a single tap. Otherwise

the photo should be opened using the following four steps (Figure 50):

1. Go to the friends page

2. Scroll to find Radu in the list

3. Open Radu’s photos

4. Scroll in Radu’s photo collection to find the photo if not the first in the list

Figure 50: Steps to open a certain photo when not using the actions page

53

To find information about the Aura restaurant without using the actions page shortcut is

also possible by following the following five steps:

1. Go to the guide page

2. Enter the keyword Aura

3. Tap the search button

4. Scroll to find the Aura service in the list

5. Tap the Aura service result

The elements in the actions page are not always important to the MOPSI users, however,

when they are, the time needed to get the needed information decreases substantially.

On the website, the three most recent notifications are shown under the users tab (Figure

51). The hyperlinks are clickable and have the same effect as on the mobile devices.

Clicking Pasi, Jukka or Minttu opens their respective profile pages, clicking Valintatalo

shows the service information where Radu passed by, clicking Completed Walking tour

of 1 km 25 m will show Mohamed’s walking route and clicking and so on. The list is

refreshed every 30 seconds to display new notifications. A more extended view can be

seen on user’s profile pages where 20 notifications are shown.

Figure 51: MOPSI website showing the three most recent actions for each user

Linking the MOPSI account to a Facebook
29

 account is possible (Figure 52). Doing this,

selected user actions can be shared with the friends outside MOPSI. For example, when

new photos or routes are published to Facebook, the notification system from Facebook

shares it with Facebook friends.

29

 http://www.facebook.com

http://www.facebook.com/

54

Figure 52: MOPSI account sharing information on Facebook

55

5 Experimental results

We evaluate the action detection system using real information collected from MOPSI

users during the most recent month August 2013, consisting of approximately 800 users

in total. Ground truth
30

 was collected from the nine most active users willing to

participate in a survey.

Each user was asked to mark whether his/her actions identified by MOPSI matched to

what actually happened. The actions were listed as illustrated in Figure 53. The location

of the actions varied significantly as the users traveled in six countries: Finland,

Romania, Germany, Latvia, Lithuania and the United Kingdom.

Figure 53: User Julinka's actions from August 2013

If an action was correctly detected, users were asked to mark the checkbox. If the action

did not happen or the information is inaccurate, users were asked to leave the checkbox

unchecked and specify the reason in the Comments field. If the users do not remember of

a particular action they were asked to leave the checkbox unchecked and leave the

Comments field empty. In this way only confirmed information is used for the evaluation.

For example in Figure 54, Karol marks the bicycle action true even if roller skating was

the true action but it is not one of the recognized movement types detected in MOPSI and

bicycle fits as the most similar mode of transportation. Pasi and Minttu were orienteering.

30

 http://cs.uef.fi/~radum/actionsGroundTruth/

http://cs.uef.fi/~radum/actionsGroundTruth/

56

They met at the start and finish, but did not meet in the forest during the orienteering

despite MOPSI claims meeting detection. One reason for how this can happen is

inaccurate GPS signal. Another reason may be too high threshold (25 meters) which

combined with orienteering specific factors like visibility reduced by trees and the

frequent checking of the map could mean that the two users did not see each other.

User Karol:

User Pasi:

Figure 54: Sample answers from the questionnaire

MOPSI recognized a total of 1197 actions during the one month interval (Table 2). The

action count forms an uneven distribution. The most common actions detected were the

photo taking or uploading. These are followed by the meeting, tracking, pass by, visit and

leave actions in this particular order. The visit and leave actions are the fewest. This has

mostly to do with the fact that MOPSI services currently only exist in Finland and the

users were traveling outside the country when the actions for generating the ground truth

were recorded. Another reason is that people usually visit services in weekend and spare

time, while the other actions can appear more frequently.

Table 2: Number of detections for each action type per user

Action

User
Photo Meeting Tracking Pass by Visit Leave

Karol 7 5 5 10 0 0 27

Mikko 2 0 3 0 0 0 5

Mohamed 27 18 1 16 3 3 68

Oili 434 3 2 2 0 0 441

Mohammad 4 2 5 0 0 0 11

Pasi 247 30 27 13 2 2 321

Radu 17 3 2 0 0 0 22

Andrei 40 29 22 10 2 2 105

Julinka 125 14 30 26 1 1 197

 903 104 97 77 8 8 1197

57

We summarize results from the survey in Figure 55 where we calculate the detection

error according to the action type. The error is calculated by counting the incorrectly

detected user actions as a percentage from the total actions detected by the system. For

example, 6.7% error for the meeting action is a result of 7 misdetections out of 104

detections in total.

Figure 55: Distribution of correctly detected actions (left), and

detection errors by action type (right)

We can calculate an un-weighted average error (UA) for the action detection. When a

user performs an action at random, the probability of incorrect detection is estimated by

the UA value. UA is obtained using the following formula:

where:

 N is the number of action types we perform the evaluation for,

 ei is the error probability for the type i,

 ci is the number of correctly detected actions of type i and

 Ci is the total number of detected actions of type i

Because of the uneven distribution of performed actions we also calculate a weighted

average error (WA) using the formula:

58

We can see in Table 3 that WA is less than UA. This is because actions that happen most

frequent present less error in detection. In MOPSI, photo actions represent 75% of all

detected actions. The weight of these actions combined with a low error in detection

(0.1%) help decrease the WA.

Table 3: Average error values

UA 5.9

WA 2.4

Figure 56 summarizes the detection errors for the nine users that participated in the

survey. Detection error is below 20% for every user. The error for the top two most active

users, Pasi and Julinka is also shown.

Figure 56: Error by user (top), user-specific errors by action type (bottom)

Taking or uploading photo are detected most accurately (error of 0.1%) because they are

triggered actions, recorded when individual users send upload requests to the server. The

requests contain the photo itself, description and the location. This is all that is needed to

59

recognize the action. If the photo information fails to reach the server, another attempt is

made until the server confirms that the photo is in the database and the action is detected.

Therefore, it is very rare that the action detection fails here. Situations in which failure

can happen are: device running out of battery, device running out of memory and

application crashes at a critical moment, which can lead to lost photos.

Meeting actions have a probability of 6.7% to be miss-detected (Figure 55). In Table 4

selected comments from users about three false meeting detections are shown. The

comments identify two scenarios in which the detection fails. Firstly, users Pasi and

Karol have the same problem: multiple meetings with the same person are detected

instead of just one that lasted longer. The second situation happens when users are close

to each other, but not meeting. This is identified by Julinka in her comment.

Finishing tracking is also a triggered action but the analysis of the movement type

incorrectly is considered here as an error. Detecting them properly causes the most errors

currently, relative to the other action types. Some typical errors are shown in Table 4.

The pass by is a concluded action for which variables such as GPS accuracy, service

locations and area occupied by the services influence the correct detection. It is difficult

to analyze why misdetections appear. In some cases, however, the reasons are known.

For example, user Karol’s response on visiting a coffee place, the pass by happened

because the previous day (when last time using GPS) Karol was around the coffee place.

When the GPS sensor starts in a mobile device, it takes time before location is

established, and the previous location is sometimes used until then. In this case, Karol

appeared near the coffee place and our system interpreted this situation as a pass by.

Similar situation happened for Pasi when he started the application on a device which he

last used the previous day close to the restaurant.

Misdetection of the visit actions is less frequent. For a visit to be detected, the user needs

to be close to the service for a considerable amount of time. This fact limits false

detections such as the ones described by Karol and Pasi for pass by. We note, however,

that only eight visits happened during the entire month, which is significantly smaller

than that of other actions. The reason has partly to do with the fact that MOPSI services

currently only exist in Finland and the users were traveling abroad when the actions for

generating the ground truth were recorded. Another reason is that people usually visit

services during weekend and spare time, while the other actions can appear more

frequently. For example tracking can be done when going to and back from work. Here it

is typical that meetings take place. Passing by happens implicitly when moving around

the city and users usually take photos when something interesting, fun or noteworthy

takes place.

60

The same situation applies for the leave action which implies that a visit needs to be

detected first before leave can happen. More testing is therefore needed in the future.

Table 4: User comments on badly detected actions

User Meeting User comment

Pasi Pasi and Minttu(19:15, 19:38, 19:46)

I think we were together from

19:15-19:46 entire time

Julinka Radu and Julinka probably, because we were

neighbours

Karol Andrei and Karol (19:21, 19:46, 20:17) we never separated, were

rollerskating all the time

together

 Tracking

Julinka Completed Running tour of 1 km 250m it was a bicycle tour

Pasi Completed Car tour of 16 km 863m 32 km running tour!

Pasi Completed Walking tour of 10 km 771m Orienteering (Run+Walk)

Mohammad Completed Running tour of 2 km 689m I didn't do running, probably it

has been cycling

 Pass by

Pasi Ravintola Martina Time does not match. We were

in Lehmo!!!

Karol Kahvila Pilkku - Joensuun Seutukirjasto not possible, because I wasn't

in Joensuu

These results only measure the correctness of detected actions. It is very difficult to find

what actions were missing and should have been detected. Users are not expected to

know or remember what else they did during some time interval (all places they visited or

passed by and the people they met for example). It might be possible for taking photos

and tracking, however, no critical errors exist there.

http://cs.joensuu.fi/mopsi_dev/?tab=routes&userId=898&start=1376265600000&end=1376323589469
http://cs.joensuu.fi/mopsi_dev/?tab=routes&userId=13&start=1376265600000&end=1376312499057
http://cs.joensuu.fi/mopsi_dev/?tab=routes&userId=13&start=1376438400000&end=1376498155825
http://cs.joensuu.fi/mopsi_dev/?tab=routes&userId=244&start=1377907200000&end=1377935952424
http://cs.joensuu.fi/mopsi_dev/index.php?search=Ravintola%20Martina
http://cs.joensuu.fi/mopsi_dev/index.php?search=Kahvila%20Pilkku%20-%20Joensuun%20Seutukirjasto

61

6 Conclusions

In this thesis we described the user action detection and notification modules for the

MOPSI
31

 application. MOPSI is a locator assistant that helps individuals to know where

their friends are and what is around them. It supports photo sharing, easy tracking, and

chatting with friends. MOPSI application offers location-based services such as search,

recommendation, data collection, public transport information, users tracking and the

relatively new user action notifications. By user action we understand a user’s behavior

at a certain time. Location-based actions take the user location into account.

Part of the user actions are triggered, meaning that they are recognized upon a direct

server request made by a single user. We can detect login, logout, taking or uploading

photos, completing tracking and creating a service in this category. Other actions need to

be concluded based on additional system information. These include changing city,

visiting or passing by places and meetings between users. Recognizing the concluded

actions is not trivial due to inaccuracy in GPS signal and user movement. We presented

the link method as a way to effectively deal with inaccurate GPS data and avoid

misdetection. We employed hierarchical clustering in order to detect groups of stationary

or traveling users. To handle moving targets we use interpolation to predict a user’s

location at a time convenient to perform distance measurements.

A subset of these actions is relevant to some users at a given time. The job of the

notification module is to deliver these actions to users which are interested in them. The

motive of notifications is to point out actions at the moment they are happening. This

way, users know what their friends are up to in real-time. Another motive is to present an

easy to access summary of what friends have been doing recently. Third motive is to help

users to navigate inside the application by providing shortcuts to the respective action.

To study the effectiveness of the action detection methods we created a ground truth

database. The most active MOPSI users participated in a survey where they are asked to

mark if actions identified by the system have indeed happened. The actions from the most

recent month (August 2013) were listed for each user. The location of the actions varied

significantly as during August MOPSI users traveled in the following countries: Finland,

Germany, Latvia, Lithuania, Romania and the United Kingdom. The qualitative study

showed that the system performs with an average action identification error of below 6%.

The study in this thesis opens up avenues in location based research. One of the

directions is to find location clusters. This way we can acknowledge relevant places that

do not exist explicitly in our database. Different location data can be used in the

31

 http://cs.uef.fi/mopsi

http://cs.uef.fi/mopsi

62

clustering. For example, if end points from the routes of a user are used, the clusters will

point to frequent destinations such as home, workplace, etc. If photo locations are used

instead, it is likely the clusters represent places worth to visit like parks, monuments, etc.

When locations where users meet are clustered it is likely that the result will point to

places where people socialize like bars, restaurants, etc.

Another possibility is to find similar users by analyzing their actions. User similarity

aims to group users with common interests together in the hope of improving their social

interaction. This would also improve the recommendation system described in [15]. For

example if user A visits coffee shop C1 and user B visits coffee shops C2 and C3 then

users A and B are similar in the aspect of liking coffee shops. The recommendation

system can use this data and recommend C2 and C3 to user A and C1 to user B.

Detecting the visit, pass by or leave actions can be improved in several ways. Firstly,

representing the services as polygons in the database can reduce false detections. The

second would be to associate an estimated amount of time the user needs to use a given

service will improve the classification. For example, the time spent at a drive-through can

be a matter of minutes whereas visiting a restaurant often takes an hour or more.

Currently this scenario will appear to be a pass by instead of a visit.

Another extension could be to change the notification filtering from manual settings to

automatic based on the actions a user shows interest in. The general idea is to record the

actions for which a given user did not present interest in the past and automatically filter

similar actions out for that user in the future.

63

REFERENCES

[1] R. Helm, R. Johnson, J. Vlissides E. Gamma, "Observer," in Design Patterns:

Elements of Reusable Object-Oriented Software.: Addison-Wesley, 1994, pp. 326-

337.

[2] F.C. Gartner, O. Kasten, A. Zeidler L. Fiege, "Supporting mobility in content-based

publish/subscribe middleware," in Proceedings of the ACM/IFIP/USENIX 2003

International Conference on Middleware, New York, 2003, pp. 103-122.

[3] V. Cahill R. Meier, "On Event-Based Middleware for Location-Aware Mobile

Applications," IEEE Transactions, Software Engineering, vol. 36, no. 3, pp. 409-

430, 2010.

[4] N. Davies, K. Mitchell, A. Friday K. Cheverst, "Experiences of developing and

deploying a context-aware tourist guide: the GUIDE project," in MobiCom '00

Proceedings of the 6th annual international conference on Mobile computing and

networking, New York, 2000, pp. 20-31.

[5] Y. Zheng, Q. Luo, X. Xie X. Xiao, "Inferring social ties between users with human

location history," Journal of Ambient Intelligence and Humanized Computing, pp. 1-

17, 2012.

[6] E.D. Nitto, A. Fuggetta G. Cugola, "The JEDI event-based infrastructure and its

application to the development of the OPSS WFMS," IEEE Transactions, Software

Engineering, vol. 27, no. 9, pp. 827-850, 2001.

[7] M. Hauswirth, M. Jazayeri I. Podnar, "Mobile push: delivering content to mobile

users," in Proceedings of the 22nd International Conference on Distributed

Computing Systems Workshops, Vienna, 2002, pp. 563-568.

[8] D. Wunsch X. Rui, "Survey of clustering algorithms," Neural Networks, IEEE

Transactions, vol. 16, no. 3, pp. 645-678, 2005.

[9] A. Tabarcea, M. Chen, P. Fränti K. Waga, "Detecting movement type by route

segmentation and classification," in Collaborative Computing, Pittsburgh, 2012, pp.

508-513.

[10] A. Tabarcea, R. Mariescu-Istodor, P. Fränti K. Waga, "Real Time Access to

Multiple GPS Tracks," in International Conference on Web Information Systems &

64

Technologies (WEBIST'13), Aachen, 2013.

[11] J. Kuittinen, A. Tabarcea, L. Sakala P. Fränti, "MOPSI location-based search engine:

concept, architecture and prototype," in ACM Symposium on Applied Computing

(SAC'10), Sierre, 2010, pp. 872-873.

[12] P. Fränti, S. Mehta G. Hariharan, "Data Mining for Personal Navigation," in SPIE

Conference on Data Mining and Knowledge Discovery: Theory, Tools, and

Technology IV, Orlando, 2002, pp. 355-365.

[13] A. Tabarcea, J. Kuittinen, V. Hautamäki P. Fränti, "Location-based search engine for

multimedia phones," in IEEE International Conference on Multimedia & Expo

(ICME’10), Singapore, 2010 , pp. 558-563.

[14] V. Hautamäki, P. Fränti A. Tabarcea, "Ad-hoc georeferencing of web-pages using

street-name prefix trees," in International Conference on Web Information Systems

& Technologies (WEBIST’10), Valencia, 2010, pp. 237-244.

[15] J. Chen, A. Tabarcea P. Fränti, "Four aspects of relevance in sharing location-based

media: content, time, location and network," in International Conference on Web

Information Systems and Technologies, Noordwijkerhout, 2011.

[16] A. Tabarcea, P. Fränti K. Waga, "Recommendation of Points of Interest from User

Generated Data Collection," in Collaborative Computing, Pittsburgh, 2012, pp. 550-

555.

[17] A. Rosi, M. Mamei, F. Zambonelli L. Ferrari, "Extracting urban patterns from

location-based social networks," in 3rd ACM SIGSPATIAL International Workshop

on Location-Based Social Networks, New York, 2011, pp. 9-16.

[18] R. Arkins, B. Segall P. Sutton, "Supporting Disconnectedness – Transparent

Information Delivery for Mobile and Invisible Computing," in Proceedings of the

First IEEE/ACM International Symposium on Cluster Computing and the Grid,

Brisbane, 2001.

[19] P. Fränti A. Kolesnikov, "Polygonal approximation of closed discrete curves,"

Pattern Recognition, vol. 40, no. 4, pp. 1282-1293, 2007.

[20] J.H. Ward, "Hierarchical Grouping to Optimize an Objective Function," Journal of

the American Statistical Association, vol. 58, pp. 236-244, 1963.

[21] T. Kaukoranta and O. Nevalainen P. Fränti, "On the splitting method for vector

65

quantization codebook generation," Optical Engineering, vol. 36, no. 11, pp. 3043-

3051, 1996.

[22] O. Virmajoki, V. Hautamaki P. Franti, "Fast Agglomerative Clustering Using a k-

Nearest Neighbor Graph," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 28, no. 11, pp. 1875-1881, 2006.

[23] Z. Wan, K. Waga, P. Fränti A. Tabarcea, "O-Mopsi: Mobile Orienteering Game

using geotagged photos," in International Conference on Web Information Systems

& Technologies (WEBIST'13), Aachen, 2013.

[24] H. Garcia-Molina Y. Huang, "Publish/subscribe in a mobile environment," Wireless

Networks - Special issue: Pervasive computing and communications, vol. 10, no. 6,

pp. 643-652, 2004.

[25] R. Sibson, "SLINK: An optimally efficient algorithm for the single-link cluster

method," The Computer Journal (British Computer Society), vol. 16, no. 1, pp. 30-

34, 1973.

[26] W.H. Equitz, "A New Vector Quantization Clustering Algorithm," IEEE

Transactions on Acoustics Speech and Signal Processing, vol. 37, no. 10, pp. 1568-

1575, 1989.

