

University of Eastern Finland

School of Computing

Master’s Thesis

Swap-based Clustering for
Location-based Services

Jinhua Chen

January, 2011

ABSTRACT

Clustering is an unsupervised learning method widely used in many fields, such as
machine learning, pattern recognition, data mining and image analysis. The goal of
this study is to investigate swap-based clustering and its application to location-based
services. Swap-based clustering is a local search heuristic trying to find the optimal
centroid locations by performing a sequence of centroid swaps between existing
centroids and a set of candidate centroids.

Firstly, the thesis presents several swap-based clustering algorithms, such as random
swap, deterministic swap and hybrid swap which is a combination of random and
deterministic swap. Then we propose a simple and efficient swap-based clustering
algorithm, called smart swap. It performs the swap by finding the nearest pair among
the centroids and sorting the clusters by their distortion values, and then it swaps one
of the nearest pair centroids to any position in the cluster from the clusters list sorted
by distortion value. K-means iteration is employed to repartition the dataset and
fine-tune the swapped solution.

Experimental results of swap-based clustering methods on both synthetic datasets and
real datasets are provided and analyzed. Finally, we study location-based services and
in one specific application, MOPSI project. We then apply the clustering in the
MOPSI applications to reduce the clutter problem in map visualization in different
scales, using a split smart swap clustering method to cluster the user locations and
using a grid-based clustering with bounding box method to cluster the photo
collections. Experimental results in the studied web applications show that the split
smart swap method works in real-time but is slow for large dataset, and grid-based
clustering method works with good clustering result and significant fast speed.

Keywords: swap-based clustering, smart swap, efficient clustering, location-based
services, map visualization.

 II

ACKNOWLEGEMENTS

I am grateful to University of Eastern Finland for giving the opportunity to participate
in the IMPIT program and broaden my vision and experience.

I would like to sincerely thank my supervisor, Professor Pasi Fränti, for his significant
guidance and helpful advices to my research and work. I would also like to thank
every member of the Speech and Image Processing Unit, especially the members of
MOPSI project team.

I would like to express my thanks to all of my friends for their support and
encouragement, especially to the Chinese people in Joensuu.

At last, I would like to denote my deepest love and gratitude to my family for their
moral support, and especially to my girlfriend Qinpei Zhao for her endless support
and help to my studies and life. I truly appreciate all of you.

 III

Table of contents
1 Introduction...1

1.1 Overview ..1

1.2 Motivation ..2

1.3 Purpose of the thesis...2

1.4 Organization of the thesis...3

2 Clustering Methods...4

2.1 Notations and definitions..4

2.2 K-means algorithm ...5

2.3 Hierarchical clustering algorithms ...6

2.4 Number of clusters ...8

3 Swap-based Clustering...10

3.1 Random swap ...12

3.1.1 Principle of the algorithm ..12

3.1.2 Number of iterations ..14

3.2 Deterministic swap ...15

3.2.1 Selecting the centroid to be swapped...16

3.2.2 Finding the location for the swapped centroid.................................16

3.2.3 Demonstration of the deterministic swap ..17

3.3 Hybrid swap ...18

3.4 Proposed method: smart swap..20

3.5 Efficiency analysis..23

4 Experiments and Results..26

4.1 Synthetic datasets ...27

4.2 Real datasets ...37

4.3 Result comparisons...41

5 Application to Location-based Services..42

5.1 Location-based services ...42

5.2 MOPSI project..44

5.2.1 Search engine ...44

5.2.2 Photo collection ...46

5.2.3 Route tracking..46

5.2.4 User tracking..47

 IV

5.3 Clustering in MOPSI ..48

5.3.1 Split smart swap clustering ..49

5.3.2 Grid-based clustering with bounding box..53

6 Conclusions..58

References ..60

 V

1 Introduction

1.1 Overview

Clustering is a method of unsupervised learning and a common technique widely used
in many fields, such as machine learning, pattern recognition, data mining and image
analysis. A loose definition of clustering could be “the process of organizing objects
into groups whose members are similar in some way” [41]. A cluster is therefore a
collection of objects that are similar to each other and dissimilar to the objects of
other clusters [41]. We can show the clustering with a simple graphical example in
Figure 1.

Raw data objects Clustered data objects

Figure 1. Example of clustering of data objects.

In this example, we can easily partition the data objects into three clusters shown as
yellow, green and purple cluster. The similarity criterion here is distance: objects
belong to the same cluster if they are “close” according to a given distance function,
which is usually Euclidean distance.

The goal of clustering is to determine the intrinsic grouping in a set of unlabeled data
objects [41]. There are many clustering algorithms including split-and-merge
algorithms such as ISODATA [42], randomized sampling approaches such as CLARA
[43], and methods based on density such as DBSCAN [11]. One of the most popular
and widely studied clustering methods is called k-means clustering [3]. More
information on clustering algorithms can be found in [2].

 1

In this thesis, we study swap-based clustering including random swap [1],
deterministic swap [17], and hybrid swap [23, 24]. Swap-based clustering is a local
search heuristic trying to find the optimal centroid locations by performing a sequence
of centroid swaps between existing centroids and a set of candidate centroids. We then
present a more efficient clustering method called smart swap. Finally, we study
location-based services and in one specific application, MOPSI project. We apply the
clustering in the MOPSI applications to reduce the clutter problem in map
visualization in different scales, using a split smart swap clustering method to cluster
the user locations and using a grid-based clustering with bounding box method to
cluster the photo collections.

1.2 Motivation

Besides the validity of the clustering result itself, computational efficiency is also
considered as one of the most important criteria for selecting a good clustering
algorithm. For swap-based clustering, the idea is simple and it can usually achieve
good result just by random swap, whereas deterministic swap is aimed at being
computationally more efficient. Therefore, researching on clustering quality and
efficiency for selecting the best swap-based clustering variant is needed. On the other
hand, location-based services are nowadays popular in everyday life, for example,
searching the nearest service such as an ATM or hotel; turn-by-turn navigation to any
address, or planning a route. Clustering technique can be used in these location-based
applications to reduce the clutter of map visualization for the geographic information
on the web. Thus, how to apply clustering to the practical applications is very
necessary.

1.3 Purpose of the thesis

This study aims to investigate swap-based clustering algorithms including random
swap, deterministic swap, and hybrid swap, and then proposes a more efficient
clustering algorithm called smart swap. We compare the efficiency and clustering
quality of these swap-based clustering algorithms on both synthetic datasets and real
datasets. Findings are expected to shed light on the selection of proper clustering
algorithm for the user.

In addition, we study location-based services and one of its applications in MOPSI
project. We propose another two clustering algorithms combined with the practical

 2

web applications, split smart swap and grid-based clustering, to reduce the visual
clutter of the map visualization for user locations and photo collections. We consider
that clustering can be applied to real-time applications for a better representation of
data.

1.4 Organization of the thesis

The rest of this thesis is structured as follows. In Section 2, we study the clustering
methods and present two widely used algorithms: k-means clustering and hierarchical
clustering, and then discuss one of the main problems in clustering: the number of
clusters. In Section 3, we study the swap-based clustering algorithms including
random swap, deterministic swap, hybrid swap and the proposed smart swap. The
efficiency of these swap-based clustering methods is also analyzed. In Section 4,
experimental results are reported on both synthetic datasets and real datasets to show
the clustering quality and efficiency. In Section 5, we introduce location-based
services and MOPSI application, and then apply the split smart swap and grid-based
clustering algorithm to the MOPSI web applications to reduce the clutter problem in
map visualization. Conclusions of this study are given in Section 6.

 3

2 Clustering Methods

The clustering problem is defined to partition a set of data objects into subsets (called
clusters) so that objects in the same cluster have similar features. The general
clustering problem includes three sub-problems [1]: (a) selection of the evaluation
function; (b) decision of the number of the clusters; (c) the choice of the clustering
algorithms. Many clustering methods have been proposed in the literature [2]. These
methods can be roughly classified into following five main categories: partitional,
hierarchical, density-based, grid-based, and model-based methods. However,
partitional and hierarchical algorithms are the most significant and widely used in
clustering communities.

In general, partitional clustering methods attempt to decompose the dataset into
various disjoint clusters. They are easy to use and work efficiently. K-means
algorithm [3] is one of the most cited and typical partitional clustering algorithm.
Hierarchical clustering methods seek to build a hierarchy of clusters, and can
generally be classified into two types: agglomerative methods and divisive methods.
Agglomerative method is a bottom-up approach: each observation is considered as
one cluster and then two most similar clusters are merged into one cluster recursively.
Divisive method, on the other hand, is a top-down approach: all observations start in
one cluster, and select one cluster to be split into two clusters recursively.

In this section, we will first give the notations used for clustering and definition of the
evaluation function, and then study the k-means clustering and hierarchical clustering
algorithms. At last we discuss the decision of the number of clusters, which is one
important sub problem in clustering.

2.1 Notations and definitions

To express the clustering problem more formally, we define the following notations
used in the thesis:

N Number of data objects;
M Number of clusters;
X Dataset with N data objects X = {xi}, i = 1,…, N;

 4

C Set of M cluster centroids C = {cj}, j = 1,…, M;
P Set of N partitions P = {pk}, k = 1,…, N.

A cost function is used to evaluate the quality of the clustering methods. There is no
universal function for all clustering, and the choice of the function usually depends on
the application. We consider the clustering problem as an optimization problem, and
mean squared error (MSE) is the most common selection as the cost function for the
optimization problem, calculated as:

∑
=

=
N

i
pi i

cxd
N

Cf
1

2),(1)(2.1.1

where is the centroid of the cluster that x
ipc i is assigned to, and d is a distance

function. Euclidean distance and Manhattan distance are the most well-known
methods for distance measurement. Euclidean distance of a D-dimensional data object
is calculated as:

∑
=

−=
D

i
ixixxxd

1

2
2121])[][(),(2.1.2

2.2 K-means algorithm

K-means [3] is the most famous clustering algorithm, which aims to partition N
objects into k clusters so that each object belongs to the cluster with the minimum
Euclidean distance to the cluster centroid. It starts with an initial solution, and then
uses an iterative refinement technique, which is also referred to generalized Lloyd’s
algorithm [4], particularly in the computer science community. It contains 3 steps as
follows.

1. Initialization step: Initial centroids C of the clusters are generated by taking M
data objects chosen randomly from the dataset. The number of clusters M is given
beforehand.

MjNrandomixc ij ≤≤== 1),,1(| 2.2.1

2. Assignment step: Assign each object to the cluster with the nearest centroid in
respect to the distance function.

],1[),(minarg 2

1
Nicxdp ji

Mj
i ∈∀←

≤≤

 2.2.2

 5

3. Update step: Centroid of each cluster is recalculated as the mean of the new
partition.

],1[
1

Mj
x

c

jp

jp
i

j

i

i ∈∀←
∑
∑

=

= 2.2.3

The assignment step and update step are performed iteratively until convergence.
Often the number of iterations is set to a fixed number that depends on the data set
and the desired clustering quality. A demonstration of the k-means algorithm is shown
in Figure 2.

1) k initial “means”
(k=3) are randomly
selected from the
data set (shown in
color).

2) k clusters are
created by assigning
every object to the
nearest mean.

3) Recalculate the
centroid of each of
the k clusters

4) Steps 2 and 3 are
repeated until the
centroids no longer
move.

Figure 2. Demonstration of the k-means algorithm [5].

The k-means algorithm is very simple to use and reasonable effective in most cases.
However, there is no guarantee that it will converge to a global optimum. The final
results mainly rely on the initial steps, which results in the main drawback of k-means:
getting stuck at a local minimum. It is common to run it multiple times with different
initialization of centroids. This approach is called repeated k-means.

2.3 Hierarchical clustering algorithms

Hierarchical clustering method creates a hierarchy of clusters, which can be presented
in a tree structure also known as a dendrogram. A dendrogram is a tree diagram
frequently used to present the arrangement of the clusters. The root of the tree consists
of a single cluster containing all objects, and the leaves correspond to individual
objects. Basically hierarchical clustering algorithms are categorized into
agglomerative, in which one starts at the leaves and successively merges clusters
together, and divisive, in which one starts at the root and recursively splits the clusters.
Figure 3 illustrates the process of hierarchical clustering.

 6

Raw data objects Example of hierarchical clustering dendrogram

b

d

c

e

a a b

d e

c d e

a b c d e

agglomerative

divisive
Split 0Split 1Split 2Split 3Split 4

Merge 1 Merge 2 Merge 3 Merge 4Merge 0

a b d

c

e

Figure 3. Dendrogram of hierarchical clustering.

The choice of which clusters to merge or split is determined by a linkage criterion,
which is a function of the pairwise distances between objects. For agglomerative
clustering, there are three main methods: single-link, complete-link and average-link,
which differ in the similarity measures they employ. In single-link (or single linkage)
clustering, two clusters whose two closest members have the smallest distance (two
clusters with the smallest minimum pairwise distance) at each step. In complete-link
(or complete linkage) clustering, two clusters whose two furthest members have the
the smallest distance (two clusters with the smallest maximum pairwise distance) at
each step. In average link (or average linkage) clustering, two clusters whose average
of all members have the smallest distance (two clusters with the smallest average
pairwise distance) at each step.

In addition, Ward’s method [6] is distinct from the above methods because it uses
variance approach to evaluate the distances between clusters. This method attempts to
minimize the error sum-of-squares (ESS) of any two clusters that can be formed at
each step.

Hierarchical clustering uses distance matrix as clustering criteria, and the termination
condition can be specified by user, as the desired number of clusters. Hierarchical
clustering outputs a hierarchy, a structure that is more informative, and it does not
require user to pre-specify the number of clusters [7]. The major weaknesses are the
time complexity is at least O(N2) and they can never undo what was done previously.
Furthermore, some algorithms integrate hierarchical with distance-based clustering
such as BIRCH [8], CURE [9] and CHAMELEON [10].

 7

2.4 Number of clusters

Determining the number of clusters in a data set is an important sub-problem in
clustering, and it is a distinct issue from the process of actually solving the cluster
problem since a priori knowledge is generally not available.

For a certain class of clustering algorithms such as k-means, the number of clusters k
is specified already. Other algorithms, for example, DBSCAN [11] and OPTICS [12],
do not require the specification of the number k.

The correct choice of k is often ambiguous and depends on the shape and scale of the
distribution of the objects in a data set, and the desired clustering result user wants. If
the number k is too small, different objects will not be separated. On the other hand,
increasing k will reduce the amount of error in the resulting clustering but similar
objects can be separated into different clusters. Both of these situations should be
avoided. The cluster validation attempts to solve this problem and find the
appropriate number of clusters. The process of cluster validation is to perform
clustering over a wide range of values k and then find the optimal number that
optimizes the given cluster validity criterion (Figure 4).

Figure 4. Flow charts view of cluster validation.

Basically there are three following approaches for measuring cluster validity.

 External index: Measure the similarity of clustering against known class
labels (ground truth). For example, using entropy. However, ground truth is
usually not available.

 Internal index: Measure the goodness of a clustering with intrinsic
properties of data set without any external information, for example, using Sum
of Squared Error (SSE), Silhouette coefficient [13].

 Relative index: Evaluate the quality of a clustering by comparing it to other
clustering schemes, resulting by the same algorithm but with different parameter

Clustering
algorithm

INPUT:
Dataset(X)

Validity
index

Clustering
result Codebook

Partition

Different number of clusters k

Min
or

Max
OUTPUT:
Optimal k*

 8

values. Often an external or internal index is used for this function, e.g., SSE or
entropy.

For more information about the clustering validity methods, you can find in [14], [15].

 9

3 Swap-based Clustering

K-means gets stuck easily in locally optimal solutions that are far from globally
optimal. In general, optimal clustering result can be achieved via finding optimal
allocation of centorids. Swap-based clustering is a local search heuristic to find the
optimal centroids, which works by performing a sequence of centroid swaps between
existing centroids and a set of candidate centroids, and then by fine-tuning the exact
location by a few iterations of k-means as demonstrated in Figure 5.

Current solution Centroid swapping

Two centroids, but
only one cluster.

One centroid, but
two clusters.

Local repartition Fine-tuning by K-means

Swap is made from
centroid rich area to
centroid poor area..

Figure 5. Demonstration of swap-based clustering for a data set with 5000 data
points and 15 clusters [23].

Several swap-based clustering algorithms have been considered in literature [1,
16-25]. Randomized local search (random swap) [1] is based on a simple swapping
technique, which is performed by replacing a randomly selected centroid by a
randomly selected data object. It applies first-improvement search strategy and
accepts the new solution every time it improves the previous solution, as measured by

 10

the cost function. The algorithm is easy to implement and it always finds the correct
clustering eventually. In a so-called J-means algorithm [16], the swap relocates the
centroids by considering all possible data objects. J-means and random swap achieve
good clustering result but they do not always work efficiently since they will generate
a large number of candidate solutions during swapping. Deterministic selection of the
centroid to be swapped usually can speed up the algorithm. Therefore, some
deterministic swap-based methods have been considered by selecting the centroid to
be swapped as the one that increases the cost function value least [17, 18], or by
merging two existing clusters [19, 20, 21] following the spirit of agglomerative
clustering. The replacement location of the swapped centroid can be chosen either by
considering locations of all possible data vectors [19], splitting an existing cluster
[19], [22], or by using some heuristic such as selecting the cluster with the largest
distortion [17].

The main drawback of the above deterministic swap methods is their computational
complexity. Even though the correct clustering can be obtained by much fewer swaps
compared to J-means and random swap, the time spent for selecting the best centroid
is higher, which can make the overall efficiency lower. Another drawback is that the
deterministic swap may get stuck in a local minimum if randomness is completely
eliminated in the process [23].

The local minimum problem is improved by considering four combinations of swap
strategy (hybrid swap) [24]: 1. random removal with random addition; 2. random
removal with deterministic addition; 3. deterministic removal with random addition; 4.
deterministic removal with deterministic addition. The combination of random
removal and deterministic addition (RD) provided the best overall performance. The
problem of high time complexity was attacked in [23] by proposing a faster
implementation of the deterministic removal by maintaining secondary partition.

Despite these improvements, the time complexity is still high for real-time
applications. Therefore, we propose a simpler and more efficient alternative for the
swap-based algorithm, called smart swap [25]. It can be considered as one of the
deterministic swap-based algorithms. Instead of calculating the optimal choice of the
centroid to be removed, it finds the nearest pair of centroids as a target, and removes
randomly one of the pair. This can be implemented in O(M2) time. It then replaces the
chosen centroid in the cluster with the highest distortion. For efficient implementation,
we employ a fast variant k-means to fine-tune the swapped result [26].

 11

3.1 Random swap

The random swap (randomized local search) [1] is based on a simple cluster swapping
technique. It starts from any initial solution. At each step, one cluster centroid to be
swapped is randomly selected, and then relocated into another randomly selected
location. After that, local repartition is performed and the clustering is fine-tuned by
two k-means iterations. The swap will be accepted if the clustering quality improves.
This trial-and-error approach is very simple to implement and very effective in
practice.

3.1.1 Principle of the algorithm

The algorithm contains the following steps.

Initialization step: Initial centroids C are generated by taking M data objects chosen
randomly from the dataset.

MjNrandomixc ij ≤≤== 1),,1(| 3.1.1

Partition step: Optimal partition is obtained by assigning each object in the dataset X
to the cluster with the nearest centroid in respect to the distance function, and then
gets the partition of the clustering P.

],1[),(minarg 2

1
Nicxdp ji

Mj
i ∈∀←

≤≤

 3.1.2

Swap step: The centroid cj to be swapped is chosen randomly and relocated into the
location of data object xi which is chosen randomly as well.

),1(),,1(| NrandomiMrandomjxc ij ==← 3.1.3

Local repartition step: It contains two steps. The first step is to perform the optimal
partition only for the data objects in the swapped cluster cj, which will be removed
from the clusters.

jpicxdp iki
Mk

i =∀←
≤≤

|),(minarg 2

1
 3.1.4

 12

The second step is to create the partition for the new cluster in the region where the
swapped centroid is relocated.

() []Nicxdp ki
pkjk

i
i

,1,minarg 2 ∈∀←
=∨=

 3.1.5

The motivation of the local repartition is that only one centroid is changed for each
swap, which will affect the partition around the centroid. Rest of the partition remains
unaffected. Furthermore, if the original partition is optimal (in respect to the previous
C), the new partition is also optimal (in respect to the modified C). In this case, the
local repartition corresponds to the optimal partition. However, the optimal partition
takes O(MN) time but local repartition requires only O(N) time.

Fine-tuning step: For each swap iteration, one centroid is changed. However, even a
single swap is a big change compared to the previous partition. The local refinement
is therefore enhanced by applying k-means iterations. Usually two k-means iteration
is enough providing best time-quality tradeoff [1].

Evaluation step: If the new partition provides lower distortion than the previous
partition, the swap will be accepted. Usually, MSE is used as the cost function (2.1.1).

A pseudo-code of the random swap is shown in Figure 6.

Random swap algorithm (X) → C, P

C ← InitializeCentroids (X);

P ← OptimalPartition(X, C);

REPEAT T times

 Cnew← RandomSwap(C);

 Pnew ← LocalRepartition(P, Cnew);

 KmeansIteration(PP

new, Cnew);

 IF f(PP

new, Cnew) < f(P, C) THEN

 (P, C) ← PP

new, Cnew;

Figure 6. Pseudo-code of random swap algorithm. The number
of iterations T is fixed.

 13

3.1.2 Number of iterations

To ensure a good clustering quality, the number of iterations T for random swap
should be set to larger enough to find good (successful) swaps, which can reduce the
cost function MSE and improve the clustering. At first sight, the probability for a
good swap appears to be rather small and a large number of iterations would therefore
be needed.

Given the number of clusters M, the probability for selecting the correct cluster
centroid to be swapped is 1/M, and the probability for selecting the right cluster to be
relocated is also 1/M (the exact location in the cluster is not very important due to
k-means fine-tuning). Thus, the probability for a good swap is at least (1/M)2.
However, the k-means fine-tuning is capable of relocating centorid gradually if the
movement happens among neighbor clusters. It is therefore not necessary to find
exactly the correct locations but to select the centroid to be swapped and the place to
be relocated in the neighbor clusters.

For a more accurate analysis, we need to estimate the size of neighborhood. The
number of neighbor clusters is denoted by α, which depends on the number of clusters
M and the dimensionality. The probability for a good swap p can now be estimated as
a function of α and M [27]:

2)/()/()/(MMMpgood ααα =×= 3.1.6

With the probability, we can estimate the number of iterations T needed to find a good
swap. Suppose that we want to find a good swap with the probability plimit (e.g. 95%).
We use the q as the probability of failure to find a good swap, so q can be calculated
as: q = 1-plimit. The expected number of iterations T can be calculated as follows.

)1ln(

ln
)1ln(

ln

)1(

2

2

M

q
p
qT

qp

good

T
good

α
−

=
−

=⇔

=−

 3.1.7

The upper limit of T is:

2

2

2
2

2

2 lnln

)1ln(

ln
ααα
Mq

M

q

M

qT ⋅−=
−

≤
−

=
3.1.8

 14

The lower limit is similar, so the T has tight bounds as:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅Θ= 2

2
ln -

α
MqT 3.1.9

Take the example of the dataset in Figure 5, we can estimate that the clusters have 4
neighbor clusters on average and the number of clusters M is 15. According to
Equation (3.1.9), T = 41 iterations would be expected to find the good swap with 95%
probability (q = 0.05), and T = 95 iterations with 99.9% probability. The dependency
between p (p = 1 - q) in percentage and T is further demonstrated in Figure 7.

0

20

40

60

80

100

0 50 100 150 200 250 300
Iterations

p

Figure 7. Probability of success p in percentage by iterations [27].

The number of iterations T we analyzed above is just for the case that only one good
swap is needed for the clustering. To achieve good clustering quality, one good swap is
not enough. However, it is very rare (< 2%) that three or more good swaps are needed
observed from a large number of experiments.

3.2 Deterministic swap

In general, the clustering can be found only in a few swaps if the algorithm knows the
centroid which should be swapped and the location where it should be relocated.
Deterministic swap consists of two steps: selecting the centroid to be swapped and
finding the location for the swapped centroid. The goal is to find the good swaps by
systematic analysis rather than trial-and-error manner.

 15

3.2.1 Selecting the centroid to be swapped

Several simple heuristic criteria can be considered for the selection: cluster with
smallest size or smallest variance but these criteria do not work very well in practice.
Some other approaches such as merging two existing clusters as in agglomerative
clustering [18], and applying split-and-merge strategy as in [20, 21]. These
approaches are possible to work but operating the clusters as entity can restrict the
clustering too much and may result in the problem of getting stuck in a local
minimum [23]. Considering the clustering problem as an optimization problem, it is
sensible to select the cluster centroid to be swapped (removed) that increases the cost
function value least [17, 18]. For calculating the removal cost, first it needs to find the
second nearest centroid qi for a given data object xi in the partition pi of the cluster to
be removed, calculated as below:

2

1
minarg ji

pj
mj

i cxq
i

−=
≠
≤≤

3.2.1

The removal cost for a cluster (j) can now be estimated by summing up the
differences if the data objects in the cluster are repartitioned to their second nearest
one qi.

() []MjcxdcxdD
jp

jiqij
i

i
,1),(),(∈∀−= ∑

=

 3.2.2

where d denotes the distance function. Taking into account that the centoids will be
updated after the repartition, it is calculated as [17]:

∑
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

+
=

jp
jiqi

q

q
j

i

i

i

i cxdcxd
n

n
D),(),(

1
 3.2.3

where nqi refers to the size of the secondary cluster. The drawback of the deterministic
removal is that it takes N distance calculations for each of the M clusters. Thus, the
overall time complexity of the deterministic removal step becomes O(MN).

3.2.2 Finding the location for the swapped centroid

The replacement location of the swapped centroid can be chosen either by considering
locations of all possible data points [19] but it would be very inefficient. To find the
correct location, this task can be divided into two sub tasks:

1) Select an existing cluster.
2) Select the location within this cluster.

Selecting the correct cluster is more important, and the exact location within the

 16

cluster is less significant since k-means will be applied to take care of the local
refinement of the centroid. Thus, the solution is first to select the correct cluster, and
then add the centroid somewhere inside this cluster. One heuristic selection is to
choose the cluster that has the largest distortion [17]. The distortion for the cluster (j)
is calculated as follows:

∑
=

=
jp

jij
i

cxdE),(3.2.4

After the correct cluster is found, the exact location with the cluster can be chosen
considering the following heuristics [23]:

1) Current centroid of the cluster + ε [17].
2) Furthest data point.
3) Middle point of the current centroid and furthest data point.
4) Random.

Since the exact location is not very critical, any heuristic above can be selected.

3.2.3 Demonstration of the deterministic swap

The demonstration of the deterministic swap is shown in Figure 8. The removal costs
and distortion values for each cluster are listed in Table 1. From the Table 1, cluster 1
is the best choice for removal (with minimal removal cost) and its centroid is chosen
to be swapped. Cluster 12 has the largest distortion and is chosen to be the
replacement for the swapped centroid. The furthest data point heuristic is applied in
this example.

Table 1. Removal cost and distortion value for each cluster [23].

j Removal cost (Dj) Distortion (Ej)

1 0.80 0.39

2 1.04 0.64

3 5.48 1.09

4 5.66 0.92

5 6.50 0.76

6 7.67 1.01

7 8.47 0.45

8 9.10 0.75

j Removal cost (Dj) Distortion (Ej)

9 9.90 1.42

10 11.09 1.26

11 11.47 0.61

12 12.17 4.70

13 14.61 0.94

14 16.41 0.93

15 16.68 1.41

 17

Current solution (MSE ≈ 1.73*109) Centroid swapping (MSE ≈ 4.89*109)

Local repartition (MSE ≈ 1.59*109) Fine-tuning by K-means
(MSE ≈ 1.33*109)

13

10

15

6

11

1

7

4

5

12

8

14

2

3

9

Two centroids, but
only one cluster.

One centroid, but
two clusters.

Figure 8. Demonstration of one deterministic swap for a data set with 5000 data
points and 15 clusters [23].

3.3 Hybrid swap

The main drawback of the deterministic swap methods is their computational
complexity. Even though deterministic swap can find the correct clustering by much
fewer swaps in comparison to random swap, the time spent for selecting the best
centroid to be removed is high that may make the overall efficiency lower. Another
drawback is that the deterministic swap may get stuck in a local minimum, which can
easily happen with heuristic swaps.

The local minimum problem is improved by considering four combinations of swap
strategy (hybrid swap) in [24]. Another problem (high time complexity) was attacked
in [23] by proposing a faster implementation of the deterministic removal by
maintaining secondary partition.

 18

The hybrid swap combines the deterministic heuristic with random swap. The
following four combinations are considered.

1) RR = random removal + random addition.
2) RD = random removal + deterministic addition.
3) DR = deterministic removal + random addition.
4) DD = deterministic removal + deterministic addition.

Removal refers to the selection of centroid to be swapped, and the addition to the
replacement location for the swapped centroid. We can see that RR corresponds to the
random swap, and DD to the deterministic swap. Experimentally, RD was found to
have the best performance [24] among these four combinations. However, the
deterministic removal step takes O(MN) time and becomes the bottleneck of the
hybrid swap. This problem is attacked in [23] by proposing a faster implementation of
the deterministic removal by maintaining secondary partition, which only takes only
O(αN) time, where α is the number of the neighbor clusters. For the k-means
fine-tuning, the fast variant k-means [26] is employed for efficient implementation.
The time complexities of these methods are summarized in Table 2.

Table 2. Summary of the time complexities of one iteration for hybrid swap methods.

 Random removal Deterministic removal Deterministic removal with

updating data

 RR RD DR DD D2R D2D

Removal O(1) O(1) O(MN) O(MN) O(αN) O(αN)

Addition O(1) O(N) O(1) O(N) O(1) O(N)

Local repartition and

k-means fine-tuning
O(αN) O(αN) O(αN) O(αN) O(αN) O(αN)

Algorithm in total O(αN) O(αN) O(MN) O(MN) O(αN) O(αN)

From Equation (3.1.9), we can estimate the number of iterations needed for random
swap. For the hybrid swap RD, the probability for selecting the correct centroid to be
swapped is α/M and the probability for selecting the replacement is 1 assuming that
the heuristic works (the cluster with largest distortion). In the same way, the
probability for D2R to select the correct centroid to be swapped is 1 (the cluster with
minimum removal cost) and the probability for selecting the replacement is α/M.
Thus, the probability of a good swap p can be estimated as:

MMpgood /1)/(αα =×= 3.3.1

Furthermore, the number of iterations T can be calculated as:

 19

⎟
⎠
⎞

⎜
⎝
⎛ ⋅Θ=

α
MqT ln - 3.3.2

3.4 Proposed method: smart swap

Despite the random swap is simple and the deterministic swap improves its efficiency,
the overall time complexities of them are still high. Therefore, we propose a simpler
and more efficient alternative called smart swap [25]. It can be considered as one of
the deterministic swap-based algorithms. Instead of calculating the optimal choice for
the centroid to be removed, it chooses the nearest pair of centroids as the target
centroid to be removed (or swapped). This can be calculated in O(M2) time in
comparison to O(MN) of DR. It then replaces the chosen centroid to any position in
the cluster with the highest distortion.

The main challenge of efficient swap-based algorithm is to design an efficient swap
heuristic in as few iterations as possible. Intuitively, combining two closest clusters is
expected to work well, and more importantly, it can be calculated in a straightforward
manner. Hence, we choose the centroid to be removed (cswap) from the nearest pair of
all centroids. This takes O(M2) time by calculating the distance between all two
centroids in C. For the replacement, we choose the cluster with the largest distortion
[17]. The distortion function is calculated as in Equation (3.2.4).

High distortion value indicates a big variance inside the cluster, which implies that
two clusters should appear instead of only one. Thus, the distortion values of the
clusters are used to find the location for replacement and also to ensure that the
algorithm will converge. In order to reduce the problem of getting stuck at a local
minimum, we sort the clusters by their distortion values in descending order, marked
as S = {sorder} (order = 1,…, M). For example, cluster s1 has the largest distortion, and
cluster sM has the smallest distortion. At each swap, the cluster s1 is selected as the
first-priority replacement cluster (clocation). In most cases, this improves the result.
However, when a local minimum is reached, no further improvement can be obtained
using this greedy search strategy.

In the case of local minimum, cluster s2 (the cluster with the second largest distortion)
is selected instead of s1. If it improves, we continue by selecting the cluster s1 again in
the next iteration. Otherwise, we keep on selecting the next cluster (s3) from the

 20

priority queue. Since the cluster with lower order in the priority queue are less likely
to provide improvements, going through all of the clusters would increase the time
complexity unnecessarily. Hence, we set a Maxorder (1,…, M) to define the size of
the search space in this algorithm. We can see that the larger the value of Maxorder is
set, the slower the algorithm. We set Maxorder = logM as a compromise.

K-means algorithm is applied in our algorithm to repartition the swapped data objects
and fine-tune the solutions. One iteration of the traditional k-means algorithm requires
O(MN), which is quite high. To reduce the total time complexity of the algorithm, we
employ a fast variant of k-means [26]. The fast variant classifies the clusters into
active and static clusters. A cluster is labeled as active when the centroid of the cluster
has been changed from previous iteration; otherwise it is labeled as static. Since most
of the clusters belong to the static group after the swap, most calculation depends
mainly on the number of active clusters. The time complexity of this fast variant is
estimated as O(αN) in [24], where α is the number of neighbor clusters.

Centroid Swapping Initialization

Nearest pair
Cluster with
largest distortion

Repartitioning and fine-tuning Iterating and the final result

Figure 9. Demonstration of one run of smart swap algorithm for a dataset
with 5000 data objects and 15 clusters.

 21

Summarizing the ideas above, we demonstrate one run of smart swap algorithm
visually in Figure 9, and then present the algorithm as following steps.

Step 1 (Initialization): Initial centroids C are generated by taking M data objects
chosen randomly from the dataset. Partition the data objects in X with corresponding
C using one k-means iteration and get the partition of the clustering P. We set order =
1, and Maxorder = logM.

Step 2 (Swap): Find the centroid to be removed and the location where the centroid
should be relocated.

- Find the nearest cluster pair by calculating the distance between all of the
centroids.

- Calculate the distortion of each cluster and sort them to a list S. Choose the
cluster sorder as the replacing cluster clocation.

- Replace the chosen centroid with any point in the cluster clocation since k-means
can later fine-tune the solution. Here we select the first point in clocation for
simplification, and generate the Cnew.

Step 3 (Repartitioning and fine-tuning): We use one k-means iteration for local
repartitioning of the data objects since there is only one active centroid in the current
Cnew compared to the previous C, and then two k-means iterations for fine-tuning the
centroids.

Step 4 (Evaluation):

- If f(Cnew) < f(C), replace C by the new solution and reset the order = 1 and
repeat the Step 2 and Step3.

- Otherwise, resume the previous C and do one more k-means iteration for
refinement, then increase order to order + 1, and repeat the Step 2 and Step 3.
Meanwhile, check the stopping criterion: order > Maxorder, which is to
terminate the iterating (a local optimum was found).

The pseudo-code of the smart swap is shown in Figure 10. It should be highlighted
here that the smart swap, as a local search algorithm, can converge very fast. We have
also observed from a large number of experiments that the additional iterations, from
increasing the search space by setting Maxorder, is less than 2 times of Maxorder
(2logM in this paper) compared to the general deterministic swap algorithms.

 22

SmartSwap Local search Algorithm:
C ← InitializeCentroids(X);
P ←PartitionDataset(X, C);
Maxorder ← logM;
order ← 1;
WHILE order < Maxorder

ci, cj ←FindNearestPair(C);
S ← SortClustersByDistortion(P, C);
cswap ←RandomSelect(ci, cj);
clocation ←sorder;
Cnew ← Swap(cswap, clocation);
Pnew ← LocalRepartition(P, Cnew);
KmeansIteration(Pnew, Cnew);
IF f(Cnew) < f(C), THEN

order ← 1;
C ←Cnew ;

ELSE
 order ← order + 1;

KmeansIteration(P, C);

Figure 10. Pseudo-code of the smart swap algorithm.

3.5 Efficiency analysis

The efficiency of a swap-based clustering algorithm depends on two issues: how
many iterations (swaps) are needed, and how much time each iteration consumes. We
will next analyze the efficiency of the above swap-based clustering algorithms.

In the random swap algorithm, the swap step (randomly remove one centroid and
randomly add at one position) is completely random so it needs a large number of
iterations to provide a good quality result. It takes O(αN) [24] (α is the number of
neighbor clusters on average, for example, 4 neighbor clusters in Figure 9) at least for
each iteration with a fast variant of k-means [26] for fine-tuning. The main bottleneck
of random swap is that the number of iterations T has the quadratic dependency on the
number of clusters M from Equation (3.1.9), which increases the overall time
complexity.

In the deterministic swap method, the centroid to be removed is chosen by calculating
removal cost, and the addition is made within the cluster of highest distortion. In this
case, the number of iterations is limited because the algorithm will stop whenever

 23

there is no improvement. However, the time required for each iteration is high. For
example, it takes O(MN) for finding the minimum removal cost, and O(N) for the
addition cost, and O(αN) for the local partition and fine-tuning, so the total time
complexity is O(MN) + O(αN) = O(MN).

In the hybrid swap, considering the RD (random removal with deterministic addition)
with the best performance, the random removal takes O(1) time and the deterministic
addition takes O(N) time, and O(αN) for the local partition and fine-tuning summing
up to O(αN) in total for each iteration. However, the number of iterations needed is
higher than that of the deterministic swap to ensure as good clustering quality as
random swap. In the other hybrid swap D2R [23], it takes O(αN) for the deterministic
removal with the fast implementation, and O(1) for the random addition, and O(αN)
for the local partition and fine-tuning. It takes O(αN) time in total for each iteration.

In the smart swap, the algorithm needs O(M2) in each iteration to find the nearest pair,
O(N) time to calculate the distortion of the clusters, O(MlogM) to sort the clusters
according to the distortion, and finally O(N) to evaluate the result. These sum up to
M2 + MlogM + N = O(N) for every iteration, with the assumption that the number of
clusters is upper limited by M < N . The main bottleneck comes from repartitioning
and fine-tuning by the k-means iterations, which is the bottleneck of all the other
swap-based algorithms. Even with the fast variant of k-means, it takes O(αN), on
average. The fast variant has little effect at the early iterations because most of the
centroids are still active. However, it reduces the processing time significantly when
the algorithm approaches to the optimal solution. For higher number of clusters (M),
the fast k-means algorithm works much more efficient.

To sum up, for the initialization step, it takes O(MN) time for all these swap-based
clustering algorithms, and for each iteration step, it takes O(MN) time for the normal
deterministic swap [17] and O(αN) time for the other algorithms: random swap,
hybrid swap RD [24] and D2R [23], and smart swap. However, the random swap
needs a large number of iterations to provide good clustering quality. The
deterministic swap has less number of iterations, but it takes much more time O(MN)
for each iteration and may get stuck in a local minimum.

The hybrid swap methods RD and D2R and can achieve better performance but still
need many iterations. The smart swap takes O(αN) time for each iteration, which
outperforms the deterministic swap, and equals the hybrid swap in [23, 24] and the

 24

random swap. Meanwhile, the algorithm requires much fewer iterations to reach the
same clustering quality than the algorithm D2R, and significantly less iterations than
the random swap. The time complexities of these swap-based clustering methods are
summarized in Table 3. The number of iterations is estimated from Equation (3.1.9)
for random swap and from Equation (3.3.2) for hybrid swap. For smart swap, the
number of iterations is O(logM) and O(αN) for each iteration, so the total time
complexity for iterations step is O(αNlogM). With the initialization step, the total time
complexity for smart swap is O(MN) assuming that αlogM < M.

Table 3. Summary of the time complexities for swap-based clustering methods.

Hybrid swap Random
swap

Deterministic
swap RD D2R

Smart
swap

Initialization O(MN) O(MN) O(MN) O(MN) O(MN)

Removal O(1) O(MN) O(1) O(αN) O(M2)

Addition O(1) O(N) O(N) O(1) O(N)

Local repartition
and fine-tuning O(αN) O(αN) O(αN) O(αN) O(αN)

One
iteration

Total O(αN) O(MN) O(αN) O(αN) O(αN)

Number of iterations O(M2/α2) O(1) O(M/α) O(M/α) O(logM)

Total O(NM2/α) O(MN) O(MN) O(MN) O(MN)

 25

4 Experiments and Results

In this section, we present experimental results on the swap-based clustering
algorithms and k-means as follows.

 Random swap
 Deterministic swap
 Hybrid swap RD
 Fast hybrid swap D2R
 Smart swap
 K-means

All experiments are coded in Java and run on the Hewlett-Packard Presario Notebook
PC with 1.6 GHz Intel Pentium CPU and 3062 RAM Window Vista.

The datasets include the synthetic datasets S1, S2, S3, A1, A2 and A3
(http://cs.joensuu.fi/sipu/datasets/), and large datasets Birch1, Birch2, Birch3 [28], and
real datasets Iris [29], Bridge and House (http://cs.joensuu.fi/sipu/datasets/). The
datasets are described in Table 4.

Table 4. Datasets used in experiments

Name Number
of objects

Description

S1 5000 Synthetic 2-d (two dimensional) dataset with 15 clusters
S2 5000 Synthetic 2-d dataset with 15 clusters
S3 5000 Synthetic 2-d dataset with 15 clusters
A1 3000 Synthetic 2-d dataset with 20 clusters
A2 5250 Synthetic 2-d dataset with 35 clusters
A3 7500 Synthetic 2-d dataset with 50 clusters
Iris 150 Famous 4-d Iris data set of Fisher
Bridge 4096 Image 16-d dataset (64 clusters)
House 34112 Image 3-d dataset (64 clusters)
Birch1 100000 Synthetic 2-d dataset with 100 clusters in regular gird structure
Birch2 100000 Synthetic 2-d dataset with 100 clusters at a sin curve
Birch3 100000 Synthetic 2-d dataset with 100 clusters randomly

 26

4.1 Synthetic datasets

The synthetic datasets S1, S2, S3, A1, A2 and A3 are two dimensional datasets plotted
in Figure 11.

S1 with 5000 data points and

15 clusters
S2 with 5000 data points and

15 clusters
S3 with 5000 data points and

15 clusters

A1 with 3000 data points and

20 clusters
A2 with 5250 data points and

35 clusters
A3 with 7500 data points and

50 clusters

Birch1 with 100000 data
points and 100 clusters

Birch2 with 100000 data
points and 100 clusters

Birch3 with 100000 data
points and 100 clusters

Figure 11. Synthetic datasets and their plots.

We first test the performance with mean square error (MSE) on these synthetic
datasets S1, S2, S3, A1, A2, and A3, and large datasets Birch1, Birch2 and Birch3. For

 27

the deterministic swap, the iterations will stop when no improvement found, and for
smart swap, the iterations will terminate when the Maxorder is reached. However, for
random swap, hybrid swap RD and fast hybrid swap D2R, the stopping criterions are
not specified and the number of iterations must be set by user. The bigger the number,
the better clustering is obtained. Usually it is set to a number that is of the same order
than the size of the dataset. In our experiments, the number of iterations T is
calculated from Equation (3.1.9) for random swap and from Equation (3.3.2) for
hybrid swap, assuming that the probability of failure q is 0.01 and two good swaps are
needed. Table 5 shows the size of neighborhood on average estimated visually from
Figure 11, and the iterations needed.

Table 5. Iterations needed for synthetic datasets.

Iterations needed
Dataset

Number of

clusters

Number of

neighbors Random swap Hybrid swap

S1 15 4 128 34
S2 15 4 128 34
S3 15 4 128 34
A1 20 4 230 46
A2 35 5 450 64
A3 50 6 638 76

Birch1 100 8 1438 114
Birch2 100 3 10232 306
Birch3 100 5 3648 184

The performances of these swap-based clustering methods on the synthetic datasets
are shown in Table (6-14). Optimal solutions (MSE) are estimated by the random
swap algorithm with a large number of iterations (size of the data points in the
dataset).

Table 6. Performance for S1 dataset (estimated optimal MSE: 1.7835×109).

Algorithms MSE (109) Time consumed (ms) Iterations run
Random swap 1.7835 1182 128
Deterministic swap 1.7835 126 6
Hybrid swap RD 1.7835 392 34
Fast hybrid swap D2R 1.7835 444 34
Smart swap 1.7835 75 6
K-means 3.2470 162 25

 28

Table 7. Performance for S2 dataset (estimated optimal MSE: 2.6558×109).

Algorithms MSE (109) Time consumed (ms) Iterations run
Random swap 2.6558 1321 128
Deterministic swap 2.6567 69 4
Hybrid swap RD 2.6559 388 34
Fast hybrid swap D2R 2.6558 470 34
Smart swap 2.6559 92 7
K-means 5.5286 159 25

Table 8. Performance for S3 dataset (estimated optimal MSE: 3.3780×109).

Algorithms MSE (109) Time consumed (ms) Iterations run
Random swap 3.3780 1492 128
Deterministic swap 3.4610 108 6
Hybrid swap RD 3.3781 431 34
Fast hybrid swap D2R 3.3781 519 34
Smart swap 3.3783 113 8
K-means 3.8531 137 22

Table 9. Performance for A1 dataset (estimated optimal MSE: 4.0488×106).

Algorithms MSE (106) Time consumed (ms) Iterations run
Random swap 4.0488 1397 230
Deterministic swap 4.0771 60 5
Hybrid swap RD 4.0488 298 46
Fast hybrid swap D2R 4.0488 332 46
Smart swap 4.0488 70 11
K-means 5.5108 82 15

Table 10. Performance for A2 dataset (estimated optimal MSE: 3.8641×106).

Algorithms MSE (106) Time consumed (ms) Iterations run
Random swap 3.8642 5004 450
Deterministic swap 3.8643 326 11
Hybrid swap RD 3.8641 814 64
Fast hybrid swap D2R 3.8642 890 64
Smart swap 3.8642 157 11
K-means 7.4004 311 24

 29

Table 11. Performance for A3 dataset (estimated optimal MSE: 3.8583×106).

Algorithms MSE (106) Time consumed (ms) Iterations run
Random swap 3.8585 9969 638
Deterministic swap 3.8638 734 13
Hybrid swap RD 3.8585 1570 76
Fast hybrid swap D2R 3.8584 1494 76
Smart swap 3.8585 278 15
K-means 8.7950 760 27

Table 12. Performance for Birch1 dataset (estimated optimal MSE: 9.2773×108).

Algorithms MSE (108) Time consumed (ms) Iterations run
Random swap 9.2773 546468 1438
Deterministic swap 9.2789 16474 10
Hybrid swap RD 9.2773 76222 114
Fast hybrid swap D2R 9.2773 81541 114
Smart swap 9.2773 14820 18
K-means 11.227 62930 100

Table 13. Performance for Birch2 dataset (estimated optimal MSE: 4.5672×106).

Algorithms MSE (106) Time consumed (ms) Iterations run
Random swap 4.5672 1956723 10232
Deterministic swap 4.5672 23837 22
Hybrid swap RD 4.5672 83320 306
Fast hybrid swap D2R 4.5672 87111 306
Smart swap 4.5672 9969 29
K-means 14.663 26520 43

Table 14. Performance for Birch3 dataset (estimated optimal MSE: 3.7362×108).

Algorithms MSE (108) Time consumed (ms) Iterations run
Random swap 3.7362 1254958 3648
Deterministic swap 3.8497 28314 18
Hybrid swap RD 3.8197 131274 184
Fast hybrid swap D2R 3.8128 139869 184
Smart swap 3.8731 31886 26
K-means 4.0712 59389 96

 30

From Tables 6-14, we can see that the five swap-based clustering algorithms have
almost the optimal clustering quality. However, k-means is very far from the optimal
solutions. The clustering results of random swap, hybrid swap RD and fast hybrid
swap D2R are very stable and almost optimal, which indicates that analysis of
estimating the number of iterations is reasonable. Random swap is the most inefficient
due to the large number of iterations to guarantee good clustering quality.

Hybrid swap RD and fast hybrid swap D2R have the same number of iterations.
However, RD is a litter bit more efficient than D2R because the removal and addition
cost are O(1) + O(N) for RD, but O(αN) + O(1) for D2R for each iteration as shown in
Table 3. The deterministic swap is very efficient in most datasets and the most
efficient in case of S2, S3, A1 and Birch3. On the other hand, it has the main weakness
that it can get stuck in a local minimum. For example, for dataset S3 in Table 8, the
MSE value is 3.4610 but the optimal is 3.3781; and for dataset A1 in Table 9, the
MSE value is 4.0771 but the optimal is 4.0488. The proposed smart swap achieves the
best performance in most cases with almost optimal clustering, and is the most
efficient.

75 70 278 9969 87111
126

60
1493 83320

1570

444

298

19567239968

392

1397

23837734

332

1182

0

20

40

60

80

100

S1 A1 A3 Birch2

Ti
m

e(
%

)

Smart swap
Deterministic swap
Fast hybrid swap
Hybrid swap
Random swap

Figure 12. Efficiency comparison of Smart swap, Deterministic swap, Fast hybrid

swap D2R, Hybrid swap RD and Random swap on datasets S1, A1, A3 and Brich2
relative to Random swap. The numbers on the bars are the exact processing time in

millisecond to obtain the approximate optimal MSE with high stability.

Observed from Figure 12, the smart swap is almost the fastest with dramatical
improvements on the efficiency compared to the other three algorithms. It is at least
90% faster than the random swap, 75% faster than the hybrid swap RD, which is as
fast as D2R. Deterministic swap is the second fastest in most cases and especially the
fastest for dataset A1. Moreover, with a higher value of M, smart swap becomes even
faster. Especially for the large dataset Birch2, random swap takes 1957 seconds but

 31

smart swap only 10 seconds, which is 0.5% of the time random swap consumed. The
hybrid swap RD and D2R are also much more efficient compared to random swap.

We next compare the time-distortion efficiency of these clustering methods on all the
synthetic datasets based on the above experimental data. The purpose of the
comparison is to check the clustering quality that these algorithms achieve with
increasing the processing time. The time-distortion efficiency is very useful in
practice for users to select the favorable method in case of time limitation. The results
are shown in Figures 13-21.

The proposed smart swap outperforms other swap-based clustering methods in most
cases. For example, for datasets S1, A1, A2, A3, Birch1 and Birch2, it achieves the
best efficiency especially for A2, A3, Birch1 and Birch2. From Figure 11 with the
plotted image, we can find that the distribution of clusters in the datasets S1, A1, A2,
A3, Birch1 and Birch2 are more obvious than the other datasets S2, S3 and Birch3, It
indicates that the smart swap works more efficiently for the dataset with clear cluster
structure.

The deterministic swap is the second most efficient method. However the problem of
getting stuck in a local minimum is its main bottleneck. From the comparison of
hybrid swap RD and fast hybrid swap D2R, they achieve similar efficiency. RD works
a bit more efficient than D2R on the datasets S1, S2, A1, A2, Birch2 and Birch3 as
shown in Figures 13, 14, 16, 17, 20 and 21 respectively, but D2R is better for S3, A3
and Birch1.

 32

S1

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200
Time (ms)

M
S

E
 (1

09)

Kmeans Random swap Deterministic swap
Hybrid swap RD Fast hybrid swap Smart swap

Figure 13. Time-distortion efficiency of clustering methods on dataset S1.

S2

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200
Time (ms)

M
S

E
 (1

09)

Kmeans Random swap Deterministic swap
Hybrid swap RD Fast hybrid swap Smart swap

Figure 14. Time-distortion efficiency of clustering methods on dataset S2.

 33

S3

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200
Time (ms)

M
S

E
 (1

09)

Kmeans Random swap Deterministic swap
Hybrid swap RD Fast hybrid swap Smart swap

Figure 15. Time-distortion efficiency of clustering methods on dataset S3.

A1

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300
Time (ms)

M
S

E
 (1

06)

Kmeans Random swap Deterministic swap
Hybrid swap RD Fast hybrid swap Smart swap

Figure 16. Time-distortion efficiency of clustering methods on dataset A1.

 34

A2

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200
Time (ms)

M
S

E
 (1

06)

Kmeans Random swap Deterministic swap
Hybrid swap RD Fast hybrid swap Smart swap

Figure 17. Time-distortion efficiency of clustering methods on dataset A2.

A3

1

2

3

4

5

6

7

8

9

10

0 500 1000 1500 2000 2500 3000
Time (ms)

M
S

E
 (1

06)

Kmeans Random swap Deterministic swap
Hybrid swap RD Fast hybrid swap Smart swap

Figure 18. Time-distortion efficiency of clustering methods on dataset A3.

 35

Birch1

9.0
9.3
9.6
9.9

10.2
10.5
10.8
11.1
11.4
11.7
12.0

1 10 100 1000
Time (s)

M
S

E
 (1

08)

Kmeans Random swap Deterministic swap
Hybrid swap RD Fast hybrid swap Smart swap

Figure 19. Time-distortion efficiency of clustering methods on dataset Birch1.

Birch2

2

4

6

8

10

12

14

16

18

20

1 10 100 1000 10000
Time (s)

M
S

E
 (1

06)

Kmeans Random swap Deterministic swap
Hybrid swap RD Fast hybrid swap Smart swap

Figure 20. Time-distortion efficiency of clustering methods on dataset Birch2.

 36

Birch3

3.0
3.3
3.6
3.9
4.2
4.5
4.8
5.1
5.4
5.7
6.0

1 10 100 1000
Time (s)

M
S

E
 (1

08)

Kmeans Random swap Deterministic swap
Hybrid swap RD Fast hybrid swap Smart swap

Figure 21. Time-distortion efficiency of clustering methods on dataset Birch3.

4.2 Real datasets

We next compare the clustering methods on the real datasets described in Table 4. Iris
is a famous 4-dimentional iris data set [29] that contains 150 instances with three
classes; each class refers to one type of iris plant and has four attributes: sepal length,
sepal width, petal length and petal width. Bridge is a 16-dimensional image dataset
that consists of 4 × 4 spatial pixel blocks sampled from the image (8 bits per pixel);
the dataset is very sparse and does not have clear cluster boundaries. House is a
3-dimensional image dataset that consists of the RGB color vectors with three
attributes (red, green and blue color value). In comparison to Bridge, House has more
compact clusters observed from Figure 22.

Iris Bridge House

Figure 22. Sources for the real datasets.

 37

The first experiment is to compare the swap-based clustering algorithms and k-means
on dataset Iris with different number of clusters M from 2 to 10. Since the
neighborhood of the dataset is not easy to be estimated, we set the number of
iterations for the random swap, hybrid swap RD and fast hybrid swap D2R to a fixed
number 150, which is the size of the dataset Iris. Optimal solution is estimated by the
random swap by setting the number of iterations to 1000, which is much bigger than
the size of the dataset 150. The clustering quality of each algorithm, measured by
MSE, is shown in Table 15. Furthermore, to verify the stability, the above algorithms
are run 5 times on the dataset Iris with 10 clusters. The MSE value of each run and
the standard deviation of each algorithm are shown in Table 16.

Observed from Tables 15-16, there are following observations:

 When the number of clusters M is small (from 2 to 5) all methods achieve almost
the optimal clustering. While increasing the M (from 6 to 10), random swap
achieves the best clustering, and next is the hybrid swap RD. Deterministic swap,
smart swap and fast hybrid swap D2R are near the optimal clustering. K-means is
still far from the optimal solutions.

 Regarding the clustering quality, the random swap can be clearly ranked first in all
the clustering methods even with large number of iterations. The other swap-based
methods have the problem of getting in a local minimum, but in these cases not
very far from the optimal.

 Regarding the stability of algorithm, random swap is the most stable (0.0004) and
deterministic swap is the worst (0.0053) among those swap-based clustering
methods excluding K-means.

Table 15. Clustering quality (MSE) of swap-based clustering algorithms for Iris
dataset with different number of clusters M from 2 to 10.

Algorithms 2 3 4 5 6 7 8 9 10
Random swap 1.0158 0.5263 0.3821 0.3102 0.2595 0.2279 0.1992 0.1851 0.1732
Deterministic swap 1.0158 0.5263 0.3835 0.3106 0.2616 0.2290 0.2013 0.1876 0.1796
Hybrid swap 1.0158 0.5263 0.3821 0.3119 0.2613 0.2279 0.1992 0.1886 0.1735
Fast hybrid swap 1.0158 0.5263 0.3823 0.3103 0.2597 0.2309 0.2018 0.1856 0.1762
Smart swap 1.0158 0.5263 0.3821 0.3104 0.2616 0.2314 0.2034 0.1902 0.1740
K-means 1.0158 0.5263 0.3823 0.3104 0.2618 0.2900 0.2603 0.2347 0.2036
Optimal 1.0158 0.5263 0.3821 0.3102 0.2595 0.2279 0.1992 0.1851 0.1721

 38

Table 16. Clustering quality (MSE) of swap-based clustering algorithms for Iris
dataset with 10 clusters run 5 times.

Run Random swap Deterministic swap Hybrid swap Fast hybrid swap Smart swap K-means

1 0.1730 0.1793 0.1769 0.1740 0.1756 0.2023
2 0.1730 0.1738 0.1766 0.1758 0.1763 0.2322
3 0.1730 0.1774 0.1759 0.1738 0.1777 0.1814
4 0.1730 0.1882 0.1789 0.1721 0.1745 0.1786
5 0.1721 0.1798 0.1733 0.1773 0.1757 0.1965

Standard
deviation

0.0004 0.0053 0.0020 0.0020 0.0012 0.0215

We will next focus on the efficiency of those swap-based algorithms on the real
datasets. The image datasets Bridge and House, which have bigger size and higher
dimensional attributes, are used in the experiment. Since the number of clusters (M)
of the image datasets is not a priori value, we set M to a fixed number 64. The number
of iterations needed for the random swap, hybrid swap RD and fast hybrid swap D2R
is set to 4000 for datasets Bridge and House. The time-distortion efficiency results of
clustering methods are illustrated in Figures 23-24.

For the dataset Bridge (see Figure 23), the comparison of efficiency of all mentioned
algorithms is very similar, even k-means is competitive. They can achieve the
clustering quality MSE near 4.2 (103) within 1000 milliseconds. Random swap and
fast hybrid swap D2R achieve the best clustering quality with MSE 4.1 (103); the
others could not avoid the problem to getting stuck in a local minimum.

For the dataset House (see Figure 24), the comparison of efficiency is more clear. The
proposed smart swap is the most efficient. It achieves the estimated optimal clustering
quality with MSE 70 in 6 seconds. Deterministic swap also achieves the competitive
efficiency with smart swap. Moreover, the random swap, hybrid swap RD and fast
hybrid swap D2R achieve better clustering quality with MSE about 69.

 39

Bridge

4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0

100 1000 10000 100000
Time (ms)

M
S

E
 (1

03)

Kmeans Random swap Deterministic swap
Hybrid swap RD Fast hybrid swap Smart swap

Figure 23. Time-distortion efficiency of clustering methods on dataset Bridge.

House

65
67
69
71
73
75
77
79
81
83
85

1 10 100 1000
Time (s)

M
S

E

Kmeans Random swap Deterministic swap
Hybrid swap RD Fast hybrid swap Smart swap

Figure 24. Time-distortion efficiency of clustering methods on dataset House.

 40

4.3 Result comparisons

We have compared the clustering quality and time-distortion of the five swap-based
clustering methods, random swap, deterministic swap, hybrid swap RD, fast hybrid
swap D2R and proposed smart swap, on both synthetic datasets and real datasets in the
above experiments.

From the clustering quality point of view, random swap always achieves the best
clustering quality or even the optimal result in case the number of iterations is set high
enough. Hybrid swap RD and fast hybrid swap D2R can also produce approximately
as good results as random swap for the synthetic datasets but are little bit weaker for
image datasets.

The proposed smart swap is capable of achieving almost optimal clustering for the
synthetic datasets with clear clusters, e.g. S1, A1, A2, A3, Birch1 and Brich2, and
competitive clustering for the other synthetic datasets where clustering structure is not
very clear (S2, S3 and Birch3). However, its performance on the image datasets is not
the best especially when the datasets do not have clear cluster boundaries such as
Bridge, this is a common issue for the hybrid swap RD and fast hybrid swap D2R as
well. Deterministic swap achieves good clustering in most cases, but its main problem
is getting stuck in a local minimum easily.

From the clustering efficiency point of view, the smart swap is the most efficient for
most datasets (S1, A1, A2, A3, Birch1, Birch2, Birch3 and House). Moreover, it
becomes more efficient with the higher M value (the number of clusters). It is no
doubt that the random swap is the most inefficient among these five swap-based
clustering methods due to a large number of iterations required for better clustering
quality. The other swap-based clustering methods, deterministic swap, hybrid swap
RD and fast hybrid swap D2R, perform similarly to each other without any surprises.

In summary, the swap-based clustering methods, as heuristics clustering, can achieve
good performance both in terms of clustering quality and efficiency. It is a good
choice to select random swap to achieve the best clustering. On the other hand, the
proposed smart swap is recommended to be chosen from the efficiency viewpoint.

 41

5 Application to Location-based Services

5.1 Location-based services

Location-based services (LBS) are information services accessible via mobile devices
through mobile network and utilizing the ability to make use of location of the mobile
device [30, 31].

In general, the LBS consist of the following components [30].

 Mobile device
 Communication network
 Positioning component
 Service and application provider

Mobile device is a tool for the user to request needed information in terms of text,
pictures and speech. Possible devices are mobile phones (most used), PDA’s, laptops,
and even navigators used in the car. The communication network can be mobile
network, wireless network, or internet, which transfer the user data and services
request from the mobile devices to the services provider and then the requested
information back to the user. For the positioning component, user location should be
determined to process the services either by using Global Positioning System (GPS),
or by using the mobile communication networks. Further possibilities to obtain the
position are WLAN stations, active badges or radio beacons, which can be used
especially for indoor navigation in a museum for example. Moreover, the position can
also be specified by the user if it cannot be determined automatically. The service
provider (application) offers a number of different services such as finding a route,
and searching specific information on objects of user interest so-called point of
interest (POI).

Considering an example of searching a Chinese restaurant nearby, user sends the
request from his mobile, with his location information obtained by GPS, to the service
provider via mobile network, and then receives the requested information displayed
on his mobile. The example is illustrated in Figure 25.

 42

Figure 25. LBS components and information flow [30].

Location-based services can be used in a variety of contexts, such as work and
personal life [32]. In a simplest form it is a positioning service, informing the user
about her/his current location (Where am I?) [31]. Examples of location-based
services are listed as below [32, 33].

 Searching the nearest business or service, such as an ATM or hotel
 Turn by turn navigation to a given address or planning a route
 Locating people on a map displayed on the mobile phone
 Location-based mobile advertising
 Tracking for the workforce, fleet management
 Receiving alerts, such as notification of a sale on gas or warning of a traffic jam
 Social networking, such as friend-finder or instant messaging

More examples can be found in [30].

Nowadays, location-based services power Mobile Local Search to enable the search
and discovery of persons, places, and things within an identifiable space defined by
distinct parameters, such as social networks, individuals, cities, neighborhoods,
landmarks, and actions that are relevant to the searcher’s past, current, and future
location. These parameters provide structure to vertically deep and horizontally broad
data categories that can stand-alone or are combined to comprise searchable
directories [34].

 43

5.2 MOPSI project

MOPSI project1 develops LBS applications in Speech and Image Processing Unit,
School of Computing of University of Eastern Finland. MOPSI is a Finnish
abbreviation for Mobiilit PaikkatietoSovellukset ja Internet which can be translated in
English as “Mobile Location-based Applications and Internet”. The MOPSI project
implements different location-based services and applications such as mobile search
engine, data collection, user tracking and route recording. The project has its
applications integrated into both the web and mobile phones with the aim to integrate
user location as a search option. In the following sub sections the main features of
MOPSI will be described.

5.2.1 Search engine

Current search engines, such as Google, Bing, Yahoo, are very powerful but fail to
utilize one important aspect of relevance: the location of the user because of two
reasons. Firstly the user location was not as widely available as nowadays due to GPS
phones being less frequent. Secondly, the location information is rarely attached in the
web pages [35].

Existing LBS search engines such as Google maps2 and Yellow pages3, use databases
where all entries, such as hotel directories, restaurant lists or common similar services,
have been explicitly geo-referenced beforehand. The main drawback is that the data
must be collected beforehand, which makes the systems depend on the providers to
put efforts to keep the information up-to-date [35].

MOPSI search engine is a combination of traditional location-based service and
search engine. It first retrieves data from the local database similarly as Google maps,
then queries relevant data from the user collections attached with photos, and finally
performs location-based search from web as originally proposed in [36], and later
implemented in practice as summarized in [37]. The key idea is to use ad-hoc
geo-referencing of the web pages based on address detection within the body text [38],
rather than relying on geo-tags or address tags which rarely exist.

1 http://cs.joensuu.fi/mopsi/
2 http://maps.google.com
3 http://en.fonecta.fi/yellow-pages.html

 44

User can access MOPSI search from a GPS-supported mobile with Java application
(Figure 26) or via web (Figure 27).

Figure 26. Mobile Java application interfaces for MOPSI search engine.

Figure 27. Web page interface for MOPSI search engine.

 45

Given location, user can make search queries similarly as done with normal search
engine, but instead of providing relevant search results by the content alone, the
location of the user is used to restrict the results only near-by. Results will be provided
if they exist in the local database (green bubbles), in user collection (yellow bubbles),
and additional results are searched from internet (red bubbles).

5.2.2 Photo collection

MOPSI also provides a service that user can collect photos via mobile application,
and then view them with the locations on a map visually. The Google maps API is
used in the implementation. Figure 28 demonstrates the map view of the photo
collection. User can find relevant information of the photo, such as time stamp,
address and description. The time line view of the photos is also available. The
MOPSI photo collection could be used as a travel documentation of the user.

Figure 28. Map view of user photo collection in MOPSI.

5.2.3 Route tracking

In MOPSI collection, tracking user’s routes is the other main feature. User records
her/his route anywhere on Earth via MOPSI mobile application. Tracks are traced on
Google maps in the MOPSI web page. Moreover, detailed information such as
addresses, duration, and speed can also be analyzed, as shown in Figure 29.

 46

Figure 29. Map view of a user route in MOPSI.

5.2.4 User tracking

MOPSI user tracking views all of its users latest recorded location as stored either in
the route or photo collection. This is visualized in Figure 30. With MOPSI user
tracking, user can share her/his location with friends similarly done as in Google
latitude4.

Figure 30. Map view of user locations in MOPSI.

4 http://www.google.com/intl/en_us/latitude/intro.html

 47

5.3 Clustering in MOPSI

It is a very natural way to share geographic information on the web using Web
Mapping System (WMS) such as Google maps. MOPSI uses Google maps to share
user photo collections, routes and locations (see Figures 28, 29, 30). User can zoom
and pan the maps to concern the content on the map.

However, clutter becomes the main problem of visualizing a large number of overlays
such as user location bubbles on the map in a larger map scale (see Figure 31). Clutter
not only reduces the map background visibility but also hinders the users
understanding of the structure and content of the data on the map [39].

Figure 31. Clutter of map visualization in MOPSI user tracking.

The clutter problem is actually that there are too many data overlays that can be fit on
the map screen. Clustering is therefore needed to reduce the amount of data overlays
to be represented on the map. In [39], it presents a hierarchical aggregation, which is a
common visualization technique to make visual representations more visually scalable
and less cluttered [40]. The method creates a hierarchical clustering tree, which can be
subsequently used to extract clusters for a given map scale without cluttering the map.
The main drawback of this technique is the high time computation, which makes it
impractical for a real-time web application.

 48

5.3.1 Split smart swap clustering

We apply a clustering technique using smart swap, one efficient swap-based
clustering method, to MOPSI user tracking web application for solving this clutter
problem.

In MOPSI user tracking, the user locations are represented on the map visually with
bubbles (see Figure 31). For a given map scale, we calculate the minimum distance
dmin of the two bubbles that can be represented separately from each other on the map.
Observed from the Google maps, it has 22 scales (zoom levels) from 0 to 21, and in
scale 0 the minimum distance D0 = 2500 km can separate two bubbles converted to
pixel coordinates on the map. The minimum distance dmin for each scale s is
calculated as follows:

]21,0[
2

0
min ∈∀= sDd s

 5.3.1

In general, with increasing the number of clusters M, the distance of the two nearest
clusters dnear becomes smaller and smaller. The solution to solve the clutter problem is
therefore to find a clustering with a proper M for each scale, where dmin is close to the
dnear (see Figure 32).

lower scale (M=6) higher scale (M=9)

dd nearnear

d =2 km d =1 km min min

Figure 32. The relation of M, dnear and dmin in different map scales.

We propose a so-called split smart swap clustering algorithm to do the clustering for
the locations dataset with M from 1 to N (maximum is the size of the locations
dataset). The main idea of the split smart swap is to split the cluster that has the
largest distortion, into two clusters, and then apply the smart swap to optimize
(fine-tune) the clustering results at each iteration step (see Figure 33). After the split
smart swap clustering, it outputs the centroids array, which stores the centroids of

 49

clusters with M from 1 to N, and the distance array which stores the dnear
corresponding to the number of clusters M.

split the cluster with the largest distortion (M=3) create a new cluster with fine-tuning (M=4)

farthest point

cluster with largest distortion

Figure 33. Adding a new cluster by selecting the farthest point in the cluster with
the largest distortion.

SplitSmartSwap Clustering Algorithm

N; // size of the dataset X
CentroidsArray[N]; // centroids for the clusters with number from 1 to N
DistanceArray[N]; // nearest distance for the clusters with number from 1 to N
M ← 1; // start from 1 cluster at the beginning
C, P ← assignData(X, M); // optimal partition

WHILE M < N

M ← M + 1; // add a new cluster
maxIndex ← GetLargestDistortion(C, P); // find the cluster with largest distortion
// set the farthest point as the centroid of the new cluster
Cm ←GetFarthestPoint(C, maxIndex);
SmartSwap(X, M); // clustering optimization
CentroidsArray[M] ← C; // add the centroids to the array
dnear ← FindNearestDistance(C); // the distance of nearest two centroids
DistanceArray[M] ←dnear; // add the nearest distance

RETURN CentroidsArray, DistanceArray

Figure 34. Pseudo-code of split smart swap clustering algorithm.

For a given map scale, the clustering solution can be found as selecting the clustering
with such number of clusters M, for which dnear ≤ dmin (see Figure 35). After that, we
select the centroids from the centroids array with the corresponding M. The clustering
result can therefore be obtained via optimal partition with the chosen centroids
according to Equation (3.1.2).

 50

distance: 64 42 36 … 4 2 1
M: 1 2 3 … 30 31 32

Figure 35. An example of selecting M. Assuming that dmin=39, the close dnear in
the distance array is 36, and the corresponding M=3 is selected.

The clustering results using split smart swap for user tracking with different map
scales are show in Figure 36.

Google maps scale 1 (Global) Google maps scale 3 (Europe)

Google maps scale 6 (Finland) Google maps scale 12 (Joensuu)

Google maps scale 13 (City center) Google maps scale 19 (Länsikatu road)

Figure 36. Split smart swap for user tracking with different map scales.

 51

Observed from Figure 36, the visualization of user locations on the map is scalable
and very less visually cluttered. With increasing the scale levels, the number of
clusters becomes bigger and bigger so as to reduce the clutter on the map.

The above clustering method was coded in JavaScript and run in the web application
in Firefox browser using 1.6 GHz Intel CPU computer (same as below). The
processing time is about 115 milliseconds for the clustering at the beginning.
Afterwards it takes only few milliseconds when zooming map. The number of clusters
M needed and dmin in each scale are illustrated in Table 17.

Table 17. The number of clusters M and minimum distance dmin (km) in each scale.

Scale 0 1 2 3 4 5 6 7 8 9 10
M 2 3 4 7 7 7 12 13 14 14 19

dmin 2500 1250 625 313 156 78.1 39.1 19.5 9.77 4.88 2.44
Scale 11 12 13 14 15 16 17 18 19 20 21

M 21 25 27 27 27 27 28 31 31 31 31
dmin 1.22 0.61 0.31 0.15 0.08 0.04 0.02 0.01 0.005 0.002 0.001

To evaluate the efficiency of the split smart swap for more data, we use the method to
cluster the photos locations in photo collection web page. The processing time for
different number of photos is listed in Table 18.

Table 18. The processing time for different number of photos using split smart swap.

Number of photos 31 47 86 145 177 219
Processing time (ms) 86 141 1145 5644 10800 21123

Observed from Table 18, the processing time remains real-time (<1s) only up to 80
photos and becomes huger with increasing the number of photos (Note: in practice,
the processing time is also influenced by different browsers). The main advantage of
split smart swap is that the clustering method is applied only once for all scales.
However, the drawback is that it is too slow for big dataset, which is a bottleneck for
real-time applications.

 52

5.3.2 Grid-based clustering with bounding box

In the split smart swap, we consider the clustering solution for all map scales. Once
the clustering is done at the beginning, the proper clusters for each scale can be
selected according to the distance array and centroids array. It works for real-time
applications if the size of dataset is small. However, the processing time becomes a
bottleneck of the method if the dataset is larger.

Instead of solving all map scales at once, we consider another approach by solving
only the current map scale. It uses a bounding box on the map to limit the amount of
data objects. Only those data objects that are inside the bounding box are clustered.

Bounding box
Map view in the
web page

Figure 37. Current map view and bounding box in the photo collection page.

Since user needs visualization only on the current map area, the bounding box is set to
big enough to cover the map area that user is viewing (see Figure 37). The bounding
box will be updated when the user map view moves out of the current bounding box
due to map panning or zooming. As a consequence, the clustering will be applied
again corresponding to the new bounding box.

For clustering, we use a grid-based clustering method that works much more
efficiently with time complexity O(N). We present the method as follows.

Grid cells construction.
A set of grid cell is defined according to the size (in pixels) of the data object such as
photo in the given map scale. The bounding box is set to 9 times of the size of current
map view in MOPSI applications (see Figure 38). However, when the map view is in
a very lower scale (scale 0, scale 1 and scale 2), and the bounding box (9 times) will

 53

be too big since the current map view can view the whole world. So the bounding box
can be set as big as the current map view if the map scale is less than 3; otherwise it is
set to 9 times of the size of the current map view.

 Bounding box

Figure 38. Grid cells and photo data objects assignment.

The number of rows nrow and columns ncolumn of the grid cells in scale s are calculated
as:

⎥
⎥

⎤
⎢
⎢

⎡
=

⎥
⎥

⎤
⎢
⎢

⎡
=

∈∀=

∈∀=

cell

b
column

cell

b
row

scell

scell

w
Wn

h
Hn

sHh

sWw

]21,0[
2

]21,0[
2

0

0

5.3.2

where wcell is the width of the grid cell and hcell is height in scale s. W0 and H0 are the
width and height of a data object in distance converted from the pixels coordinates
presented on the map in scale 0. In MOPSI photo collection web application, the
photo thumbnails (64px × 49px in pixels) are visualized on the map. Observed from
the Google maps in scale 0, we set the W0=6000km and H0=4000km, respectively. Wb
and Hb are the width and height of the bounding box in distance (km).

Data objects assignment.
Those data objects, which are inside of the bounding box, are assigned to the
appreciate grid cell according to their coordinates and the coordinates of bounding
box (see Figure 38). The row and column number of the grid cell for a given data
object with coordinates (lat and lon) are calculated as:

A grid cell

Map view in the
web page

Coordinates of photo

 54

⎥
⎦

⎥
⎢
⎣

⎢
⋅

−
−

=

⎥
⎦

⎥
⎢
⎣

⎢
⋅

−
−

=

column

row

n
lonlon

lonloncolumn

n
latlat

latlatrow

minmax

max

minmax

max

 5.3.3

where latmax and latmin are the maximum and minimum latitude of the bounding box,
and lonmax, lonmin for longitude respectively. Each grid cell with valid data objects
presents one initial cluster.

Result fine tuning.
Fine-tuning of the clustering result is done by merging neighbor clusters if their
distance dneighbor is closer than a given threshold dmerge:

mergeneighbor dd < 5.3.4

In MOPSI photo collection, we set dmerge = 0.5 × wcell. The merging is done by
searching all clusters and their neighbors. Demonstrated in Figure 39, each cluster is
presented by one photo (centroid photo) and has 8 neighbors at most. The current
cluster (blue cell) and its neighbor cluster A can be merged.

Neighbor clusters
Neighbor clusters A

Current cluster

Figure 39. Cluster merging by checking the distance of cluster neighbors

In the algorithm, the grid cells constructions takes O(1) time, and O(N) for the data
objects assignment. For the fine-tuning, it takes O(8⋅M) = O(M) time. So the total
time complexity is O(N).

We next apply the above grid-based clustering to the photo collections web page in
MOPSI. There are 3672 photo locations currently. The clustering results in different
map scales are shown in Figure 40.

 55

Google maps scale 1 (Global) Google maps scale 3 (Europe)

Google maps scale 5 (Finland) Google maps scale 11 (Joensuu)

Google maps scale 14 (City center) Google maps scale 19 (Länsikatu road)

Figure 40. Clustering for photo collections in different map scales.

The processing time for clustering in different map scales is reported in Table 19. We
can see that the clustering takes about 30 milliseconds for each scale, which is fast
enough for real-time applications. Especially in higher scales such as 19, 20 and 21,
only 10 milliseconds are used because the amount of photos in the bounding box is
smaller in high scales.

 56

Table 19. Processing time T (ms) of grid-based clustering in each scale

Scale 0 1 2 3 4 5 6 7 8 9 10
T 26 25 25 27 26 31 25 27 27 26 21

Scale 11 12 13 14 15 16 17 18 19 20 21
T 22 23 26 28 26 24 23 18 13 12 10

The clustering method will be run again when the map view moves out of the
bounding box due to panning of the map. Nevertheless, it works smoothly in the web
application since the processing time of the method is in milliseconds for each run
when zooming or panning the map.

 57

6 Conclusions

In this thesis, we have investigated swap-based clustering methods such as random
swap, deterministic swap and hybrid swap. We have proposed a more efficient
swap-based algorithm called smart swap. It always selects the nearest cluster pair to
be removed, which takes only O(M2) time, and chooses the cluster with largest
distortion for relocating its position. In order to avoid getting stuck into a local
minimum, we extend the search space by considering the next best cluster pairs,
which causes only little burden in the overall processing time. To reduce the total time
complexity, a fast variant of k-means is employed to repartition the dataset and
fine-tune the swapped solution.

We have compared the clustering quality and efficiency of the swap-based clustering
methods on both synthetic datasets and real datasets. According to the experimental
results, from the clustering quality point of view, the random swap always achieves
the best clustering quality or even the optimal result in case the number of iterations is
set to high enough. However, from the clustering efficiency point of view, smart swap
is more efficient for most datasets. It is therefore a good choice to select random swap
when best clustering is needed but to use smart swap when efficiency is more
important.

In addition, we have applied the clustering in a location-based application called
MOPSI project to reduce the clutter problem in map visualization in different scales,
using a split smart swap clustering method to cluster the user locations and using a
grid-based clustering with bounding box method to cluster the photo collections. The
evaluation results show that the split smart swap works in the MOPSI user tracking
application in real-time. However, it is slow for the larger photo collection database,
which is a challenge for real-time applications. It can be improved further considering
running the clustering method on the web server side to reduce the processing time.
Meanwhile, the grid-based clustering with bounding box method was implemented. It
works with good clustering result and significant fast speed.

The main contribution of this thesis is that we have proposed a more efficient swap -
smart swap and discussed the swap-based clustering methods from both clustering
quality and clustering efficiency points of view, which can be considered as the

 58

important reference to the selection of clustering methods for the user. Moreover, we
have applied the clustering to map visualization of user tracking and photo collections
in a location-based application MOPSI.

 59

References

[1] P. Fränti and J. Kivijärvi, “Randomised local search algorithm for the clustering
problem,” Pattern Analysis and Applications, vol. 3, pp. 358-369, 2000.

[2] R. Xu, II Donald Wunsch, “Survey of clustering algorithms,” IEEE Trans on
Neural Networks, vol. 16 (3), pp. 645-678, 2005.

[3] McQueen JB, “Some methods of classification and analysis of multivariate
observations,” Proc 5th Berkeley Symposium Matchmatical Statistical
Probability, vol. 1, pp. 281-297, 1967.

[4] Stuart P. Lloyd, “Least squares quantization in PCM”, IEEE Transactions on
Information Theory, vol. 28 (2), pp. 129-137, 1982.

[5] Wikipedia, “k-means clustering”,
, accessed 15.7.2010. http://en.wikipedia.org/wiki/K-means_clustering

[6] J.H. Ward, “Hierarchical grouping to optimize an objective function,” Journal
of Amer. Statist.Assoc. 58, pp. 236-244, 1963.

[7] Hierarchical clusteirng,
http://nlp.stanford.edu/IR-book/html/htmledition/hierarchical-clustering-1.html,
accessed 28.9.2010.

[8] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data clustering
method for very large databases,” ACM SIGMOD Record, vol 25 (2), pp.
103-114, 1996.

[9] S. Guha, R. Rastogi, and K. Shim, “Cure: An efficient clustering algorithm for
large databases,” ACM SIGMOD, pp. 73-84, 1998.

[10] G. Karypis, E.H. Han, and V. Kumar, “Chameleon: A hierarchical clustering
algorithm using dynamic modeling,” IEEE Computer, vol. 32 (8), pp. 68–75,
1999.

[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” Int. Conf. on
Knowledge Discovery and Data Mining, pp. 226-231, 1996.

[12] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander,
“OPTICS: Ordering Points To Identify the Clustering Structure,” ACM
SIGMOD international conference on Management of data, pp. 49-60, 1999.

 60

http://en.wikipedia.org/wiki/K-means_clustering

[13] Peter J. Rousseeuw, “Silhouettes: a Graphical Aid to the Interpretation and
Validation of Cluster Analysis,” Computational and Applied Mathematics vol.
20, pp. 53-65, 1987.

[14] M. Halkidi, Y. Batistakis and M. Vazirgiannis, “Clustering Validity Methods:
Part I,” ACM SIGMOD Record, vol. 31 (2), pp. 40-45, 2002.

[15] M. Halkidi, Y. Batistakis and M. Vazirgiannis, “Clustering Validity Methods:
Part II,” ACM SIGMOD Record, vol. 31 (3), pp. 19-27, 2002.

[16] P. Hansen and N. Mladenovic, “J-means: A new local search heuristic for
minimum sum-of-squares clustering,” Pattern Recognition, vol. 34, pp. 405-413,
2001.

[17] B. Fritzke, “The LBG-U method for vector quantization – an improvement over
LBG inspired from neural networks,” Neural Processing Letters, vol. 5, pp.
35-45, 1997.

[18] P. Fränti and O. Virmajoki, “Iterative shrinking method for clustering
problems,” Pattern Recognition, vol. 39 (5), pp. 761-765, 2006.

[19] A. Likas, N. Vlassis and J.J. Verbeek, “The global k-means clustering
algorithm,” Pattern Recognition, vol. 36, pp. 451-461, 2003

[20] T. Kaukoranta, P. Fränti and O. Nevalainen, “Iterative split-and-merge
algorithm for VQ codebook generation,” Optical Engineering, vol. 37 (10), pp.
2726-2732, 1998.

[21] H. Frigui and R. Krishnapuram, “Clustering by competitive agglomeration,”
Pattern Recognition, vol. 30 (7), pp. 1109-1119, 1997.

[22] P. Fränti, T. Kaukoranta and O. Nevalainen, “On the splitting method for vector
quantization codebook generation,” Optical Engineering, vol. 36 (11), pp.
3043-3051, 1997.

[23] P. Fränti and O. Virmajoki, “On the efficiency of swap-based clustering,” Int.
Conf. on Adaptive and Natural Computing Algorithms (ICANNGA’09),
Kuopio, Finland, pp. 303-312, Apr. 2009.

[24] P. Fränti, M. Tuononen and O. Virmajoki, “Deterministic and randomized local
search algorithms for clustering,” IEEE Int. Conf. on Multimedia and Expo,
(ICME’08), Hannover, Germany, pp. 837-840, Jun. 2008.

[25] J. Chen, Q. Zhao, and P. Fränti, “Smart swap for more efficient clustering”, Int.
Conf. on Green Circuits and Systems (ICGCS’10), Shanghai, China, pp.
446-450, Jun. 2010.

 61

[26] T. Kaukoranta, P. Fränti and O. Nevalainen, “A fast exact GLA based on code
vector activity detection,” IEEE Trans. on Image Processing, vol. 9 (8), pp.
1337-1342, Aug. 2000.

[27] P. Fränti, O. Virmajoki and V. Hautamäki, “Probabilistic clustering by random
swap algorithm,” IAPR Int. Conf. on Pattern Recognition (ICPR’08). Tampa,
FL, USA, 2008.

[28] Zhang et al., “BIRCH: A new data clustering algorithm and its applications,”
Data Mining and Knowledge Discovery, vol. 1 (2), pp. 141-182, 1997.

[29] C.L. Blake, C.J. Merz, UCI repository of machine learning databases,
University of California, Irvine, Department of Information and Computer
Sciences, 1998, http://archive.ics.uci.edu/ml/datasets/Iris.

[30] Stefan Steiniger, Moritz Neun and Alistair Edwardes, “Foundations of Location
Based Services”, University of Zurich.

[31] K. Virrantaus, J. Markkula, A. Garmash, Y. V. Terziyan, “Developing
GIS-Supported Location-Based Services,” First International Workshop on Web
Geographical Information Systems (WGIS’2001), Kyoto, Japan, pp. 423-432,
2001.

[32] Wikipedia, “Location-based services”,
, accessed 11.8.2010. http://en.wikipedia.org/wiki/Location-based_service

[33] Shu Wang, Jungwon Min and Byung K. Yi, “Location Based Services for
Mobiles: Technologies and Standards,” IEEE International Conference on
Communication (ICC), Beijing, China, 2008.

[34] “Mobile Local Search Saturates Profit over LBS Vendors, Advertisers, and
Search Application Developers”,

http://www.directionsmag.com/pressreleases/mobile-local-search-saturates-prof
it-over-lbs-vendors-advertisers-and-searc/120497, accessed 12.8.2010.

[35] P. Fränti, J. Kuittinen, A. Tabarcea, L. Sakala, “MOPSI location-based search
engine: concept, architecture and prototype,” ACM Symposium on Applied
Computing (SAC'10), Sierre, Switzerland, pp.872-873, Mar. 2010.

[36] G. Hariharan, P. Fränti, and S. Mehta, “Data Mining for Personal Navigation,”
SPIE Conf. on Data Mining and Knowledge Discovery: Theory, Tools, and
Technology IV, Orlando, Florida, Vol. 4730, pp.355-365, Apr. 2002.

[37] P. Fränti, A. Tabarcea, J. Kuittinen, V. Hautamäki, “Location-based search
engine for multimedia phones,” IEEE Int. Conf. on Multimedia & Expo
(ICME’10), Singapore, pp.558-563, Jul. 2010.

 62

http://en.wikipedia.org/wiki/K-means_clustering

[38] A. Tabarcea, V. Hautamäki, P. Fränti, “Ad-hoc georeferencing of web-pages
using street-name prefix trees,” Int. Conf. on Web Information Systems &
Technologies (WEBIST’10), Valencia, Spain, vol. 1, pp. 237-244, Apr. 2010.

[39] Jean-Yves Delort, “Vizualizing Large Spatial Datasets in Interactive Maps,”
Second International Conference on Advanced Geographic Information Systems,
Applications, and Services, pp.33-38, 2010.

[40] N. Elmqvist and J.-D. Fekete, “Hierarchical aggregation for information
visualization: Overview, techniques and design guidelines,” IEEE Transactions
on Visualization and Computer Graphics, vol. 16 (1), pp. 439-454, 2010.

[41] A Tutorial on Clustering Algorithms,
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/, accessed 1.8.2010.

[42] G. Ball and D. Hall, “A clustering technique for summarizing multivariatedata,”
Behav. Sci., vol. 12, pp. 153-155, 1967.

[43] L. Kaufman and P. Rousseeuw, “Finding Groups in Data: An Introduction to
Cluster Analysis,” John Wiley & Sons, Newyork, 1990.

 63

	1 Introduction
	1.1 Overview
	1.2 Motivation
	1.3 Purpose of the thesis
	1.4 Organization of the thesis

	2 Clustering Methods
	2.1 Notations and definitions
	2.2 K-means algorithm
	2.3 Hierarchical clustering algorithms
	2.4 Number of clusters

	3 Swap-based Clustering
	3.1 Random swap
	3.1.1 Principle of the algorithm
	3.1.2 Number of iterations

	3.2 Deterministic swap
	3.2.1 Selecting the centroid to be swapped
	3.2.2 Finding the location for the swapped centroid
	3.2.3 Demonstration of the deterministic swap

	3.3 Hybrid swap
	3.4 Proposed method: smart swap
	3.5 Efficiency analysis

	4 Experiments and Results
	4.1 Synthetic datasets
	4.2 Real datasets
	4.3 Result comparisons

	5 Application to Location-based Services
	5.1 Location-based services
	5.2 MOPSI project
	5.2.1 Search engine
	5.2.2 Photo collection
	5.2.3 Route tracking
	5.2.4 User tracking

	5.3 Clustering in MOPSI
	5.3.1 Split smart swap clustering
	5.3.2 Grid-based clustering with bounding box

	6 Conclusions
	References

