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Abstract
Voice conversion – the methodology of automatically convert-
ing one’s utterances to sound as if spoken by another speaker
– presents a threat for applications relying on speaker verifica-
tion. We study vulnerability of text-independent speaker verifi-
cation systems against voice conversion attacks using telephone
speech. We implemented a voice conversion systems with two
types of features and nonparallel frame alignment methods and
five speaker verification systems ranging from simple Gaussian
mixture models (GMMs) to state-of-the-art joint factor analysis
(JFA) recognizer. Experiments on a subset of NIST 2006 SRE
corpus indicate that the JFA method is most resilient against
conversion attacks. But even it experiences more than 5-fold
increase in the false acceptance rate from 3.24 % to 17.33 %.
Index Terms: speaker verification, voice conversion, security

1. Introduction
Speaker verification is the task of accepting or rejecting an iden-
tity claim based on a speech sample [1]. Although recogni-
tion accuracy of speaker verification systems has considerably
increased in the past few years thanks to intersession variabil-
ity compensation techniques (e.g. [2]), in practice few people
would trust a security system, such as e-banking application,
relying solely on speaker verification. A common argument is
that an intruder may use simple spoofing techniques to act as an-
other speaker - the most obvious would be playback of an earlier
recorded target speaker’s voice. To respond to such concerns,
a number of authors have studied how speaker recognition sys-
tems respond to playback attacks [3, 4], speaker-adapted speech
synthesis [5, 6, 7], voice conversion [8, 9] and even human voice
mimicking [10, 11]. While the datasets, spoofing techniques
and recognition systems are rather diverse in these studies, they
all clearly indicate significantly increased false acceptance rates
under spoofing attacks. The concern about security of speaker
verification, therefore, is well justified.

In this study, we apply voice conversion [12] techniques
to simulate spoofing attacks (Fig. 1). Voice conversion tech-
niques modify one speaker’s (the source) utterances so that they
sound as spoken by another speaker (the target). Voice conver-
sion systems consist of training and conversion phases. In both
phases, speech signal is first parameterized into short-term fea-
ture vectors. In the training phase, source and target speaker
features are first paired at frame-level, typically using paral-
lel training utterances. A stochastic Gaussian mixture model
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(GMM) conversion function is then trained using the paired
vectors [13, 14, 12]. In the conversion phase, the conversion
function is used for mapping unseen source features towards the
target speaker. The converted utterance is reconstructed using
inverse parameterization.

Previous studies on spoofing attacks have mostly consid-
ered high-quality speech recordings, relatively small number
of speakers and typically just one speaker verification systems.
Due to great potential of speaker verification in remote authen-
tication tasks over non-ideal transmission channels, we would
like to take the challenge to verify (or nullify) whether voice
conversion spoofing poses a real threat on telephone speech. To
this end, we pick the NIST 2006 SRE corpus for our experi-
ments. Converting telephony speech poses practical challenges
due to lacking parallel training corpus and low-quality signals
with transmission channel effects.

The authors of [9] studied vulnerability of GMM recognizer
against voice conversion attacks also on the SRE 2006 corpus.
In the present study we carry out more thorough comparison in-
cluding five speaker recognizers. Three of these [15, 16, 17] –
used for reference purposes – are lightweight recognizers with-
out intersession compensation or external score normalizations.
The other two, GMM supervector [18] with nuisance attribute
projection (NAP) [19] and state-of-the-art GMM with joint fac-
tor analysis (JFA) [2], in turn, include intersession compensa-
tion and score normalization. Even though the latter two can
handle challenging cross-channel conditions very well, it is less
obvious how they would respond to test utterances processed
through voice conversion; their speaker models, background
models, session and session variability models and score nor-
malization cohort models are all trained using natural speech.
Preliminary evaluation of JFA robustness against four types of
spoofing and tampering attacks was studied in [4] using a small
set of nonpublic data. The present study includes large number
of data and larger pool of recognition systems.

2. Designing the Corpus
Due to prevalence of telephones and potential of speaker recog-
nition technology in remote access applications, we decided to
focus on telephony speech. To this end, we choose a subset of
the core task in the NIST 2006 SRE corpus1 as our baseline
corpus. Our target speaker model training utterances and the
verification trials are directly taken as a subset of the 1conv4w-
1conv4w task in the original corpus. Our speaker detection task

1http://www.itl.nist.gov/iad/mig//tests/sre/
2006/index.html
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Table 1: Statistics of the trials (subset of NIST SRE 2006 core).

Female Male Total

Target speakers 298 206 504
Genuine trials 2349 1629 3978
Impostor trials 1636 1146 2782

Figure 1: Diagram of the voice conversion system.

consists of 6760 gender-matched verification trials (3978 gen-
uine and 2782 impostor) from 504 target speakers as shown in
Table 1. We follow the same evaluation rules as in the NIST
2006 SRE specifications.

In the spoofing corpus, the speaker models are the same
as in the baseline corpus but the test utterances are processed
through voice conversion. The 3978 genuine trials are kept un-
touched but the 2782 impostor trials undergo voice conversion.
Note that voice conversion operates on a pair of speakers (the
source and the target). This implies that, unlike in the typical
NIST SRE tasks where the same test utterances and speaker
models are re-used in multiple trials, we need to train differ-
ent conversion function for each speaker pair in the trial list.
As the speech files in SRE 2006 have an average duration of
5 minutes (of which about half contains speech), this poses a
computational challenge. This is the main reason why our task
contains significantly less verification trials compared to recent
NIST SRE tasks. Similar to previous studies [5, 20], the utter-
ances used for training the speaker enrollment models and voice
conversion functions are disjoint. We utilize data from the 3-
and 8-conversion training sections of the SRE 2006 to train the
conversion functions.

3. Voice Conversion Methods

3.1. Stochastic Conversion Function

The mainstream voice conversion method is based on Gaussian
mixture models (GMMs) [13, 14, 12]. In this study, we use joint
density GMM voice conversion method proposed originally in
[21]. It is described as follows. Consider frame-aligned se-
quences of training vectors from the source (x) and the target
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maximum likelihood sense using the well known expectation
maximization (EM) algorithm. Here, we use M = 8 Gaussians
with full covariance matrices. In the conversion phase, given a
novel source speaker vector (x), the trained joint density model
is used for predicting the target speaker vector ŷ as,

ŷ = F (x) = E(y|x)
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is the posterior prob-

ability of source vector x originating from the mth Gaussian.
We use the above procedure to convert spectral parameters. For
the fundamental frequency (F0), conversion is done by equal-
izing the means and variances of the source and target log-F0
distributions as is commonly done.

3.2. Non-Parallel Frame Alignment Using VQ Mapping

We now discuss how to align the training vectors as required
by the stochastic conversion framework. Typically one uses a
set of parallel training utterances from the source and the tar-
get speakers. That is, same text passages read by both speakers.
These training utterances would then be time-aligned using, for
instance, dynamic time warping (DTW). The corpus used in
this study, unfortunately, consists of conversational telephone
speech without parallel utterances. Thus, we have to resort to
nonparallel alignment methods [22, 23, 24].

In preliminary experiments, we implemented the nonparal-
lel alignment method of [23] which simultaneously finds frame
alignment and conversion function in multiple iterations. This
led to good conversion quality but with high computational
load. Hence, we ended up using faster vector quantization (VQ)
based approach proposed in [22]. For completeness, we sum-
marize the approach here.

1. Let X = {xi} and Y = {yj} be the alignment vec-
tors of source and target, respectively. Using K-means,
we train two codebooks C(x) = {c(x)1 , . . . , c

(x)
K } and

C(y) = {c(y)1 , . . . , c
(y)
K } of K centroid vectors using X

and Y , respectively.

2. Create an index map g(k) from the source to target clus-
ters by the nearest neighbor rule, i.e.

g(k) = arg min
1≤r≤K

‖c(x)k − c
(y)
r ‖2, k = 1, . . . ,K.
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Table 2: Performance of five different speaker recognition systems under voice conversion on the spoofing corpus.

Voice conversion
Equal error rates (EER %) 100 × MinDCF

GMM- VQ- GLDS- GMM- GMM- GMM- VQ- GLDS- GMM- GMM-
UBM UBM SVM SVM JFA UBM UBM SVM SVM JFA

None (Baseline) 7.63 7.56 7.16 3.74 3.24 3.54 3.07 3.03 1.70 1.57
MCEP, uni-frame align. 24.99 22.62 25.17 12.58 7.61 8.44 7.62 9.57 4.91 3.49
MCEP, tri-frame align. 24.49 20.74 23.41 12.88 7.40 8.29 7.11 9.49 4.75 3.41
LSP, uni-frame align. 21.90 19.81 18.70 10.81 6.48 7.58 6.25 6.86 4.17 2.72
LSP, tri-frame align. 21.07 19.16 17.15 10.81 6.30 7.31 6.01 6.65 3.88 2.65

3. For each source training vector xi ∈ X , let k∗ to be
the index of it’s nearest centroid in the source codebook.
That is, k∗ = argmin1≤k≤K ‖xi − c

(x)
k ‖2.

4. The paired target vector corresponding to xi is the near-
est neighbor of xi in the vectors assigned to cluster g(k∗)

in the target codebook C(y).

For alignment, we use, in fact, different features from the
actual conversion features (subsection 3.3). For the alignment,
we use mel-frequency cepstral coefficients (MFCCs) due to
their success in speech recognition. We extract 12 MFCCs
with deltas (not including the energy coefficient). Energy-
based voice activity detection (VAD) is performed since non-
speech frames degrade conversion quality [25]. Utterance-level
cepstral mean and variance normalization (CMVN) are used
for speaker and channel normalization. As alternative align-
ment features, we also consider tri-frame alignment method
[24] which expands the left and right acoustic contexts and was
shown to work well on the non-telephony CMU Arctic data.

3.3. Conversion Features

The sampling rate of our speech files is 8 kHz. The speech
signal is windowed in 25 ms window with a 5 ms shift and
only the detected speech frames undergo conversion. We con-
sider two spectral parameterizations, 30 mel-cepstrum coeffi-
cients (MCEP) and line spectrum pairs (LSP). The features are
extracted using the SPTK tool [26]. F0 values are automati-
cally extracted using the RAPT algorithm [27]. After conver-
sion, SPTK tool is also used to synthesize speech.

4. Speaker Verification Systems
In the experiments, we consider five speaker verification sys-
tems of varying complexity. All systems use the same acoustic
front-end consisting of 12 MFCCs with Δ and Δ2 coefficients
computed via 27-channel mel-frequency filterbank. RASTA fil-
tering, voice activity detection (VAD) and utterance CMVN are
applied as postprocessing. The energy VAD decisions of test
segments are derived from the original baseline corpus. In the
evaluation, we consider equal error rate (EER) and MinDCF
(using the cost parameters in the SRE 2006 plan).

GMM-UBM: This is the standard Gaussian mixture model
with universal background model (UBM) [15]. We train the
UBM with 2048 Gaussians using EM algorithm from the NIST
2004 SRE corpus. We adapt the target speaker models using
maximum a posteriori (MAP) adaptation of the UBM means.

VQ-UBM: Similar to GMM-UBM, we model each speaker
using a vector quantizer codebook of 2048 code vectors trained
using MAP adaptation [16]. The background utterances are the
same as for GMM-UBM.

GLDS-SVM: Generalized linear discriminant sequence
(GLDS) kernel support vector machine [17] uses 3rd order
monomial expansions, leading to 9139-dimensional polynomial

supervectors per utterance. Speaker models are trained using
LibSVM [28]. The same background utterances are used as for
the previous two systems.

GMM-SVM: In the GMM supervector method [18], we
first train a UBM with 512 Gaussians. We then adapt utterance
GMM mean supervectors of dimensionality 36×512 = 18432.
These are compensated with NAP [19] and used for target
speaker model training using LibSVM. The match scores are
additionally normalized using ZT-norm. NIST SRE 2004, SRE
2005 and MIXER 5 data are used for training UBM, NAP, co-
hort models and in SVM background.

GMM-JFA: GMM-JFA builds up on joint factor analysis
(JFA) [2] for intersession and speaker variability compensation.
Similar to GMM-SVM, it uses 512 Gaussians but TZ-norm for
score normalization. Same datasets as for the previous system,
plus additionally Switchboard corpus, are used in training.

5. Results

The results are given in Table 2. Considering baseline accuracy,
GMM-SVM and GMM-JFA recognizers outperform the other
three lightweight recognizers as expected. When voice con-
version is introduced, all recognizers are seriously damaged.
The relative increase in EER for GMM-UBM, VQ-UBM and
GLDS-SVM are 3-fold or more for the uni-frame MCEP con-
version. Even the EER of GMM-JFA is more than doubled.
Regarding MinDCF, GLDS-SVM experiences the worst degra-
dation (more than 3-fold increase). For the other systems – in-
cluding GMM-JFA – MinDCF values are more than doubled.

From the conversion methodology point of view, the mel-
cepstrum based method systematically outperforms the LSP
conversion since it gives higher speaker verification error rates.
This might be because the recognizers also use MFCCs; the
simulated voice conversion intruder here has knowledge on the
recognition system [9]. The uni-frame alignment method, in
turn, systematically outperforms tri-frame alignment. This is
different from our earlier result [24] on wideband microphone
data (CMU Arctic) using small number of speakers. The current
study utilizes larger 8 kHz telephony data containing significant
channel effects and some additive noise which may explain the
difference.

Increase in EER and MinDCF reflect loss in discrimina-
tory information but might still give too optimistic viewpoint
when the decision thresholds are trained on original data and
applied to converted data. Therefore, we choose the two best-
performing recognizers, GMM-SVM and GMM-JFA, and set
the decision threshold to the EER threshold on the baseline cor-
pus. We then measure the false acceptance rate on the spoof-
ing corpus using the most successful MCEP conversion method
with uni-frame alignment. According to Table 3, the false ac-
ceptance rates increase by factors of approximately 11:1 and 5:1
for the GMM-SVM and GMM-JFA systems, respectively. Even
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!Figure 2: Score distributions before and after spoofing attack.

though the baseline FARs are close to each other, the GMM-
JFA system experiences less degradation. The recognition sys-
tem score distributions in Fig. 5 also indicate that GMM-JFA
impostor score distribution is less affected by spoofing.

Table 3: Effect of spoofing to false acceptance rates (FAR, %).
Decision threshold is set to EER point on the baseline corpus.

GMM-SVM GMM-JFA

Baseline 3.74 3.24
Spoofing (MCEP, uni-frame) 41.54 17.33

6. Conclusions
We studied vulnerability of speaker verification systems against
spoofing and disguise attacks. Our experiments indicate that a
simple voice conversion system – even when trained using non-
parallel alignment and telephone speech – was able to break
down all the five recognizers considered. Thus, we confirm
that the earlier findings on clean data hold also for telephone
data. Importantly, our findings suggest that, even though GMM-
JFA is mainly designed to handle intersession variabilities, it
also shows higher resistance against spoofing in comparison to
the simpler methods. We hypothesize that the voice conver-
sion function introduces a form of channel shift to the features
which is partly compensated for by the channel variability sub-
space model (this should be confirmed). Nevertheless, even
the accuracy of JFA decreased to unacceptable level. We argue
that a human listener would easily judge our converted samples
to sound nonnatural and therefore, solutions for natural/non-
natural speech discrimination are needed.
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