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Abstract: An evaluation of the verification and calibration performance of a face recognition system based on inter-session
variability modelling is presented. As an extension to calibration through linear transformation of scores, categorical
calibration is introduced as a way to include additional information about images for calibration. The cost of likelihood ratio,
which is a well-known measure in the speaker recognition field, is used as a calibration performance metric. The results
obtained from the challenging mobile biometrics and surveillance camera face databases indicate that linearly calibrated face
recognition scores are less misleading in their likelihood ratio interpretation than uncalibrated scores. In addition, the
categorical calibration experiments show that calibration can be used not only to improve the likelihood ratio interpretation of
scores, but also to improve the verification performance of a face recognition system.
1 Introduction

Face is one of the common biometric modalities that is used
by humans to perform person recognition [1]. Owing to the
advancements in audio–visual recording equipment, in
recent years cameras are used regularly in our everyday life.
Taking photos or videos of people have become popular as
camera technology for mobile devices (e.g. smart phones
and tablets) rapidly improved. In the security sector,
surveillance cameras are often used to monitor public places
such as train stations, airports, shopping malls and
hospitals. The availability of digital images from these
cameras has stimulated the development of technologies to
process them. One of these technologies is automatic face
recognition, that is, a technology to recognise a person’s
identity from his or her facial image [2].
Automatic face recognition in biometrics has applications

that can be divided into three main groups: commercial,
governmental and forensic applications [3]. An example of
commercial face recognition is the user authentication
process that is performed by mobile devices and personal
computers. In governmental applications, automatic face
recognition systems may be used in biometric passport
verification or border control activities. For both
commercial and government-related applications, the
subjects usually cooperate with the system. In forensic
applications, digital image evidence can be recovered from
surveillance operations that often involve closed circuit
television (CCTV) cameras. In contrast to commercial
applications, subjects in forensic face recognition generally
do not cooperate with the system while such evidence is
captured. Rather, they are either unaware of the system or
are deliberately uncooperative, for example by hiding or
disguising themselves with hats, sunglasses or masks.
Sometimes, crime scenes are watched by eyewitnesses,

who may later be called upon to identify suspects. One
problem of eyewitnesses is that their memory can be
influenced by misleading information presented after the
crime occurred [4, 5]. In cognitive psychology, this effect is
called the misinformation effect paradigm [6]. Therefore,
eyewitness testimonies should not be taken as the only
source of information to decide whether or not the suspect
is the perpetrator.
When a crime scene is monitored by a CCTV camera, the

captured images are commonly compared to facial images
from potential suspects of the crime by forensic experts. On
one hand, humans tend to perform better than an
automatic-based system when recognising familiar faces [7,
8], but on the other hand, it has been shown that automatic
face recognition systems surpass human performance when
comparing unfamiliar faces in difficult illumination
conditions [9]. Hence, automatic systems for forensic face
recognition should be used to assist forensic experts.
Several challenges emerge when images captured from

mobile devices or CCTV cameras are used for face
recognition. The issues that influence recognition
performance include low resolution in the captured images,
the pose of the subject, partial occlusions of the subject’s
face and variable illumination [10]. To address these issues,
various techniques have been developed, including image
preprocessing to reduce illumination effects [11], feature
normalisation [12, 13] and inter-session variability (ISV)
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modelling [14]. Score normalisation techniques, such as zero
and test score normalisation (ZT-norm), have also been
shown to improve verification performance [15].
Generally, automatic face recognition systems compute a

similarity score between a given probe sample and a model
from a known identity. In authentication or verification
applications of automatic face recognition, this score is
compared to a threshold to classify the trial as either a
client or an impostor. In forensic applications, interpreting
the score is more complicated because legal decisions
cannot be made directly by the automatic face comparison
system but rather should be made by a judge or jury in
court, after integrating information including several pieces
of evidence. If the outcome of the face comparison should
be presented in court, a favourable way to express it is in
the form of a likelihood ratio (LR), that is, a relative
likelihood of the following two competing hypotheses [16]:
(a) the probe image (e.g. from CCTV) came from the
suspect (prosecution hypothesis HP) or (b) it originated
from someone else (defense hypothesis HD). It is reported
that uncalibrated LRs can be misleading in their interpretation
for forensics application [17, 18]. The approach that can be
taken to tackle this issue is calibration [17, 19], a process to
transform raw scores computed by automatic face recognition
systems into calibrated LR scores.
In the field of speaker recognition, calibration is used in the

speaker recognition evaluation (SRE) that is regularly held by
the American National Institute for Standards and
Technology (NIST) to verify advances of the technology
for speaker detection systems and measuring its
performance [20]. In other forensic biometric fields such as
fingerprint, earmarks and signature recognition, calibration
is used to transform raw scores from biometric systems to
LRs [21–23]. To our knowledge, there is only limited
literature available that discusses calibration for scores
produced by automatic face recognition systems [21, 24].
In the previous works on face recognition, we proposed a

session variability reduction method through ISV modelling
[14], and a score normalisation technique via ZT-norm
implementation [15] to the face recognition system. These
works only focus on improving the system verification
performance. Unlike the previous works, in this study, we
also focus on the calibration performance and introducing
calibration techniques for face recognition systems.
Experiments are carried out using a face recognition system
based on ISV modelling, with and without ZT-norm, and
on two challenging facial image databases: mobile
biometrics (MOBIO) and surveillance camera face
(SCface). We evaluate both the verification and calibration
performances, before and after the linear calibration is
applied to the scores. We then introduce categorical
calibration as a way to utilise additional information about
facial images for calibration. With categorical calibration,
we show that not only calibration, but also the verification
performance can be improved. In the discussion, we
examine the effects of calibration on score distributions
produced by the face recognition system.
One important aspect of the research in this paper is that we

provide the source code for all experiments, evaluations,
tables and plots that are shown in Section 7. All
experiments solely rely on open source software and are,
therewith, entirely reproducible.
The remainder of this paper is structured as follows: the

face recognition system is explained in more detail in
Section 2, followed by introduction of LR calibration in
Section 3 and metrics used to evaluate the system
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performance in Section 4. In Section 5, we present
databases and evaluation protocols. The experimental setup
is detailed in Section 6. Finally, the results of all
experiments are discussed in Section 7, and Section 8
concludes the paper.
2 Face recognition

Automatic face recognition is the task of recognising people
from their facial images. There are several challenges that
influence automatic face recognition systems, like facial
expressions, different illumination conditions, partial
occlusions of the face, non-frontal pose and low image
resolution.
Before the person shown in an image can be identified,

the face has to be detected. Since we want to investigate
face recognition, rather than face detection, we use the
hand-labelled eye positions that are provided with
the databases (cf. Section 5) to geometrically normalise the
images. Images are then photometrically enhanced to
reduce the influence of illumination, for example, using the
method introduced in [11].
From these preprocessed images, features that are useful for

face recognition are extracted. Over the last few decades,
numerous algorithms have been developed to extract
different kinds of features like eigenfaces [25], local binary
patterns [26], scale-invariant feature transform (SIFT)
features [27] and Gabor features [28]. In addition, the way
to extract features from raw pixel values has also been
studied [29]. Using these features, a recognition algorithm
is then executed, for example, linear discriminant analysis
[30], the Bayesian intra-personal/extra-personal classifier
[31], support vector machines [32], elastic bunch graph
matching [33] or local Gabor binary pattern histogram
sequences [34]. In this work, we focus on a face
recognition system that was one of the best performing
systems in [35], which relies on an ISV modelling in a
Gaussian mixture model (GMM) framework using discrete
cosine transform (DCT) block features.
To ensure reproducibility and comparability of our face

recognition system, we strictly follow the evaluation
protocols defined by the MOBIO and SCface databases and
solely use open source software [36, 35] to run our
experiments. The database protocols define the setup of the
face verification experiment by dividing the images into
three groups: training set, development set and evaluation
set. First, facial features are extracted from all images of the
database. Next, the images from the training set are used to
adapt the face recognition system to the conditions of the
database. Then, for each client in the development set, the
features of one or more of the client’s images are used to
enrol a client model. The features of the remaining images
from the development set are used to probe the system by
computing similarity scores between client models and
probe features. Finally, the scores from the evaluation set
are computed in a similar way. These scores can be directly
used to compute the recognition performance of the system,
but they can also be further processed by score
normalisation, for example, ZT-norm or score calibration.
2.1 UBM-GMM modelling of DCT block features

As in [14], the features extracted from the preprocessed
images are DCT block features. After the image is
decomposed into several overlapping blocks, DCT features
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Fig. 1 Process of extracting DCT block features from a
geometrically normalised image
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xb are extracted from each of the blocks. This extraction
process is visualised in Fig. 1.
In contrast to most approaches to face recognition, these

features are not concatenated into a single long feature
vector, but each feature is taken to be an independent
observation of the same person. To enrol a model of a client,
the distribution of DCT block features from one or more
images from the client is modelled by a GMM. The
enrolment process to create the client-specific GMM is
twofold. First, a client-unspecific GMM – the so-called
universal background model (UBM) λUBM – models the
distribution of features from an independent set of training
images that does not include images from clients. Secondly,
the client-specific GMM λc is created by adapting the means
of the UBM to the features of the client’s enrolment features
[14] while keeping the same covariance matrices as the UBM.

2.2 ISV modelling

The ISV modelling technique was originally inspired by the
speaker recognition field [37]. This technique involves
estimating a linear subspace in GMM supervector space to
capture the effects of image variations (due to, e.g.
illumination, pose, facial expression and occlusion) and
accounts for these variations during client model enrolment.
The enrolled client-specific GMMs thereby isolate a client-
specific component from image-dependent components in
GMM supervector space. This modelling technique has
been shown to improve stability against these image-
dependent variations. For details, readers are directed to [14].
During the deployment (test) phase, the DCT features

xp = x p,b

{ }B
b=1

for all blocks b of a probe image are

extracted, and an estimate is made of how well the probe
features can be explained by a certain client model λc.
Specifically, this is achieved by computing the average
log-likelihood ratio (LLR) score

h xp, lc

( )
= 1

B

∑B
b=1

log
p x p,b|lc
( )

p x p,b|lUBM
( ) (1)

This score, thus, compares the likelihood that the client model
λc generated the observations (HP) against the likelihood that
they were generated by the UBM, λUBM (HD).

2.3 ZT-score normalisation

After score computation, we employ ZT-norm, which was
also adopted from the speaker verification field [38].
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ZT-norm incorporates both client-centric Z-norm and
probe-centric T-norm [39]. The goal of ZT-norm is to make
the score independent of the current client or probe.
Both Z- and T-norm convert a raw score h to a normalised

score h′ by subtracting an average impostor score μ and
dividing it by its standard deviation σ:

h′ = h− m

s
(2)

The difference between Z- and T-norm is how impostor scores
are computed. For Z-norm, these scores are computed
between the currently tested client model λc and all probe
images from the cohort, whereas for T-norm, scores are
computed between the current probe xp and all cohort client
models.
Finally, ZT-norm is a combination of first applying Z-norm

and then applying T-norm afterwards, which was shown to
perform well for face recognition [15]. It should be noted
that the ZT-norm score transformation removes any LLR
properties that the scores may have had before transformation.

3 Likelihood ratio calibration

Using an automatic face recognition system for forensic
applications, it is important to ensure that scores are output
in the form of LRs. Even if the face recognition algorithms
are designed to produce LR scores, because of various
reasons like score normalisation or imbalanced training
data, this goal might not be directly achieved. One way to
give LR properties to the face recognition scores is through
calibration, which is described as ‘the act of defining the
mapping from score to LLR’ [19].

3.1 Likelihood ratios for forensic face recognition

Experts argue that reporting an LR is a sound way of
presenting scientific evidence to court. An LR expresses the
ratio of two likelihoods. For forensics, this is the ratio of
the likelihoods of observing the evidence E in two
competing hypothesis: the prosecution hypothesis HP and
the defense hypothesis HD

LR = P(E|HP)

P(E|HD)
(3)

For forensic face recognition, these two competing
hypotheses can be defined as

† HP: probe xp originates from the client c, and
† HD: probe xp originates from someone else.

For numerical stability reasons, the LR is taken in the
logarithmic domain, forming the LLR.

3.2 Linear score transformation

One way to perform calibration in a binary classification
process like face verification is through linear calibration
[40]. This calibration process linearly transforms raw scores
produced by a face recognition system to calibrated LR
scores. The linear transformation used to calibrate raw
scores h (or h′ after ZT-norm) to calibrated LLRs ℓ is

ℓ = w0 + w1h (4)
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wherew0 is the offset parameter and w1 is the scaling parameter.
These two parameters are obtained from the scores of the
development set of the database via logistic regression.
Finally, the trained calibration parameters are applied to the

scores of the evaluation set. In this way, calibration transfers
knowledge about the whole score distribution from the
development set to the evaluation set, in order to improve
the interpretability of the resulting calibrated scores.

3.3 Categorical calibration

In this paper, we introduce a technique called categorical
calibration to the face recognition field. This calibration
technique is an extension of linear calibration described
above that replaces the single offset parameter w0 with a set
of N category-dependent offset parameters w0,i. Assuming
that there are N distinct probe image categories Q = {qi}

N
i=1

and that, therefore, probe features xp that produced score h
belong to a certain category q, scores transformation using
categorical calibration can be formulated as

ℓ =
∑N
i=1

dq,qiw0,i + w1 h (5)

where δ is the Kronecker delta

dq,qi =
1, if q = qi
0, if q = qi

{
(6)

Categorical calibration is motivated by a calibration technique
in speaker recognition that employs side information [41]. In
categorical calibration, the categories can be in the form of
quality measures [42, 43] of the image such as subject
pose, illumination condition, resolution, facial expression,
and so on. In this paper, we use distance between camera
and subject to determine the category of probe images.
Unlike conventional linear calibration, an improvement in
verification performance is possible through categorical
calibration. This is because the rank order of scores is
invariant under (4) but not under (5).

4 Performance measures

Two types of metrics are used to measure the verification
performance of our face recognition system. The metrics are
verification cost (Cver) and probability of false rejection
(Pfr), both of which measure performance at different
locations in the ROC curves, as well as the cost of LLR
(Cllr), which assesses the whole ROC curve. In this section,
we introduce these measures in more detail. For all metrics,
lower values indicate better system performance.

4.1 Verification cost

The verification cost Cver is a binary-classification system
performance measure, which is defined as

Cver(u) = Pcli × CFR × FRR(u)

+ (1− Pcli)× CFA × FAR(u)
(7)

where Pcli is the prior probability that the probe image is of
the client, CFR and CFA are the weighted cost of false reject
and false alarm errors, respectively, and θ is the decision
threshold of the system. This metric is analogous to
IET Biom., 2014, Vol. 3, Iss. 4, pp. 246–256
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detection cost (Cdet) in the speaker recognition field [44]. It
measures the verification cost at a single operating point of
the DET-curve [45] or at a certain false rejection rate (FRR)
or false acceptance rate (FAR) point.
If the prior probability Pcli = 0.5 and the same weighting

cost for CFR and CFA are used (CFR =CFA = 1), (7) becomes

Cver(u) =
FRR(u)+ FAR(u)

2
(8)

This function is identical to the half total error rate (HTER),
which is a well-known evaluation measure commonly used
in face recognition [15, 46]. In our experiments, we use two
different ways to determine a threshold θ. First, the optimal
threshold θ* is computed based on the development and
evaluation set independently, by minimising

u∗ = argmin
u

Cver(u) (9)

In this paper, we refer to the minimum verification cost as
Cmin
ver = Cver(u

∗).
To give a more realistic and unbiased evaluation of the

verification cost on the evaluation set, we also compute the
optimal threshold u∗ based on the development set and
compute the Cver of the evaluation set at that threshold. For
brevity, we simply call this value Cver.
In addition to the Cver measure, we also report the FRR at

the threshold, where the FAR = 1% as probability of false
rejection (Pfr) for both development and evaluation set.
Both Cmin

ver and Pfr are solely discrimination performance
measures that are insensitive to linear calibration.

4.2 Cost of LLR

The last performance measure used in this paper is the cost of
LLR (Cllr). Unlike Cver and Pfr, the Cllr is an
application-independent verification measure [47]. Usually,
in face and speaker verification systems, hard decisions are
made by thresholding the scores. The Cllr includes the
concept of expected cost and soft Bayes decision. This
metric can be seen as an integral over all cost functions Cver

in (7) that is parameterised by Pcli, CFR and CFA, thereby
assessing calibration at all thresholds θ.
The metric Cllr is a performance measure commonly used

in speaker recognition, for example, in the NIST SRE plan
[20]. It can be interpreted as a scalar measure that summarises
the quality of the LR scores [48]. The Cllr is formulated as

Cllr =
1

2Ncli

∑
hi[{hcli}

log2
(
1+ exp (−hi)

)

+ 1

2Nimp

∑
hj[{himp}

log2
(
1+ exp (hj)

) (10)

where Ncli and Nimp are the number of client and impostor
trials, respectively. The Cllr value can be expressed as the
sum of a minimum Cllr value referred to as discrimination
loss, Cmin

llr , plus calibration loss, Cmc

Cmc = Cllr − Cmin
llr (11)

Discrimination loss Cmin
llr and calibration loss Cmc indicate the

verification and calibration performances of a system,
respectively [47]. To compute a meaningful value of Cllr, it is
249
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Table 1 Interpretations of Cllr values for system performance and LR scores [47]

\cllr\ value System performance interpretation Special LLR properties

0 Perfect verification system LLR = −∞ for impostors and LLR =∞ for clients
0 < \cllr\ < 1 Well-calibrated system −∞ < LLR <∞ and LLRs are well-calibrated
1 Reference verification system LLR = 0 for impostors and clients
\cllr\ > 1 Badly calibrated system No LLR interpretation possible

www.ietdl.org
important that the scores are interpretable as LRs and, therefore,
calibration is required before computing this measure.
The Cllr can also be seen as a validity measure of a

biometric system, in that it indicates the quality and validity
of the LRs produced by the system [49]. The interpretation
of Cllr values are presented in Table 1. A perfect
verification system has Cllr = 0, while a reference system has
Cllr = 1. The perfect verification system always produces
LLR =−∞ for impostor scores and LLR =∞ for client
scores. In contrast, the reference system always produces
LLR = 0, that is, it does not add any information in the
forensic decision process. When a verification system has
Cllr > 1, it is considered to be badly calibrated. The scores
produced by this system are misleading if interpreted as
LRs. If the calibration loss Cmc is removed from the Cllr

value, we find the discrimination loss is 0 ≤ Cmin
llr , 1.

A well-calibrated system has 0≤ Cllr < 1 and produces
well-calibrated LRs. A well-calibrated LR ℓ has the
interesting property that ‘the likelihood ratio of the
likelihood ratio is the likelihood ratio’, which is referred to
as idempotence [50, 51]

ℓ = log
P(ℓ|HP)

P(ℓ|HD)
(12)

This explains that the log likelihood ratio of log likelihood ratio
ℓ is the log likelihood ratio ℓ itself. One implication of (12) is
that for ℓ = 0, the likelihoods of both HP and HD are equal.

5 Databases and protocols

We evaluate face verification and calibration performance on
two challenging image databases. Since we want to evaluate
performance in forensic cases and there is no publicly
available forensic database, we chose the MOBIO [52] and
SCface [53] databases that contain images that are as close
as possible to real forensic data. Samples of facial images
from the databases are presented in Fig. 2. To have
unbiased evaluations (see [54] for effects of biased
evaluations), the clients of each database are divided into
three different sets:

1. A training set: Images of this set are used to learn the
parameters of the face recognition algorithm. Here, model
Fig. 2 Example images

a MOBIO database
b SCface databases
In SCface the first image shows an enrolment sample, while remaining images are
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training uses two-thirds of this training data, while the
remaining one-third is used as cohort images and cohort
clients for ZT-score normalisation. In total, we use 9600
and 688 facial images of 50 and 43 identities for the
MOBIO and SCface, respectively.
2. A development set: These images are used to optimise
meta-parameters of the algorithm. The scores obtained with
this set are also used to train score calibration parameters.
3. An evaluation set: These images are used to compute the
final verification and calibration performances.

5.1 MOBIO

The MOBIO database [52] is a multi-modal face and speech
database containing video recordings from mobile devices.
The database was collected in order to capture real-world
scenarios for face and speaker authentication. In this paper,
we use image data extracted from the database [http://www.
idiap.ch/dataset/mobio].
The 150 clients of the MOBIO database are divided into

training set (50), development set (42) and evaluation set
(58 persons). The training set is further split into 34 clients
that are used to train the face recognition system, and 16
persons in the ZT-norm cohort.
The database is accompanied by two protocols, which are

based on gender: male and female. Client models are
enrolled using features from five facial images per identity.
Finally, client and impostor scores are computed by probing
all client models with all probe images. The number of
client and impostor trials are listed in Table 2. Owing to the
low number of clients in the training set, the training of the
face recognition system and the ZT-norm is always
performed gender-independently. However, calibration is
executed gender-dependently, following the gender-split as
specified in the protocols.
5.2 SCface

The SCface database [53] represents an indoor monitoring
scenario. The probe images were captured from different
surveillance cameras with three subject-to-camera distances:
1 m (close), 2.6 m (medium) and 4.2 m (far). With about 10
pixels inter-eye-distance, the far condition has the lowest
image resolution, while the close condition has a viewing
from the close, medium and far condition, respectively
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Table 2 Number of client and impostor scores in MOBIO and
SCface

Database Protocol (Client/impostor trials)

Development set Evaluation set

MOBIO male (2520/57 960) (3990/147 630)
female (1890/32 130) (2100/39 900)

SCface close (220/9460) (215/9030)
medium (220/9460) (215/9030)

far (220/9460) (215/9030)
combined (660/28 380) (645/27 090)

www.ietdl.org
angle slightly from above (cf. Fig. 2b). As is often the case in
real surveillance applications, client models are each enrolled
from a single high-quality frontal mug-shot photograph.
In total, the number of clients in the SCface database is

130. They are split into sets of 43 subjects for training, 44
for development and 43 for evaluation. The training clients
are split up into 29 clients that are used to train the face
recognition system and 14 identities in the cohort. There are
four protocols defined: close, medium, far and combined.
The combined protocol includes all images from the close,
medium and far conditions. Again, all probe images are
compared to all client models, leading to the number of
client and impostor trials listed in Table 2.

6 Experimental setup

In this section, we describe the setup of the face recognition
system and calibration. We execute experiments on both
databases independently. For each database, the face
recognition system is adapted to the training set of the
database and the cohort images are taken only from the
corresponding training set. The parameters for the face
recognition experiments, explained in more detail in this
section, are optimised to the development set of each
database separately. Here we use the same algorithm
configuration as in [15]. Except where stated otherwise, ZT
score normalisation always uses cohort images across all
conditions, that is, gender-independent for MOBIO and
distance-independent for SCface.
Importantly, all results are generated solely using open

source software. The face recognition algorithm, the linear
calibration of scores, the verification and calibration
metrics, as well as the image database interfaces rely on the
open source signal-processing and machine learning toolbox
Bob [36] [http://www.idiap.ch/software/bob]. The face
recognition and linear calibration experiments are conducted
with the FaceRecLib [35] [http://pypi.python.org/pypi/
facereclib], which implements the evaluation protocols for
the databases. The calibration module inside Bob is adapted
from Bosaris [48], a toolkit for calibrating, fusing and
evaluating scores from binary classifiers. All results, figures,
tables and plots presented in this paper can be reproduced
using the provided software package [http://pypi.python.org/
pypi/xfacereclib.paper.IET2014].

6.1 Face recognition

The first step of the image processing chain for face
recognition is image preprocessing. After geometrical
alignment using the hand-labelled eye positions that are
provided with the databases, the eye positions in the
resulting grey-scale image are horizontally aligned at 16
IET Biom., 2014, Vol. 3, Iss. 4, pp. 246–256
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pixels from the top and separated by 33 pixels, with a
resulting image resolution of 64 × 80 pixels. To reduce the
effects of illumination, the images of the MOBIO database
are photometrically normalised [11].
The preprocessed images are split into overlapping blocks

of 12 × 12 pixels for MOBIO and 20 × 20 pixels for SCface,
sampled with the minimum step size of 1 pixel [15]. Thus, a
total of B = 3657 or 2745 blocks are generated from each
image in the MOBIO or SCface database, respectively.
Each image block is normalised such that pixel values have

zero mean and unit variance. Then, from each image block a
set of DCT features [55] is extracted, and the 45 (MOBIO) or
66 (SCface) lowest frequency components are retained.
Finally, the coefficients of all blocks in every image are
again normalised to zero mean and unit variance [15].
For the face recognition system, a separate UBM is

computed for each of the two databases. To train the linear
ISV subspace, we use the same training data as for UBM
creation. As in [15], we selected a subspace of 320
dimensions for MOBIO and 80 dimensions for SCface.

6.2 Calibration

Two calibration conditions are evaluated in the MOBIO
database. These conditions are based on gender division
into male and female subsets. The calibration parameters
are computed from the scores of the development set of
each gender independently. Afterwards, calibration is
applied to the scores of the evaluation set with
corresponding gender.
Four distance conditions in the SCface database, which are

close, medium, far and combined, are evaluated. Besides
conventional linear calibration, we also apply categorical
calibration to the combined scores of SCface. In this
categorical calibration experiment, additional information
about facial images, that is, the distance between
surveillance camera and subject is used. Specifically, the
distances close, medium and far are used to form the set of
probe image categories Q.

7 Results

This section describes the results of our face recognition and
score calibration experiments. Evaluated on the MOBIO and
SCface databases, the verification performance of the face
recognition system is observed with and without ZT-norm.
Afterwards, calibration is applied to both raw and ZT-
normalised scores. Categorical calibration is shown to be
beneficial for both the discrimination and calibration
performance of SCface scores. At the end of this section,
we present a detailed analysis of the effect of calibration on
score distributions.

7.1 Verification performance before calibration

The verification performance of the face recognition system
for both the MOBIO and SCface databases is presented in
Table 3. The performance is expressed in terms of
Cmin
ver and Pfr for the development and evaluation set.

Additionally, the unbiased Cver measure is given for the
evaluation set, where the optimal threshold θ* from the
development set is taken into account.
For the MOBIO database, the verification results for

development and evaluation set differ. While in the
development set the Cmin

ver values range around 4% for male
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Table 3 Verification performance using raw and ZT-normalised scores, evaluated on MOBIO and SCface

Dataset (dev/eval) Raw scores ZT-norm

Dev. set Eval. set Dev. set Eval. set

Cmin
ver Pfr Cmin

ver Cver Pfr Cmin
ver Pfr Cmin

ver Cver Pfr

MOBIO:
a. male 3.90% 9.52% 7.10% 7.26% 17.44% 3.87% 10.28% 6.52% 6.77% 17.42%
b. female 5.84% 13.07% 11.86% 12.69% 37.71% 6.87% 18.84% 10.21% 14.78% 35.57%
SCface:
a. close 10.66% 30.91% 10.57% 10.82% 35.81% 7.14% 27.27% 8.10% 8.74% 35.35%
b. medium 11.19% 38.64% 8.08% 8.91% 33.02% 9.32% 36.36% 6.90% 7.48% 32.56%
c. far 19.39% 73.64% 19.99% 20.45% 73.95% 18.40% 74.55% 19.66% 20.51% 76.28%
d. combined 17.03% 52.27% 16.39% 16.41% 51.01% 12.56% 45.15% 12.23% 12.44% 44.81%
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and 6% for female clients, they are 7% and 11%, respectively,
in the evaluation set. This is similar to what has been observed
in [15, 46]. ZT-norm improves the Cmin

ver values for the
evaluation set, but not for the development set of MOBIO
female data. In this condition, there seems to be shift of
scores from development to evaluation set, which causes
relatively large differences between Cmin

ver and Cver. In
addition, ZT-norm seems to maintain only the Pfr values.
For the SCface database, the four protocols close, medium,

far and combined are evaluated. In Table 3, ZT-norm is
performed using only cohort images from the corresponding
distance condition. The close and medium images with
sufficient image resolution provide Cmin

ver error rates in the
order of 10%, whereas in the far condition the error rates
are roughly doubled. In general, ZT-norm improves the
verification performance moderately, especially for the
combined protocol where error rates are reduced by up to
4% after ZT-norm. This positive gain of ZT-norm can be
observed across all performance measures in Table 3.
Motivated by the last observation, we repeated the

ZT-norm experiments using cohort images across all
distance conditions. The results of this experiment are
shown in Table 4a. Interestingly, nearly all error rates
dropped remarkably, except for the far condition, which
seems to be little effected. Additionally, we tested how the
selection of the threshold influences performance. In Table 3,
the threshold is computed for each distance condition
independently. In Table 4b, a single threshold for all
conditions is selected. Clearly, the performance on the
evaluation set drops seriously, especially for the medium and
close conditions. The values of Cmin

ver in Tables 3 and 4b are
identical because the measure is independent of the threshold.
Table 4 Verification performance for the SCface database
showing the impacts of (a) using all conditions for the ZT-norm
cohort and (b) computing the threshold on the combined set
without ZT-norm

Protocol Cmin
ver (dev) Cmin

ver (eval) Cver Pfr

a. ZT-norm with combined cohort
close 7.14% 8.10% 8.27% 29.77%
medium 9.32% 6.24% 6.61% 26.51%
far 18.40% 20.07% 20.78% 78.60%

Protocol Cmin
ver Cver

b. threshold on combined set
close 10.57% 14.68%
medium 8.08% 13.75%
far 19.99% 20.79%
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The observation from the last two experiments is that
integrating additional information about the images, for
example, the subject-to-camera distance into the face
recognition system improves verification, but this is
apparently not true for all the steps of the face recognition
tool chain. Therefore, in the following calibration
experiments, we use the best setup for the SCface database:
ZT-norm uses cohort images across all distance conditions,
whereas the threshold is based on distance-dependent scores.
7.2 Calibration performance

To study the effect of calibration on face recognition, the
system performance is evaluated using the Cllr measure.
The evaluated scores are the calibrated LRs from the
evaluation sets of MOBIO and SCface. The Cllr measure is
composed of the sum of two metrics: the discrimination
loss Cmin

llr , which reflects the minimum loss due to
verification errors, and the calibration loss Cmc, which
reflects the additional cost of miscalibration. The calibration
experiment results are presented in Table 5. In general,
Cmin
llr values after ZT-norm are lower than those of raw

scores, which indicates that better verification performance
is offered by the ZT-norm scores. In the MOBIO database,
for the ZT-norm scores there are 7 and 8% relative
improvements in Cmin

llr compared to raw scores for male and
female genders, respectively. For SCface, the system with
ZT-norm has improved Cmin

llr discrimination performance
compared to the raw system in most distance conditions.
Stable performance is observed in far condition, while
significant relative improvements are shown for other
distance conditions, ranging from 17% in the combined
condition to 40% for close. These observations are in line
with the results reported in Section 7.1.
Table 5 Calibration performance after linear calibration of the
raw and ZT-normalised scores of the evaluation set of MOBIO
and SCface

Dataset condition:
(eval. set)

Raw scores ZT-norm

Cmin
llr Cllr Cmc Cmin

llr Cllr Cmc

MOBIO:
a. male 0.254 0.278 0.024 0.236 0.257 0.021
b. female 0.392 0.473 0.080 0.360 0.483 0.122
SCface:
a. close 0.343 0.378 0.034 0.261 0.287 0.026
b. medium 0.284 0.313 0.029 0.205 0.243 0.038
c. far 0.625 0.659 0.034 0.636 0.664 0.028
d. combined 0.503 0.523 0.020 0.419 0.432 0.013
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Table 6 Cver (θ0) values before and after calibration is applied
to the ZT-normalised scores in the evaluation set of MOBIO and
SCface

Dataset Cmin
ver Cver Cver (θ0)

Before
calibration

After
calibration

MOBIO:
a. male 6.52% 6.77% 35.93% 6.65%
b. female 10.21% 14.78% 38.08% 13.64%
SCface:
a. close 8.10% 8.27% 26.37% 8.22%
b. medium 6.24% 6.61% 26.22% 6.42%
c. far 20.07% 20.78% 30.13% 20.62%
d. combined 12.23% 12.44% 27.57% 12.64%
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Table 5 shows that ZT-normalisation improves Cllr

compared to raw scores, except for the female condition in
MOBIO. Apparently, applying ZT-norm results in an
improved Cmin

llr , but not necessarily an improved Cmc. This
means that applying ZT-norm reduces discrimination loss,
while the effect of calibration loss (Cmc) results in an
inferior Cllr for the female subset of MOBIO compared to
the raw scores.
Table 6 presents the verification cost Cver at threshold θ0 = 0,

which is computed before and after calibration for the
ZT-normalised scores from the evaluation set of MOBIO
and SCface. Threshold θ0 = 0 is selected as it represents the
application-independent threshold for well-calibrated LR
scores. In Table 6, it is clearly shown that the Cver(θ0)
values after calibration are far lower than before calibration.
Mostly, Cver(θ0) values are in the order of the Cver values or
even lower, which shows that calibration can produce
well-calibrated LRs from the ZT-normalised scores that are
produced by our face recognition system.
From our evaluation using Cllr, it has been found that ZT-

norm is favoured to increase face recognition performance in
general. Through calibration, raw scores from the face
recognition system have been successfully converted into
LLR scores so that θ0 = 0 becomes a valid threshold as
measured by the verification performance metric Cver.

7.3 Categorical calibration in SCface

In the experiment with categorical calibration, we include the
distance information of SCface images as categories Q =
{close, medium, far} to improve calibration and verification
performance of the face recognition system. For categorical
calibration, the scores from the combined distance condition
with ZT-score normalisation are used.
The results of this categorical experiment are presented in

Table 7. In the first row, the values of Cllr and Cmc are
presented for uncalibrated scores for the sake of
completeness. The reader should bear in mind that the
metric Cllr is only meaningful for evaluating scores with an
LR interpretation.
Table 7 Verification and calibration performance of the ZT-normalise
after linear and categorical calibration

Calibration technique Cmin
llr Cllr Cmc Cm

ve

none 0.419 0.736 0.317 12
linear 0.419 0.432 0.013 12
categorical 0.392 0.406 0.014 11
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Comparing the performance of linear and categorical
calibration, the latter provides a relative reduction in Cmin

llr
and Cllr of around 6%. In general, including category
information through categorical calibration improves
verification performance. Based on the Cver values in
Table 7, categorical calibration has successfully improved
verification performance compared to linear calibration, by
5.2% in Cmin

ver and 2.7% in Cver. Similarly, categorical
calibration performs well in terms of Cver(θ0) with relative
improvement of 6.4%. In terms of Pfr, however, the
categorical calibration can only maintain the system
verification performance. This effect might be explained by
the fact that categorical calibration focuses on the
overlapping part of the score distributions, and not on the
tail belonging low FAR values.
The findings in this categorical calibration experiment

show that the categorical calibration technique, in general,
offers better face recognition performance in both
verification and calibration compared to the linear
calibration technique.
7.4 Discussion

In the previous sections, we analysed the verification and
calibration performance of the face recognition system with
regards to the use of ZT-norm. It was shown that ZT-norm,
in general, helps to improve the verification performance.
Furthermore, both linear and categorical calibration were
applied to the scores, resulting in improved calibration
performance. In this section, we further analyse the effect
of calibration with respect to the distribution of client and
impostor scores.
The score distributions for the evaluation set of both

MOBIO and SCface before and after calibration are
presented in Fig. 3. The distributions are depicted for the
male gender in MOBIO and the combined distance
condition in SCface. ZT-norm affects distribution of
uncalibrated scores for both MOBIO and SCface
(first column of Fig. 3). Generally, both raw and
ZT-normalised impostor scores assemble around score
value 0 before calibration. For SCface, the raw scores
show a high peak compared to the ZT-normalised
uncalibrated scores.
Depicted in the second column of Fig. 3, the distributions

of calibrated LLR scores represent the behaviour of
well-calibrated LLRs. One indicator is the intersection
between the score distribution of clients and impostors,
which lies near the LR ℓ = 0. This corresponds to the
properties of well-calibrated LLR ℓ explained in (12).
In addition to the analysis of score distributions before and

after linear calibration, we present the score distributions after
categorical calibration. In Fig. 4, the score distributions for
the SCface evaluation set with ZT-norm are depicted before
calibration, after linear calibration and after categorical
calibration. Both linear and categorical calibration scale and
shift the score distributions such that the intersection of the
d scores of the SCface combined protocol before calibration and

in
r , % Cver, % Cver (θ0), % Pfr, % # param

.23 12.44 27.57 44.81 0

.23 12.44 12.64 44.81 2

.59 12.11 11.83 47.13 5
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Fig. 3 Score distributions for MOBIO male and SCface combined before and after calibration, both before (raw) and after ZT score
normalisation (ZT-norm)

Fig. 4 Distributions of scores from SCface with ZT-normalisation before calibration, after linear calibration and after categorical calibration

www.ietdl.org
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client and impostor distributions lies closer to ℓ = 0.
Especially for the categorical calibration, all three different
distance conditions intersect exactly at ℓ = 0. This shows
that both calibration techniques have successfully produced
well-calibrated LRs from the ZT-normalised scores. As
described previously, a common scaling parameter w1 is
utilised in (5) for all categories, close, medium and far,
while a different offset w0,i is used for each category. Fig. 4
illustrates how this extra information and flexibility in
calibration results in improved separation and distribution of
scores, ultimately leading to improved verification and
calibration performance.

8 Conclusion

In this paper, we presented evaluations of calibration of a face
recognition system based on ISV modelling on the MOBIO
and SCface databases. Calibration produces scores in the
form of LRs. We performed categorical calibration on the
SCface database with subject-to-camera distance as a
category. We showed that categorical calibration improves
face recognition performance in terms of calibration and
verification compared to a system with linear calibration, by
incorporating additional information about the probe images
in the calibration process.
Through this paper, we hope to encourage further research

in the area of calibration for face recognition using the
categorical calibration technique, since it can be applied to
other categories such as pose, illumination and expression
to reduce the impact of these image variations from the face
recognition process. Researchers are encouraged to utilise
our open source software package, which is easily
understandable, well-documented and tested.
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