
Branch-and-bound technique for solving optimal clustering

Pasi Fränti1, Olli Virmajoki1 and Timo Kaukoranta2

1 Department of Computer Science
University of Joensuu

P.O. Box 111, FIN-80101 Joensuu
FINLAND

2 Turku Centre for Computer Science (TUCS)
Dept. of Computer Science, University of Turku

Lemminkäisenkatu 14A, FIN-20520 Turku
FINLAND

Abstract
The problem of finding optimal clustering has not been

well covered in literature. Solutions can be found only for
special cases, which can be solved in polynomial time. In
this paper, we give solution for the general case. The
method generates all possible clusterings by a series of
merge steps. The clusterings are organized as a minimum
redundancy search tree and the optimal clustering is
found by a branch-and-bound technique. The result has
theoretical interest and could also provide new insight to
the problem itself.

1. Introduction

Clustering is a fundamental problem that must often be

solved as a part of more complicated tasks in pattern
recognition, image analysis and other fields of science
and engineering [1, 2, 3]. Clustering aims at partition
a given set of N data vectors into M groups so that similar
vectors are grouped together and dissimilar vectors to
different groups. The clustering task is usually formalized
as a combinatorial optimization problem, in which the
goal is to find the partition that minimizes a given cost
function.

The clustering problem in its combinatorial form has
been shown to be NP-complete [4]. No polynomial time
algorithm is known to find the globally optimal solution.
Therefore we have to content ourselves with sub-optimal
solutions, which are obtained by heuristic algorithms.
Despite the known limitations implicated by the
NP-completeness, solving the optimal clustering problem
has some theoretical interest that could provide new
insight to the problem itself. It might also have practical
implications in the case of problem instances of limited
size.

Agglomerative clustering is one approach for
generating the clustering hierarchically. The clustering
starts by initializing each data vector as its own cluster.
Two clusters are merged at each step and the process is
repeated until the desired number of clusters is obtained.
Ward’s method [5] selects the cluster pair to be merged so
that it increases the given objective function value least.
In the vector quantization context, this is known as the
pairwise nearest neighbor (PNN) method due to [6]. In
the rest of this paper, we denote it as the PNN method.

The PNN is interesting here because of its conceptual
simplicity and because of the optimality of the single
merge step. This step reduces a given clustering from m
clusters to m-1 clusters by minimizing the optimization
function value. Even though the step is optimal, there is
no guarantee of optimality of the final clustering resulting
from a series of locally optimal merge steps. The main
idea of the PNN, however, can be generalized so that we
do not optimize only a single merge but over multiple
merge steps. In this paper, we present an optimal
clustering algorithm motivated by this idea.

It is easy to see that any clustering can be produced by
a series of merge operations. Every merge reduces the
number of clusters by one. It therefore takes exactly N-M
steps to generate a clustering with M groups from the set
of N vectors. Optimal clustering can be found by
considering all the possible merge sequences and finding
the one that minimizes the optimization function. The
idea can be implemented as a branch-and-bound
technique that uses a search tree for finding the optimal
clustering.

The relation of the method to the PNN method is
demonstrated in Fig. 1. At the first step, the method
generates all possible merges of two vectors. At the
second step, PNN would continue from the locally
optimal result whereas branch-and-bound technique will
study all branches. The root of the search tree represents
the case where all data vectors are assigned to their own
clusters. At the level N-m, there are all possible
clusterings to m clusters. The final clustering of M is
located at the level N-M. All branches of the tree must be
generated in order to find the optimal clustering.

2'nd merge AEB AEC AED BC BD CD

1'st merge AB AC AD AE BC BD BE CD CE DE

N = 5
M = 2

1'st merge 2'nd and 3'rd merge

A

E

B

D
C

 AEBC AED BCD 3'rd merge

Figure 1. Illustration of the PNN as a search tree.

2. Pairwise nearest neighbor method

The clustering problem is defined here as follows.

Given a set of N data vectors X={x1, x2, …, xN}, partition
the data set into M clusters such that similar vectors are
grouped together. Partition P={p1, p2, …, pN } defines the
clustering by giving for each data object the cluster index
of the group where it is assigned to. A cluster sa is defined
as the set of data vectors in the same partition a:

�s x p aa i i� � �
(1)

The most important choice in the clustering is the cost
function f for evaluating the clustering. When the data
objects belong to the Euclidean vector space, a commonly
used function is the mean square error between the data
objects and their cluster centroids. Given a partition P and
the cluster centroids C={ci}, it is calculated as:

� � �
�

���

N

i
pi i

cx
N

PCMSE
1

21,
(2)

The choice of the function depends on the application
and there is no general solution of which measure should
be used. However, once the objective function is decided
the clustering problem can be formulated as combinatorial
optimization problem.

The pairwise nearest neighbor (PNN) method [5, 6]
generates the clustering hierarchically using a sequence of
merge operations. At each step of the algorithm, the
number of clusters is reduced by merging two clusters:

baa sss ��

(3)

The cost of merging two clusters sa and sb is the
increase in the MSE-value caused by the merge [6]:

2
, ba

ba

ba
ba cc

nn
nnd ��

�

�

(4)

The PNN applies local optimization strategy: all
possible cluster pairs are considered and the one
increasing the distortion least is chosen:

� � ji
ji

Nji
dba ,,1,

minarg,
�

�

�

(5)

A single merge step of the PNN is optimal but there is
no guarantee of optimality of the final clustering resulting
from a series of locally optimal merge steps.

3. Branch-and-bound technique

We described next a branch-and-bound technique that

generates clustering by a sequence of merge operations. It
is easy to see that any clustering can be produced by
merging the data vectors into the groups one by one. It
takes exactly N-M steps to generate a clustering with M
clusters, independent of the order of the merge operations.

For example, consider the example shown in Fig. 1, in
which the resulting clustering can be generated by the
following three merge operations:
 Initial: {A} {B} {C} {D} {E}

 Step 1: {AE} {B} {C} {D}
 Step 2: {AE} {BC} {D}
 Step 3: {AE} {BCD}

All alternative merge sequences can be represented as
a search tree. The root of the tree represents the starting
point in which every data vector is assigned to its own
cluster (N clusters), and its descendants represent all
possible clusterings of N-1 clusters. In general, every
node in the tree represent a single clustering with m
clusters. The optimal clustering can then be found by
systematic search from the tree.

3.1 Redundancy of the search tree
The search tree includes a lot of redundancy as the

same clustering can be constructed by different merge
sequences. At the first step, there are N�(N-1)/2
alternatives for the merge operation. Similarly, at the
second level there are (N-1)�(N-2)/2 alternatives for the
merge operation independent of the merge operation
made at the previous step.

In general, every node has (m)�(m-1)/2 children at the
level with m clusters. We can therefore derive the total
number of merge sequences as:

� �
� � � �

� �!1!
!1!

2
1

2
1,

1 ��

��

�

��

�
�

��

� MM
NNiiMNSequences MN

N

Mi

At the same time we know from [1] that the total
number of different clusterings equals to the Stirling's
number of second kind [7]:

� � � ��
�

�

��
�

�
��
�

�
��

	

�

�

�

�
M

i

NiM i
i

M
MM

N
MNsClustering

1
1

!
1,

By closer examination, one can see that the number of
sequences is significantly higher than the number of
different clusterings. Thus, the search tree contains
significant amount of redundant clustering solutions.

3.2 Permuting non-redundant clusters
We consider next a single cluster represented as a list

of the data vectors, and merge operation as the catenation
of the two lists. For example, the clustering in Fig. 1 is
represented as (AE) (BCD), and their merge as (AEBCD).
Using this representation, the same cluster has several
different representations. For example, the cluster (BCD)
has the following representations: (BCD), (BDC), (CBD),
(CDB), (DBC) and (DCB).

The data vectors xi can be ordered by their index i. We
define that the only valid representation of a cluster
sj = {x1, x2, ..., xnj} is the one, in which the data vectors are
sorted according to their index. The only valid
representation for the previous example is then (BCD).

The above validity rule can be applied in the Branch-
and-bound algorithm as follows. In the merge operation,
we consider only cluster pairs, in which the data vectors
of the first cluster sa have smaller indices than the data
vectors in the second data cluster sb:

� � bjaiba sxsxjiss ���� ,:,

(6)

As a consequence, the order of the data vectors will be
automatically retained in the merge operation. For
example, the cluster pair (AE) (B) cannot be merged
because the resulting cluster (AE) + (B) = (AEB) is not
a valid representation as the data vectors are not sorted.
Despite of this, the cluster (ABE) is still possible to obtain
but only using the sequence that merges first (A) + (B),
and then (AB) + (E). Furthermore, if the current
clustering is (AE) (B) (C) (D), we cannot merge
anymore clusters with (AE) and it will inevitably remain
as such in the final clustering.

3.3 Permuting minimum redundancy search tree
The rule expressed in (6) removes the redundancy in

the case of representing single cluster but it is still
possible to construct the same cluster via different paths
in the search tree. For example, the cluster (BCD) can be
constructed using two different paths (merge sequences):

Sequence 1: (B) (C) (D) � (BC) (D) � (BCD)
Sequence 2: (B) (C) (D) � (B) (CD) � (BCD)
Furthermore, the clustering (AE) (BCD) can be

reached by six different merge sequences, of which two
are shown in Table 1.

Table 1: Example of generating clustering
(AE) (BCD) via two different merge sequence.

Sequence 1: Sequence 2:

(A) (B) (C) (D) (E) (A) (B) (C) (D) (E)
(AE) (B) (C) (D) (A) (BC) (D) (E)
(AE) (BC) (D) (A) (BCD) (E)
(AE) (BCD) (AE) (BCD)

It is therefore not enough to limit the intra cluster

representation but also the permutation of the search
paths. Redundant search paths can be removed as follows.

We force the algorithm to permutate the cluster pair sa
and sb in a predefined order so that the index of the first
cluster is always monotonically non-decreasing during the
process. In other words, if we have merged clusters sa0
and sb0 at the previous level, we consider only cluster
pairs sa and sb such that a � a0. From (6), we can also
derive another restriction b > a. Thus, only clusters that
meet the following permutation criterion are accepted:

� � abaass ba ��� 0:,

(7)

Any cluster sj=(sj1 sj2 sj3 ... sjn) can be constructed by
the following sequence of merge operations: (sj1) + (sj2)
� (sj1 sj2) + (sj3) � (sj1 sj2 sj3) + (sj4), and so on. This
fulfills the constraint b > a. Any clustering {s1, s2, ..., sm}
can then be generated by constructing the clusters one by
one in the order from s1 to sm. This fulfills the constraint a
� a0. Furthermore, there is no other merge sequence that
could construct the same clustering without breaking the
permutation criterion (7). Thus, the use of the criterion (7)
produces non-redundant search tree.

The non-redundant search tree is illustrated in Fig. 2.
At the first level, the permutation creates the merges:
(AB) (AC) (AD) (AE) (BC) (BD) (BE). We note that the
internal order of the clusters is maintained automatically;
e.g. the permutation creates cluster (AC) but not (CA).
We can also see that after the merge (BC), the merge
(AC) do not appear anymore because it has already been
created in the branch where (AC) was constructed before
(BD). Furthermore, if the previous merges are (AC) and
(BD), the cluster (ACBD) do not appear anymore as it has
already been created by the sequence (A)+(B), (AB)+(C),
(ABC)+(D).

The criterion (7) removes redundant clusterings but
there are also partial branches that cannot be completed.
For example, the merge sequence (AB) � (CE) is such as
there are no more valid merges left because the
permutation criterion does not allow us to add anymore
vectors in the cluster (AB), and because the merge
(CE)+(D) would break the intracluster order. Fortunately,
such branches can be eliminated as follows.

When permutating new cluster pairs for merge, we
always start to permute from the pervious cluster sa0, and
consider all potential pairs (sa, sb) such that 1 � a < b � m,
where m is the current number of clusters. The index a
also indicates how many clusters we already have
completed. This is because they are not allowed to be
included in the merge operation anymore due to (7). The
same rule applies also to the clusters whose index is
between a and b. As we have m-M more merges to be
performed, there must remain equally many valid cluster
pairs. Concluding from this, we can derive the upper
bound for the index a:

a � M

(8)

BCE BCDBC

AB

ABC ABD ABE

AC AD AE BC BD

CD

CE

DE

CDE

CECD

ABCE ABDE

DE

ACD ACE BD BCEBE DE ADE BC BE BC BD CD BCD BDE

ACDE BE

BD

BDE BCDEABCD

Fig. 2. Example of non-redundant search tree. Branches that do not have any valid clustering have been cut out.

Branch-and-bound(X, M) � S;

FOR i�1 to N DO
si � {xi};

S, MSEbest � BB(S, 1, 2, M);

BB(S0, a0, b0, M) � Sbest, MSEbest;

MSEbest � �;
IF |S0| = M THEN RETURN S0, MSE(S0);
FOR a � a0 to M

IF a=a0 THEN bmin � b0
ELSE bmin � a+1

FOR b � bmin to |S0|
S � S0;
S � Merge(S, sa, sb);
S, mse � BB(S, a, b, M);
IF mse < MSEbest THEN

MSEbest � mse;
Sbest � S;

END-IF
END-FOR

END-FOR

RETURN Sbest, MSEbest;

Fig. 3. Algorithm for generating non-redundant search tree.

Greater values than that would lead to situation in which

we cannot complete the clustering with M clusters. Pseudo
code for the algorithm is shown in Fig. 3.

3.4 Early termination of bad solutions
The search can be terminated earlier if we know that the

current branch cannot lead to a better solution than the best
solution found so far. The termination is based on the fact
that every merge increases the MSE-value. Thus, when we
have generated the first solution in the search tree, we can
use its MSE-value as the upper limit. Other branches of the
tree can then be terminated if:

minMSEMSEt �

(9)

where MSEt is the value of the current solution after the
tth merge step, and MSEmin is the value of the best solution
found so far.

It was shown in [8] that the merge costs of the PNN
method are monotonically increasing if the cluster pair with
minimum cost is always merged. We denote the series of
merge costs by d1, d2, ..., dN-M, where dt is the merge cost at
the t’th merge step. The monotonicity property says that:

MNddd
�

��� �21

(10)

The criterion applies to the PNN method where we
always select the merge with minimum cost. From this
property, we could derive a stronger termination criterion
for the branch-and-bound algorithm:

� � mint MSEdtMNMSE t �����

(11)

Here (N-M-t) indicates the number of forth-coming
merges in the algorithm, and dt is the previous merge cost.
The termination criterion is based on the assumption that all
forth-coming merge operations increase the MSE no less
than the previous merge operation.

The only problem of using the stronger termination
criterion of (11) is that the monotonicity property does not
necessarily hold true in the implementation of Fig. 3. In the
branch-and-bound method, we can also perform sub-
optimal merges, which can result in a non-monotonic series
of merge costs. As a consequence, we could terminate a
path to the optimal solution because of using (11). The
consequence of this is that we cannot use the stronger
termination criterion with the non-redundant search tree.

4. Conclusions

We have introduced a branch-and-bound technique to

solve optimal clustering. The time complexity of the
algorithm is still exponential despite the non-redundant
search tree, and the designed bounding criterion. The
practical usability of the algorithm is therefore limited to
small special cases only.

The main idea, however, can also be used to design sub-
optimal but polynomial time algorithm as follows. The
original problem is divided into a series of smaller
subproblems that are solved optimally. The larger the size
of the subproblems, the better (and slower) the algorithm is
expected to be. This idea is a point of future research.

References
[1] H. Späth, Cluster Analysis Algorithms for Data Reduction and

Classification of Objects, Ellis Horwood Limited, West
Sussex, UK, 1980.

[2] R. Dubes and A. Jain, Algorithms that Cluster Data. Prentice-
Hall, Englewood Cliffs, NJ, 1987.

[3] L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley Sons, New
York, 1990.

[4] M.R. Garey, D.S. Johnson, H.S. Witsenhausen, "The
complexity of the generalized Lloyd-Max problem". IEEE
Trans. on Inf. Theory, 28 (2), 255-256, March 1982.

[5] J.H. Ward, "Hierarchical grouping to optimize an objective
function", J. Amer. Statist.Assoc., 58, 236-244, 1963.

[6] W.H. Equitz, "A new vector quantization clustering
algorithm", IEEE Transactions on Acoustics, Speech, and
Signal Processing 37 (10), 1568-1575, October 1989.

[7] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete
Mathematics – a Foundation for Computer Science (2nd
edition), pp. 257-267, Addison-Wesley, 1994.

[8] T. Kaukoranta, P. Fränti and O. Nevalainen, "Vector
quantization by lazy pairwise nearest neighbor method",
Optical Engineering, 38 (11), 1862-1868, November 1999.

	2. Pairwise nearest neighbor method
	3. Branch-and-bound technique
	3.1 Redundancy of the search tree
	3.2 Permuting non-redundant clusters
	3.3 Permuting minimum redundancy search tree
	3.4 Early termination of bad solutions

	4. Conclusions
	References

