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Abstract 
The problem of finding optimal clustering has not been 

well covered in literature. Solutions can be found only for 
special cases, which can be solved in polynomial time. In 
this paper, we give solution for the general case. The 
method generates all possible clusterings by a series of 
merge steps. The clusterings are organized as a minimum 
redundancy search tree and the optimal clustering is 
found by a branch-and-bound technique. The result has 
theoretical interest and could also provide new insight to 
the problem itself. 

 
1. Introduction 

 
Clustering is a fundamental problem that must often be 

solved as a part of more complicated tasks in pattern 
recognition, image analysis and other fields of science 
and engineering [1, 2, 3]. Clustering aims at partition 
a given set of N data vectors into M groups so that similar 
vectors are grouped together and dissimilar vectors to 
different groups. The clustering task is usually formalized 
as a combinatorial optimization problem, in which the 
goal is to find the partition that minimizes a given cost 
function. 

The clustering problem in its combinatorial form has 
been shown to be NP-complete [4]. No polynomial time 
algorithm is known to find the globally optimal solution. 
Therefore we have to content ourselves with sub-optimal 
solutions, which are obtained by heuristic algorithms. 
Despite the known limitations implicated by the 
NP-completeness, solving the optimal clustering problem 
has some theoretical interest that could provide new 
insight to the problem itself. It might also have practical 
implications in the case of problem instances of limited 
size. 

Agglomerative clustering is one approach for 
generating the clustering hierarchically. The clustering 
starts by initializing each data vector as its own cluster. 
Two clusters are merged at each step and the process is 
repeated until the desired number of clusters is obtained. 
Ward’s method [5] selects the cluster pair to be merged so 
that it increases the given objective function value least. 
In the vector quantization context, this is known as the 
pairwise nearest neighbor (PNN) method due to [6]. In 
the rest of this paper, we denote it as the PNN method. 

The PNN is interesting here because of its conceptual 
simplicity and because of the optimality of the single 
merge step. This step reduces a given clustering from m 
clusters to m-1 clusters by minimizing the optimization 
function value. Even though the step is optimal, there is 
no guarantee of optimality of the final clustering resulting 
from a  series of locally optimal merge steps. The main 
idea of the PNN, however, can be generalized so that we 
do not optimize only a single merge but over multiple 
merge steps. In this paper, we present an optimal 
clustering algorithm motivated by this idea. 

It is easy to see that any clustering can be produced by 
a series of merge operations. Every merge reduces the 
number of clusters by one. It therefore takes exactly N-M 
steps to generate a clustering with M groups from the set 
of N vectors. Optimal clustering can be found by 
considering all the possible merge sequences and finding 
the one that minimizes the optimization function. The 
idea can be implemented as a branch-and-bound 
technique that uses a search tree for finding the optimal 
clustering. 

The relation of the method to the PNN method is 
demonstrated in Fig. 1. At the first step, the method 
generates all possible merges of two vectors. At the 
second step, PNN would continue from the locally 
optimal result whereas branch-and-bound technique will 
study all branches. The root of the search tree represents 
the case where all data vectors are assigned to their own 
clusters. At the level N-m, there are all possible 
clusterings to m clusters. The final clustering of M is 
located at the level N-M. All branches of the tree must be 
generated in order to find the optimal clustering. 
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Figure 1. Illustration of the PNN as a search tree. 

  



2. Pairwise nearest neighbor method 
 
The clustering problem is defined here as follows. 

Given a set of N data vectors X={x1, x2, …, xN}, partition 
the data set into M clusters such that similar vectors are 
grouped together. Partition P={p1, p2, …, pN } defines the 
clustering by giving for each data object the cluster index 
of the group where it is assigned to. A cluster sa is defined 
as the set of data vectors in the same partition a: 
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The most important choice in the clustering is the cost 
function f for evaluating the clustering. When the data 
objects belong to the Euclidean vector space, a commonly 
used function is the mean square error between the data 
objects and their cluster centroids. Given a partition P and 
the cluster centroids C={ci}, it is calculated as: 
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The choice of the function depends on the application 
and there is no general solution of which measure should 
be used. However, once the objective function is decided 
the clustering problem can be formulated as combinatorial 
optimization problem. 

The pairwise nearest neighbor (PNN) method [5, 6] 
generates the clustering hierarchically using a sequence of 
merge operations. At each step of the algorithm, the 
number of clusters is reduced by merging two clusters: 
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The cost of merging two clusters sa and sb is the 
increase in the MSE-value caused by the merge [6]: 
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The PNN applies local optimization strategy: all 
possible cluster pairs are considered and the one 
increasing the distortion least is chosen: 
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A single merge step of the PNN is optimal but there is 
no guarantee of optimality of the final clustering resulting 
from a series of locally optimal merge steps. 

3. Branch-and-bound technique 
 
We described next a branch-and-bound technique that 

generates clustering by a sequence of merge operations. It 
is easy to see that any clustering can be produced by 
merging the data vectors into the groups one by one. It 
takes exactly N-M steps to generate a clustering with M 
clusters, independent of the order of the merge operations. 

For example, consider the example shown in Fig. 1, in 
which the resulting clustering can be generated by the 
following three merge operations: 
 Initial: {A} {B} {C} {D} {E} 

 Step 1: {AE} {B} {C} {D} 
 Step 2: {AE} {BC} {D} 
 Step 3: {AE} {BCD} 

All alternative merge sequences can be represented as 
a search tree. The root of the tree represents the starting 
point in which every data vector is assigned to its own 
cluster (N clusters), and its descendants represent all 
possible clusterings of N-1 clusters. In general, every 
node in the tree represent a single clustering with m 
clusters. The optimal clustering can then be found by 
systematic search from the tree. 

3.1 Redundancy of the search tree 
The search tree includes a lot of redundancy as the 

same clustering can be constructed by different merge 
sequences. At the first step, there are N�(N-1)/2 
alternatives for the merge operation. Similarly, at the 
second level there are (N-1)�(N-2)/2 alternatives for the 
merge operation independent of the merge operation 
made at the previous step. 

In general, every node has (m)�(m-1)/2 children at the 
level with m clusters. We can therefore derive the total 
number of merge sequences as: 
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At the same time we know from [1] that the total 
number of different clusterings equals to the Stirling's 
number of second kind [7]: 
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By closer examination, one can see that the number of 
sequences is significantly higher than the number of 
different clusterings. Thus, the search tree contains 
significant amount of redundant clustering solutions. 

3.2 Permuting non-redundant clusters 
We consider next a single cluster represented as a list 

of the data vectors, and merge operation as the catenation 
of the two lists. For example, the clustering in Fig. 1 is 
represented as (AE) (BCD), and their merge as (AEBCD). 
Using this representation, the same cluster has several 
different representations. For example, the cluster (BCD) 
has the following representations: (BCD), (BDC), (CBD), 
(CDB), (DBC) and (DCB). 

The data vectors xi can be ordered by their index i. We 
define that the only valid representation of a cluster 
sj = {x1, x2, ..., xnj} is the one, in which the data vectors are 
sorted according to their index. The only valid 
representation for the previous example is then (BCD). 

The above validity rule can be applied in the Branch-
and-bound algorithm as follows. In the merge operation, 
we consider only cluster pairs, in which the data vectors 
of the first cluster sa have smaller indices than the data 
vectors in the second data cluster sb: 
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(6) 

  



As a consequence, the order of the data vectors will be 
automatically retained in the merge operation. For 
example, the cluster pair (AE) (B) cannot be merged 
because the resulting cluster (AE) + (B) = (AEB) is not 
a valid representation as the data vectors are not sorted. 
Despite of this, the cluster (ABE) is still possible to obtain 
but only using the sequence that merges first (A) + (B), 
and then (AB) + (E). Furthermore, if the current 
clustering is (AE)  (B)  (C)  (D), we cannot merge 
anymore clusters with (AE) and it will inevitably remain 
as such in the final clustering. 

3.3 Permuting minimum redundancy search tree 
The rule expressed in (6) removes the redundancy in 

the case of representing single cluster but it is still 
possible to construct the same cluster via different paths 
in the search tree. For example, the cluster (BCD) can be 
constructed using two different paths (merge sequences): 

Sequence 1: (B) (C) (D)  �  (BC) (D)  �  (BCD) 
Sequence 2: (B) (C) (D)  �  (B) (CD)  �  (BCD) 
Furthermore, the clustering (AE) (BCD) can be 

reached by six different merge sequences, of which two 
are shown in Table 1. 

Table 1: Example of generating clustering  
(AE) (BCD) via two different merge sequence. 

Sequence 1: Sequence 2: 

(A) (B) (C) (D) (E) (A) (B) (C) (D) (E) 
(AE) (B) (C) (D) (A) (BC) (D) (E) 
(AE) (BC) (D) (A) (BCD) (E) 
(AE) (BCD) (AE) (BCD) 

 
It is therefore not enough to limit the intra cluster 

representation but also the permutation of the search 
paths. Redundant search paths can be removed as follows. 

We force the algorithm to permutate the cluster pair sa 
and sb in a predefined order so that the index of the first 
cluster is always monotonically non-decreasing during the 
process. In other words, if we have merged clusters sa0 
and sb0 at the previous level, we consider only cluster 
pairs sa and sb such that a � a0. From (6), we can also 
derive another restriction b > a. Thus, only clusters that 
meet the following permutation criterion are accepted: 

� � abaass ba ��� 0:,   
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Any cluster sj=(sj1 sj2 sj3 ... sjn) can be constructed by 
the following sequence of merge operations: (sj1) + (sj2) 
� (sj1 sj2) + (sj3) � (sj1 sj2 sj3) + (sj4), and so on. This 
fulfills the constraint b > a. Any clustering {s1, s2, ..., sm} 
can then be generated by constructing the clusters one by 
one in the order from s1 to sm. This fulfills the constraint a 
� a0. Furthermore, there is no other merge sequence that 
could construct the same clustering without breaking the 
permutation criterion (7). Thus, the use of the criterion (7) 
produces non-redundant search tree. 

The non-redundant search tree is illustrated in Fig. 2. 
At the first level, the permutation creates the merges: 
(AB) (AC) (AD) (AE) (BC) (BD) (BE). We note that the 
internal order of the clusters is maintained automatically; 
e.g. the permutation creates cluster (AC) but not (CA). 
We can also see that after the merge (BC), the merge 
(AC) do not appear anymore because it has already been 
created in the branch where (AC) was constructed before 
(BD). Furthermore, if the previous merges are (AC) and 
(BD), the cluster (ACBD) do not appear anymore as it has 
already been created by the sequence (A)+(B), (AB)+(C), 
(ABC)+(D). 

The criterion (7) removes redundant clusterings but 
there are also partial branches that cannot be completed. 
For example, the merge sequence (AB) � (CE) is such as 
there are no more valid merges left because the 
permutation criterion does not allow us to add anymore 
vectors in the cluster (AB), and because the merge 
(CE)+(D) would break the intracluster order. Fortunately, 
such branches can be eliminated as follows. 

When permutating new cluster pairs for merge, we 
always start to permute from the pervious cluster sa0, and 
consider all potential pairs (sa, sb) such that 1 � a < b � m, 
where m is the current number of clusters. The index a 
also indicates how many clusters we already have 
completed. This is because they are not allowed to be 
included in the merge operation anymore due to (7). The 
same rule applies also to the clusters whose index is 
between a and b. As we have m-M more merges to be 
performed, there must remain equally many valid cluster 
pairs. Concluding from this, we can derive the upper 
bound for the index a: 

a � M  
   

(8) 
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Fig. 2. Example of non-redundant search tree. Branches that do not have any valid clustering have been cut out. 

  



Branch-and-bound(X, M) � S; 

FOR i�1 to N DO 
si � {xi}; 

S, MSEbest � BB(S, 1, 2, M); 

BB(S0, a0, b0, M) � Sbest, MSEbest; 

MSEbest � �; 
IF |S0| = M THEN RETURN S0, MSE(S0); 
FOR a � a0 to M 

IF a=a0 THEN bmin � b0 
ELSE bmin � a+1 

FOR b � bmin to |S0| 
S � S0; 
S � Merge(S, sa, sb); 
S, mse  � BB(S, a, b, M); 
IF mse < MSEbest THEN 

MSEbest � mse; 
Sbest � S; 

END-IF 
END-FOR 

END-FOR 

RETURN Sbest, MSEbest; 

Fig. 3. Algorithm for generating non-redundant search tree. 
 
Greater values than that would lead to situation in which 

we cannot complete the clustering with M clusters. Pseudo 
code for the algorithm is shown in Fig. 3. 

3.4 Early termination of bad solutions 
The search can be terminated earlier if we know that the 

current branch cannot lead to a better solution than the best 
solution found so far. The termination is based on the fact 
that every merge increases the MSE-value. Thus, when we 
have generated the first solution in the search tree, we can 
use its MSE-value as the upper limit. Other branches of the 
tree can then be terminated if: 

minMSEMSEt �   
  

(9) 

where MSEt is the value of the current solution after the 
tth merge step, and MSEmin is the value of the best solution 
found so far. 

It was shown in [8] that the merge costs of the PNN 
method are monotonically increasing if the cluster pair with 
minimum cost is always merged. We denote the series of 
merge costs by d1, d2, ..., dN-M, where dt is the merge cost at 
the t’th merge step. The monotonicity property says that: 
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The criterion applies to the PNN method where we 
always select the merge with minimum cost. From this 
property, we could derive a stronger termination criterion 
for the branch-and-bound algorithm: 
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(11) 

Here (N-M-t) indicates the number of forth-coming 
merges in the algorithm, and dt is the previous merge cost. 
The termination criterion is based on the assumption that all 
forth-coming merge operations increase the MSE no less 
than the previous merge operation. 

The only problem of using the stronger termination 
criterion of (11) is that the monotonicity property does not 
necessarily hold true in the implementation of Fig. 3. In the 
branch-and-bound method, we can also perform sub-
optimal merges, which can result in a non-monotonic series 
of merge costs. As a consequence, we could terminate a 
path to the optimal solution because of using (11). The 
consequence of this is that we cannot use the stronger 
termination criterion with the non-redundant search tree. 

 
4. Conclusions 

 
We have introduced a branch-and-bound technique to 

solve optimal clustering. The time complexity of the 
algorithm is still exponential despite the non-redundant 
search tree, and the designed bounding criterion. The 
practical usability of the algorithm is therefore limited to 
small special cases only.  

The main idea, however, can also be used to design sub-
optimal but polynomial time algorithm as follows. The 
original problem is divided into a series of smaller 
subproblems that are solved optimally. The larger the size 
of the subproblems, the better (and slower) the algorithm is 
expected to be. This idea is a point of future research. 
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