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Many clustering approaches have been proposed in the literature, but most of them are vulnerable to
the different cluster sizes, shapes and densities. In this paper, we present a graph-theoretical clustering
method which is robust to the difference. Based on the graph composed of two rounds of minimum
spanning trees (MST), the proposed method (2-MSTClus) classifies cluster problems into two groups, i.e.
separated cluster problems and touching cluster problems, and identifies the two groups of cluster prob-
lems automatically. It contains two clustering algorithms which deal with separated clusters and touching
clusters in two phases, respectively. In the first phase, two round minimum spanning trees are employed
to construct a graph and detect separated clusters which cover distance separated and density separated
clusters. In the second phase, touching clusters, which are subgroups produced in the first phase, can be
partitioned by comparing cuts, respectively, on the two round minimum spanning trees. The proposed
method is robust to the varied cluster sizes, shapes and densities, and can discover the number of clusters.
Experimental results on synthetic and real datasets demonstrate the performance of the proposed method.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The main goal of clustering is to partition a dataset into clusters
in terms of its intrinsic structure, without resorting to any a priori
knowledge such as the number of clusters, the distribution of the
data elements, etc. Clustering is a powerful tool and has been studied
and applied in many research areas, which include image segmen-
tation [1,2], machine learning, data mining [3], and bioinformatics
[4,5]. Although many clustering methods have been proposed in the
recent decades, there is no universal one that can deal with all cluster
problems, since in the real world clusters may be of arbitrary shapes,
varied densities and unbalanced sizes [6,7]. In addition, Kleinberg
[8] presented an impossibility theorem to indicate that it is difficult
to develop a universal clustering scheme. However, in general, users
have not any a priori knowledge on their datasets, which makes it
a tough task for them to select suitable clustering methods. This is
the dilemma of clustering.
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Two techniques have been proposed and studied to alleviate the
dilemma partially, i.e. clustering ensemble [9–11] and multiobjec-
tive clustering [12]. The basic idea of a clustering ensemble is to
use different data representation, apply different clustering methods
with varied parameters, collect multiple clustering results, and dis-
cover a cluster with better quality [13]. Fred and Jain [13] proposed
a co-association matrix to depict and combine the different cluster-
ing results by exploring the idea of evidence accumulation. Topchy
et al. [10] proposed a probabilistic model of consensus with a finite
mixture of multinomial distributions in a space of clusterings, and
used the EM algorithm to find the combined partitions. Taking ad-
vantage of correlation clustering [14], Gionis et al. [11] presented a
clustering aggregation framework, which can find a new clustering
that minimizes the total number of disagreements with all the given
clusterings. Being different from a clustering ensemble which is lim-
ited to the posteriori integration of the solutions returned by the
individual algorithms, multiobjective clustering considers the mul-
tiple clustering objective functions simultaneously, and trades off
solutions during the clustering process [12]. Compared with the in-
dividual clustering approach, both clustering ensembles and multi-
objective clustering can produce more robust partitions and higher
cluster qualities. In addition, some of other clustering methods can
automatically cope with arbitrary shaped and non-homogeneous
clusters [15].
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Recently more attention has been paid to graph-based cluster-
ing methods. Being an intuitive and effective data representation
approach, graphs have been employed in some clustering methods
[16–25]. Obviously, the tasks of these kinds of methods include con-
structing a suitable graph and partitioning the graph effectively. Most
graph-based clustering methods construct the graphs using k nearest
neighbors [16,17]. Karypis et al. in CHAMELEON [16] represented a
dataset with k nearest neighbor graph, and used relative interconnec-
tivity and relative closeness to partition the graph andmerge the par-
titions so that it can detect arbitrary shaped and connected clusters.
This varies from data representation of CHAMELEON, in which a ver-
tex denotes a data item, Fränti et al. employed a vertex to represent a
cluster so as to speed up the process of clustering [17]. Other graph-
based methods take advantage of minimum spanning trees (MST) to
represent a dataset [18,19]. Zahn [18] divided a dataset into differ-
ent groups in terms of their intrinsic structures, and conquered them
with different schemes. Xu et al. [19] provided three approaches to
cluster datasets, i.e. clustering through removing long MST-edges, an
iterative clustering algorithm, and a globally optimal clustering algo-
rithm. Although themethods of Zahn and Xu are effective for datasets
with specific structures, users do not know how to select reason-
able methods since they have no information about the structures
of their datasets. From a statistical viewpoint, González-Barrios [20]
identified clusters by comparing k nearest neighbor-based graph and
the MST of a dataset. The limitation of González-Barrios's method is
that only i.i.d. data are considered. Päivinen [21] combined a scale-
free structure with MST to form a scale-free minimum spanning
tree (SFMST) of a dataset, and determined the clusters and branches
from the SFMST. Spectral clustering is another group of graph-based
clustering algorithms [22]. Usually, in a spectral clustering, a fully
connected graph is considered to depict a dataset, and the graph is
partitioned in line with some cut off criterion, for instance, normal-
ized cut, ratio cut, minmax cut, etc. Lee et al.[23]recently presented
a novel spectral clustering algorithm that relaxes some constraints
to improve clustering accuracy whilst keeping clustering simplic-
ity. In addition, relative neighbor graphs can be used to cluster data
[24,25].

For the purpose of relieving the dilemma of users such as choice of
clustering method, choice of parameters, etc., in this paper, we pro-
pose a graph-theoretical clustering method based on two rounds of
minimum spanning trees (2-MSTClus). It comprises two algorithms,
i.e. a separated clustering algorithm and a touching clustering al-
gorithm, of which the former can partition separated clusters but
has no effect on touching clusters, whereas the latter acts in the
opposite way. From the viewpoint of data intrinsic structure, since
the concepts of separated and touching are mutually complement
as will be discussed in Section 2.1, clusters in any dataset can be ei-
ther separated or touching. As the two algorithms are adaptive to
the two groups of clusters, the proposed method can partially allevi-
ate the user dilemma aforementioned. The main contributions are as
follows:

(1) A graph representation, which is composed of two rounds
of minimum spanning tree, is proposed and employed for
clustering.

(2) Two mutually complementary algorithms are proposed and
merged into a scheme, which can roughly cope with clustering
problems with different shapes, densities and unbalanced sizes.

The rest of this paper is organized as follows. Section 2 depicts the
typical cluster problems. In terms of the typical cluster problems, a
graph-based clustering method is presented in Section 3. Section 4
demonstrates the effectiveness of the proposed method on synthetic
and real datasets. Section 5 discusses the method and conclusions
are drawn in Section 6.

2. Typical cluster problems

2.1. Terms of cluster problems

Since there does not exist a universal clustering algorithm that
can deal with all cluster problems [7], it is significant for us to clarify
what typical cluster problems are and which typical cluster problem
a clustering algorithm favors. Some frequently used terms about
cluster problem in the paper are defined as follows.

Definition 1. For a given distance metric, a well-separated cluster is
a set of points such that the distance between any pair of points in
the cluster is less than the distance between any point in the cluster
and any point not in the cluster.

The above definition of a well-separated cluster is similar to the
one in [27]. However, it is also similar to the second definition of a
cluster presented in [28]. That implies a cluster is well-separated for
a given distance metric.

Definition 2. For a given density metric and a distance metric, a
pair of separated clusters is two sets of points such that (1) the clos-
est point regions between the two clusters are with high densities
compared to the distance between the two closest points from the
two regions, respectively, or (2) the closest point regions between
the two clusters are different in density.

For the former situation the separated clusters are called distance-
separated clusters, while for the later called density-separated clusters.
Obviously, the separated clusters defined above are not transitive.
For instance, if A and B are a pair of separated clusters, and B and C are
another pair of separated clusters, then A and C are not necessarily
a pair of separated clusters.

Definition 3. A pair of touching clusters is two sets of points that
are joined by a small neck whose removal produces two separated
clusters which are substantially large than the neck itself.

Generally, a threshold, which is dependent on a concrete cluster-
ing method, is employed to determine how small a small neck is.

Definition 4. For a given distance metric, a compact cluster is a set
of points such that the distance between any point in the cluster and
the representative of the cluster is less than the distance between
the point and any representative of other clusters.

In general, a centroid or a medoid of a cluster can be selected as
the representative. The difference between the two representative
candidates is that a centroid of a cluster is not necessarily a member
point of the cluster, while a medoid must be a member point.

Definition 5. For a given distance metric, a connected cluster is a set
of points such that for every point in the cluster, there exists at least
one other point in the cluster, the distance between them is less than
the distance between the point and any point not in the cluster.

The definitions of a compact cluster and a connected cluster are
similar to those of center-based cluster and contiguouscluster in [27],
respectively.

2.2. Cluster problem samples described by Zahn

Some typical cluster problems are described in Fig. 1 by Zahn [18].
Fig. 1(a) illustrates two clusters with similar shape, size and density.
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Fig. 1. Typical cluster problems from Ref. [18]. (a)–(e) are distance-separated cluster problems; (f) is density-separated cluster problem; (g) and (h) are density-separated
cluster problems.

Fig. 2. The three patterns by Handl [12]. In (a), the compactness pattern illustrates
the compactness objective which is suitable to deal with spherical datasets. In
(b), the connectedness pattern depicts the connectedness objective which handles
datasets of arbitrary shape; (c) is a spacial pattern.

It can be distinctly perceived that the two clusters are separated,
since the inter-cluster density is very high compared to the intra-
cluster pairwise distance. The principal feature of Fig. 1(b), (c) and (d)
is still distance-separated, even if the shapes, sizes and/or densities
of two clusters in each figure are diverse. The density of the two
clusters in Fig. 1(e) are gradually varied, and become highest in their
adjacent boundaries. From the global viewpoint of the rate of density
variation, however, the separability remains prominent. Intuitively,
the essential difference between the two clusters represented in
Fig. 1(f) lies in density, rather than distance, and Zahn [18] called
it density gradient. Fig. 1(g) and (h) are quite different from those
aforementioned figures, because the two clusters touch each other
slightly. Zahn [18] classified the cluster problems in Fig. 1(g) and (h)
as touching cluster problems.

2.3. Cluster problems implied by clustering algorithms

Traditionally, clustering algorithms can be categorized into hier-
archical, partitioning, density-based and model-based methods [3].
Being different from the traditional taxonomy, however, Handl and
Knowles [12,26] classified clustering algorithms into three categories
with different clustering criteria illustrated in Fig. 2: (1) algorithms
based on the concept of compactness, such as k-means, average-
linkage, etc., which make an effort to minimize the intra-cluster vari-
ation and are suitable for handling spherical datasets; (2) algorithms
based on the concept of connectedness, such as path-based cluster-
ing algorithm [29], single-linkage, etc., which can detect the clusters
with high intra-connectedness; (3) algorithms based on spatial sep-
aration criterion, which is opposed to connectedness criterion and
generally considered incorporated with other criteria rather than

independently. Actually, the clustering approach taxonomy in [12]
is cluster-problem-based, as a clustering algorithm is categorized
by the cluster problem which it favors, since the criteria of com-
pactness, connectedness and spatial separation delineate the dataset
structures instead of algorithms themselves. In accordance with the
classification of clustering algorithm in [12], therefore, the cluster
problems fall mainly into two groups: compact cluster problems and
connected cluster problems.

2.4. Cluster problems classified in this work

In this paper, we classify cluster problems into two categories:
separated problems and touching problems. The former includes
distance-separated problems and density-separated problems. In
terms of Definition 2, for example, we call the cluster problems de-
picted in Fig. 1(a)–(e) distance-separated, while the cluster problem
depicted in Fig. 1(f) density-separated. Cluster problems in Fig. 1(g)
and (h) are grouped, similarly in [18], as touching problems accord-
ing to Definition 3. Since separated problem and touching problem
are mutually supplemental, they may cover all kinds of datasets.
This taxonomy of cluster problems ignores the compactness and
connectedness. In fact, separated clusters can be compact or con-
nected, and touching clusters can also be compact or connected.
Based on our taxonomy, Fig. 3(a) and (b) are touching problems,
Fig. 3(c) and (d) are separated problems; while in terms of cluster-
ing criteria in [12], Fig. 3(a) and (c) are compact problems, Fig. 3(b)
and (d) are connected problems.

With the two-round-MST based graph representation of a dataset,
we propose a separated clustering algorithm and a touching clus-
tering algorithm, and encapsulate the two algorithms into a same
method.

3. The clustering method

3.1. Problem formulation

Suppose that X = {x1,x2, . . . ,xi, . . . ,xN} is a dataset, xi = (xi1,
xi2, . . . , xij, . . . , xid)

T ∈ Rd is a feature vector, and xij is a feature. Let
G(X)= (V , E) denote a weighted and undirected complete graph with
vertex set V = X and edge set E = {(xi,xj)|xi,xj ∈ X, i� j}. Each edge
e = (xi,xj) has a length �(xi,xj), and generally the length can be
Euclidean distance, Mahalanobis distance, City-block distance, etc.
[7]. In this paper, Euclidean distance is employed. A general clus-
tering algorithm attempts to partition the dataset X into K clusters:
C1,C2, . . . ,CK , where Ci � ∅, Ci ∩ Cj = ∅, X = C1 ∪ C2 · · · ∪ CK , i = 1 : K,
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Fig. 3. The different taxonomies of cluster problems. The patterns in (a) and (b) are touching problems, and the patterns in (c) and (d) are separated problems in this paper.
The patterns in (a) and (c) are compact problems, and the patterns in (b) and (d) are connected problems by Handl [12].

j = 1 : K, i� j. Correspondingly, the associated graph will be cut into
K subgraphs.

Aminimum spanning tree (MST) of graph G(X) is an acyclic subset
T ⊆ E that connects all the vertices in V and whose total lengths
W(T) = ∑

xi ,xj∈T�(xi,xj) is minimum.

3.2. Algorithm for separated cluster problem

As mentioned above, separated cluster problems are either
distance-separated or density-separated. Zahn [18] employed two
different algorithms to deal with the two situations, respectively.
For the purpose of automatic clustering, we try to handle distance-
separated problem and density-separated problem with one
algorithm.

3.2.1. Two-round-MST based graph
Compared with KNN-graph-based clustering algorithms [16,17],

MST-based clustering algorithms [18,19] have two disadvantages.
The first one is that only information about the edges included in
MST is made use of to partition a graph, while information about the
other edges is lost. The second one is that for MST-based approaches
every edge's removal will result in two subgraphs. This may lead
to a partition without sufficient evidence. With these observations
in mind, we consider using second round of MST for accumulating
more evidence and making MST-based clustering more robust. It is
defined as follows.

Definition 6. Let T1 = fmst(V , E) denote the MST of G(X)= (V , E). The
second round MST of G(X) is defined as

T2 = fmst(V , E − T1) (1)

where fmst : (V , E) → T is a function to produce MST from a graph.

If there exists a vertex, say v, in T1 such that the degree of v is
|V| − 1, v is isolated in G(V , E − T1). Hence T2 cannot be generated
in terms of Definition 6. To remedy the deficiency simply, the edge
connected to v and with the longest length in T1 is preserved for
producing T2.

Combining T1 and T2, a two-round-MST based graph, say Gmst(X)=
(V , T1 + T2)= (V , Emst), is obtained. The two-round-MST based graph
is inspired by Yang [30]. Yang used k MSTs to construct k-edge
connected neighbor graph and estimate geodesic distances in high
dimensional datasets. Fig. 4(a) and (b), respectively, represent the
T1 and T2 of Fig. 1(c), in which the dataset is distance-separated.
Fig. 4(c) represents the corresponding two-round-MST based graph.

The lengths of edges from T1 and T2 have a special relationship
(see Theorem 3), which can be used to partition two-round-MST
based graph.

Lemma 1. Let T(VT , ET ) be a tree. If T ′(V ′
T , E

′
T ) is maximum tree such

that V ′
T ⊆ VT , E′

T ∩ ET = ∅, then either |E′
T | = |ET | − 1 or |E′

T | = |ET |.

Proof. If |VT | − 1 vertices of T(VT , ET ) have degree 1, and the other
vertex, say v, has degree |VT | − 1. In T, from any vertex with degree
1, there exist at most |VT | − 2 edges connected to other vertices
except its neighbor, i.e. v, and no more edge is available to construct
T ′(V ′

T , E
′
T ). At this moment, V ′

T = VT\{v}, and |E′
T | = |VT | − 2 = |ET | − 1.

Otherwise, suppose vertex v0 has degree of 1, its neighbor is v1.
From v0, |VT |−2 edges can be used to construct T ′(V ′

T , E
′
T ). In addition,

there must exist an edge between vertex v1 and its non-neighbor
vertex. At this moment, V ′

T = VT , and |E′
T | = |VT | − 1 = |ET |. �

Corollary 2. Let F(VF , EF) be an acyclic forest. Suppose F ′(V ′
F , E

′
F) is

maximum acyclic forest such that V ′
F ⊆ VF , E′

F ∩ EF = ∅, and for any
e ∈ E′

F , F(VF , EF ∪ {e}) is cyclic, then |E′
F | � |EF |.

Theorem 3. Suppose T1 and T2 are first round and second round MST of
G(V , E), respectively. If edges of T1 and edges of T2 are ordered ascend-
ingly by their weights as e11, e

2
1, . . . , e

i
1, . . . , e

|V|−1
1 , e12, e

2
2, . . . , e

i
2, . . . , e

|V|−1
2 ,

then �(ei1)��(ei2), where i denotes the sequence number of ordered
edges, and 1� i� |V| − 1.

Proof. Suppose there exists j such that �(ej1)>�(ej2). Obviously

�(ej1)>�(ej2)��(ej−1
2 )� · · · ��(e12), in terms of Kruskal's algorithm

of constructing a MST, the reason why e12, e
2
2, . . . , e

j
2 are not selected

in the j th step of constructing T1 is that the combination of any
one of these edges with e11, e

2
1, . . . , e

j−1
1 would produce a cycle in T1.

Let e11, e
2
1, . . . , e

j−1
1 form F(VF , EF) and e12, e

2
2, . . . , e

j
2 form F′(V ′

F , E
′
F), then

the two forests are acyclic since e11, e
2
1, . . . , e

j−1
1 and e12, e

2
2, . . . , e

j
2 are

the part of T1 and T2, respectively. Because if any edge of F′(V ′
F , E

′
F)

is added into F(VF , EF), F(VF , EF) would be cyclic, we have V ′
F ⊆ VF .

However, |EF | = j − 1 and |E′
F | = j, this contradicts Corollary 2. �

For a tree, any removal of edge will lead to a partition. Whereas to
partition a two-round-MST based graph, at least two edges must be
removed, of which at least one edge comes from T1 and T2, respec-
tively. Accordingly, compared with a cut on MST, a two-round-MST
based graph cut requires more evidence and may result in a more
robust partition.

Generally, for a given dataset, MST is not unique because two
or more edges with same length may exist. However, the non-
uniqueness of MST does not influence the partition of a graph for
clustering [18], and the clustering induced by removing long edges
is independent of the particular MST [31].

3.2.2. Two-round-MST based graph cut
After a dataset is represented by a two-round-MST based graph,

the task of clustering is transformed to partitioning the graph with a
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greater than the threshold �.

partitioning criterion. In general, a partitioning criterion plays a pivot
role in a clustering algorithm. Therefore, the next task is to define
an effective partitioning criterion. Fig. 4(a) is the MST of a distance-
separated dataset illustrated in Fig. 1(c). Obviously, ab is the very
edge to be removed and lead to a valid partition forMST-basedmeth-
ods. Zahn [18] defined an edge inconsistency to detect the edge. That
is, the edge, whose weight is significantly larger than the average of
nearby edge weights on both sides of the edge, should be deleted.
However, this definition is only relevant for the distance-separated
cluster problem, for instance, Fig. 4(a). For density-separated clus-
ter problem illustrated in Fig. 5(a), which is called density gradi-
ent problem in [18], Zahn first determined the dense set and the
sparse set with a histogram of edge lengths, then singled out five
inter-cluster edges ab, eg, hi, kl and no. Although Zahn's method
for density-separated problem is feasible, it is somewhat complex.
In brief, Zahn used two partitioning criteria to deal with distance-
separated cluster problems and density-separated cluster problems,
respectively. Our goal, however, is to handle the two situations with
one partitioning criterion.

From Figs. 4(c) and 5(c), we observe that the main difference be-
tween a distance-separated cluster problem and a density-separated
cluster problem is whether the average lengths of edges connected
to two sides of an inter-cluster edge are similar or not. For distance-
separated clusters in Fig. 4(c), the average length of edges connected
to end point a of edge ab is similar to that of edges connected to the
other end of ab, while for density-separated clusters in Fig. 5(c), the
average lengths of two sets of edges connected, respectively, to two
ends of ab are quite different. Accordingly, for the purpose of iden-
tifying an inter-cluster edge with one criterion for both distance-
separated clusters and density-separated clusters, we compare the
length of the inter-cluster edge with the minimum of the average
lengths of the two sets of edges which are connected to its two ends,
respectively. First, we define the weight of an edge as follows:

Definition 7. Let Gmst(X)=(V , Emst) be a two-round-MST based graph,
eab ∈ Emst and a, b ∈ V , w(eab) be the weight of eab as in

w(eab) = �(eab) − min(avg(Ea − {eab}), avg(Eb − {eab}))
�(eab)

(2)
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where Ea = {eij|(eij ∈ Emst) ∧ (i = a ∨ j = a)}, Eb = {eij|(eij ∈ Emst) ∧ (i =
b ∨ j = b)},

avg(E) = 1
|E|

∑
e∈E

�(e)

and �(e) is the Euclidean distance of edge e.

Analyzing two-round-MST based graphs of some separated
datasets and the corresponding weights defined above, we find
that two-round-MST based graphs and the weights have three good
features: (1) generally, the weights of inter-cluster edges are quite
larger than those of intra-cluster edges. (2) The inter-cluster edges
are approximately equally distributed to T1 and T2. (3) Except inter-
cluster edges, most of edges with large weights come from T2, and
this is supported by Theorem 3. Fig. 4(d) depicts the top 20 weights
of the distance-separated dataset in Fig. 1(c). The two inter-cluster
edges are those with top two weights, respectively, and one is from
T1 and the other one is from T2. Among the next 18 edges, 16 edges
come from T2 and only two edges come from T1. Fig. 5(d) describes
the top 20 weights of the density-separated dataset in Fig. 1(f).
The top nine weights are from the very nine inter-cluster edges, of
which five are from T1 and four are from T2, and all of the remaining
11 edges belong to T2.

In terms of the first feature, a desired two-round-MST based graph
cut can be achieved by removing the edges with largest weight one
by one. The next two features indicate thatwhether or not a graph cut
is valid can be determined by analyzing the distribution of removed
edges.

Definition 8. Let Rank(Emst) be a list of edges ordered descendingly
by corresponding weights as in

Rank(Emst) = 〈edge_topweight(Emst) ◦ Rank(Emst

− {edge_topweight(Emst)})〉 (3)
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graph cut is obtained, which is indicated by the dashed curve, the Ratio(Egcut) is
0.304 and less than the threshold �.
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where edge_topweight(Emst)= arg maxe∈Emst (w(e)), ◦ is a concatenate
operator.

Edge removing scheme: The edgewith largeweight has the priority
to be removed, namely edges are removed in the order of Rank(Emst).
Since every removal of edge may lead to a graph cut (excluding the
first removal), we must determine whether or not a new graph cut
is achieved after each removal. The determination could be made by
traversing the graph with either breadth-first search algorithm or
depth-first search algorithm.

Definition 9. Let Egcut be a set of removed edges when a graph cut
on a two-round-MST based graph is achieved, if the following holds:

Ratio(Egcut) = min(|Egcut ∩ T1|, |Egcut ∩ T2|)
|Egcut| �� (4)

where � is a threshold, then the graph cut is valid, otherwise it is
invalid. If the first graph cut is valid, the cluster is said to be separated,
otherwise, non-separated.

Figs. 4(d) and 5(d) illustrate that both two first graph cuts are
valid, because the Ratio(Egcut)'s are 0.500 and 0.440, respectively,
greater than the threshold �=0.333 which is discussed in Section 4.
Consequently, the datasets in Figs. 4 and 5 are separated, and are par-
titioned by removing the first two and first nine edges, respectively.
Fig. 6(a) represents a subgraph produced by applying the scheme on
the dataset in Fig. 4, while Fig. 6(b) indicates this subdataset is no-
separated, since the Ratio(Egcut) for the first cut is 0.304 and less than
the threshold. However, the scheme is not always effective, because
two exceptions exist.

Exception 1. In a density-separated dataset, there exist two
(or more) inter-cluster edges which have a common vertex close to
dense part. For example, in Fig. 7(a), inter-cluster edge efg and ehg
have a common vertex g which belongs to the dense part of the
dataset. The dashed curve is the expected graph cut. But the weight
of efg is less than those of eab, ecd and eef , because when we com-
pute the weight of efg , another inter-cluster edge ehg is concerned
according to Definition 7. As a result, more removed edges are from
T2 when the first graph cut is achieved, and the probability of the
cut being valid decreases. The straightforward solution is to ignore
the longest neighbor edge. For example, when the weight of efg is
computed, edge ehg should be ruled out from Eg .

Exception 2. The weight defined in Definition 7 is a ratio. If there
exists an edge which is quite small in length, and the vertices con-
nected to its one end are extremely close, then its weight is relatively
large. In Fig. 7(c), vertices e, f , g are very close. For edge ehf , because
avg(Ef − {ehf }) is extremely small, w(ehf ) is top 1 even though its
length is far less than those of eab and eac. To remedy this exception,
the edge length can be considered as a penalty.
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Fig. 9. Clustering a touching problem. (a) is the dataset from Fig. 1. (b) illustrates the first round of MST. (c) represents the second of MST. Comparing cut1 of T1 in (d) and
cut3 of T2 in (f), two inconsistent vertices (a, c) exist, while between cut2 in (e) and cut3 in (f), there also exist two inconsistent vertices (b, c).

Therefore, the weight of eab in Definition 7 is redefined as

w(eab)=�×�(eab)−min(avg(E′
a−{e′

a}), avg(E′
b−{e′

b}))
�(eab)

+(1−�) × �(eab)

(5)

where E′
a = Ea − {eab}, e′

a = arg maxe∈E′
a
(�(e)), E′

b = Eb − {eab},
e′
b = arg maxe∈E′

b
(�(e)), � is a penalty factor and 0���1.

E′
a − {e′

a} and E′
b − {e′

b} ignore the longest neighbor edges, while
penalty factor � gives a tradeoff between the ratio and the edge
length.

Fig. 8 illustrates the first graph cut of applying redefined weight
on the three datasets in Figs. 4–6. The corresponding Ratio(Egcut)'s
are 0.500, 0.380, 0.240, respectively. According to the discussion of
� in Section 4, the first two graph cuts are still valid and the third
one is still invalid.

A subgraph partitioned from a separated problem may be an-
other separated problem. Therefore, we must apply the graph
cut method to every produced subgraph iteratively to check
whether or not it can be further partitioned until no subgraphs are
separated.

Algorithm 1. Clustering separated cluster problems

Input: G(X) = (V , E), the graph of the dataset to be partitioned
Output: S, the set of partitioned subdatasets.
Step 1. Compute T1 and T2 of G(X), and combine the two MSTs to

construct the two-round-MST based graph Gmst(X), and put it
into a table named Open; create another empty table named
Closed.

Step 2. If table Open is empty, sub-datasets corresponding to sub-
graphs in Closed table are put into S; return S.

Step 3. Get a graph G′(X′) = (V ′, E′) out of Open table, calculate the
weights of edges in G′(X′) with Eq. (5), and build the list
Rank(E′).

Step 4. Remove the edges of G′(X′) in the order of Rank(E′) until a
cut is achieved.

Step 5. If the cut is valid in terms of Definition 9, put the two sub-
graphs produced by the cut into Open table; otherwise put
graph G′(X′) into Closed table.

Step 6. Go to Step 2.

Algorithm 1iteratively checks subgraphs, and partitions the sep-
arated ones until there exists no separated subgraphs. At the same
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Fig. 10. A teapot dataset as a touching problem. (a) is a teapot dataset with a neck. In (b), the diameter defined by Zahn [18] is illustrated by the blue path. cut5 in (b)
and cut7 in (c) are similar (� = 1), so are cut1 and cut2, cut6 and cut2, cut1 and cut8, cut3 and cut4.

time, the algorithm takes no action on non-separated subgraphs,
namely touching subgraphs. In fact, the reason why Algorithm 1
can identify separated clusters is the definition of edge weight in
Definition 7. The weight of an edge eab reflects the relation between
the length of eab and two neighbor region densities of vertices a and
b, respectively, where the neighbor region density is measured by
the average length of the edges in the region. If the weight of eab is
large, the densities of the two neighbor regions are high compared
to the length �(eab), or the two densities are very different. For a
pair of touching clusters, as a neck exists and lengths of edges in the
neck are small compared to the neighbor region densities, namely
the weights of edges in the neck are small, Algorithm 1 cannot de-
tect the touching clusters.

3.3. Algorithm for touching cluster problem

Although Algorithm 1 can identify separated clusters, it becomes
disabled for touching clusters. After the algorithm is applied to a
dataset, each induced sub-dataset will be either a touching cluster
or a basic cluster which cannot be partitioned further.

For a touching cluster, a neck exists between the two connected
subclusters. The neck of touching cluster problem in Fig. 1(h) is il-
lustrated in Fig. 9(a). Zahn [18] defined a diameter of MST as a path
with the most number of edges, and detected the neck using diam-
eter histogram. However, a diameter does not always pass through
a neck. Fig. 10 illustrates an exception. We identify the neck by con-
sidering T1 and T2 simultaneously. The two-round-MSTs of Fig. 1(h)
are depicted by Fig. 9(b) and (c), respectively. The task in this phase
is to detect and remove these edges crossing the neck, and discover
touching clusters. Based on the two-round-MSTs, an important ob-
servation is as follows:

Observation 1. A partition resulted from deleting an edge crossing
the neck in T1 is similar to a partition resulted from deleting an edge
crossing the neck in T2.

On the contrary, for the two cuts from T1 and T2, respec-
tively, if one cut does not cross the neck, the two corresponding
partitions will be generally quite different from each other. Com-
paring the partition on T1 in Fig. 9(d) with the partition on T2 in
Fig. 9(f), we notice that only two vertices (a and c) belong to dif-
ferent group, and is called inconsistent vertices. Similarly, only two
inconsistent vertices (b and c) exist between the cuts in Fig. 9(e)
and (f).

For the purpose of determining whether two cuts are similar, the
number of inconsistent vertices must be given out as a constraint, i.e.
if the number of inconsistent vertices between two cuts is not greater
than a threshold, say �, the two cuts are similar. For the previous
example in Fig. 9, � = 2 is reasonable. However, some unexpected
pairs of cuts which do not cross the neck of a dataset may conform to
the criterion and are determined to be similar. For example, the cut3
in Fig. 10(b) and the cut4 in Fig. 10(c) are similar if � = 1, however,
the two cuts are unexpected. Fortunately, the following observation
can remedy this bad feature.

Observation 2. With a same threshold �, the number of pairs of
similar cuts which cross the neck is generally greater than that of
pairs of similar cuts which do not cross the neck.

In Fig. 10(b) and (c), suppose � = 1, it is easy to find another pair
of similar cuts which cross the necks other than cut1 and cut2, for
instance, cut5 and cut7, cut6 and cut2, cut1 and cut8, while there
exists no other pair of similar cuts near cut3 and cut4. Therefore,
cut3 and cut4 are discarded because the similar evidence is insuf-
ficient. With the observation in mind, we can design the algorithm
for touching cluster problems as follows.

Definition 10. Let PT1 be the list of N − 1 partitions on T1 as in

PT1 = 〈(pT111, pT112), (pT121, pT122), . . . , (pT1(N−1)1, p
T1
(N−1)2)〉 (6)

where pair (pT1i1 , p
T1
i2 ) denotes the partition which results from re-

moving the i th edge in T1, pT1i1 and pT1i2 are subsets of vertices,

pT1i1 ∪pT1i2 =V , |pT1i1 | � |pT1i2 |. Similarly, the list ofN−1 partitions on T2, PT2 ,
is defined as

PT2 = 〈(pT211, pT212), (pT221, pT222), . . . , (pT2(N−1)1, p
T2
(N−1)2)〉 (7)

Obviously, some partitions both on T1 and T2 can be very skewed.
However, a valid partition is expected to generate two subsets with
relatively balanced element numbers in some typical graph partition
methods, such as ratio cut [32]. Therefore, the partition lists PT1 and
PT2 can be refined by ignoring skewed partitions so as to reduce the
number of comparisons.

Definition 11. Let RPT1 and RPT2 be the refined lists, all of the ele-
ments of RPT1 come from PT1 , and all of the elements of RPT2 come
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Fig. 11. Clustering results on DS1. (a) is the original dataset; (b) is the clustering result of k-means; (c) is the clustering result of DBScan (MinPts = 3, Eps = 1.6); (d) is the
clustering result of single-linkage; (e) is the clustering result of spectral clustering; (f) is the clustering result of 2-MSTClus.

from PT2 , as in

RPT1 = 〈(rpT111, rpT112), (rpT121, rpT122), . . . , (rpT1L1, rpT1L2)〉 (8)

RPT2 = 〈(rpT211, rpT212), (rpT221, rpT222), . . . , (rpT1M1, rp
T2
M2)〉 (9)

where L�N − 1, �� min(|rpT1i1 |, |rpT1i2 |)/max(|rpT1i1 |, |rpT1i2 |); M�N − 1,

�� min(|rpT2i1 |, |rpT2i2 |)/max(|rpT2i1 |, |rpT2i2 |), �>N, � will be discussed in
Section 4.

In the next step, partitions in RPT1 will be compared with those in
RPT2 . As the number of inconsistent vertices between two cuts must
be less than or equal to the threshold �, if ||rpT1i1 | − |rpT2j1 ||>�, the

comparison between two partitions (rpT1i1 , rp
T1
i2 ) and (rpT2j1 , rp

T2
j2 ) can be

skipped.
For the purpose of saving the computational cost, we can further

combine the two lists RPT1 and RPT2 , and order them ascendingly by
the element numbers of the left parts of the pairs. Only pairs which
come from different MSTs and of which element number of left parts
have differences not more than � will be compared.

Definition 12. Let SP be a set which consists of all the elements of
RPT1 and RPT2 :

SP = {(rpT111, rpT112), . . . , (rpT1L1, rpT1L2), (rpT211, rpT212), . . . , (rpT1M1, rp
T2
M2)} (10)

Definition 13. For a sp ∈ SP, let left(sp) denote the left part of sp, the
source of sp is defined as

source(sp) =
{
1 if sp comes from T1
0 otherwise

(11)

For example, if sp = (rpT111, rp
T1
12), then left(sp) = rpT111 and

source(sp) = 1.

Definition 14. Let CP(SP) = 〈(cp11, cp12), . . . , (cp(L+M)1, cp(L+M)2)〉 be
the ordered list as in

CP(SP) = 〈part_min(SP) ◦ CP(SP − {part_min(SP)})〉 (12)

where part_min(SP) = arg minsp∈SP |left(sp)|, and ◦ is a concatenate
operator.

Definition 15. Two partitions (cpi1, cpi2) and (cpj1, cpj2) are said to
be similar, where i� j, if the followings hold:

(a) source((cpi1, cpi2))� source((cpj1, cpj2));
(b) |cpi1 − cpj1| + |cpj1 − cpi1| �� or |cpi1 − cpj2| + |cpj2 − cpi1| ��.

The first condition indicates that the two partitions come from
different MSTs, while the second condition reveals that the number
of inconsistent vertices between the two partitions is sufficient small.
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Fig. 12. Clustering results on DS2. (a) is the original dataset; (b) is the clustering result of k-means; (c) is the clustering result of DBScan (MinPts = 3, Eps = 1.9); (d) is the
clustering result of single-linkage; (e) is the clustering result of spectral clustering; (f) is the clustering result of 2-MSTClus.

Algorithm 2. Clustering touching problems

Input: T1 and T2, the two rounds of MST of a sub-dataset generated
by Algorithm 1.
Output: S, the set of expected partitions.
Step 1.Construct the ordered list CP(SP) with T1 and T2; create two

empty set S′ and S.
Step 2.For each (cpi1, cpi2) ∈ CP(SP), it is compared with (cpj1, cpj2) ∈

CP(SP) and j> i. According to Definition 15, if there exists a
partition (cpj1, cpj2) which is similar to (cpi1, cpi2), (cpi1, cpi2)
is put into S′.

Step 3.For each s ∈ S′, if there exists a t ∈ S′, t� s, and t is similar to
s, s is put into S.

Step 4.Combine similar partitions in S.

In Algorithm 2, Step 3 is to remove the unexpected partitions in
terms of Observation 2. For simplicity, only those partitions without
similar others are removed. In Step 3, when determining the simi-
larity between t and s, we ignore whether they come from different
MSTs or not, since at this stage only the number of inconsistent ver-
tices are concerned. Step 4 combines the similar partitions. This can
be achieved by assigning inconsistent vertices to two groups in terms
of the evidence (support rate) accumulated from the similar parti-
tions. Algorithm 2 can identify touching clusters except overlapping
ones.

3.4. The combination of the two algorithms

As mentioned above, cluster problems are categorized into sep-
arated problems and touching problems in this paper, and the two
cluster problems roughly cover all the cluster problems since they
are mutual complementary. As Algorithm 1 automatically identifies
separated clusters and has no effect on touching clusters, Algorithms
1 and 2 can be easily combined to deal with any cluster problem.
When every subset partitioned by Algorithm 1 is fed to Algorithm
2, we will obtain the final clustering results. Therefore, the two al-
gorithms can be easily combined to form the method 2-MSTClus.

Many traditional clustering algorithms are vulnerable to the dif-
ferent cluster sizes, shapes and densities. However, since the sepa-
rated clusters and touching clusters can roughly cover all kinds of
clusters (except overlapping clusters) in terms of definition of sep-
arated cluster and touching cluster regardless of cluster size, shape
and density, the combination of Algorithms 1 and 2 is robust to di-
versifications of sizes, shapes and densities of clusters.

3.5. Computational complexity analysis

The computational complexity of Algorithm 1 is analyzed as fol-
lows. For a graph G(X) = (V , E), if Fibonacci heaps are used to im-
plement the min-priority queue, the running time of Prim's MST
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Fig. 13. Clustering results on DS3. (a) is the original dataset; (b) is the clustering result of k-means; (c) is the clustering result of DBScan (MinPts = 5, Eps = 1.5); (d) is the
clustering result of single-linkage; (e) is the clustering result of spectral clustering; (f) is clustering result of 2-MSTClus.

algorithm is O(|E| + |V| log |V|) [35]. As the MST in a graph-based
clustering method is generally constructed from a complete graph,
|E| is equal to |V|2 and the computational complexity of Prim's algo-
rithm is O(|V|2). In Step 1, accordingly, T1 and T2 are generated in
O(N2), while Step 3 sorts the list Rank(E′) in O(N logN). Step 4 re-
peatedly removes an edge of G′(X′) and checks if a cut is achieved
in O(|X′| log |X′|), where |X′| �N. The iteration time from Step 2 to
Step 6 is the number of separated clusters in dataset, which is gen-
erally far less than N. Therefore, the time complexity of Algorithm 1
is O(N2).

In Step 1 of Algorithm 2, the constructing SP takes O(N2), and
sorting CP(SP) takes O(N logN). As a result, the Step 1 can be done
in O(N2). The iteration in Step 2 of Algorithm 2 can be finished in
O(N logN). Both Steps 3 and 4 in Algorithm 2 are executed in O(N).
The computational complexity of Algorithm 2 is O(N2).

Obviously, since the method 2-MSTClus is composed of
Algorithms 1 and 2, its overall time complexity is O(N2).

4. Experimental results

4.1. Parameter setting

In the two proposed algorithms, although four parameters exist,
they are all set to fixed values in all our experiments. The parameter �
determines whether a graph cut is valid or not when the framework

deals with separated cluster problems. For the first graph cut on
a separated problem, the numbers of edges removed from T1 and
T2, respectively, are almost equal. The ideal situation is that two
clusters are far away from each other, and when the first graph cut
is achieved the number of the edges removed from T1 is equal to
that of the edges from T2, i.e. � = 0.5. For non-separated problems,
on the contrary, the edges removed from T2 are in the majority, and
that leads to significantly skewed ratio. However, a change of local
density may disturb the ratio. Accordingly the parameter � is relaxed
to some degree. In all of our experiments, the parameter is set to
0.330. Specially, suppose that three edge removals result in a cut,
although the Ratio(Egcut) is 0.333 and only slightly greater than the
parameter, the absolute difference is very small (only 1).

When the weight of an edge is computed, the parameter � is
employed to balance the relative weight (the ratio of lengths) and
the absolute weight (the length of the edge). As the relative weight
is crucial, � is generally set to 0.9.

In touching problem algorithm, the parameter � is the margin
of the number of inconsistent vertices. If it is too small, some neck-
crossed partitions may be identified as invalid, while if it is too
large, some non-neck-crossed partitions may be regarded as valid.
As overlapped clusters are beyond the scope of this paper, and only
slightly touching clusters are considered, � is set to a relatively small
value, for instance, 2 in all our experiments. In addition, some ex-
treme skewed partitions can be ignored by the parameter � to save
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Fig. 14. Clustering results on DS4. (a) is the original dataset; (b) is the clustering result of k-means; (c) is the clustering result of DBScan (MinPts = 6, Eps = 1.5); (d) is the
clustering result of single-linkage; (e) is the clustering result of spectral clustering; (f) is clustering result of 2-MSTClus.

the computational cost in touching problem algorithm. For example,
cuts on some short branches (called hairs by [18]) are meaningless.
Although the short branches can be identified adaptively, for sim-
plicity we set � ∈ [0.01, 0.05] in the following experiments. If the
number of vertices contained in a short branch is less than � vertices,
cuts on the short branch will be ignored.

4.2. Experiments on synthetic and real datasets

The proposed method 2-MSTClus is tested on five 2-D synthetic
datasets, DS1–DS5, and two UCI datasets, Iris and Wine, and com-
pared with four typical clustering algorithms, namely k-means,
DBScan, single-linkage and spectral clustering, in which normalized
cut is used. For DBScan, in the all experiments, the parameters are
selected with the best clustering result.

The dataset DS1 is taken from [34] and illustrated in Fig. 11(a). It
contains three spiral clusters, which are separated from each other in
distance, therefore it is a distance-separated cluster problem. How-
ever, in terms of Handl's taxonomy [12], DS1 falls into the group
of connectedness. Fig. 11(b)–(f) depict the clustering results of the
four methods and 2-MSTClus. As DBScan and single-linkage prefer
the datasets with connectedness, they can discover the three actual
clusters, but k-means and spectral clustering cannot. 2-MSTClus can
easily deal with DS1 as a separated problem and detect the three
clusters.

Fig. 12 illustrates the clustering results of DS2, which is from [18].
It is a typical density-separated cluster problem. Since DBScan is a
density-based and identifies clusters with the concept of density-
reachable, it partitions DS2 well. However, k-means, single-linkage
and spectral clustering are ineffective on DS2. While 2-MSTClus still
produces ideal result by its separated algorithm.

The dataset DS3 is also taken from [18] and illustrated in
Fig. 13. It is composed of two clusters, which are compact and slightly
touched. k-means, which favors this kind of dataset, and spectral
clustering have good performance on D3, whereas single-linkage
and DBScan perform badly. Instead of the separated algorithm of
2-MSTClus, the touching algorithm of 2-MSTCLus can detect the two
clusters.

In Fig. 14(a), the dataset DS4 is taken from [11]. Compared with
the former three datasets DS1–DS3, this dataset is more complex.
It consists of seven clusters, and is a composite cluster problem.
All of the four algorithms, k-means, DBScan, single-linkage, spectral
clustering fail on this dataset. However, 2-MSTClus identifies the
seven clusters accurately.

In DS4, three clusters are distance-separated from others, while
two pairs are internal touched. When the dataset is fed to 2-MSTClus,
Algorithm 1 is first applied to it. Fig. 15(a) represents the first cut
when top two weight edges are removed. As the Ratio(Egcut) is 0.333,
and greater than the threshold �, the cut is valid. Next cut analysis is
on the remaining six clusters. In Fig. 15(b), the removals of the top
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two edges result in a valid cut, which partitions the six clusters into
two groups. Similarly, the separated sub-dataset in Fig. 15(c) and (d)
is further partitioned. Afterwards, Algorithm 1 could not partition
the clusters any more. Then all the clusters are checked by Algorithm
2. Two touching clusters problems are figured out in Fig. 15(e)–(h),
even though in Fig. 15(g) and (h) the two clusters have significant
difference in their sizes.

The dataset DS5 is composed of three datasets from [18]. The left
top dataset in Fig. 16(a) is a touching problem; the left bottom one
is a distance-separated problem; while the right one is a density-
separated problem. For this composite dataset, 2-MSTClus can iden-
tify the six clusters, but the four clustering methods k-means, single-
linkage, DBScan and spectral clustering cannot.

In Fig. 17(a), (b) and (d), the distance-separated problems are
identified with the removals of top two edges, respectively. With
diverse densities, the two clusters in Fig. 17(c) are partitioned by
Algorithm 1, and the corresponding Ratio(Egcut) is 0.417, hence the
graph cut is valid. As for the touching problem in the top left of
Fig. 16(a), Algorithm 1 is ineffective. The similar cuts in Fig. 17(e)
and (f) are detected by Algorithm 2.

Two real datasets from UCI are employed to test the proposed
method. The first one is IRIS, which is a well-known benchmark for
machine learning research. The dataset consists of three clusters with
50 samples each, and the one is well separated from the other two
clusters, while the two clusters are slightly touched to each other.
Similar to DS4 and DS5, it is also a composite clustering problem.
When the dataset is fed to the 2-MSTClus, Algorithm 1 in the first
round cuts off 50 samples, which constitute the separated cluster.

Then the algorithm produces no clusters further. When Algorithm 2
is applied to the two subsets, only the cluster that is composed of
100 samples has some similar cuts between its T1 and T2, therefore,
this cluster is further partitioned.

The performance comparison on IRIS is presented in Table 1. Four
frequently-used external clustering validity indices are employed to
evaluate the clustering results: Rand, Adjusted rand, Jaccard and FM.
From Table 1, it is evident that 2-MSTClus performs best, since all of
indices of 2-MSTClus are ranked first.

The second real dataset is WINE. It is composed of 178 samples,
which fall into three clusters. From Table 2, 2-MSTClus performs
only better than single-linkage. Compared with the former datasets,
the performance of 2-MSTClus on WINE is slightly weakened. This is
because some outliers exist in the dataset. In Algorithm 1, the graph
cut criterion is a heuristic, however, the existence of outlier may
affect the heuristic.

5. Discussion

Traditional MST-based clustering methods [18,19,24,33] make
use of an MST to partition a dataset. A general way of partitioning
is to remove the edges with relative large lengths, and one removal
leads to a bipartition. Within an MST, although some crucial infor-
mation of a dataset are collected, some are missed. T1 and T2 are
combined to form a graph for the purpose of accumulating more
evidence to partition datasets. In a two-round-MST based graph, a
graph cut requires at least two edge removals. Only the evidence
from T1 and T2 being consistent, is the graph cut valid. For analyzing
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the touching problems in 2-MSTClus, the concept of inconsistent ver-
tices delivers the same idea.

The proposed method 2-MSTClus deals with a dataset in terms of
which cluster problem it belongs to, separated problem or touching
problem. The diversifications of sizes, shapes as well as densities of
clusters have no effect on the clustering process.

A drawback of 2-MSTClus is that it is not robust to outliers. Al-
though some outlier detection methods can be used to preprocess
a dataset and remedy this drawback, we will discover more robust
mechanism to outliers based on two-round-MST based graph in the
future. In addition, the proposed method cannot detect the overlap-
ping clusters. If a dataset composed of two overlapping clusters is
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Table 1
Performance comparison on IRIS data.

Method Rand Adjusted rand Jaccard FM

k-Means 0.8797 0.7302 0.6959 0.8208
DBScan 0.8834 0.7388 0.7044 0.8268
Single-linkage 0.7766 0.5638 0.5891 0.7635
Spectral clustering 0.7998 0.5468 0.5334 0.6957
2-MSTClus 0.9341 0.8512 0.8188 0.9004

Table 2
Performance comparison on WINE data.

Method Rand Adjusted rand Jaccard FM

k-Means 0.7183 0.3711 0.4120 0.7302
DBScan 0.7610 0.5291 0.5902 0.7512
Single-linkage 0.3628 0.0054 0.3325 0.5650
Spectral clustering 0.7644 0.4713 0.4798 0.6485
2-MSTClus 0.7173 0.3676 0.4094 0.5809

dealt with 2-MSTClus, the two clusters will be recognized as one
cluster.

If more MSTs are combined, for instance, T1, T2, T3, . . . , Tk, k�N/2,
does the performance of the proposed method become better? In
other words, how is a suitable k selected for a dataset? This is an
interesting problem for the future work.

6. Conclusions

In this paper, a two-round-MST based graph is utilized to repre-
sent a dataset, and a clustering method 2-MSTClus is proposed. The
method makes use of the good properties of the two-round-MST
based graph, automatically differentiates separated problems from
touching problems, and deals with the two kinds of cluster problem.
It does not request user-defined cluster number, and is robust to dif-
ferent cluster shapes, densities and sizes. Our future work will focus
on improving the robustness of 2-MSTClus to outliers and selecting
a reasonable k for constructing k-MST.
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