
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dictionary-based compression of map images 
 

Alexandre Akimov 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21.12.2001 
 
 
University of Joensuu 
Department of Computer Science 
Master´s Thesis 



   

Table of contents 

1.  Introduction ..............................................................................................................................1 

2.  Modelling in data compression................................................................................................2 
2.1  Statistical modelling and entropy .........................................................................................2 
2.2  Context models .....................................................................................................................5 
2.3  State models..........................................................................................................................9 
2.4  Move To Front transformation ...........................................................................................10 

3. Coding.......................................................................................................................................11 
3.1  Shannon-Fano coding.........................................................................................................11 
3.2  Huffman coding..................................................................................................................12 
3.3  Run-Length encoding .........................................................................................................14 
3.4  Arithmetic coding ...............................................................................................................15 

4. Dictionary based schemes .......................................................................................................20 
4.1  Static dictionaries ...............................................................................................................20 
4.2  Semi-adaptive dictionaries .................................................................................................21 
4.3  Adaptive schemes ...............................................................................................................21 
4.4 Parsing strategies .................................................................................................................22 

5.  LZ77 compression method.....................................................................................................24 
5.1 Algorithm ............................................................................................................................24 
5.2 Parsing of the strings ...........................................................................................................26 
5.3 LZSS algorithm ...................................................................................................................26 
5.4 Deflate algorithm.................................................................................................................28 
5.5. PNG image representation format ......................................................................................30 

6.  LZ78 algorithm.......................................................................................................................31 
6.1 Compression algorithm .......................................................................................................31 
6.2 LZW algorithm....................................................................................................................33 
6.3 Decompression ....................................................................................................................34 
6.4 Coding of the pointers .........................................................................................................36 

7. Application to map image compression.................................................................................38 
7.1 Personal navigation .............................................................................................................38 
7.2 Map images .........................................................................................................................38 
7.3 Compression of maps ..........................................................................................................38 
7.4 Block decomposition for direct access ................................................................................39 

8.  Semi-adaptive LZW ...............................................................................................................40 
8.1 Ideology of semi-adaptive LZW .........................................................................................40 
8.2 The creation of the initial dictionary ...................................................................................43 
8.3  Pruning of the initial dictionary..........................................................................................44 
8.4  The final dictionary structure .............................................................................................46 
8.5  Storing the final dictionary in the compressed file.............................................................48 
8.6  The output of compressed information...............................................................................50 

9.  Experiments ............................................................................................................................53 

10.  Conclusions ...........................................................................................................................56 

References.....................................................................................................................................57 

APPENDIX: THE TEST SETS..................................................................................................58 
A. The test images for the semi-adaptive LZW compressor, ....................................................58 
B. Binary maps ..........................................................................................................................59



C. Greyscale maps .....................................................................................................................60 



 -  -  1

 

1.  Introduction 
 
The map images are considered from the point of view of personal navigation. The main goal of 
that is to have the maps available in real-time and independent of the location of the user, and 
without excessive computing resources, because typical navigation devices have limited memory 
resources and very narrow wireless communication channel. That is why the maps must be 
compressed before they are transmitted. This means that from this point of view the first goal of 
maps compression is compression ratio (as the compression could be preformed by powerful 
servers), and the first goal of decompression is speed and low requirements for machine-
resources. Because of this the block-segmentation is proposed. The block segmentation divides 
a whole map into several non-overlapping rectangular parts with the same size, and the blocks 
are coded separately. It allows transmission of encoded maps by small parts: by encoded blocks. 
 
The main topic of the current thesis is dictionary-based methods. The dictionary-based 
algorithms are compression methods, which are based on the idea of replacing the sequences of 
literals or pixels by an index or by a pointer to a dictionary, where the dictionary presents a 
collection of different often-used phrases, which are sequences of literals. And after that, we 
have got compression because of the replacing. In the case of map images compression 
dictionary-based methods can also be applied.  
 
In the case of map images we have the situation, where the image subordinates to some logic and 
because of this some sequences of pixels (as we are dealing with an image, not with text), which 
also could organize a dictionary. Even if this logic is not clear then it is possible to find out 
commonly used sequences of pixels, which will became a basement of the dictionary. We can 
apply for the dictionary elements some coding (Shannon-Fano, Huffman or arithmetic) 
algorithms, which consist of setting to dictionary indexes codes: a short codes to widely used 
elements and long codes to seldom used. The quality of the compression depends on the 
dictionary that is why it is so important to find out the optimal way of creating of the dictionary. 
In the current research there were considered three different ways: static, semi-adaptive and 
adaptive. Each of the variants has its own achievements and defects. 
 
So the question is how to perform such compression. The semi-adaptive dictionary based 
compression looks promised: it creates a dictionary during preprocessing stage (because of it the 
dictionary is adapted to map image), transmit the dictionary into the compressed file and, 
because of that, the decompression process is little demanding of resources (as does not need to 
operate with any kind of dictionary-creation process and has only to replace indexes in the 
compressed file by the codewords from the dictionary. 
 
The rest of the thesis is organized as follows: in Chapter 2 we consider the basics of the 
modelling in the data compression process. There are considered statistical modelling, context 
modelling, state and so on. Chapter 3 describes the some coding algorithms, such as Shannon-
Fano, Huffman, and arithmetic algorithms. In Chapter 4 we talk about the dictionary-based 
compression schemes and parsing strategies. Chapter 5 and Chapter 6 are devoted to widely 
known LZ77 and LZ78 algorithms consequently. There are considered principals of these 
algorithms and ways of their modification. In Chapter 7 we consider the basics of personal 
navigation and digital map representation in raster format. Chapter 8 describes the semi-
adaptive LZW algorithm. Results of the series of experiments, passed over this algorithm, are 
placed in the Chapter 9. 
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2.  Modelling in data compression  
 
Like in any other scientific or engineering discipline, data compression has a terminology that at 
first seem overwhelmingly strange to an outsider. To prevent misunderstanding let us take 
attention to some basic terms of this field of information technology.  
 
In general, data compression consists of taking a stream of symbols and transforming them into 
codes. If the compression is effective, the resulting stream of codes will be smaller than the 
stream of original symbols. The decision to output a certain code for a certain symbol or set of 
symbols is based on a model. The model is simply a collection of data and rules used to process 
input symbols and determine which code(s) to output. A program uses the model to accurately 
define the probabilities for each symbol and the coder to produce an appropriate code based on 
those probabilities. Shortly saying data compression is a modelling plus coding. Modelling and 
coding are different things. Model applied probabilities to symbols and encoder replaces those 
symbols by sequences of bits in the output stream.  

2.1  Statistical modelling and entropy 

Data compression is based on the following abstraction [1]: 
 

Data = information content + redundancy       (2.1) 
 

The aim of compression is to remove redundancy and describe the data by its information 
content. In statistical modelling the idea is to “predict” symbols that are to be coded by using a 
probability distribution for the source alphabet. Its entropy determines the information content 
of a symbol in the alphabet [2]  
 

)(log)( 2 xpxH −=          (2.2) 
 

where )(xp  is a probability of a symbol. The higher the probability, the lower the entropy, and 
thus the shorter codeword should be assigned to the symbol. The entropy )(xH  gives the 
number of bits required to code the symbol x  in average, on order to achieve the optimal result. 
The overall entropy of the probability distribution is given by [3]  
 

∑
=

⋅−=
k

x

xxpxH
1

2 )(log)()(         (2.3) 

 
where k is the number of symbol in the alphabet. The entropy gives the lower bound of 
compression that can be achieved (measured in bits per symbol), corresponding to the model. 
The optimal compression can be realized by arithmetic coding [14]. 
 
All modelling schemes can be classified into three following categories [2]:  

• Static modelling 
• Semi-adaptive modelling 
• Adaptive (or dynamic) modelling 

 
Static modelling is the simplest form of statistical modelling. In the earliest days of information 
theory, the CPU cost of analysing data was considered significant, so data analysis wasn’t 
frequently performed and static models were used instead [1]. In the static modelling the same 
code table is applied to all input data ever to be coded (see Figure 2-1). Consider text 
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compression; if the ASCII data to be compressed is known to consist of English text, the model 
based on the frequency of English text are %10)'(' =ep , %8)'(' =tp  on average for this two 
letters. Unfortunately, defect of such modelling is that such scheme will give bad compression 
each time, when the coding data do not coincide with chosen probability model, so static 
modelling is used only when the most important things in compression are speed and simplicity 
of realization.  
 
 
                                Codes 
 
 
 

Figure 2-1: Principal scheme of static modelling: table of codes does not depend from input stream. 
 
Semi-adaptive modelling solves this problem by using for each data stream its own probability 
model, which is created before the compression by preliminary analysis of the data. So, the 
model has to be transferred to decoder before beginning of the compression. In spite of these 
additional expenditures on the creating and transferring of the model, this model achieves the 
best compression results. Scheme of semi-adaptive modelling is shown in Figure   2-2.  
 
 
 
 
 
 
Figure 2-2 Scheme of semi-adaptive modelling: the model is created before the compression stage, and 
during the compression, created code is based on the symbol and probability, given by model.  
 
Adaptive or dynamic modelling is quite elegant and effective way to create the model: the 
coding process during one phase (instead two phases in the semi-adaptive modelling) and the 
statistical model is created “on-line” during compression. The probabilities of each symbol can 
be calculated adaptively with the help of array of counts: one count for each symbol, in the 
beginning each count has a value one, and after encoding of a symbol the value of the count is 
increased by one. Analogically during decoding the decoder increases the value of symbol’s 
count by one. The probability of each symbol is defined by its relative frequency. The 
compressor encodes a symbol using the existing model, and then it updates the model to account 
for the new symbol (see Figure 2-3). The decompressor likewise decodes a symbol using the 
existing model, and then it updates the model (see Figure 2-4). As long as the algorithm to 
update the model operates identically for the compressor and the decompressor, the process can 
operate perfectly without needing to pass a statistics table from the compressor to the 
decompressor. Adaptive data compression has a slight disadvantage in that it starts compressing 
with sub optimal statistics. By subtracting the cost of transmitting the statistics with the 
compressed data, however, an adaptive algorithm will usually perform better than a fixed 
statistical model. 
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Figure 2-3 Scheme of the adaptive modelling: the model sends to encoder the symbol. The 
symbol is coded by old model, and then the model is updating itself. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-4 Scheme of adaptive decompression: an existing model decodes a code from input 
stream, and after it the model is updated. 
 
Consider the sequence “a, a, a, b, b, a, b, c, c, a”. If no priory knowledge is available the static 
modelling is a simple model that could be applied to the compression process. The compression 
process with the static modelling is shown in Table 2-1. In Tables 2-2 and 2-3 are represented 
semi-adaptive and dynamic modelling consequently. 
 
Table 2.1: The example of the static modelling. The overall entropy of probability distribution is 

( )
58.1

3
58.158.158.1

=
++

=H  

 

Static model 
  symbol )(xp  )(xH  

A 0.33 1.58 
B 0.33 1.58 
C 0.33 1.58 

 
Table 2-2: The example of the semi-adaptive modelling. 49.132.22.074.13.015.0 =⋅+⋅+⋅=H  
 

Semi-adaptive model 
Symbol Count )(xp  )(xH  

A 5 0.5 1 
B 4 0.3 1.74 
C 2 0.2 2.32 

 
In the case of adaptive modelling the input data is processed as shown in Table 2-3. In the 
beginning of the process some initial model is needed since no prior knowledge is allowed from 
the input data. Here we assume equal probabilities. The probability of the first symbol (here ’a’) 
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is 0.33 and the corresponding entropy is 1.58. After that the model is updated by increasing the 
count of ‘a’ by one. Note, that it is assumed that that each symbol has occurred once before the 
proceeding so their initial counts equal to one. This is made to avoid so-called zero-frequency 
problem [2]. If we have no occurrence of a symbol, its probability would be 0 that yields entropy 
to infinity. 
 
Table 2-3: The example of adaptive modelling: the numbers are counts of symbols on each step. 
 step 
symbol 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

a 1 2 3 3 3 4 4 4 4 5 
b 1 1 1 1 2 2 3 3 3 3 
c 1 1 1 1 1 1 1 1 2 2 

)(xp  0.33 0.50 0.60 0.20 0.22 0.57 0.38 0.125 0.22 0.5 
H 1.58 1 0.74 2.32 2.19 0.81 1.4 3 2.19 1 

 
The corresponding entropies of the different modelling strategies are summarized here: 
 
Static modelling:       1.58 (bits per symbol) 
Semi-adaptive modelling:  1.49 
Dynamic modelling    1.62 
 
The properties of the three different modelling strategies are summarized as follows [3]: 
 
Static modelling    Semi-adaptive modelling   Dynamic modelling 
+One-pass method    -Two-pass method    +One-pass method  
+No side information    -Side information needed   +No side information 
-Non-adaptive    +Adaptive    +Adaptive 
+No updating of model  +No updating of model   -Updating of model 
during compression   during compression   during compression 
 

2.2  Context models 

So far we have considered the statistical with the overall frequency distribution of the source, but 
paid no attention to the spatial dependencies between the individual symbols.  
 
Once again, for example in English text the probabilities of the symbols “.”, ”e”, ”t”, “k” usually 
are 18%, 10%, 8%, 0.5% [1]. Consequently the corresponding entropies are 2.47, 3.32, 3.64 and 
7.62. So we can code the symbols by 4.5 bits on average. This is a simple context-free model.  
 
More complicated way of calculating of probabilities is in defining of dependences of symbols 
from the previous symbols. For example: the probability of the case that the letter ”u” will 
appear after letter “q” in English is about 99% [1], whereas without dependency from the 
previous symbol is about 2.4% [1]. So with taking into account of the context the entropy of the 
letter “u” is about 0.014 and otherwise about 5.38.  
 
This type of models is possible to generalize concerning to previous symbols, that are chosen to 
define the probability of the next symbol. In generally it calls finite-context modelling. The order 
of the model refers to the number of previous symbols that make up the context. The simplest 
finite-context model would be an order-0 model that calculates the probability of each symbol 
independently of any previous symbols. To implement this model, all we need is a table 
containing the frequency counts for each symbol that might be found in the input stream. For 
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example the alphabet of the input stream consists of 256 different elements, (256 is the number 
of different symbols in ASCII) then an order-1 model stores track of 256 different tables of 
frequencies. Similarly, an order-2 model needs to handle 65,536 (2562) different tables of 
contexts [1] (see Table 2-4). The entropy of an order-n context model is the weighted sum of the 
entropies of the individual contexts: 
 

( ) ( )( )∑ ∑
= =









⋅−=

n

j

k

i
jijin cxpcxpH

1 1
2log .      (2.4) 

 
Table 2-4: An order-2 context table for input “ABCABDABE” 

 

 order-0  
Context Symbol Count 

“” A 3 
“” B 3 
“” C 1 
“” D 1 
“” E 1 
 order-1  

“A” B 3 
“B” C 1 
“B” D 1 
“B” E 1 
“C” A 1 
“D” A 1 

 order-2  
“AB” C 1 
“AB” D 1 
“AB” E 1 
“BC” A 1 
“CA” B 1 
“BD” A 1 

 
Here is shown that even so low-level context model with so small alphabet can create a big table 
of contexts. That is the reason why adaptive schemes of modelling are used with contexts, 
because in the case of the semi-adaptive model we need to store the statistics in the compressed 
file. 
 
For optimal context choosing such scheme called blended context [2], can be applied. It uses big 
order contexts for better compression and small order contexts in insufficiently good, and the 
probability estimation is based on the contexts with different length. These schemes of context 
modelling were described in [2]. The way to unite all order contexts is to set to each order each 
own weight.  
 
Let’s assume ),( ϕοp  is a probability of symbol ϕ from the alphabet A in the finite-context model 
with order o. This probability was set adaptively and will change during compression process. 
Let’s assume )(ow  as the weight of the model with order o, and the maximum context order is 
m, so the blended probabilities )(ϕp  are: 
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∑
−=

⋅=
m

o

opowp
1

),()()( ϕϕ ,        (2.5) 

where  ∑
−=

=
m

o

ow
1

1)( .         (2.6) 

 
(Condition 2.5 is not obligatory, but it is used to not exceed the limit of the value that was used 
by arithmetic coder). The counters are used to calculate the values of the probabilities weights, 
which are used quite often and related to each context. Let’s assume ),( ϕoc  as the number of 
appearance of the symbol ϕ in the current context with order o, and let )(oC  be the overall 
number of the context appearance. Then is: 
 

∑
Α∈

=
ϕ

ϕ),()( ocoC           (2.7) 

 
A simple blending can be constructed from the mechanism of choosing the estimation of the 
context: 
 

)(
),(

),(
oC

oc
op

ϕ
ϕ =          (2.8) 

 
The probabilities of the symbols from previous example with static weights 0.7, 0.2, 0.1 for 
models with order-2, order-1, order-0 consequently are shown below. 
 
Symbol “A”: 314.01.033.02.025.07.033.0 =⋅+⋅+⋅ , 
symbol “B”: 225.01.033.02.0375.07.0167.0 =⋅+⋅+⋅ , 
symbol “C”: 153.01.011.02.0125.07.0167.0 =⋅+⋅+⋅ , 
symbol “D”: 153.01.011.02.0125.07.0167.0 =⋅+⋅+⋅ , 
symbol “E”: 153.01.011.02.0125.07.0167.0 =⋅+⋅+⋅ . 
 
The zero frequency-problem appears when there is no information about the input, so we haven't 
seen some symbols in this context yet, and the problem is which probability distribution to 
choose. There are at least two ways to solve this problem. 

• The first one is to use the flat, or equal, distribution of probabilities of the symbols. This 
method is not quite effective, because for example if we have a symbol, that has not been 
observed before in the given context, its flat probability distribution is 1/256 (or 1/Z, 
where Z is the number of symbols in the alphabet), which gives us the same probability, 
as to every new symbol. But in this case, after the next appearance of this symbol its 
probability will be 2/257, after third appearance its probability will be 3/258, and so on. 
But in the same time the real probability of the symbol can be about 2/3. 

• Another way is to use an escape code, which means that the symbol, which is currently 
coding is not in the current context, and thus the model escapes to another context. The 
model starts in the order-0 table with this special escape symbol, which has probability 
of 1, and with all alphabet symbols which have zero probability. The escape code is used 
to make decoder know that it has to use next table, and the model always goes from high 
orders to lower order, until it will fall into order-(-1), where it can code the symbol in 
case it hasn't appeared in higher orders. For example if we have to process a particular 
symbol with order-(x), and this symbol hasn’t been observed with this order earlier, the 
model will decrease the order, and try to find the match and process this symbol, until it 
will fall in order-(-1) model where all symbols from the alphabet have flat probability, 
and thus can safely process the symbol. 
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The probability of the escape code (escape probability), is defined as e(o) (where o is the order 
of the context). In the blended context models escape probability is equal to the extent of 
importance of the order-(o), because it defines how the model will continue to work with order-
(o) context or will escape to lower-order contexts. From the other hand the role of the extent of 
importance in the blended context modelling is playing by the weights, applied to different 
context. We can estimate different weights as: 

 

∏
+=

⋅−=
m

oi

oeoeow
1

)())(1()( , ,1for mo <≤−       (2.9) 

))(1()( memw −= ,         (2.10) 
 

where m is the maximum order in the blended context model. In other words, the weights, they 
are the probability that model will escape to the order-o and will not escape to lower orders. The 
main achievements of this mechanism of weights defining is that it is adaptive and takes into 
account the importance of the changing of different order context’s.  
 
The escape probability is the probability that the zero-frequency problem will appear. In theory 
there is no basis for optimal defining of the escape probability [2]. Some ways of the probability 
definition are described below.  

• The first one is to have an additional counter, which will count the appearance of the new 
symbols. The formula of the escape probability is shown below [2]. 

  
1)(

1
)(

+
=

oC
oe ,        (2.11) 

 
where )(oC  is the overall number of appearance of the given context.  

• The second one is based on following abstraction "We will not believe in this, until we 
will see it twice", It works by subtracting one from the every symbol counters, and do not 
give an estimation of the symbol until it will appear at least the second time. The escape 
probability in this case is: 

,
)(
)(

)(
oC
oq

oe =          (2.12) 

 
where q(o) is the number of different symbols in the order-o context.  

• In the third method the escape probability is equal to the number of all different symbols 
seen so far. (with the escape probability, added to overall probability) [2]: 

 
)()(

)(
)(

oqoC
oq

oe
+

= ,        (2.13) 

 
The context modelling gives us the best compression from all known statistical models, but the 
coding and decoding process can be very slow [2]. According to any practical scheme of its 
implementation the time of coding and decoding is increasing only linear with increasing of the 
text’s size. Beside this the processing time can be increased at least linearly due to the order of 
the context model.  
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2.3  State models 

The statistical models with final number of the states are based on final automaton. They have a 
collection of states S(i) and probabilities of the model transition between the states P(i, j), from 
the state i to state j. And each transition is defined by unique symbol. That is why any source text 
will assign unique way in models (if it exists) through a sequence of such symbols. Often such 
models are named as Markov’s models though sometimes this term is inexact used for indication 
finite-context models. 
 
The models with final number of the states are able to imitate finite-context models. For 
example, order-0 context model of simple English text has one state with 27 transitions back to 
this state: 26 for letters and 1 for space. The order-1 context model has 27 states, each with 27 
transitions. The order-n context model has 27 n  conditions with 27 transitions for each of them.  
The entropy of the finite state process with states S(i) is simply the average value of the entropy 
at each state: 
 

∑
=

⋅=
M

i

iSHiSPxH
1

))(())(()(         (2.14) 

 
For example consider a binary image. It has only two different states: black pixel or white pixel 
(Sb and Sw consequently). Transition probabilities are defined as P(w|b): the probability of white 
pixel is followed by a black pixel, P(b|w): the probability of black pixel is followed by white 
pixel, P(w|w): for two white pixels; one after another, P(b|b): same, but for black pixels. The 
model is shown in the Figure 2-5.   
 

 
 

Figure 2-5: Two-state model for binary images. 
 
As far as the number of states is two: 
 

( ) ( ) ( )wwwwPwbPwbPSH w 22 loglog)()( ⋅−⋅−=      (2.15) 

( ) ( ) ( )bbbbPbwPbwPSH b 22 loglog)()( ⋅−⋅−= ,      (2.16) 

where ( ) ( )wbPwwP −= 1 . 
 
Assuming that the values of probabilities: 
 

P(Sw) = 0.8, P(Sb) = 0.2, P(w|b) = 0.3, P(b|w) = 0.01. 
 

Then the entropy of the simple statistical modeling is: 
 
 bits 722.02.0log2.08.0log8.0 22 =⋅−⋅−=H  
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Now in the state model: 
 
 ( ) bits 881.07.0log7.03.0log3.0 22 =⋅−⋅−=bSH , 
 ( ) bits 081.099.0log99.001.0log01.0 22 =⋅−⋅−=wSH . 
 
 The result entropy of state model is 0.241, which is about the third part of the entropy, obtained 
by simple statistical model. 
 

2.4  Move To Front transformation 

Move To Front (MTF) is a transformation algorithm that does not compress data but sometimes 
it can help to reduce redundancy. 
 
Instead of outputting the symbol (byte), MTF algorithm outputs a code, which refers to the 
position of the symbol in a table with all the symbols, thus the length of the code is the same as 
the length of the symbol (when using bytes as symbols, byte based output can be performed). 
Both encoder and decoder should initialise the table with the same symbols in the same 
positions. Once a symbol is being processed the encoder outputs its position in the table and then 
put it in the top of the table, position 0. All the codes from the position till the position of the 
symbol being coded are moved to the next position. This simple scheme assigns codes with 
lower values for more redundant symbols (symbols which appear more frequently) like the 
following. Assuming the input string as ”abaacabad”. The coding process is shown in Table 2-5: 
  

Table 2-5: MTF transformation for input string ”abaacabad”. 
Symbol A B A A C A B A D 

Code 0 1 1 0 2 1 2 1 3 
List ABCD BACD ABCD ABCD CABD ACBD BACD ABCD DABC 

 
The entropy for original string is: 

633.1352.0352.0482.0471.0
9
1

log
9
1

9
1

log
9
1

9
2

log
9
2

9
5

log
9
5

2222 =+++=⋅−⋅−⋅−⋅−=H bits. 

 
The entropy for transformed string is: 

602.1352.0482.0482.0285.0
9
1

log
9
1

9
2

log
9
2

9
4

log
9
4

9
2

log
9
2

2222 =+++=⋅−⋅−⋅−⋅−=H bits. 
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3. Coding 
 
The task of replacing symbol with probability p approximately by p2log−  bits is called coding 
[2]. The coder operates by values of probabilities, which defines the next outputting symbol. The 
coder creates a stream of bits. The symbol can be uniquely decoded, using this stream, if decoder 
uses the same probability model.  

3.1  Shannon-Fano coding 

The first well-known method for effectively coding symbols is now known as Shannon-Fano 
coding. Claude Shannon at Bell Labs and R.M. Fano at MIT developed this method nearly 
simultaneously. It depended on simply knowing the probability of each symbol’s appearance in a 
text. Given the probabilities, a table of codes could be constructed that has several important 
properties:  

1. Different codes have different numbers of bits.  
2. Codes for symbols with low probabilities have more bits, and codes for symbols with 

high probabilities have fewer bits.  
3. Though the codes are of different bit lengths, they can be uniquely decoded.  

 
The Shannon-Fano algorithm creates a table of codes, which has a tree structure. Decoding an 
incoming code consists of starting at the root, then turning left or right at each node after reading 
an incoming bit from the data stream. Eventually, if a leaf of the tree is reached, that means that 
the appropriate symbol is decoded.  
 
A Shannon-Fano tree is built according to a specification designed to define an effective code 
table. The actual algorithm is simple:  

1. For a given list of symbols, develop a corresponding list of probabilities or frequency 
counts so that each symbol’s relative frequency of occurrence is known.  

2. Sort the lists of symbols according to frequency, with the most frequently occurring 
symbols at the top and the least common at the bottom.  

3. Divide the list into two parts, with the total frequency counts of the upper half being as 
close to the total of the bottom half as possible.  

4. The upper half of the list is assigned the binary digit 0, and the lower half is assigned the 
digit 1. This means that the codes for the symbols in the first half will all start with 0, and 
the codes in the second half will all start with 1.  

5. Recursively apply the steps 3 and 4 to each of the two halves, subdividing groups and 
adding bits to the codes until each symbol has become a corresponding code leaf on the 
tree.  

 
A simple example of Shannon-Fano algorithm is shown in Table 3-1. 

 
Table 3-1: An example of Shannon-Fano code tree creating process 

Symbol Count First 
division 

Second 
division 

Third 
division 

Fourth 
Division 

A 15 0 0 — — 
B 7 0 1 — — 
C 6 1 0 — — 
D 6 1 — 1 0 
E 5 1 — 1 0 
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In Table 3-1 five symbols (A, B, C, D, E) are processing in the tree construction process. Before 
starting of divisions all symbols are sorted by their counts. During first division they are 
separated into two groups “AB” and “CDE”. As the first group has two symbols only, the second 
division is the last one for them. But the second group has three symbols and it needed two 
divisions to create the code tree. The third division separates the second group into two 
subgroups: “C” and “DE”. The fourth division processes with the second subgroup (as there is 
nothing to divide in the first subgroup: it has only one symbol). The code 0 is applied to D (as D 
has bigger count) and code 1 is applied to E. The resulting tree is shown in the Figure 3-1.  
 

 
 

Figure 3-1: The resulting Shannon-Fano tree of the example 
 
The codebook, created during Shannon-Fano algorithm is placed in Table 3-2. 
 

Table 3-2: Comparing SF symbol’s code size with the entropy of the symbol. 
 

Symbol Count Entropy Code 
length 

Code 

A 15 1.38 2 00 
B 7 2.48 2 01 
C 6 2.70 2 10 
D 6 2.70 3 110 
E 5 2.96 3 111 

 
25.85596.2670.2748.21538.1 =⋅+⋅+⋅+⋅=H  bits. 

00.8953636272152size SF =⋅+⋅+⋅+⋅+⋅=  bits. 
 
The main result of this example is that for encoding 85.25 bits of information Shannon-Fano 
algorithm uses 89 bits.  

3.2  Huffman coding 

Huffman first published his paper on coding in 1952 [15], and it instantly became the most-cited 
paper in Information Theory. It probably still is. Huffman’s original work spawned numerous 
minor variations, and it dominated the coding world till the early 1980s [1].  
 
The procedure for building the tree is simple and elegant. The individual symbols are laid out as 
a string of leaf nodes that are going to be connected by a binary tree. Each node has a weight, 
which is simply the frequency or probability of the symbol’s appearance. The tree is then built 
with the following steps [15]: 
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1. The two free nodes with the lowest weights are located. 
2. A parent node for these two nodes is created. It is assigned a weight equal to the sum of 

the two child nodes.  
3. The parent node is added to the list of free nodes, and the two child nodes are removed 

from the list.  
4. One of the child nodes is designated as the path taken from the parent node when 

decoding a 0 bit. The other is arbitrarily set to the 1 bit.  
5. The previous steps are repeated until only one free node is left. This free node is 

designated the root of the tree.  
 

Analogically to the previous example, during Huffman tree construction process could be used 
as symbol’s probabilities, as symbol’s counts. So if there is a list of five symbols (see Figure 4-
2a ). Two nodes with smallest count (“D” and “E”) are replaced by a node “DE” (see Figure 4-
2b). The new-created node “DE” has count eleven, which is the sum of five and six: counts of 
“E” and “D” accordingly. After this the same procedure repeats for nodes “B” and “C”. The 
resulting node “BC” has count 13. Nodes “BC” and “DE” still have the smallest counts. That is 
why they are united. There are two nodes only in the list of nodes after this operation. When 
nodes “A” and “BCDE” will be united the algorithm is finished. The resulting tree is shown in 
the Figure 3-2c, and the resulting table of codes is shown in Table 3-4. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 3-2: Construction of the Huffman tree; (a) leaf nodes; (b) combining nodes; (c) 
resulting tree. 
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Table 3-4: The resulting table of codes in Huffman coding process. 

Symbol Code 
A 0 
B 100 
C 101 
D 110 
E 111 

 
It is clear that Huffman codes differ from Shannon-Fano codes. In the case of Huffman coding it 
is needed 87 bits to encode a message with 85.25 bits of information content and Shannon-Fano 
encoding requires 89 bits. 
 
In general, Shannon-Fano and Huffman coding are close in performance. But Huffman coding 
will always at least equal the efficiency of Shannon-Fano coding, so it has become the 
predominant coding method of its type. Since both algorithms take a similar amount of 
processing power, it seems sensible to take the one that gives slightly better performance. And 
Huffman was able to prove that this coding method cannot be improved on with any other 
integral bit-width coding stream [1]. 
 

3.3  Run-Length encoding 

Data files frequently contain the same character repeated many times in a row. For example, text 
files use multiple spaces to separate sentences, indent paragraphs, format tables and charts, etc. 
Digitised signals can also have runs of the same value, indicating that the signal is not changing. 
For instance, an image of the nighttimes sky would contain long runs of the character or 
characters representing the black background. Likewise, digitised music might have a long run of 
zeros between songs. Run-length encoding is a simple method of compressing these types of 
files. 
 
Figure 3-3 illustrates run-length encoding for a data sequence having frequent runs of zeros. 
Each time a zero is encountered in the input data, two values are written to the output file. The 
first of these values is a zero, a flag to indicate that run-length compression is beginning. The 
second value is the number of zeros in the run. If the average run-length is longer than two, 
compression will take place. On the other hand, many single zeros in the data can make the 
encoded file larger than the original. Many different run-length schemes have been developed. 
For example, the input data can be treated as individual bytes, or groups of bytes that represent 
something more elaborate, such as floating point numbers. Run-length encoding can be used on 
only one of the characters (as with the zero above), several of the characters, or all of the 
characters [7].  
 

 
 

Figure 3-3: An example of run-length encoding, where RLE is used for one symbol; “0”. 
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3.4  Arithmetic coding 

Huffman codes have to be an integral number of bits long, and this can sometimes be a problem. 
If the probability of a character is 1/3, for example, the optimum number of bits to code that 
character is around 1.6 bits. Huffman coding has to assign either one or two bits to the code, and 
either choice leads to a longer compressed message than are theoretically possible.  
 
This non-optimal coding becomes a noticeable problem when the probability of a character is 
very high. If a statistical method could assign a 90 percent probability to a given character, the 
optimal code size would be 0.15 bits. The Huffman coding system would probably assign a 1-bit 
code to the symbol, which is six times longer than necessary. 
 
The idea of arithmetic coding is to represent the input file as a single number between the range 
[0,1]. This single number can be uniquely decoded to create the exact stream of symbols that 
went into its construction. To construct the output number, the symbols are assigned a set of 
probabilities. The message “BILL GATES”, for example, would have a probability distribution of 
symbols like is shown in Table 3-5. 

 
Table 3-5: Probability distribution of symbols in string “BILL GATES”. 

 

Symbol Probability 
SPACE 0.1 

A 0.1 
B 0.1 
E 0.1. 
G 0.1. 
I 0.1. 
L 0.2. 
S 0.1. 
T 0.1. 

 
Once symbols probabilities are known, individual symbols need to be assigned a range along a 
“probability line”, nominally from 0 to 1. It does not matter, which symbols are assigned which 
segment of the range, as long as it is done in the same manner by both the encoder and the 
decoder. The nine- symbol set used here would look like the in Table 3-6. 

 
Table 3-6: The set of ranges for arithmetic coding in message “BILL GATES”. 
 

Symbol Range 
SPACE [0, 0.1) 

A [0.1, 0.2) 
B [0.2, 0.3) 
E [0.3, 0.4) 
G [0.4, 0.5) 
I [0.5, 0.6) 
L [0.6, 0.8) 
S [0.8, 0.9) 
T [0.9, 1) 

 
During the rest of the encoding process, each new symbol will further restrict the possible range 
of the output number. The next character to be encoded, the letter I, owns the range 0.50 to 0.60 
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in the new subrange of 0.2 to 0.3. So the new encoded number will fall somewhere in the 50th to 
60th percentile of the currently established range. Applying this logic will further restrict the 
number to 0.25 to 0.26. The algorithm to accomplish this for a message of any length is shown in 
the Figure 3-4. 
 
 

LowBoundOfInreval ← 0.0 
HighBoundOfInterval ← 0.0 
While(Not end of stream) 
{ 
  c ← ReadSymbol(InputStream) 
  RangeOfInterval ← HighBoundOfInterval — LowBoundOfInreval 
  HighBoundOfInreval ← LowBoundOfInreval + RangeOfInterval*HighRangeOfSymbol(c) 
  LowBoundOfInreval ← LowBoundOfInreval + RangeOfInterval*LowRangeOfSymbol(c) 
} 
Output(LowBoundOfInterval) 

 

Figure 3-4: The encoding process in arithmetic coding. 
 

Table 3-7: The result of arithmetic encoding of the message ”BILL GATES”. 
 

New Character  Low value of the range  High value  
 0.0 1.0 

B 0.2 0.3 
I 0.25 0.26 
L 0.256 0.258 
L 0.2572 0.2576 

SPACE 0.25720 0.25724 
G 0.257216 0.257220 
A 0.2572164 0.2572168 
T 0.25721676 0.2572168 
E 0.257216772 0.257216776 
S 0.2572167752 0.2572167756 

 
So the final low value, 0.2572167752, will uniquely encode the message “BILL GATES” using 
our present coding scheme.  
 
Given this encoding scheme, it is relatively easy to see how the decoding process operates. Find 
the first symbol in the message by seeing which symbol owns the space our encoded message 
falls in. Since 0.2572167752 falls between 0.2 and 0.3, the first symbol must be B. Then remove 
B from the encoded number. Since it is know that the low and high ranges of B, remove their 
effects by reversing the process that put them in. First, subtract the low value of B, giving 
0.0572167752. Then divide by the width of the range of B by 0.1. This gives a value of 
0.572167752. Then calculate where that lands, which is in the range of the next letter, I. The 
algorithm for decoding the incoming number is shown in the Figure 3-5. The decoding algorithm 
for the “BILL GATES” message will proceed as shown in Table 3-8. 
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LowBoundOfInterval ← ReadCode (InputStream) 
While (LowBoundOfInreval > 0) 
{ 
  Symbol ← FindSymbolStraidingThisRange(LowBoundOfInterval) 
  Output(Symbol) 
  RangeOfInterval ← HighRangeOfSymbol(Symbol)-LowRangeOfSymbol(Symbol) 
  LowBoundOfInterval ← LowBoundOfInterval-RangeOfInterval*LowRangeOfSymbol(Symbol) 
} 

 

Figure 3-5: Brief description of arithmetic decoding process. 
 

Table 3-8: The decoding process for message “BILL GATES”. 
 

Encoded Number  Output Symbol  Low bound High bound Range  

0.2572167752  B 0.2 0.3 0.1 
0.572167752  I 0.5 0.6 0.1 
0.72167752  L 0.6 0.8 0.2 
0.6083876  L 0.6 0.8 0.2 
0.041938  SPACE 0.0 .1 0.1 
0.41938  G 0.4 0.5 0.1 
0.1938  A 0.2 0.3 0.1 
0.938  T 0.9 1.0 0.1 
0.38  E 0.3 0.4 0.1 
0.8  S 0.8 0.9 0.1 
0.0     
 
Encoding and decoding a stream of symbols using arithmetic coding is not too complicated. But 
at first glance it seems completely impractical. Most computers support floating-point numbers 
of around 80 bits. Is it necessary to start algorithm again after encoding of fifteen symbols? As it 
turns out, arithmetic coding is best accomplished using standard 16-bit and 32-bit integer math. 
Floating-point math is neither required nor helpful [1].  
 
At the first time it is necessary to consider the fundamental properties of binary arithmetic. With 
n bits at most n2  different combinations can be represented; or with n bits a code interval 
between zero and one can be divided into n2  parts each having the length of n−2 , see Figure 3-6. 
If A is a power of 0.5, that is nA −= 2 . From the opposite point of view, an interval with the 
length A can be coded by using A2log−  bits (assuming A is a power of 2). 
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Figure 3-6: Interval [0,1] is divided into 8 parts, thus each having the length of 125.02 3 =−  
(Each interval can be now coded by using 3125.0log2 =−  bits). 
 
And as the in the final of the process is an interval (the range of the interval and its low bound 
are known), it can be coded by the same method.  
 
During implementation the final interval can gets so small that it cannot be expressed by 16 bit 
or 32 bit integer in computer memory. The following procedure is thus implied. When the 
interval falls completely below 0.5 (the half point of the interval [0,1]), it is known that the 
codeword, describing the final interval, starts with the bit 0. If the interval were above the half 
point, the codeword would start from the bit 1. In both cases, the starting bit can be outputted and 
the processing can be limited to the corresponding, which is either [0,0.5], or [0.5,1]. This is 
realized by zooming the corresponding half as shown in the Figure 3-7. 
 

 
Figure 3-7: Example of half-point zooming. 

 
The underflow can also occur if the interval decreases so that its lower bound is just below the 
half point, but the upper bound is still above. In this case the half-point zooming cannot be 
applied. The solution is so-called quarter-point zooming, see Figure 3-8. The condition for 
quarter-point zooming is that the lower bound of the interval exceeds the 0.25 and the upper 
bound does not exceed 0.75. Now it is known that the output bit stream is either “01xxx” or 
“10xxx” if the final variant is above the half point (Here xxx defines the rest of the code stream).  
 
Since the final interval completely covers either the range [0.25,0.5] or the range [0.5,0.75] the 
encoding can be finished by sending the bit pair “01” if the upper bound is below 0.75, or “10” if 
the lower bound exceeds 0.25.  
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Figure 3-8: Example of two subsequent quarter-point zooming. 
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4. Dictionary based schemes  
 
So far, the compression methods described before used a statistical model to encode single 
symbols. They achieve compression by encoding symbols into bit strings that use fewer bits than 
the original symbols. The quality of the compression goes up or down depending on how good 
the program is at developing a model. The model not only has to accurately predict the 
probabilities of symbols, it also has to predict probabilities that deviate from the mean. More 
deviation achieves better compression.  
 
But dictionary-based compression algorithms use a completely different method to compress 
data. This family of algorithms does not encode single symbols as variable-length bit strings; it 
encodes variable-length strings of symbols as single tokens. The tokens form an index to a 
phrase dictionary. If the tokens are smaller than the phrases they replace, compression occurs. In 
many respects, dictionary-based compression is easier for people to understand. It represents a 
strategy that programmers are familiar with: using indexes into databases to retrieve large 
amounts of storage. An example of dictionary-based coding is shown in the Figure 4-1. Here is a 
dictionary of names. Each name has its own index. A word from the input string is found (“Bill”) 
and is replaced by its index. 
 

 
Figure 4-1: An example of dictionary-based coding. 

4.1  Static dictionaries 

In some cases, it is advantageous to use a predefined dictionary to encode text. If the text to be 
encoded is a database containing all motor-vehicle registrations for Texas, we could develop a 
dictionary with only a few thousand entries that concentrated on words like “Mercedes”, 
“Akimov”, “Main”, and “1977”. Once this dictionary was compiled, it could be kept on-line and 
used by both the encoder and decoder as needed.  
 
A dictionary like this is called a static dictionary. It is built up before compression occurs, and it 
does not change while the data is being compressed. The example in the Figure 4-1 is an 
example of the static dictionary scheme. 
 
One fast algorithm that has been proposed several times in different forms is diagram coding, 
which maintains a dictionary of commonly used diagrams, or pairs of characters. At each coding 
step the next two characters are coded together, otherwise only the first character is coded. The 
coding position is shifted by one or two characters as appropriate [2].  
 
In general the diagram coding can be described in next way: some characters ( let us define the 
number of characters as q) are considered as essential. Then is taken a cross-product of the set of 
characters with itself. The result is a dictionary.  
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4.2  Semi-adaptive dictionaries 

The logical developing of diads (the sequence of symbols with the length 2) coding idea is 
creating for each text each own dictionary. Such way of coding is called semi-adaptive 
dictionary schemes [2]. The task is how to create an optimal dictionary for the input text and it is 
NP-hard task from the size of input text [2]. There are a lot of solutions how to create the 
dictionary, which is quite close to the optimal solution of the problem and most of them are very 
close to each other in general [2]. Usually they starts from the dictionary, which consists only 
from the symbols of the alphabet, and to the dictionary are added all diads, then triples of 
symbols and so on until the predefined number of dictionary elements is reached [2].  

4.3  Adaptive schemes 

Most well-known dictionary algorithms are adaptive. Instead of having a completely defined 
dictionary when compression begins, adaptive schemes start out either with no dictionary or with 
a default baseline dictionary. As compression proceeds, the algorithms add new phrases to be 
used later as encoded tokens [1].  
 
The basic principle behind adaptive dictionary-based compression is relatively easy to follow. 
They are shown in the Figure 4-2. 

 
While(Not end of input stream) 
{ 
  Word ← ReadWord(InputStream) 
  If(Word ∈ Dictionary) 
  { 
    DictionaryIndex ← FindInDictionary(Word, Dictionary) 
    Output(DictionaryIndex) 
  } 
  else  
  { 
    Output(Word) 
    AddToDictionary(Word, Dictionary) 
  } 
} 
 

 

Figure 4-2: Scheme of adaptive dictionary based compression. 
 
The algorithm described below illustrates the basic components of an adaptive dictionary 
compression algorithm; 
 

1. Divide the input text stream into fragments tested against the dictionary. 
2. Test the input fragments against the dictionary. 
3. Add new phrases to the dictionary. 
4. Encode dictionary indexes and plain text so that they are distinguishable. 
 

Almost all dictionary-based coders belongs to the same family of algorithms, based on the works 
of Lempel and Ziv [11,12]. The Lempel and Ziv algorithms are divided into two main parts: 
LZ77 [11] and LZ78 [12] algorithms. 
 
LZ77 algorithms very often are called as sliding window algorithms. The main idea of this 
algorithm is that phrases are replaced by pointers to the previous text, and pointers indicate the 
place in the text, where this phrase was seen before, and the length of the text’s part. By this 
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technique the compression method adapts very fast to the changing of the input text [2]. The 
principals of LZ77 algorithm are shown in the Figure 4-2. 

 

 
 

Figure 4-2: An example of LZ77 coding 
 
LZ78 is an interesting way to adaptive dictionary compression. In this algorithm the input text is 
dividing into phrases, where each new phrase is the longest from previously seen plus one 
symbol. The phrase is coding as a pointer to the prefix plus the code of the symbol [2]. After that 
the new phrase is adding to the list of phrases, which can be pointed during compression. An 
example of LZ78 coding of the phrase “ABBAABBBABAB” is shown in the Figure 4-3. 

 

 
 

Figure 4-3: An example of LZ78 coding. 

4.4 Parsing strategies 

As the dictionary has been created there are several variant how to choose phrases from the input 
text to replace them by the dictionary’s indexes. The method of dividing the input text into 
phrases is called the parsing.  
 

• The quickest method is a greedy method, when the coder on each step is looking in the 
dictionary for a longest match. If it has no match it outputs the match, received on the 
previous step. The problem of greedy parsing is that it is not optimal. [2]. 

• The optimal parsing can be transformed to a shortest-path problem, which can be solved 
by existing algorithms. The transformation is performed for a string with length n in this 
way: a graph is constructed, consisting from n+1 nodes. For every pair of nodes i a 
directed edge is placed between then if the substring ij (substring starts in the point i 
string and ends in the j). if the corresponding string presents in the dictionary. To each 
edge is applied a weight, that is equal to code length of corresponding dictionary’s 
element. An example of such process is shown in the Figure 4-4. 
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Figure 4-4: Optimal parsing using a shortest path algorithm; the path weights are shown in the 
brackets and the shortest path is shown in boldface type. 
 

• LFF (longest fragment first) method can be considered as a compromise between greedy 
and optimal parsing. This method is looking for the longest substring in the entrance (the 
coinciding can be not in the beginning of the entrance), which also presents in the 
dictionary. This phrase is coding and the algorithm repeats until whole entrance will be 
coded. For example let assume that the dictionary is formed already and it is: 

{ }bccbabccbbcbabaaaaaadcbaD ,,,,,,,,,= , 
and all phrases are coding by four bits. If the input text is: “aaabccbaaaa”, the greedy 
parsing will output phrases: “aa, ab, c, c, baa, aa” (24 bits), LFF method will output: "aa, 
a, bccba, aa, a" (20 bits), and the optimal parsing gives: “aa, a, bccb, aaaa” (16 bits). In 
this example LFF method is somewhere between optimal and greedy methods. 
   

Experiments showed that optimal parsing makes coding in 2-3 times slower that greedy, and 
increase compression on several percents [2]. LFF method increase compression, weaker than 
optimal but it demands much less time for coding. Usually in practice greedy parsing is the most 
popular, because of its speed and simplicity [2]. 
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5.  LZ77 compression method 

The first compression algorithm described by Ziv and Lempel is commonly referred to as LZ77 
[11]. It is relatively simple. The dictionary consists of all the strings in a window into the 
previously read input stream. While new groups of symbols are being read in, the algorithm 
looks for matches with strings found in the previous bytes of data already read in. Any matches 
are encoded as pointers sent to the output stream. LZ77 and its variants make attractive 
compression algorithms. Maintaining the model is simple; encoding the output is simple; and 
programs that work very quickly can be written using LZ77. Popular programs such as PKZIP 
[5] and LHarc [1] use variants of the LZ77 algorithm, and they have proven very popular. 

5.1 Algorithm 

The main idea of LZ77 algorithm is to replace variable-length strings of input text by a triple: an 
offset to a phrase in the text window; the length of the phrase; and the first symbol in the look-
ahead buffer that follows the phrase [1]. The amount of compression depends on how long the 
dictionary phrases are, how large the window into previously seen text is, and the entropy of the 
source text with respect to the LZ77 model. The main data structure in LZ77 is a text window, 
divided into two parts. The first consists of a large block of recently encoded text. The second, 
normally much smaller, is a look-ahead buffer. The look-ahead buffer has characters read in 
from the input stream but not yet encoded. The normal size of text window is several thousands 
characters. The size of look-ahead buffer is generally much smaller, maybe ten to one. In Figure 
5-1 is shown the structure of text window. 
 
 
 
 
 
 
 
 
 

Figure 5-1:  The basic structure of the text window 
 
Here we can see that part of look-ahead buffer has a coincidence in text window — it’s a string 
“<MAX”. This string corresponds to a triple (23,4,” ; ”), where 23 is an index of the location of 
the match in the text window, 4 is the length of the match and “ ; ” is the first symbol after the 
match. LZ77 copies the match string into the text window, then shifts the text window over five 
characters and adds five new characters from input stream into look-ahead buffer. Then the 
process is repeated. The text window after shifting it by 5 symbols is shown in Figure 2. 
 
 
 
 
 
 
 
 
 

Figure 5-2: Text window after shifting of its elements 
 

While(LengthOf(LookAheadBuffer)!=0)                                     

 

int i, j; \n for (i=0 ; i<MAX–1; i++)\n for(j=i+1 ;j  <MAX; j++)\n a[i] 

int i, j; \n for (i=0 ; i<MAX–1; i++)\n for(j=i+1 ;j<MAX; j++)\n a[i] 
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{ 
  Triple ← FindTheMatch(TextWindow,LookAheadWondow) 
  Distance ← GetsDistance(Triple) 
  Length ← GetLength(Triple) 
  FirstCharacter ← GetCharacter(Triple) 
} 

Figure 5-3. Brief pseudocode of the LZ77 algorithm. 
 

The Triple in Figure 5-3 is a structure of three variables: distance, length and character.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5-4: Compression process of the LZ77 algorithm. 

The Distance can be an offset from look-ahead buffer, so it can be an offset from the beginning 
of the text window. 
 
The decompression algorithm for LZ77 is even simpler, since it does not have to do any string 
comparisons. It reads in token, outputs the indicated phrase, outputs the following character, 
shifts, and repeats. It maintains the window, but it does not work with string comparisons. A 
decompression program that used the output of the previous program might have a view, liked is 
shown in the Figure 5-5. And the processes of encoding and decoding can be represented as it 
shown on Table5-1 and Table 5-2 consequently. 
 

While (Not end of input stream)                             
{ 
  Triple ← ReadTriple (InputStream)          
  Distance ← GetDistance(Triple) 
  Length ← GetLength (Triple) 
  FirstCharacter ← GetFirstCharacter(Triple) 
 
  Output(TextWindow, Distance, Distance +Length) 
  Output(FirstCharacter)                
  ShiftTextWindow(Length+1)                    
 
  AddToTextWindow(TextWindow, Distance, Distance + Length) 
} 

 

Figure 5-5: Decompression process of the LZ77 algorithm. 
 
 

 
       
 
    
 
                             Length   Distance 
       

         ; 
 
          
        First symbol after match 
         of a string 

               for(i=0;i<Max -1;i ++) \n for(j=i;j              <Max;j++) 

OUTPUT: 
       1.Length. 
       2.Distance 
       3.First symbol 
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Table 5-1: Example of LZ77 compression process for the input text “DAD DADA DADDY” 
 

Look-ahead 
buffer 

Text window Match First 
symbol 

Output Shift Input 
symbols 

“D” “” — “D” (1,0,”D”) 1 “A” 

“A” “D” — “A” (1,0,”A”) 1 “D” 

“D” “DA” “D” — — 0 “ ” 

“D ” “DA” — “ ” (1,1,” ”) 2 “D” 

“D” “DAD ” “D” — — 0 “A” 

“DA” “DAD ” “DA” — — 0 “D” 

“DAD” “DAD ” “DAD” — — 0 “A” 

“DADA” “DAD ” “DAD” — (1,3,”A”) 3 “ ” 

“ ” “DAD DADA” — “ ” (1,0,” ”) 1 “D” 

“D” “DAD DADA ”  “D” — — 0 “A” 

“DA” “DAD DADA ” “DA” — — 0 “D” 

“DAD” “DAD DADA ” “DAD” — — 0 “D” 

“DADD” “DAD DADA ” “DAD” “D” (1,3,”D”) 3 “Y” 

“Y” “DAD DADA DADD” — “Y” (1,0,”Y”) 1 EOF 

  
The LZ77 algorithm encodes the string “DAD DADA DADDY” as: 

(1,0,”D”), (1,0,”A”), (1,1,” ”), (1,3,”A”), (1,3,”D”), (0,0,”Y”) 
 

Table 5-2: Example of LZ77 decompression. 
 

Input codes Text window Output Text window 
after shifting 

(1,0,”D”) “” “D” “D” 

(1,0,”A”) “D” “A” “DA” 

(1,1,” ”) “DA” “D ” “DAD ” 

(1,3,”A”) “DAD ” “DADA” “DAD DADA” 

(1,0,” ”) “DAD DADA” “ ” “DAD DADA ” 

(1,3,”D”) “DAD DADA ” “DADD” “DAD DADA DADD” 

(1,0,”Y”) “DAD DADA DADD” “Y” “DAD DADA DADDY” 

5.2 Parsing of the strings 

In the compression process, the algorithm needs a mechanism for finding string matches of some 
patterns of look-ahead buffer in text window. LZ77 uses the greedy parsing algorithm.  

5.3 LZSS algorithm 

LZSS [1] is a modification of LZ77 algorithm. Traditional LZ77 achieves good results of 
compression rapidly [1]. Even if the phrases being substituted for input text are short, they will 
still generally cause very effective compression to take place [1]. The problem occurs when 
matching phrases are not found in the dictionary. When this is the case, the compression program 
still has to use the same three component tokens to encode a single character. To realize the cost 
of this, imagine encoding a single character when using a 4096-byte window and a sixteen-byte 
look-ahead buffer. As 4096 is 2 raised in 12-th power so this would take twelve bits to encode a 
window position and another four bits to encode a phrase length. Using this system, encoding the 
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(0, 0, c) token would take twenty-four bits, all to encode a single eight-bit symbol. This is a very 
high price to pay, and there ought to be a way to improve it [1]. 
 
The main modification of this algorithm is in rejecting from the structure of triples and replacing 
them by new structures of data. So LZSS algorithm outputs a pair of numbers, match position 
index and match length, if matching have place. Otherwise it will output just a first character 
from look-ahead buffer. A single bit is used as a prefix that shows is it a pair offset/length or is it 
a simple symbol. That leads to a case when there is no use in coding string with any length as a 
pair index/offset, because numbers of bits that are necessary for storing in compressed file one 
character are less than number of bits that are required for encoding a pair index/offset. This 
means that we need to define a minimum match length, and if a match string has a length less 
that it should not be stored, but will be stored only the first symbol of look-ahead buffer. Shortly 
it is shown below in the Figure 5-5. Shortly the process of encoding and decoding of this 
modification of algorithm are described in Scheme 3 and Scheme 4 consequently. 
 
 
While ( LengthOf(LookAheadBuffer) !=0)                                      
{ 
  (Distance, Length) ← GetPair (WindowText, LookAheadBuffer)                       
  if (Length > MINIMUM_MATCH_LENGHT)                             
  { 
    OutputPair(Distance, Length);                      
    ShiftTextWindow(Length, LookAheadBuffer)              
  } 
  else               
  { 
    Character ← GetFirstCharacter(LookAheadBuffer) 
    Output(Character) 
    ShiftTextWindow (1, Character) 
  } 

} 
Figure 5-5: LZSS pseudocode. 

 
Table 5-3: LZSS coding process “DAD DADA DADDY” 
 

 
Look-ahead 

buffer 

 
Text window 

 
Match 

 
Match 
length 

Min. 
match 
length 

 
Output 

 
Input 

symbols 
“D” “” — 0 2 “D” “A” 

“A” “D” — 0 2 “A” “D” 

“D” “DA” “D” 1 2 — “ ” 

“D ” “DA” “D” 1 2 “D” “D” 

“ D” “DAD” — 0 2 “ ” “A” 

“DA” “DAD ” “DA” 2 2 — “D” 

“DAD” “DAD ” “DAD” 3 2 — “A” 

“DADA” “DAD ” “DAD” 3 2 (1,3) “ ” 

“A ” “DAD DAD” “A” 1 2 “A” “D” 

“ D” “DAD DADA” “ D” 2 2 — “A” 

“ DA” “DAD DADA” “ DA” 3 2 — “D” 

“ DAD” “DAD DADA” “ DAD” 4 2 — “D” 

“ DADD” “DAD DADA” “ DAD” 4 2 (4,4) “Y” 

“DY” “DAD DADA DAD” “D” 1 2 “D” — 

“Y” “DAD DADA DADD” — 0 2 “Y” — 
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Table 5-4: An example of LZSS decompression 
 

Input codes Text window Output Text window 
after shifting 

“D” “” “D” “D” 

“A” “D” “A” “DA” 

“D” “DA” “D” “DAD” 

“ ” “DAD” “ ” “DAD ” 

(1,3) “DAD ” “DAD” “DAD DAD” 

“A” “DAD DAD” ”A” “DAD DADA” 

(4,4) “DAD DADA” “ DAD” “DAD DADA DAD” 

“D” “DAD DADA DAD” “D” “DAD DADA DADD” 

“Y” “DAD DADA DADD” “Y” “DAD DADA DADDY” 

 
The second major change is that as in LZ77 the phrases in the text window were stored as a 
single contiguous block of text, with no other organization on top of it, but LZSS stores text in 
contiguous windows with an additional data structure that improves on the organization of the 
phrases.  
 
As each phrase passes out of the look-ahead buffer and into the encoded portion of the text 
windows, LZSS adds the phrase to a tree structure. By sorting the phrases into a tree, the time 
required to find the longest matching phrase in the tree will no longer be proportional to the 
product of the window size and the phrase length. Instead, it will be proportional to the logarithm 
of the window size multiplied by the phrase length. 
 
The savings created by using the tree not only makes the compression side of the algorithm 
much more efficient, it also encourages experimentation with longer window sizes. Doubling the 
size of the text window now might only cause a small increase in the compression time, whereas 
before it would have doubled it [1]. 

5.4 Deflate algorithm 

Deflate algorithm is a modification of LZ77 algorithm [4]. It’s realized in such well-known 
compressor as GZIP [4] and in well-known image representation format as PNG [6]. This 
algorithm is interesting from the point of view of implementation of LZ77 algorithm.  
 
It would be useless to describe all details (they are described much better in specification of 
algorithm [2]) of algorithm because there are no principal new ideas about encoding of data, but 
some good ideas about realization of LZ77 algorithm.  
 
Compressed data consists of blocks, where blocks could represent three different types of data: 

1. Stored data. This is data that were not compressed. 
2. For encoding data was used fixed Huffman coding, defined by Deflate algorithm 

specification. 
3. For encoding was used dynamic Huffman codes. 

 
Remark: all numbers below were taken form “deflate” specification. 
Encoded data blocks in the "deflate" format consist of sequences of symbols drawn from three 
conceptually distinct alphabets: either literal bytes, from the alphabet of byte values (0..255), or 
pairs, where the length is drawn from (3..258) [4]  (255 — size of look-ahead buffer and 3 is 
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minimum match length) and the distance is drawn from (1..32,768) (here 32,768 — size of text 
window) [2]. In fact, the literal and length alphabets are merged into a single alphabet (0..285), 
where values 0..255 represent literal bytes, the value 256 indicates end-of-block, and values 
257..285 represent length codes (possibly in conjunction with extra bits following the symbol 
code) as in Table 5-5 and distances in LZ77 algorithm are coded by Table 5-6, where extra bits 
defines a number in the intervals of lengths or distances: 
    

Table 5-5: Length codes 
 

Code Extra 
code bits 

Length(s)  Code Extra 
code bits 

Length(s) 

257 0 3  272  2 31-34 
258 0 4  273 3 35-42 
259 0 5  274 3 43-50 
260 0 6  275 3 51-58 
261 0 8  276 3 59-66 
262 0 9  278 4 83-98 
263 0 9  279 4 99-114 
264 0 10  280 4 115-130 
265 1 11,12  281 5 131-162 
266 1 13,14  282 5 163-194 
267 1 15,16  283 5 195-226 
268 1 17,18  284 5 227-257 
269 2 19-22  285 0 258 
270 2 23-26     
271 2 27-30     

 
Table 5-6: Distance codes 

 

Code Extra 
bits 

Distance(s)  Code Extra 
bits 

Distance(s)  Code Extra 
bits 

Distance(s) 

0 0 1  10 4 33-48  20 9 1025-1536 
1 0 2  11 4 49-64  21 9 1537-2048 
2 0 3  12 5 65-96  22 10 2049-3072 
3 0 4  13 5 97-128  23 10 3073-4096 
4 1 5,6  14 6 129-192  24 11 4097-6144 
5 1 7,8  15 6 193-256  25 11 6145-8192 
6 2 9-12  16 7 257-384  26 12 8193-

12288 
7 2 13-16  17 7 385-512  27 12 12289-

16384 
8 3 17-24  18 8 513-768  28 13 16385-

24576 
9 3 23-32  19 8 768-1024  29 13 24577-

32768 
 
In case of dynamic Huffman coding in output file are going codes, which are coded by Huffman 
code. In case of fixed Huffman codes for literal, length and distance codes used codes from 
Table 5-7. After them are going out extra bits (if necessary), which carry information about 
length or distance. 
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Table 5-7: Fixed Huffman codes 
 

Literal codes Bits 
0-143 8 

144-255 9 
256-279 7 
280-287 8 

Distance codes Bits 
0-31 5 

 
Deflate algorithm during has one important modification in substring searching process: after it 
finds a match, it doesn’t stop, but tries to find a longer match, starting to search from next byte of 
look-ahead buffer. If the next parsing is successful, then the previously matched string is 
truncated to 1 byte (a simple literal), this byte is coded, and we define a new match as match 
string and process repeats. Otherwise we output pair length/distance. 

5.5. PNG image representation format 

PNG (Portable Network Graphics) is an extensible file format for the lossless, portable, well-
compressed storage of raster images. PNG provides a patent-free replacement for GIF file 
format. It is interesting for us from the point of view of its implementation of its compression 
algorithm. The algorithm, used in the PNG, is standard LZ77 algorithm with deflate 
modification. Deflate compression also used in zip, gzip, pkzip and related programs. PNG is 
designed to work well in online viewing applications, such as the World Wide Web, so it is fully 
streamable with a progressive display option [5]. As far as PNG was developed to replace GIF so 
it has all features that GIF has, but PNG also has some additional features. PNG is designed to be 
simple and portable, that is why developers are able to implement PNG easily with the help of 
standard libraries. 
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6.  LZ78 algorithm 
 

LZ78 is similar to LZ77 in some ways. LZ77 outputs a series of tokens. Each token has three 
components: a phrase location, the phrase length, and a character that follows the phrase. LZ78 
also outputs a series of tokens with essentially the same meanings. Each LZ78 token consists of a 
code that selects a given phrase and a single character that follows the phrase. Unlike LZ77, the 
phrase length is not passed since the decoder knows it. Unlike LZ77, LZ78 does not have a 
ready-made window full of text to use as a dictionary. It creates a new phrase each time a token 
is output, and it adds that phrase to the dictionary. After the phrase is added, it will be available 
to the encoder at any time in the future, not just for the next few thousand characters.  
 

6.1 Compression algorithm 

When using the LZ78 algorithm, both encoder and the decoder start off with a nearly empty 
dictionary. By definition, the dictionary has a single encoded string—the null string. As each 
character is read in, it is added to the current string. As long as the current string matches some 
phrase in the dictionary, this process continues. But at this point, LZ78 takes an additional step. 
The new phrase, consisting of the dictionary match and the new character; is added to the 
dictionary. The next time that phrase appears, it can be used to build an even longer phrase. The 
pseudocode of the compression algorithm is shown Figure 6-1, and its block-scheme is shown in 
the Figure 6-2.  
 

String ← ReadCharacter(InputStream) 
While (Not end of InputStream) 
{ 
  Character ← ReadCharacter(InputStream) 
  if(String +Character ∉ CodeTable) 
  { 
    String ← String + Character 
  } 
  else  
  { 
    Output( Code (String)) 
    AddIntoTheCodeTable(“String + Character”) 
    String ← Character 
  }  
} 
Output(Code(String)). 

 
 

Figure 6-1: A pseudocode for LZ78 compression. 
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Figure 6-2: Block-scheme for LZ78 compression process. 
 
 
Table 6-1: LZ78 resulting dictionary for input string input text is "DAD DADA DADDY DADO" 

 

Output 
Phrase 

Output 
Character 

Encoded 
String 

Code of encoded 
String 

0 ‘D’ “D” 1 
0 ‘A’ “A” 2 
1 ‘ ‘ “D “ 3 
1 ‘A’ “DA” 4 
4 ‘ ‘ “DA “ 5 
4 ‘D’ “DAD” 6 
1 ‘Y’ “DY” 7 
0 ‘ ‘ “ “ 8 
6 ‘O’ “DADO 9 

 
The dictionary, created during the process of compression is shown below, in Table 6-1. The 
first two characters to come through the encoder, ‘D’ and ‘A,’ have not been seen before. Each 
will have to be encoded as a phrase, 0+ character pair. “D” is added to the dictionary as phrase 1, 
and “A” is added as phrase 2. When the third character, ‘D,’ is read in, it matches an existing 
dictionary phrase. The ‘ ’ character, the next character read in, creates a new phrase with no 
match in the dictionary. LZ78 will output code 1 for the previous match (the D string), then the “ 
” character. The overall tree structure of LZ78 dictionary is shown in Figure 6-3. 
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Figure 6-3: LZ78 resulting tree. 

6.2 LZW algorithm 

As LZ77 has LZSS modification, so LZ78 has also it’s own modification known as LZW [13]. 
LZSS improved on LZ77 compression by eliminating the requirement that each token output a 
phrase and a character. LZW makes the same improvement on LZ78. In fact, under LZW, the 
compressor never outputs single characters, only phrases. To do this, the major change in LZW 
is to preload the phrase dictionary with single-symbol phrases equal to the number of symbols in 
the alphabet. Thus, there is no symbol that cannot be immediately encoded even if it has not 
already appeared in the input stream.  
 
An example of encoding process is shown below in Table 6-2. In this example an alphabet is 
“A”, “D”, “Y” and their indexes are consequently 1, 2, 3. 
 

Table 6-2: An example of LZW compression process. 
 

Input: "DAD DADA DADDY" 

Characters Input Code Output 
New code value and 

associated string 
“D”  — — 
“DA”  2 4 = “DA”  
“AD”  1 5 = “AD”  
“D ” 2 6 = “D” 
“ D”  2 7 = “ D”  
“DA”  — — 
“DAD”  4 8 = “DAD”  
“DA”  — — 
“DA ”  4 9 = “DAD ” 
“ D”  — — 
“ DA”  7 “ DA” 
“AD” — — 
“ADD” 5 10 = “ADD” 
“DY” 2 11 = “DY” 

EOF 3 — 
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6.3 Decompression 

One reason for the efficiency of the LZW algorithm is that it does not need to pass the dictionary 
to the decompressor. As for LZ78 and LZW the decompression algorithm is the same: difference 
only in the initial dictionaries. The table can be built exactly as it was during compression, using 
the input stream as data. This is possible because the compression algorithm always outputs the 
phrase and character components of a code before it uses it in the output stream, so the 
compressed data is not burdened with carrying a large dictionary. This algorithm in pseudocode 
is shown below in the Figure 6-4: 
 

OldCode ← Read(InputStream) 
OldString ← GetDictionaryValue(OldCode) 
Output(OldString) 
While (Not end of InputStream) 
{ 
  NewCode ← Read(InputStream) 
  NewString ← GetDictionaryValue(NewCode) 
  Output(NewString) 
  OldString←FirstCharacter(NewString ) 
  AddToDictionary (OldString) ; 
  OldString ← NewString  
} 

 

Figure 6-4: The decompression LZ78 algorithm. 
 

Unfortunately, the decompression algorithm shown is just a little too simple. A single exception 
in the LZW compression algorithm causes some trouble in decompression. Each time the 
compressor adds a new string to the phrase table, it does so before the entire phrase has actually 
been output to the file. If for some reason the compressor used that phrase as its next code, the 
expansion code would have a problem. It would be expected to decode a string that was not yet 
in its table. It’s so-called special case: 
 

CHARACTER+STRING+CHARACTER+STRING+CHARACTER 
 

It’s the case when LZW compressor outputs a code before LZW decompressor can decode it (see 
Table 6-3). Here alphabet is A – 1, B – 2. The process of decompression for this case is shown in 
Table 6-4. The pseudocode of working decompression in LZW coding is placed in the Figure 6-
5. In Figure 6-6 is placed a block-scheme of decompression process in LZW algorithm. 
 

Table 6-3: Encoding for input string “AAAB” 
 

Character 
Input 

New code value and 
associated string Code Output 

A ó ó 

A 3 ó AA 1 

A ó ó 

B 4 ó AAB 3 
 
 

Table 6-4: Decoding process for previously coded string. 
 

Code Input 
New code value and 

associated string  Output 
1 3 = A + Ö A 

3 3 = A + 3 ? 
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OldCode ← Read(InputStream) 
OldString ← GetDictionaryValue(OldCode) 
Output(OldString) 
While (Not end of InputStream) 
{ 
  NewCode ← Read(InputStream) 
  if ( NewCode ∉ CodeTable )  
  { 
    String ← GetDictionaryValue (OldCode) 
    String ← String + Character 
  } 
  else  
  { 
    String ← GetDictionaryValue (NewCode) 
  } 
  Output (String) 
  Character ← GetFirstCharacter(String) 
  AddEntryToDictionary(OldCode + Character) 
  OldCode ← NewCode 
} 

 

Figure 6-5: A pseudocode of LZ78 decompression algorithm. 
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Figure 6-6: A bock-scheme that describes the LZ78 decompression process. 

6.4 Coding of the pointers 

One negative side effect of LZ78, which is not found in LZ77, is that the decoder has to keep up 
the tree in exactly the same fashion as the encoder, or a disastrous mismatch will occur. In case 
of LZ77 a dictionary index was just a pointer or a index to the previous position in the data 
stream. But in the case of LZ78 the index is the number of a node in the dictionary tree. And 
therefore decoder has to maintain this dictionary tree as well. 
 
Another issue ignored so far is that of the dictionary is filling up. Regardless of how big the 
dictionary space is, it is going to fill up sooner or later. If we are using a twelve-bit code, the 
dictionary will fill up after it has 4096 (because 4096212 = ) phrases defined in it. 
 
There are several alternative choices regarding a full dictionary. Probably the safest default 
choice is to stop adding of new phrases into the dictionary after it is full. But this is not the best 
choice as statistical model can completely change and our dictionary would be unacceptable for 
given file. In other hand the Shrinking method [5] is a LZW compression algorithm with partial 
clearing of the dictionary. Shrinking differs from conventional LZW implementations in several 
respects: 

1. The code size is controlled by the compressor, and is automatically increased when codes 
larger than the current code size are created (but not necessarily used). When the 
decompressor encounters the special code sequence (for example 256 followed by 1) it 
should increase the code bit size and read from the input stream to the next bit size. No 
blocking of the codes is performed, so the next code at the increased size should be read 
from the input stream immediately after where the previous code at the smaller bit size 
was read. Again, the decompressor should not increase the code size used until the 
special sequence (256,1) is encountered. [5] 

2. When the table becomes full, total clearing is not performed. Rather, when the 
compressor emits another one special code sequence (for example 256,2), the 
decompressor should clear all leaf nodes from the LZ tree, and continue to use the current 
code size. The nodes that are cleared from the LZ tree are then re-used, with the lowest 
code value re-used first, and the highest code value re-used last. The compressor can emit 
the sequence (256,2) at any time. [5] 

 
Briefly this method consists in cutting off all leaves from LZ78 or LZW dictionary tree (see 
Figure 6-5). This procedure proceeds because as far as the dictionary does not create new 
elements so the compression stops to adapt to the input stream of symbols. To prevent this 
situation next action performed: all nodes that have not children nodes are deleted. This is legal 
as in LZW algorithm code can be used for encoding only in the moment of creating its children 
nodes.  
 
 
 
 
 
 
 
 
Figure 6-5: LZ78 tree after cleaning: node 23 had no children, that why it’s deleted, index 23 is 

free and can be reused. 
 

... 
... 23 

A 



 -  -  37

Shrinking method can be modified in the simple way. We just do not need to delete all leave 
nodes at one moment. The process of cleaning can be divided into several iterations, and during 
each of iteration it can delete only one leaf with lowest index and reuse only one index of 
dictionary at each iteration. Another leaves have a “hope” that they will become “not leaf”, that 
is why new elements of the dictionary could have bigger length and compression rating could 
also be better. Simple the difference between two methods is shown in Figure 6-6, 6-7, 6-8. 
 
 
 
 
 
 
 
 
  Figure 6–6: Dictionary tree         Figure 6-7: Cleaned dictionary  Figure 6-8: Cleaned dictionary  
  before cleaning.                            tree in Shrinking method.           tree in modified Shrinking  method. 
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7. Application to map image compression 

7.1 Personal navigation 

Digital maps provide visual view on a given geographic location that can be used for application 
dealing with spatial data in personal navigation. We can select user-specific views of the map 
server for different applications. The main goal is to have the maps available in real-time and 
independent of the location of the user, and without excessive computing resources. Typical 
navigation devices have limited memory resources and very narrow wireless communication 
channel [8].  

7.2 Map images 

For map representation usually used three types of images: binary images, greyscale and colour. 
Some words about colour representation in a image: a colour perceived by the human eye can be 
defined by a linear combination of the three primary colours: red, green and blue. These three 
colours form the basis for the RGB-colour space. Hence, each perceivable colour can be defined 
by three values, which represent the red, green and blue component consequently. 
 
Binary images are images whose pixels have only two possible colours. They are normally 
displayed as black and white. Numerically, the two values are used: 0 for black, and either 1 or 
255 for white. Binary images are often produced by tresholding of a greyscale or colour image, 
in order to separate an object in the image from the background. The colour of the object 
(usually white) is referred to as the foreground colour. The rest (usually black) is referred to as 
the background colour.  
 
A greyscale (or greylevel) image is simply one in which the only colours are shades of grey. The 
reason for differentiating such images from any other sort of colour image is that less 
information needs to be provided for each pixel. In fact, grey colour is one in which the red, 
green and blue components all have equal intensity in RGB-space, and so it is only necessary to 
specify a single intensity value for each pixel, as opposed to the three intensities needed to 
specify each pixel in a colour image.  
 
In a colour image a pixel consists of three values: red, green, blue. For each of the values is used 
8 bits, so each pixel is represented by 24 bits and total number of colours in the 16777216 (2 24 ).  

7.3 Compression of maps 

The storage size of a map is huge. For example, electronic library of Finnish road maps of the 
resolution 1:250 000 takes entire CD (over 600 Mb) in uncompressed form [7CMI]. In 
comparison, the portable viewing device, such as pocket computer, have about 32 Mb of storage 
space, which can be expanded by about 96 Mb through using compact flash memory cards [9]. 
The storage requirements of the maps can be therefore be a bottleneck, especially in the case of 
portable devices, in which the maps share the limited memory with the operating system, 
application and other data. 
 
Because of limited resources, the end-user cannot store the large map database with specific 
software for the database management. A much simpler but still useful approach is to provide the 
user with digital compressed images. In this way, the user will get almost all the same benefits as 
he would get from the access to traditional geographic information systems with map databases. 
In additional to that, the user would not need to have the huge hardware and software resources. 
For example, an uncompressed black-and-white image of 5000x5000 pixels takes about 3 
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megabytes in uncompressed form. Using a state of art compression technology [9], this image 
can be compressed usually by a factor 10:1, which corresponds to the file size of 300 Kb. A 
drawback of the existing compression techniques is that entire image must be decompressed in 
memory before the image can be presented to the user [9]. This can be a problem, as device may 
not have sufficient resources for real-time decompression of the image.  
 
The static models of compression have the smallest demands to resources. The semi-adaptive 
compression models take the second placed in the resource demands, as the all information, 
which was created during compression is transferred into the compressed file. The adaptive 
models are the most demanding to the resources, as they need to reconstruct the model during 
decompression.  

7.4 Block decomposition for direct access  

The input map images are divided into bxb non-overlapping rectangular before the compression, 
and each block is compressed separately from other as proposed in [9] (see Figure 7-1). The 
compression blocks are stored in the same file, and an index table is stored in the header of the 
file. When the compressed map image is accessed, a block index table indicating the location of 
the block in the compressed file, can be constructed. This provides direct access to the 
compressed image file, and therefore, enables efficient and independent decompression of 
particular image fragment. The block size is a trade-off between compression efficiency and 
decoding delay. If very small block size is used the desired part of the image can be 
reconstructed more accurately and faster. The compression, however, would be less efficient 
because of a less accurate probability model. The index table itself requires space and the 
overhead is relative to the number of blocks. 
 

 
Figure 7-1: Diagram of the block decomposition 
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8.  Semi-adaptive LZW 
 
In previous chapter was said that the block-segmentation is a compromise between compression 
ratio and decompression delay. It means that when the decompression delay becomes smaller, 
the compression ratio also decreases. Is it possible to create an algorithm, where the dependency 
between them is not so direct? Such algorithm requires a modelling that takes into account as the 
global modelling for the whole image, as the local modelling for each of the blocks. Above were 
described two main ideas of modelling: statistical modelling and dictionary schemes. Both 
modelling can operate as globally, as locally. In this chapter we consider a new idea denoted as 
semi-adaptive LZW coding will be considered. 

8.1 Ideology of semi-adaptive LZW 

The LZW coding is a good compression algorithm, which can adapt itself to the changes in the 
input stream [1]. The main achievement of this algorithm is that it is from the family of adaptive 
coders that let it not to store the dictionary into the file, but create it during decompression 
process. It is very important, because the dictionary can easily reach very huge size. On the other 
hand, the abilities in compression of LZW algorithm will decrease if we use it for compression 
maps with small number of colours (binary images for example), or texts with small number of 
different used characters. This is because the structure of LZW tree, where the number of 
children of each root cannot be more than the number of different elements of the input stream. 
That is why during compression of the file with small number of different elements, binary 
images for example, size of the dictionary increases very fast and compression must be 
continued with that dictionary which we have, or forget about the dictionary and start to create a 
new dictionary. It is clear that it is not the best way for using the dictionary.  
 
Here we present a modification of LZW, which is denoted as LZWsem (LZW semi-adaptive). In 
the standard LZW the algorithm process without pre processing phase. The LZWsem has two 
phases of compression: in the first phase it starts to create the dictionary, and the actual output of 
the indexes is started in the second phase. LZWsem uses in the preprocessing phase the same 
algorithm of the dictionary creating process, like in LZW. During the second stage it uses simple 
greedy algorithm. But as the LZW is semi-adaptive the output will consist of the compressed 
information plus the dictionary.  
 
Let us consider an example. So if the initial alphabet is 0 – A, 1 – B, 2 – C, 3 – D, and the input 
is: ”AAABBACDBBAACDA”, then the result of the adaptive coding is shown in Table 8-1, and 
the final dictionary is shown in Table 8-2. Let us overview the coding of the input by this 
dictionary (see Table 8-3). 
 

Table 8-1: Process of compression in adaptive variant. 
 

Input character Output code New dictionary 
element 

Current 
code bits 

A — —  
A 0 4. AA 3 
A — — 3 
B 4 5.AAB 3 
B 1 6.BB 3 
A 1 7.BA 3 
C 0 8.AC 4 
D 2 9.CD 4 
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B 3 10.DB 4 
B — — 4 
A 6 11.BBA 4 
C — — 4 
D 8 12.ACD 4 
A 3 13.DA 4 
— 0 — 4 

 
 

Table 8-2: Full dictionary created by LZW algorithm. 
 

Code Value 
0 A 
1 B 
2 C 
3 D 
4 AA 
5 AAB 
6 BB 
7 BA 
8 AC 
9 CD 
10 DB 
11 BBA 
12 ACD 
13 DA 

 
Table 8-3: Semi-adaptive coding process. Input text: ”AAABBACDBBAACDA” 

 

Input character Current string Current code Output code 
A A 0 — 
A AA 4 — 
A AAA — 4 
B AB — 0 
B BB 6 — 
A BBA 11 — 
C BBAC — 11 
D CD 9 — 
B CDB — 9 
B BB 6 — 
A BBA 11 — 
A BBAA — 11 
C AC 8 — 
D ACD 12 — 
A ACDA — 12 
“” A 0 0 

 
The shrinking is used in both compression methods: in adaptive and in semi-adaptive, and the 
comparing will be done on the results of the compression. As it was said before, for first 2 
elements of dictionary we need only 1 bit (as they are 0 and 1) to store in the file, for next 2 
elements are necessary 2 bits, next 4 elements requires 3 bits, and so on. 
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Table 8-4: Final dictionary for semi-adaptive coding. 
 

Old code New code 
0 0 
1 1 
2 2 
3 3 
4 4 
11 5 
9 6 
12 7 

 
Unlike adaptive LZW method in semi-adaptive modification it is necessary to increase code bit 
length only before outputting a code with larger bit length (the coder knows about it every time 
when it happens, but in this case the program needs some reserved symbols to encode the 
increasing of the code bit length).  
 

Table 8-5: Comparing of two compression methods. 
Adaptive LZW Semi-adaptive LZW 

Code Code bit length Code (New code) Code bit length 
0 3 4(4) 3 
4 3 0(0) 3 
1 3 11(5) 3 
1 3 9(6) 3 
0 4 11(5) 3 
2 4 12(7) 3 
3 4 0(0) 3 
6 4 — — 
8 4 — — 
3 4 — — 
0 4 — — 

Size of compressed sequence 
Adaptive LZW Semi-adaptive LZW 

40 bits 21 bits 
 
Most part of such optimistic effect, of course, will be neglected for big sequences, but the main 
idea will stay: semi-adaptive LZW algorithm uses less number of indexes for encoding and that 
is why it has a right for existing. 
 
The implementation of the semi-adaptive method can be divided into several parts. The first part 
is creation of the initial LZW dictionary. It means that at the first time the algorithm must 
process the simple adaptive LZW coding process, and create dictionary so called as initial 
dictionary. The next step is pruning of the initial dictionary. It includes gathering of the statistics 
for each dictionary element. After this, for each initial dictionary element the decision must be 
made: is it useful to keep this element in the final version of the dictionary, or it would be more 
useful to get rid of this element. After this, the dictionary must be stored in the compressed file. 
Also it would be very useful to use some kind of compression to for storing the dictionary. At the 
final step the algorithm must code the input file by using the final version of the dictionary. And 
if it is so the information about the dictionary compression also must be kept into the compressed 
file.  
 
The algorithm, that will be described later, will have the following steps: 
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1. Creation of the initial LZW dictionary. 
2. Pruning of the initial dictionary and calculating statistics of all elements from the 

final dictionary. 
3. Storing the final version of the dictionary in the compressed file. 
4. Encoding the input file by the final version of the dictionary. 

8.2 The creation of the initial dictionary 

The initial dictionary creation process is predefined before the entire workflow of the semi-
adaptive LZW algorithm. There three options to choose, and the algorithm can operate by three 
different variants of initial dictionary creating process.  

1. To find all used diads, triads and so on. 
2. To process initial dictionary creating phase separately from block to block. 
3. To process the first phase for the whole image. 

 
The first one is to find over the whole input image all used diads (a sequence of symbols with 
length two, triads (a sequence with length three) and so on. During this process the encoder goes 
several times trough the input image. This algorithm is very close to usual LZW algorithm, but 
in its case the number of the iteration limits the maximum length of the codeword during 
iteration.  
 

 
Figure 8.1: The LZW tree in the first case type of binary image coding. 

 
In the Figure 8-1 is shown the LZW tree in the case of first type of encoding. To reduce the 
number of iterations the iteration stops each time when all codewords with fixed length are 
found. The maximum number of codewords in the iteration n is mn, where m is the amount of 
colours in the input image.  
 
The second way is to predefine the number of LZW tree nodes per blocks. For example if 
compression process operates by 4096 nodes in the LZW tree, and the input image is divided 
into 4 blocks, then for each block only 1024 nodes ( 409641024 =⋅ ) must be used. When 1024 
nodes are processed, the initial dictionary creating process continues in the next block of the 
input image. If during the initial dictionary creating process over the current block less than 
predefined number of the nodes of the initial dictionary’s LZW tree were created, then the 
process repeats from the beginning of the block. The initial dictionary keeps its structure from 
block to block and all nodes that were created on previous steps are used for creating of new 
nodes (see example of such processing in Table 8-6). 
 
Table 8-6:An example of the initially dictionary-creating process with two processing over input 
text: “AABBCCAA” 
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First phase of processing 
Input Character Encoded String Code of encoded String 

A A “” 
A AA 4 
B AB 5 
C BC 6 
C CC 7 
A CA 8 
A AA “” 

Second phase of processing 
A AAA 9 

A AA “” 

B AAB 10 

B BB 11 

C BC “” 

C BCC 12 

A CA “” 

A CAA 13 

  
The third way is to forget about the blocking structure of the input image and create the initial 
dictionary in the traditional LZW way. In this case the program starts to create LZW dictionary 
from the beginning of the input image and continues process until the end of the image. When 
the number of initial dictionary elements reaches the predefined maximum number of elements 
the process stops. Otherwise, if during initial dictionary creating process the processing over 
whole image does not reach this number, the process begins from the start of the input image 
again. The initial dictionary elements, which were created during previous passing over the input 
image, take part in the creating of new elements in new passing over the input image.  

8.3  Pruning of the initial dictionary 

The initial dictionary is the basement for the final dictionary. Elements from the final dictionary 
are used for encoding input image in the final stage. Transformation of the initial dictionary into 
the final dictionary consists of deleting the most of elements from the initial dictionary. The 
process consists from two stages: 

1. Cover creating. 
2. Pruning of the cover. 

 
At the first stage all used elements are found. The algorithm of this process is described in the 
Figure 8-2. Briefly, the first stage can be described in the following way: the algorithm starts to 
create a cover of the input image. Elements of the cover are taken from the initial dictionary. 
And all elements from the initial dictionary are divided now into two groups: from the covering 
(used ones) and not from the covering (unused ones). The unused elements are not going to 
present in final dictionary.  
 
To describe the second stage of pruning it is necessary to repeat some info about the shrinking 
algorithm. As it was said before in previous chapter, the indexes of codes have not fixed code bit 
length in the shrinking algorithm, but the code bit length is increasing during increasing of the 
indexes. During the first stage of pruning the indexes, which were set to the elements of the final 
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dictionary, they have the same order as the values of the elements in the input image. For 
example, the first codeword, which is appeared during first stage, will have index 0, the second 
one index 1, and so on. This means that for first two indexes it is possible to use 1 bit, for the 
next 2 indexes (which are 2 and 3) is possible to use 2 bits, and so on. So during the compression 
so-called current code bit length, which defines the number of bits that are using in current time 
to output a codeword, is changing. If there is a situation when the current code bit length is more 
than sufficient to encode the current code (for example: current code is 1 and current code bit 
length is 9, but for encoding 1 is necessary only 1 bit), the current code is encoded anyway by 
the current code bit length bits. In shrinking algorithm current code bit length increases only 
when the number of created indexes is more than eBitsCurrentCod2 , where variable CurrentCodeBits 
equals to the current code bit length. 
 

 
Figure 8-2: The pseudocode for the first stage of the pruning of the dictionary 

 
During the second stage of pruning the role of indexes is depends on the variable 
CurrentStringIndex. According to the CurrentStringIndex the program calculates each time the 
CurrentCodeBits variable. For each dictionary two values are calculated:  

1. ElementCount: the number of appearance of the code from initial dictionary in the 
covering of the input image. 

2. ElementBitCount: the sum of code bit lengths in all moments when the code appeared 
during the first stage.  

 
The node from the cover (of course it also belongs to initial dictionary) is stayed in the final 
dictionary if it is satisfied to the formula: 
 

 ( ) ( ) CountElementBitntElementCouberColoursNumeDepthOfNod >−⋅⋅ 1log2        (7.3) 
 
where DepthOfNode is the depth of the node in the LZW tree of the initial dictionary, 
ColoursNumber is the number of colours in colour palette. As the value of DepthOfNode is same 
as the length of the word, which that is represented by this node, the formula (7.3) can be 
explained in such way: if an index is used to encode a sequence of symbols (in this case symbols 
are pixel’s indexes), the sum of bits, which are used for it, must be less than the number of bits, 
which are required to output the sequence without encoding. There is used 1−ntElementCou  in 
the left side of the formula, because in semi-adaptive LZW algorithm for each new element of 
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the final dictionary some bit space must be used for storing the dictionary into the compressed 
file. The results of pruning of the initial dictionary are placed in Table 8-7. 
 

Table 8-7: The results of pruning of the initial dictionary. 
Image name Number of nodes 

 before pruning After 1-st stage After 2-nd stage 
v11.pgm 512 394 201 

vantaa.pgm 512 483 426 
suomi2-q.pgm 512 450 353 

zzz.pbm 512 327 325 
 

8.4  The final dictionary structure 

The dictionary in traditional LZW algorithm is not stored and it is usual for any adaptive 
dictionary-based algorithm. But in the case of semi-adaptive LZW algorithm it is necessary to 
store whole dictionary in the compressed file. There are two methods to store the final dictionary 
elements into the compressed file: 

1. To keep the tree structure of the LZW tree, the final dictionary is stored in the 
compressed file like a tree (pointer to the parent node + symbol). 

2. To get rid of the tree structure and store the final dictionary as a simple codebook. 
 
In the first case, because it is necessary to keep the whole tree structure, the element of the 
dictionary is consisting from: symbolparent + . Size of parent is calculating from the predefined 
number of LZW tree nodes, for example if LZW tree consists from 512 nodes, then it is 
necessary to use 9 bits to encode one index of the nodes ( )9512log 2 = . The code bit length of 
the symbol depends from the number of colours. So if the image has 8 colours, it is necessary to 
use at least 3 bits to encode the index of colour ( )38log 2 = . The final formula for the size of the 
transformed information is about: 
 

( ) rNodesNumberNodesNumbeberColoursNum ⋅+ 22 loglog  bits,                (8.1) 
 
where ColoursNumber is the number of colours in the colour palette of the input image and 
NodesNumber is the predefined number of nodes in the initial dictionary LZW tree. 
 
In the second variant the formula for the size of transmitted information is about: 
 

∑
=

⋅
umberUseNodesdN

i
i berColoursNumeDepthOfNod

1
2log bits,                                    (8.2) 

 
where UsedNodesNumber is the number of nodes from the initial dictionary that were used in the 
cover of the input image, DepthOfNode is the depth of the node in the LZW tree (or length of the 
phrase, which it represents). For example, let us consider the LZW tree received after the 
example, which is described in the first paragraph of the current chapter before pruning and after 
it (see Figure 8-3 and Figure 8-4 consequently). 
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Figure 8-3: LZW tree for input string “AAABBACDBBAACDA”. 
 

 
Indexes Codewords 

0 A 
2 C 
3 D 
4 ACD 
5 BBA 
6 CD 

 

Figure 8-4: The result codebook from the previous example, which represents  
      the LZW tree after first stage of pruning. 
 
So, in the first case the amount of space, necessary to store the tree structure is (here: 
NodesNumber is 13, ColoursNumber is 4): 
 

( ) 781342 =⋅+  bits. 
 

And in the second case the amount of space is (NodesNumber is 7, ColoursNumber is 4): 
 

282)3321111( =⋅++++++  bits 
 
All conclusions below are based on the series of experiments. The results of these experiments 
placed in Table 8-6 (The testing images can be seen in Appendix, part A). 
 

Table 8-6: Result of experiments in comparing two variant of storing the dictionary 
Image Nodes 

Number 
Colours 
Number 

Used Nodes 
Number 

Variant1 
Size 

Variant2 
Size 

v11.pgm 512 4 201 5632 3198 
vantaa.pgm 512 4 426 5632 5570 
suomi2-q.pgm 512 8 353 6144 5928 
zzz.pbm 512 2 325 5120 3505 

 
It can be seen from the table that on the testing images the second variant is better than the first 
one. By the way, the results could be different for the images with big colour palette.  
 
With increasing the number of LZW tree nodes the advantage of the second variant is getting 
clearer, moreover there is a tendency that the difference between sizes of transmitted information 
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increases in the favour of the second variant. The tendency is shown in Table 8-7. This shown 
series was passed over the image v11.pgm, which has 4-colour palette. 
 

Table 8-7: The series of experiments to show the tendency. 
NodesNumber UsedNodesNumber Variant1 size Variant2 Size 

512 201 5632 3198 
1024 215 12228 3648 
2048 175 26642 3500 
4096 124 53248 2814 

 
The Variant1 size was calculated according to the formula 7.1. That is the reason why was 
chosen the second variant of the storing of the dictionary.  

8.5  Storing the final dictionary in the compressed file 

According to the previous paragraph the final dictionary has structure of a collection of 
sequences. So the first information, which is necessary to read the final dictionary, is the number 
of sequences (in future it will be called as dictionary length) and lengths of each sequence. As 
far as the number of sequences is about several hundreds they will be to encoded by Huffman 
coding. The process of storing the final dictionary in the compressed file can be divided into 
several stages, shown below: 

1. Outputting the length of the dictionary (the number of initial dictionary elements after 
two stages of pruning). 

2. Calculate length statistics for all lengths of the final dictionary’s sequences. 
3. Create a Huffman tree for the lengths according to lengths statistics. 
4. Store the Huffman tree structure in the compressed file. 
5. Output elements of the sequences. 

 
The first point does not need any kind of explanations. This number is required by decoder to 
know exactly the number of the elements in the dictionary. 
 
The second stage consists of two sub-stages. At the first sub-stage it is necessary to find the 
maximum length from all sentences from the final dictionary. The second is to calculate how 
often each length appeared in the final dictionary. 
 
The third stage is related to the fourth one because the Huffman tree will be stored in the same 
manner as decompressor restores it. Before creating of the Huffman tree the compressor process 
the scaling of the probabilities. The process scheme is shown in the Figure 8-5. 
 

MaxCount ← FindMaxCount(LengthCounts) 
MaxCount ← MaxCount / 255 
If(MaxCount = 0) 
  MaxCount ← 1 
 
For(i = 0; i < MaxLength + 1; i++ ) 
{ 
  If(LengthCount[i] / MaxCount = 0 && LengthCount[i]!=0) 
    LengthCount[i] ← 1 
  Else  
    LengthCount[i] ← LengthCount[i]/MaxCount 
} 

Figure 8-5: Scaling of the length statistics 
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In the first step of scaling, the program finds the maximum count from all lengths counts. Then 
program divides the count on 255. The resulting number is stored into to the variable MaxCount. 

After all, the counts in the array of length counts are replaced by the quotient 
MaxCount

itLengthCoun ][
. 

This division guarantees that all count values now are less than 256. It allows us to describe each 
count by 8 bits ( 8256log2 = ). The Huffman tree is creating now according to the modified 
counts.  
Description of the Huffman tree in the compressed file is also very simple. The principals of this 
description are shown in the Figure 8-6. 
 

 
Figure 8-6: Example of Huffman tree structure storing in the compressed file. 

  
To reduce the size of the Huffman tree structure, the information about counts is stored as triples: 
the first number is the lowest bound of the interval of counts, the last number is the highest 
bound of the interval, and the sequence of counts. All counts that are outside of the intervals 
have value of 0. 
 
And when the lengths are outputted, it is time to start the last stage of the dictionary-storing 
process: the output of the dictionary elements. As far as the dictionary consists of sequences of 
symbols, it would be useful to represent all sequences as a big sequence and compress it by 
LZSS algorithm. The main idea of the LZSS coding of the dictionary is shown in the Figure 8-7. 
 

CurrentPosition ← 1 
CurrentElement ← 1 
While(CurrentElement ≤ DictionaryLength) 
{ 
  Symbol ← ReadSymbol(CurrentElement, CurrentPosition) 
  EncodeLZSS(Symbol) 
  CurrentPosition++ 
  If(CurrentPosition ≥ Length(CurrentElement)) 
  { 
    CurrentPosition←1 
    CurrentElement++ 
  } 
} 

Figure 8-7: pseudocode of the procedure of LZSS encoding of the semi-adaptive LZW 
dictionary. 
 
Here the CurrentPosition is an offset from the beginning of the current sequence and 
CurrentElement is the number of sequence. 
The general scheme of storing the dictionary to compressed file is shown in the Figure 8-8. 
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Figure 8-8: Scheme of final dictionary storing process 
 

8.6  The output of compressed information 

When all necessary information is outputted, then it is time to compress the input image. This 
algorithm is two-stages process: 

1. Calculation of final dictionary elements statistics. 
2. Outputting of the compressed information accordingly to the calculated statistics. 

 
The idea of first stage is to find the modified cover of the input image according to the final 
dictionary elements. As was said before during first stage the first variant of the cover is created. 
But during the second stage some of the elements from the cover are deleted. In the compressed 
file they will be replaced by a new sequence of codes. The final dictionary does not have tree 
structure, but some of relations are kept. The structure of the final dictionary can be described in 
the following manner: each element has a parent and so-called tail: a sequence of symbols, 
which belonged to all initial dictionary elements that were between the parent and the current 
node. Let us consider the example from chapter 8.1. As follows from the chapter 8.2 in Figure  
8-9 is shown the LZW tree after the first stage of pruning. In the Figure 8-3 is shown the original 
LZW tree for the example.  
 

 
 

Figure 8-9: LZW tree for input string “AAABBACDBBAACDA” after first stage of pruning. 
 
From the Figure 8-4 is clear that for the element with index 7 the parent is the element with 
index 0 and tail is the sequence “CD”. In other words ""07 CD+= , if code “7” will be pruned 
during second stage than it will be replaced by its parent (0) and code for its tail (code for “C” is 

Calculate lengths statistics 

Output header of the Huffman coding 
for lengths 

Output lengths, encoded by Huffman 
coding 

Output dictionary elements, encoded by 
LZSS algorithm 

Output dictionary length 

Create Huffman tree 
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2, code for “D” is 3). The first stage is based on the same principles. If an element from the cover 
of the input image is not in the final dictionary then its parent and its tail replace it. The statistics 
are calculated in this case for the parent code and codes of symbols from tail. The pseudocode of 
the first stage is shown in the Figure 8-10. 
 

String ← ReadSymbol(InputImage) 
While(Not end of input stream) 
{  
  Symbol ← ReadSymbol(InputImage) 
  if(String + Symbol ∈ InitialDictionary) 
  { 
 String ← String + Symbol 
  } 
  else 
  { 
 if(String ∈ FinalDictionary) 
 { 
  Output(CodeOf(String)) 
 } 
 else 
 { 
  Output(ParentOf(String)) 
  Output(TailOf(String)) 
 } 
  } 
  String ← Symbol 
} 
 

Figure 8-10: Pseudocode of the encoding process in semi-adaptive algorithm. 
 
In the first stage of semi-adaptive algorithm the function Output means calculating of statistics of 
elements, InitialDictionary is initial LZW dictionary; FinalDictionary is the initial dictionary 
after pruning.  
 
When the first stage of outputting is over the second stage starts. The first stage, besides of the 
elements statistics gives also two values: the approximated number of bits required to encode the 
input image with the help of Huffman algorithm, and the number of bits required to encode the 
image without additional coding.  
 
If the first number is less than the second, then the algorithm creates Huffman tree according to 
the calculated statistics. The structure of the Huffman tree is storing in the compressed file in the 
same manner that was described before. Then the algorithm outputs the header, that is necessary 
to deconstruct Huffman tree by decoder and then starts the algorithm, which is described in the 
Figure 8-9, but in this stage the function Output outputs Huffman codes  
into the output bit stream. 
 
Otherwise if the second number is less than the first one, the codes are outputting without any 
additional encoding. As far as the order of indexes of the elements in the final dictionary 
coincides with the order of the elements in the cover of the input image (in other words: an 
element with a bigger number can not appear during encoding of the image earlier than an 
element with a smaller number) the shrinking algorithm is applicable. But in the current 
algorithm the shrinking algorithm is modified. In first of all the current code bit length can 
decrease as well as it can increase. To determine such situation two reserved symbols “0” and 
“1” are used. It means that each outputed code increases by two before encoding (as it is 
impossible to use now codes “0” and “1”). Briefly the pseudocode of the algorithm of the simple 
outputting of a code is shown in the Figure 8-10. 



 -  -  52

 
Code ← Code +2 
CodeBitLength ← GetCodeBitLength (Code) 
NewCurrentCodeBitLength ← DetermineCurrentCodeBitLength(CodeBitLength) 
If(NewCurrentCodeBitLength > CurrentCodeBitLength) 
{ 
  Output (1) 
  Output (NewCurrentCodeBitLength - CurrentCodeBitLength) 
  CurrentCodeBitLength ← NewCurrentCodeBitLength 
} 
Else if (NewCurrentCodeBitLength < CurrentCodeBitLength) 
{ 
  Output (0) 
  Output (CurrentCodeBitLength - NewCurrentCodeBitLength) 
  CurrentCodeBitLength ← NewCurrentCodeBitLength 
} 
Output (Code, CurrentCodeBitLength) 

Figure 8-10: Brief description of outputting algorithm 
 
Here CodeBitLength is the number of bits that is necessary to encode Code (in other words it is 
the value Code2log ). NewCurrentCodeBitLength and CurrentCodeBits, they are the values that 
define the code bit length. So, if due to the new coming code the algorithm decides that is better 
to increase or to decrease the CurrentCodeBitLength now, it outputs ”1” or “0” and the 
difference between them.  
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9.  Experiments 
 
We compress a set of topographic map images originating from the NLS topographic database 
[10]. The first image set contains of binary images and the second set of greyscale images. The 
set of experiments was provided to receive information about the previously described adaptive 
(modified shrinking method) and semi-adaptive (LZWsem) algorithms behaviour in the case of 
block-segmentation. For the experiments we had taken five binary images with size 1000×1000 
pixels, and 4 greyscale images with size 1024×1024 pixels. During the experiments the block 
segmentation for each image was passed.  
 
The binary images were processed the block-segmentation with sizes: 50×50, 100×100, 
200×200, 250×250, 500×500 and 1000×1000 (the whole image compression). For comparison 
were taken from one side such widely known algorithms such as PNG, GIF and TIFF G4. The 
results of the compression of the binary images are in the Table 9-1 and Table 9-2. To get the 
average results of LZWsem compression for each image, we calculated an average of block-
segmentation values for each image (see the Table 9-3). The dependency between average bit 
rate and the size of block is shown in the Figure 9-1, where the X-axis is the size of block and 
the Y-axis is the bit ratio. 
 
For the greyscale images was processed the block-segmentation with next sizes: 64×64, 
128×128, 256×256, 512×512 and 1024×1024 pixels in one block. The results of the series for 
greyscale images are in the Table 9-3 and 9-4. In the Figure 9-2 is placed the curve line of 
dependency between the average bit rate (average ratio between all greyscale images for one 
fixed size of block) and the block size. 
 

Table 9-1: Compression results (bytes) for the set of binary images 
Adaptive LZW (modified shrinking algorithm) 

 Image 1 Image 2 Image 3 Image 4 Image 5 
50×50 53932 34501 48361 31418 63424 

100×100 45525 26466 40353 22702 55936 
200×200 41303 22298 36304 17439 51393 
250×250 40488 21359 35585 16644 50790 
500×500 38528 20136 34371 14183 47868 

1000×1000 37625 19588 33282 12795 46678 
Semi-adaptive LZW 

 Image 1 Image 2 Image 3 Image 4 Image 5 
50×50 38352 19799 31233 14989 50790 

100×100 37262 20747 31431 14383 48077 
200×200 37449 20482 31737 13511 46026 
250×250 38035 20813 32419 13802 46541 
500×500 37425 20960 31175 13654 46369 

1000×1000 37983 20801 30832 14289 46191 
 

Table 9-2: Result of testing images compression by widely-known image compressors 
Standard compression programs 

 Image 1 Image 2 Image 3 Image 4 Image 5 
GIF 39303 20315 34641 13658 49168 
PNG 36076 19372 34602 12625 45012 

TIFF G4 24402 11316 19138 5212 29606 
JBIG 14616 4763 10159 3274 18263 
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Table 9-3: Average results of compression of binary images (in bpp) (average in block-
decomposition). 

 LZWsem GIF PNG TIFF G4 JBIG 
Image 1 0.0377 0.0393 0.0360 0.0244 0.015 
Image 2 0.0206 0.0203 0.0194 0.0113 0.005 
Image 3 0.0315 0.0346 0.0346 0.0191 0.010 
Image 4 0.0141 0.0137 0.0126 0.0052 0.003 
Image 5 0.0473 0.0492 0.0450 0.0296 0.018 
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Figure 9-1 The curve line of dependency between the average bit ratios of LZWsem, modified 
adaptive LZW and size of block in the set of binary images. 

 
Table 9-4: Compression results (bytes) for the set of greyscale images 

Adaptive LZW(modified shrinking algorithm) 
 Image 6 Image 7 Image 8 Image 9 
64×64 139421 326599 426650 356340 
128×128 132702 313141 412271 341094 
256×256 128179 306006 400110 331738 
512×512 128092 305550 394732 328488 
1024×1024 126714 312741 387807 326430 

Semi-adaptive LZW 
 Image 6 Image 7 Image 8 Image 9 
64×64 135976 325742 402940 341512 
128×128 132984 325527 403132 335926 
256×256 131507 311625 405255 335563 
512×512 132484 310974 405182 335119 
1024×1024 126714 312741 387708 326430 

 
Table 9-5: The compression results for the set of greyscale images, compressed by standard 
compressor 

Standard compression programs 
 Image 6 Image 7 Image 8 Image 9 
GIF 138989 334066 433240 361842 
PNG 152867 337140 423839 360734 
TIFF Deflate 137840 332262 430912 359938 
JBIG 14616 4763 10159 18263 
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Table 9-6: Average results of compression of greyscale images (in bpp) (average in block-
decomposition). 

 LZWsem GIF PNG TIFF Deflate 
Image 6 0.13 0.13 0.15 0.13 
Image 7 0.30 0.32 0.32 0.32 
Image 8 0.38 0.41 0.40 0.41 
Image 9 0.22 0.35 0.34 0.34 
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Figure 9-2: The curve line of dependency between the average bit ratios of LZWsem, modified 

adaptive LZW and size of block in the set of greyscale images. 
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10.  Conclusions 
 
In this thesis we have studied various modelling schemes and dictionary-based methods for map 
images compression. The details of existing methods were considered and new semi-adaptive 
method and modified shrinking method, which are based on the LZW compression, were 
introduced. Also the image tiling (block-segmentation) for dictionary-based methods was 
implemented. The proposed methods as well as GIF, PNG, TIFF and JBIG (for binary images 
only) methods were applied to the set of test images. 
 
The empirical results show us that the decreasing of the block size will result in a rapid increase 
of the resulting code size for the pure adaptive methods such as the modified shrinking method. 
Also these results show us that for the semi-adaptive method the decrease of the block size has 
no affection to the resulting code size at all. So from the experiments it follows that on average 
an increase in the number of blocks by four times leads to an increase the compressed file size by 
2-9 % only. 
 
From all compression ratios, which were showed us by the proposed methods for the set of 
binary images, JBIG has the best one, TIFF G4 took the second place, adaptive and semi-
adaptive methods have the same performance as GIF and PNG compressors. And for the set of 
greyscale image, they showed us the comparable performance with GIF, PNG and TIFF 
compressors.  
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APPENDIX: THE TEST SETS. 
 

A. The test images for the semi-adaptive LZW compressor, 

 These images were mentioned in the paragraph 8.4. All images are maps. The map’s size is 
written below each image. 

 

   
                Vantaa.pgm   zzz.pbm   v11.pgm 
     800×800 pixels         500×500 pixels          100×100 pixels 

 

           
      suomi2-q.pgm 
     400×600 pixels 
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B. Binary maps 

These binary images were used in the set of experiments with the semi-adaptive LZW method. 
All of them are maps with size 1000×1000 pixels. 
 

    
            Image 1       Image 2       Image 3       Image 4 
 

        
      Image 5 
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C. Greyscale maps 

As the binary images, these greyscale maps also were used in the set of experiments with the 
semi-adaptive LZW method. All of them are maps with size 1024×1024 pixels. 
 

                   
    Image 6          Image 7  
 
 

                   
     Image 8         Image 9 


