
                                                            
 
 
 
 
 
 
 
 
 
 

Clustering Based on Principal Curve 
 

Ioan Cleju 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Master Thesis 
University of Joensuu 
30.12.2004 
 
 



Abstract 
The topic of the thesis is clustering algorithms that use one-dimensional projections of 
the data space. Clustering is a very intensive research topic due to its numerous 
applications and because it is a difficult problem to solve. The high dimensionality and 
the lack of ordering of the data have motivated research in projection-based methods for 
dimensionality reduction and their application to clustering. 

We make a short review of the main dimensionality reductions techniques, both linear 
and non-linear, with more emphasis on the principal curves. Then we investigate possible 
use of projections on the principal axes and principal curves for clustering algorithms. To 
our knowledge, this approach on clustering has not been applied before. The principal 
curve offers more advantages by the fact that it can incorporate non-linear correlations of 
data. We compare the use of the principal curve to the use of the first principal 
component, a widely used linear one-dimensional subspace. 

Based on the algorithm developed for clustering, we introduce a new method for 
partitioning the space in order to create suitable subsets for the principal curve based 
clustering. This provides significantly better results than the methods based on curves, 
and the method is much more robust to the variations of the principal curve parameters. 

In the last part of the thesis, we will focus on other important issues in clustering, such as 
determining the correct number of clusters. We study the projection of the estimated 
probability density function over the principal curve, and on the basis of this, we 
determine the number of clusters by detecting local maxima of the probability density 
function. 

 1



Table of Contents 
ABSTRACT .................................................................................................................................................. 1 

TABLE OF CONTENTS ............................................................................................................................. 2 

1. INTRODUCTION .................................................................................................................................... 3 

1.1. MOTIVATION ....................................................................................................................................... 4 
1.2. PROBLEM DEFINITION ......................................................................................................................... 5 
1.3. CLUSTERING TECHNIQUES................................................................................................................... 6 
1.4. OUTLINE OF THE THESIS ...................................................................................................................... 9 

2. ORDER CONSTRAINED CLUSTERING.......................................................................................... 10 

2.1. DYNAMIC PROGRAMMING TECHNIQUE.............................................................................................. 11 
2.2. OPTIMAL SCALAR QUANTIZATION .................................................................................................... 12 
2.3. OPTIMAL ORDER CONSTRAINED CLUSTERING .................................................................................. 13 

3. PRINCIPAL AXIS BASED CLUSTERING........................................................................................ 16 

3.1. TUNING BY K-MEANS ........................................................................................................................ 18 
3.2. REVISING THE ORDER BY HAMILTONIAN SHORTEST PATH................................................................ 19 
3.3. COMPLEXITY OF THE METHOD .......................................................................................................... 21 

4. LINEAR DIMENSIONALITY REDUCTION .................................................................................... 22 

4.1. PRINCIPAL COMPONENT ANALYSIS ................................................................................................... 22 
4.2. COMPUTING PRINCIPAL COMPONENTS .............................................................................................. 23 
4.3. OTHER LINEAR METHODS ................................................................................................................. 25 

4.3.1. Factor Analysis ......................................................................................................................... 25 
4.3.2. Projection Pursuit ..................................................................................................................... 25 
4.3.3. Independent Component Analysis ............................................................................................. 25 

5. NONLINEAR DIMENSIONALITY REDUCTION ........................................................................... 27 

5.1. PRINCIPAL CURVES ........................................................................................................................... 27 
5.2. OTHER METHODS .............................................................................................................................. 30 
5.3. PRINCIPAL CURVE WITH LENGTH CONSTRAINT................................................................................. 31 

6. CLUSTERING BASED ON PRINCIPAL CURVE ............................................................................ 35 

6.1. CHOICE OF THE PARAMETERS............................................................................................................ 37 
6.2. IMPROVEMENT BY K-MEANS ............................................................................................................. 37 
6.3. HIERARCHICAL CLUSTERING ON PRINCIPAL CURVE.......................................................................... 38 
6.4. OPTIMAL COMBINATION OF CODEBOOKS .......................................................................................... 41 
6.5. COMPLEXITY OF THE METHOD .......................................................................................................... 44 

7. ESTIMATING THE NUMBER OF CLUSTERS................................................................................ 46 

7.1. KERNEL METHOD .............................................................................................................................. 46 
7.2. PARTITIONING BASED ON PDF OVER PRINCIPAL CURVE................................................................... 49 
7.3. COMPLEXITY OF THE METHOD .......................................................................................................... 51 

8. EXPERIMENTS..................................................................................................................................... 52 

8.1. CLUSTERING BASED ON PRINCIPAL AXIS .......................................................................................... 53 
8.2. CLUSTERING BASED ON PRINCIPAL CURVE ....................................................................................... 54 
8.3. HIERARCHICAL CLUSTERING BASED ON PRINCIPAL CURVE.............................................................. 54 
8.4. COMPARISON OF THE ALGORITHMS................................................................................................... 56 

9. CONCLUSIONS..................................................................................................................................... 58 

REFERENCES ........................................................................................................................................... 59 

 2



1. Introduction 
Clustering is a general classification procedure that divides a set of objects in different 
classes. Objects from the same class should be similar to each other. There is no initial 
indication about the classes or about their number but only the properties of the objects in 
the set. Most clustering applications are related to data mining, data compression and 
pattern matching applications used in the fields of computer science, engineering or 
bioinformatics. Due to the general classification purpose of clustering analysis, it is also 
used for data analysis in sciences like psychology, medicine, sociology or economy. 

The objects are usually characterized by their feature vector, so that the objects can be 
considered as points in a multi-dimensional space. A clustering algorithm aims at finding 
groupings in the data space so that points similar to each other belong to the same group. 
The object classes are derived only by analyzing the data space. The classification is 
unsupervised. Opposed to it, there is another major classification approach known as 
supervised classification. In supervised classification, we are provided with a training set 
of data that is already classified; based on it, we have to find classifying rules and apply 
them for new data. 

A typical clustering activity includes five steps [JD1988]: 

(1) pattern representation (possibly including feature extraction), 
(2) definition of a pattern proximity distance, 
(3) actual clustering (grouping), 
(4) data abstraction, 
(5) assessment of output. 

The last two steps are not necessary, and their completion depends on the actual purpose 
of the clustering task. Depending on the algorithm, there might be a feedback among the 
steps. From step (3), the algorithm might return to one of the first steps.  

Pattern representation refers to the number of clusters, patterns and features. Some of 
them might be provided to the algorithm by assumptions or by a previous pre-processing 
step. Depending on this, the algorithm might include estimation of the number of clusters, 
feature extraction or feature selection. Pattern proximity usually refers to defining a 
distance relation that can be evaluated for each pair of patterns. The distance between two 
patterns actually reflects the dissimilarity between the patterns, but it is by far more used 
than a similarity relation.  

Grouping the data is the core process of clustering. The algorithms typically optimize a 
clustering criterion that characterizes things like the variance of data within one cluster. 
In the data abstraction step, a simple and compact representation of each cluster is 
extracted. It is usually represented by finding a good representative of that particular 
cluster, such as centroid. In the last step, known as cluster validity, the optimality of the 
solution is studied. 

Despite the long time the clustering methods have been studied, research on this topic is 
still intensive. The variety of data spaces implies that no generally designed algorithm 
can best suit all applications. For each application, a quality measure for the algorithm is 
stated, and usually a metric is defined on the data space. A criterion for the separation of 
the clusters has to be defined, and it is usually dependent on the application. The 

 3



goodness of the solution can be considered only in relation to the quality measure 
criterion. In Figure 1.1, different shapes of clusters can be observed. 

Classification is also a matter of perception: different people classify the same data set 
differently. Above all, even without considering the problems of finding a metric in the 
space, a measure of quality and the number of clusters in a data set, the clustering 
problem is very difficult (see Section 1.1)[SCH1975]. 

 
Figure 1.1. Labeling data in clusters [JMF1999]. 

1.1. Motivation 
Clustering is a difficult problem. It is related to another widely known problem, vector 
quantization (VQ). The clustering problem tries to organize the data into homogenous 
groups while vector quantization tries to map the data to a reduced discrete space, 
minimizing the representation error. For the clustering problem, minimizing a function 
does not always guarantee that the classes will be correctly found because of the different 
properties of data sets or subsets. Moreover, the number of different classes is generally 
unknown. 

The clustering problem is more general and thus more difficult than VQ problem. VQ 
itself has been proven to be NP-complete [SCH1975]. For an NP-complete problem, 
there are no algorithms that can solve it in polynomial time. This leads to search for 
algorithms that do not necessarily find the optimal solution, but have good performances 
regarding both the quality of solution and the time complexity. 

A slightly different case is the scalar quantization (SQ) problem, which is a one-
dimensional special case of VQ. The most important property of SQ is that there are 
algorithms that can solve it optimally in polynomial time. The difference to VQ is the fact 
that the scalar space is naturally ordered, and it can be proven (see Section 2.2) that the 
optimal clusters form subsequences of the data sequence. Using this supplemental 
information, the algorithms can be designed to find the optimal solution in polynomial 
time. 

 4



Unfortunately, such an order relation does not exist in the multi-dimensional vector 
space. However, a data-dependent ordering of vector space can be constructed artificially, 
and a similar algorithm to the one that solves SQ could also yield to good results for VQ 
and clustering. In this work, we will mainly focus on finding a good order in multi-
dimensional spaces and apply them to clustering. 

The natural order relations for vector space can be given by one-dimensional projections 
of the data. This approach has already been considered for color quantization by using the 
first principal component [W1992]. Good results have been obtained only for simple data 
sets that have the data distribution along the principal axis. Usually, the first principal 
component corresponds to the principal axis of the data. We will study further the 
usability of the first principal component, and then we propose to use the principal curve 
as the one-dimensional projection space. Principal curves can describe the nonlinearities 
of the data better than the principal axis, and it therefore can have better precision in 
approximating it. 

We will discuss possible adjustments to the order given by the one-dimensional 
projections by solving the shortest Hamiltonian path within the data set. We also consider 
using the principal curve for estimating the number of clusters in the data set, by 
constructing the probability density function, projecting it on the curve and detecting its 
local maxima. 

1.2. Problem Definition 
Let us consider a set X={x1,… ,xN}of N data objects. Each object xi is characterized by M 
features xi

1,…, xi
M. A partition P={p1,… ,pN} specifies for each object in X an index for 

the category it belongs to. Each different index of P specifies a different category. The 
categories are called clusters and a cluster ca is defined as the set: 

}|{ apXxc iia ��� .      (1.1) 

Clustering is defined as the set of clusters C={c1,…,cM} such that: 

�
M

i
i Xc

1�

� ,        (1.2) 

jiMjMícc ji ������ ,1,1�� .    (1.3) 

In some applications, it is of interest to assign to each cluster a representative. Thus, we 
define the codebook Q as the set of the representatives for every cluster: Q={q1,…,qM}. 
There exists a mapping from C to Q but not obligatory one from Q to C. 

The quality of a clustering is defined by the objective function f, called criterion function 
or clustering criterion, which gives a real number for every possible partition. The 
clustering criterion specifies the quality of the clustering C for the set X. The clustering 
problem aims to optimize the value of the clustering criterion. 

In this work, we will assume the Euclidean metric and use the mean square error (MSE) 
as the clustering criterion. Considering the notations introduced, the MSE for the set X 
having the partition P and the codebook Q is: 

 5



2

1

1),( �
�

��

N

i
pi i

qx
N

QXf ,      (1.4) 

where *  denotes the Euclidean norm. Notice that the partition P uniquely determines 
the clustering C. 

For the MSE criterion, the goal is to minimize the value of the criterion. A natural choice 
for the codebook is to assign the centroid of the cluster as its representative code vector, 
because it determines the minimal error. By optimizing the MSE criterion, the clusters 
are necessarily Voronoi cells: each data point corresponds to the cluster whose centroid is 
closer to it. Thus, specifying one of P, C or Q uniquely determines the other two. 

While the general problem of clustering considers determining the number of clusters as 
a part of the problem, there is also a simplified approach: K-clustering. The K-clustering 
problem refers to finding a clustering of size K so that the objective function is optimized.  

Except for Section 7, in the rest of the work we will consider the K-clustering problem. 
The clustering criterion will be also referred to as distortion function or just distortion. 
The distortion of clustering is defined as the sum of all squared distances from data points 
to their corresponding code vectors. MSE is the average of the distortion considering the 
number of points. Since the size of a data set is a constant, minimizing the distortion is 
equivalent to minimizing the MSE. 

1.3. Clustering Techniques 
There are many approaches to clustering. The hierarchy in Figure 1.2 presents the main 
clustering techniques. At the top level, we can differentiate two main approaches: 
hierarchical and partitional. Hierarchical algorithms produce a nested series of partitions 
while partitional methods produce one partition [JMF1999]. 

 
Figure 1.2. A taxonomy of clustering approaches, according to [JMF1999]. 

A hierarchical algorithm produces a dendogram (see Figure 1.3), which represents the 
nested groupings of patterns together with the similarity level of the groups. The 

 6



dendogram is then broken at a convenient level. Typically, in the beginning each data 
point is assigned to its own cluster and then the clusters are merged until the whole data 
set will be found inside one cluster. This is known as agglomerative clustering. 
Hierarchical divisive algorithms construct the dendogram top-down. The thing that 
differs among the algorithms is the way the similarity of two clusters is computed. Most 
of the hierarchical algorithms are variants of single link, complete link or minimum 
variance approaches [JMF1999]. 

 

1 

2 

3 

4 

 
Figure 1.3. An example of hierarchical clustering [JMF1999] and the dendogram. 

The most frequently used algorithms are squared error algorithms, e.g. K-means 
[M1967]. The algorithm finds a local minimum of the MSE; the results are highly 
dependent on the initialization. K-means algorithm randomly chooses K initialization 
partitions; then it iterates adjustment of codebook and repartition until codebook remains 
unchanged (see Figure 1.4). Repartitioning step aims at finding an optimal clustering for 
the codebook and codebook adjustment finds the codebook as centroids of the clusters.  

         initialization  1st iteration          2nd iteration   3rd iteration 

    
  4th iteration   5th iteration          6th iteration   local optimum 

    
Figure 1.4. Example of K-means algorithm, for 5 clusters. 

 7



Graph theoretic approaches consider the whole data set as a graph. Edge weights are 
usually assigned as similarity/dissimilarity measures between data points. The most used 
graph theoretic approach considers the minimal spanning tree, and deletes the edges that 
are too expensive [Z1971] (see Figure 1.5). This approach is very similar to the 
hierarchical approach explained earlier. 

 
Figure 1.5. Minimum spanning tree used for clustering [JMF1999]. 

Mixture resolving and mode-seeking approaches assume that the clusters were generated 
according to some unknown distributions. There are methods that try to determine the 
parameters and the number of these distributions. Usually, it is assumed that the 
distributions types are known (e.g. Gaussian). 

Fuzzy clustering assigns to each cluster a fuzzy set of all the patterns, each pattern having 
a probability to belong to one cluster, as shown in Figure 1.6. Artificial neural networks 
are popular for clustering nowadays, especially with Kohonen’s learning vector 
quantization and self-organizing maps. Evolutionary algorithms have also been used: 
genetic algorithms, evolution strategies and evolutionary programming. Among them, 
genetic algorithms offer the best results [F2000]. 

 8



 
Figure 1.6. Illustrative example of fuzzy clustering. 

1.4. Outline of the Thesis 
The rest of the thesis is organized as follows. Section 2 defines order constrained 
clustering, compares it with scalar quantization, and presents an optimal approach to 
solve it by dynamic programming. Section 3 details the clustering algorithm based on 
projection on principal axis as an example of how to use one-dimensional projections for 
clustering.  

Section 4 presents linear dimensionality reduction techniques, emphasizing principal 
component analysis. Section 5 continues the dimensionality reduction techniques by 
presenting non-linear methods, and detailing different definitions for the principal curves. 
Section 6 introduces the proposed algorithm for clustering based on projection on the 
principal curve of the data set. The basic idea is then extended from curves to tree 
structure in order to find a better layout of the data than by using the principal curve. The 
partition is done by using the minimal spanning tree.  

Section 7 considers the estimation of the number of clusters based on the principal curve 
using the probability density function. Section 8 presents experimental results of all the 
studied methods. Conclusions of the thesis are given in Section 9. 

 9



2. Order Constrained Clustering 
It is possible to guide the clustering process if explicit knowledge about the data domain 
properties is known, like specific properties of the clusters or possible correlations among 
the data samples. The supplemental knowledge is usually incorporated in the clustering 
algorithm and the new problem formulation is known as constrained clustering. The 
constraint imposed to the solution limits the solution space, thus lowering the complexity 
of the algorithms. 

Order constrained clustering is a special case of clustering. It assumes that the data set is 
ordered by relations so that the data forms a sequence and the clusters are subsequences. 
Optimal order constrained clustering refers to splitting the sequence in subsequences that 
optimize the clustering criterion. The advantage of this formulation is its reduced time 
complexity of the algorithms. While the unconstrained problem is NP-complete, the order 
constrained formulation can be optimally solved in polynomial time [G1980]. 

The imposed order constraint may have different justifications. The first one is related to 
the application domain. The clusters might be imposed as subsequences of the data 
sequence, for example some events ordered in time. One may want to segment the events 
keeping the time relation, so that the grouped events are consecutive. The second 
constraint type is related to the connection between a general order relation of the data 
space and the clustering criterion. An example is scalar quantization dependency to the 
order of real numbers. Optimal scalar quantization will always obtain clusters as 
subsequences of the set. Finally, the third constraint type is imposed just to reduce the 
complexity of the algorithm. This constraint is data dependent and will not guarantee that 
the optimal constrained clustering solution will be the same as the optimal clustering 
solution. The latter approach will be used in this work. 

In this work, we will reformulate the clustering problem for multi-dimensional vector 
space as an order constrained clustering problem. Unlike scalar quantization, no general 
order in the vector space can be used for order constrained clustering in order to give 
optimal result for the unconstrained problem, as well. Instead, we will generate an order 
that is data dependent and use it as a constraint for the vector data set.  

A simple way to order the set is to use the projections on the principal axis for this task. . 
The first principal component is a linear one-dimensional subspace that maximizes the 
variance of the data and can be considered as the principal axis of the data set. We will 
order the set based on the order on the principal axis. In order to better model the non-
linear correlations in the space, we will prolong the method and use the projections on the 
principal curve [H1989]. Both methods lose accuracy of data representation in the 
projection phase. One way to avoid this is to consider the shortest Hamiltonian path in the 
data. The shortest Hamiltonian path considers minimizing the path between two data 
points that crosses all the data points only once. One difficulty with this approach is that 
this problem is also NP-complete [GJ1979]. In Figure 2.1, we present the ordering 
methods stated before in an intuitive way. 

 

 

 10



 

 Unordered data set               Principal component sequence 

     
                                                  Principal curve sequence            TSP sequence  

     
Figure 2.1. Partitions based on different orders for a two-dimensional data set: principal 

component, principal curve and shortest Hamiltonian path. 

As the sequence is constructed by one of the methods described before, optimal splitting 
to subsequences is similar. It can be optimally solved by dynamic programming in 
polynomial time. This approach will be later detailed, after a short introduction to 
dynamic programming. 

2.1. Dynamic Programming Technique 
The dynamic programming paradigm is widely used for optimization problems. It can be 
applied to any problem if the solution is obtained after a sequence of decisions. At each 
step, the taken decision optimizes the criterion function. The value of the function from 
the previous step is increased by the cost caused by the current step. This can be written 
in a formal way as a recurrence relation: 

)),(),1((),( qkstepknFoptqnF Qk ���
�

    (2.1) 

For the dynamic programming approach to optimally solve the recurrence relation above, 
the principle of optimality must be satisfied. There are more equivalent formulations for 
this principle, but all of them say that whatever the initial state is, the remaining 
decisions must be optimal with regard to the state following from the first decision. 

Dynamic programming is a bottom-up technique that explicitly solves the sub-instances 
of the problem and stores the partial results, progressively constructing larger 
subsolutions. The optimal partial results are stored in memory. Dynamic programming 
can be efficiently used only when the number of partial results is not prohibitive. 

 11



2.2. Optimal Scalar Quantization 
Scalar quantization is the special case of clustering on one-dimensional space that 
considers MSE as the optimization criterion. In this case, it can be easily proven that 
optimal clusters must be sub-sequences of the initial sequence: the MSE criterion implies 
the Voronoi cells as clusters and the concave shape of the clusters. In the one-
dimensional space, the concavity condition determines that the clusters be subsequences 
of the sequenced data set. This fact can be observed in Figure 2.2. 

 
Figure 2.2. Optimal scalar quantization always obtains compact clusters. 

The quantization problem can be reformulated as the K-links shortest path problem. Let 
us consider an oriented weighted graph G = (V, E) , V = (v1,…,vn) that has a sequence 
among the vertexes, and its edges correspond to: 

)()( jijiij vordervorderEvve ���� .    (2.2) 

In other words, there is always a path from a node to all the other nodes that appear later 
in the sequence. The K-links shortest path problem consists of finding the path from the 
v1 to vn consisting of K links that minimizes the total weight. 

 
Figure 2.3. K-links shortest path problem for K = 3; the edges that form the solution are 

shown above the sequence. 

In order to solve scalar quantization problem by the K-links shortest path, the weights of 
the graph are computed accordingly. Each point in the data set has a corresponding node 
in the graph. The order relation among the real data points is used to order the nodes, as 
well. The weight of an edge eij that connects the nodes vi and vj is equal to the distortion 

 12



of a cluster that contains all the nodes between vi and vj. By minimizing the K-links path, 
the algorithm finds the optimal quantizer having a codebook with dimension K.  

The actual algorithm for the K-links shortest path problem is detailed in Figure 2.4. The 
desired number of clusters is K and the size of the data set is N. The algorithm uses the 
tables D[K,N] for storing the partial costs of the paths and TB[K,N] to trace back the 
optimal solution. 

 

PROCEDURE DP_KLSP 

Parameters: G, K 
Output: Q = {q1,…,qK} 
Locals: D[K,N], TB[K,N] 

BEGIN 

 FOR i := 1 TO N 
D[1,i] = Weight(1,i); 

 END 

FOR k := 2 TO K 

 FOR i := k+1 TO N-K+k 
 D[k,i] := min { j = k : i / D[k-1,j] + Weight (j+1,i)}; 

 TB[k,i] := arg min { j = k : i / D[k-1,j] + Weight (j+1,i)}; 
 END 

 END 
 limit := N; 

 FOR k:=K TO 2 
 qk := edgeTB[k,limit],limit; 
 limit := TB[k,limit]; 
 END 

 q1 := edge1,limit; 

END-PROCEDURE 

Figure 2.4. Pseudo-code of the K-links shortest path algorithm. 

Usually, the construction of the dynamic programming matrix takes O(KN2) time. 
However, for the scalar quantization it has been shown [W1991, SJ1993] that the 
complexity of O(KN) can be achieved. 

2.3. Optimal Order Constrained Clustering  
The K-links shortest path algorithm can be used to any ordered data set, not necessarily to 
one-dimensional sets. Once the data set has been sequenced, the order constrained 
clustering algorithm can be formulated using the K-links shortest path. The partial 
distortions are computed in the vector space. It is very important that we use the one-
dimensional space only to generate the sequence. The distortion is computed on the 
original multi-dimensional space. This is actually natural, because we aim to optimize the 
MSE criterion on the vector-space and not on the projection space. Depending on the 
projection used, the adjacency of the points in the vector space might present important 

 13



differences to the adjacency in the projection space. Thus, the partial distortions 
computed on the projection space do not probably reflect the correspondent partial 
distortions on the vector space.  

The algorithm for optimal order constrained clustering is presented in Figure 2.5. The 
input for the algorithm consists in the data set X and the size of the codebook K, and the 
output is the generated codebook. 

 

PROCEDURE Order_Constrained_Cluster 
Parameters: X, K 
Output: Q = {q1,…,qK} 

BEGIN 

 ORDER_DATASET (X); 
 Q := DP_CLUSTER (X, K); 

END-PROCEDURE 

Figure 2.5. Pseudo-code of order constrained clustering algorithm. 

Order constrained clustering has been studied [G1980], and polynomial time algorithms 
have been given to solve it optimally. The algorithm is based on the following recursion: 

)1)(,1(),1( Niisit ���        (2.3) 

� � )2;(:),1(),1(min),( 11 NkNjkjisiktjkt jik �������� ���� , (2.4) 

where s(i1,i2) is the minimum distortion considering one cluster between i1 and i2, and t is 
the dynamic programming matrix; t(k,j) keeps the total minimum distortion between 1 
and j, using k clusters. Assuming that there are K clusters, t(K,N) contains the optimal 
distortion value for the whole set. This formulation is equivalent to the K-links shortest 
path formulation for order constrained clustering. 

Let us consider the ordered data set X of size N. The algorithm in Figure 2.6 will find the 
optimal codebook of size K in presence of the order constraint. The algorithm uses the 
tables D[K,N] for storing the partial distortions (the matrix t from the recursive 
formulation) and TB[K,N] to trace back the optimal solution. The algorithm is practically 
the same as the one that solves the K-links shortest path, and the difference comes from 
the fact that the weights are now computed on the basis of distortion, instead of being  
contained in the graph. Notice that the implementation of the for-loops of the algorithm 
can be optimized [FKSC2000]; we give the form in Figure 2.6 because it is easier to be 
understood. 

 14



One should notice that the optimal order constrained vector quantization does not give 
the optimal result for the vector quantization problem. The optimality of the result 
strongly depends only on the quality of the order. 

 

PROCEDURE DP_Cluster 
Parameters: X, K, N=|X| 
Output: Q = {q1,…,qK} 
Locals: D[K,N], TB[K,N] 

BEGIN 

 FOR i := 1 TO N 
D[1,i] = Distortion (1,i); 

END 

 FOR k := 2 TO K 

FOR i := k+1 TO N-K+k 
D[k,i] := min { j = k:i / D[k-1,j] + Distortion (j+1,i)}; 
TB[k,i] := arg min { j = k:i / D[k-1,j] + Distortion (j+1,i)}; 

END 
 END 
 limit := N; 

 FOR k:=K TO 2 
qk := Centroid (TB[k,limit],limit); 
limit := TB[k,limit]; 

 END 
 q1 := Centroid (1, limit); 

END-PROCEDURE 

Figure 2.6. Pseudo-code of DP-based order constrained clustering algorithm. 

 15



3. Principal Axis Based Clustering 
In this section, we study optimal order constrained clustering using the principal axis to 
sequence the data set. The order will be given by the order of the projections. The first 
principal component is the one-dimensional direction of the data set that maximizes the 
variance of the data and can be considered as the principal axis of the data set. This is the 
one-dimensional linear projection that is assumed to contain the most information. 
Details about how the first principal component is calculated will be given in Section 4. 

The algorithm consists of three main steps (see Figure 3.1):  

(1) computation of the first principal component as the principal axis, 
(2) projection of data set on the principal  axis and ordering the set, and  
(3) optimal clustering for constrained data set. 

We will refer to this as principal axis based clustering (PAC) algorithm. Keeping the 
same notations as in the previous sections, the pseudo-code of the algorithm is given in 
Figure 3.1, and the process of the algorithm is illustrated in Figure 3.2. 

 

PROCEDURE PAC 

Parameters: X, K 
Output: Q = {q1,…,qK} 
Locals: Principal_Axis 

BEGIN 

 Principal_Axis := Make_Principal_Component (X); 
 Order_Data_Set (X, N, Principal_Axis); 
 Q := DP_Cluster (X, K, N); 

END-PROCEDURE 

Figure 3.1: Pseudo-code of the principal axis based clustering (PAC). 

The quality of the clustering is determined by the ability of the principal axis to fit the 
data. It has been observed [W1992] that the colors in a real image are distributed along 
one direction. Indeed this is true; the channels of colors are linearly correlated so that the 
data set is concentrated along the first diagonal. This special type of distribution of the 
data set makes it natural to approximate the real data distribution by the principal axis.  

The author observes that the splitting strategy used by many algorithms (e.g. median cut) 
could be optimized for the vector sets that reveal this property. Some hierarchical 
methods partition the data space cutting it in two sets, then recursively cutting the new 
sets. For color spaces the first cuts are normal to the principal axis. The proposed solution 
[W1992] to optimize these cuts by considering a dynamic programming procedure that 
would optimally split the data space in more sets, with the partition (hyper) planes normal 
to the principal axis. This quantizer obtained by optimally splitting the principal 
component is named optimal principal quantizer [W1992]. 

 16



Step 1: Compute the principal axis Step 2: Project and order 

   
Step 3:Cluster along the axis and the centroids  Step 4: Partition the data set according to the centroids 

   
Figure 3.2. Clustering example using the principal axis. 

We have used this method for clustering of general data sets. The results are good if the 
data sets are simple. This is actually an expected result because too complicated data 
cannot be modeled by the principal axis. The method performs well as long as the 
projections of the clusters do not overlap too much. 

Along the principal axis, the dispersion of the clusters is good, but along the other 
dimensions the dispersion is too small. The reason is that the clusters that appear close to 
each other on the principal axis can be actually quite far from each other. Thus, data 
elements that are adjacent in the order relation are close on the principal axis, but they 
might be far on other linear dimensions, see Figure 3.3. 

codebook size 2                codebook size 4              codebook size 6        codebook size 8 

    
Figure 3.3. Real image data set: the codebook is along the principal axis. 

 17



3.1. Tuning by K-means 
Next, we consider some possible improvements to the method presented, keeping the 
main approach unchanged. K-means tuning is a general method used to improve 
clustering results by finding a local minimum via local changes. 

As the results of principal axis clustering are not very good as such, K-means tuning 
becomes almost compulsory. The only difference to the core algorithm is the addition of 
K-means step in the end. The pseudo-code is shown in Figure 3.4. 

 

PROCEDURE PAC_Kmeas 
Parameters: X, K 
Output: Q = {q1,…,qK} 
Locals: Principal_Axis 

BEGIN 

 Principal_Axis := Make_Principal_Component (X); 
 Order_Dataset (X, N, Principal_Axis); 
 Q := DP_Cluster (X, K, N); 
 Q := Kmeans (X, Q); 

END-PROCEDURE 

Figure 3.4. Clustering on the principal axis, followed by K-means. 

As it is seen in the examples from Figure 3.5, the improvements are considerable. If the 
data varies significantly more along the principal axis direction than along other 
directions, principal axis based clustering can be successfully used as a method of 
initialization for K-means. The method fails when the data presents variations in more 
orthogonal dimensions. 

 18



  

  
Figure 3.5. Results of the K-means initialized by principal axis clustering; initial results 

of principal axis based clustering (on left), and iterated by K-means (on right). 

3.2. Revising the Order by Hamiltonian Shortest Path 
We also consider a new idea of revising the sequence that was generated using the 
projections on the principal axis. Since the dynamic programming guarantees the 
optimality of the result according to the sequence, the quality of the result highly depends 
on the order in the sequence. 

The quality of the order depends on how well the spatial relationship of the data points is 
preserved during the projection from higher dimensional space. Unfortunately, the 
projection on the principal axis can introduce great distortion in some cases: the 
adjacency of points on the projection line does not necessarily correspond to the 
adjacency of data points in the original space. Therefore, we refine the sequence order to 
overcome this problem. 

We aim at shortening the length of the path from the first element to the last one 
according to the order by considering the Traveling Salesman Problem (TSP). However, 
this is also known to be an NP-complete problem, so we can only approximate the 
shortest path. We will shorten the length of the path sequence by local optimizations and 
use the new order of the path further on the clustering procedure. 

 19



We consider the sequence given by projections as the first approximation of the TSP and 
then we improve it. We consider short subsequences for which we can easily find the 
shortest sequence. The algorithm is iterative, and at each step we increase the 
subsequence size. As the subsequences become larger, we do not reorder individual data 
points, because the running time would become prohibitive. Instead, we reduce the 
precision and move the location for whole groups of data points instead of individual data 
points. 

The difference to the basic clustering algorithm along the principal axis is the addition of 
the new step to modify the order, see Figure 3.6. The algorithm will be also referred to as 
PCA_TSP. The results show significant improvements in terms of minimizing the MSE, 
and the difference can be visually seen as well in Figure 3.7. However, even though the 
modified algorithm provides a much better order of the data points, the global settlement 
does not improve when the clusters are fine-tuned by K-means. In fact, the results are 
usually even worse. The reason is that clustering along the principal axis assures a good 
dispersion of clusters along this direction. This advantage will probably disappear as the 
dimensionality of the data set increases, or the variance of data along directions normal to 
the principal axis becomes higher. 

If the clusters are clearly separable, the TSP path sequence might contain each cluster as 
subsequence. This does not happen if the clusters are overlapping; in this case, it is 
possible that the path would go through the same cluster more times. Therefore, it seems 
that the best order should be flexible enough to capture the global layout of the clusters 
but not too detailed, in order to prevent the path jumping between clusters, or going 
through the same cluster several times. 

 

PROCEDURE PAC_TSP 

Parameters: X, K 
Output: Q = {q1,…,qK} 
Locals: Principal_Axis 

BEGIN 

 Principal_Axis := Make_Principal_Component(X); 
 Order_Dataset (X, N, Principal_Axis); 
 Tune_Order_TSP (X); 
 Q := DP_Cluster (X, K, N); 

END-PROCEDURE 

Figure 3.6. TSP tuned clustering on principal axis (PCA_TSP). 

 20



  

  
Figure 3.7.  Original results of PCA_TSP (on left), and tuned by the K-means (on right). 

3.3. Complexity of the Method 
The algorithm contains several steps: principal axis computation, ordering of the 
projected points, clustering in the one-dimensional space, and possible fine-tuning by the 
K-means. As the first principal component is considered the principal axis, it is 
determined by the power method [D1997], which will be detailed in Section 4. The 
complexity of the method is linear, but the convergence speed depends on the distribution 
of the data. For simplicity, we approximate it here by O(N). 

The next step consists of computing the projections and forming the sequence. The 
projection part takes linear time and the sorting of the projections takes O(NlogN) time. 
The most time consuming part of the algorithm is the dynamic programming, having the 
complexity of O(KN2). This also gives the overall complexity of the algorithm as O(KN2). 

If fast matrix search [W1991] is applied, the complexity of the dynamic programming 
part will be reduced to O(KN). In this case, the complexity of the algorithm will be 
O(NK+NlogN)). Depending on the values of K and N, the bottleneck of the algorithm is 
either the sorting part executed while sequencing or the dynamic programming. 
 

 21



4. Linear Dimensionality Reduction 
In the previous section, we have shown the clustering method based on the projections on 
the principal axis, and we have considered the first principal component as the principal 
axis. The same basic algorithm can be applied using the projections on any one-
dimensional subspace. We will present in more details the principal component analysis 
and introduce other linear dimension reduction techniques. 

The goal of dimensionality reduction is a better and more compact characterization of the 
data, discarding unimportant features. The variability of the data features can usually be 
modeled by smaller number of variables than it originally has. It can be stated that the 
data has less degrees of freedom than dimensions [G2002]. 

The dimensionality reduction also helps in the curse of dimensionality [B1961]. The 
curse of dimensionality refers to the exponential growth of the hyper-volume as a 
function of the dimensionality [B1961]. When applied to hyper-dimensional spaces, 
clustering algorithms suffer from the fact that the size of the data set is too small 
compared to the volume of the space. For this purpose, dimensionality reduction is very 
helpful, because practically the number of training data samples remains the same but the 
volume of the space reduces. 

Formally, having an N-dimensional random variable x = (x1,…,xN), dimensionality 
reduction tries to find a new representation for it: y = (y1,…,yP), P<N, according to a 
criterion. The criterion is the one that defines in what sense the properties of the original 
N-dimensional space will modify in the new P-dimensional space. For the purpose of this 
work, the new representation has one dimension, so P = 1. 

4.1. Principal Component Analysis 
Principal Component Analysis (PCA) [JW1992] is the most used method for 
dimensionality reduction. It is a linear transformation that keeps the dimensionality of the 
space. However, the new axes are ordered related to the variance of the data on them. 
Usually, more information is contained in the features that have bigger variance. In this 
way, we can assume that the first components (axes) contain the largest amount of 
information. 

For the random variable x = (x1,…,xN)T let us consider mx = E{x} as its mean value. The 
covariance matrix is defined as Cx = {(x-mx)(x-mx)T}. The elements cij of the covariance 
matrix Cx correspond to the covariance between variables xi and xj, and particularly cii is 
the variance of variable xi. The covariance between two random variables a and b is 

1

))((
),cov( 1

�

��

�

�
�

N

bbaa
ba

n

i
ii

,     (4.1) 

where N is the number of variables. The covariance matrix is always symmetrical, by 
definition. If two variables are uncorrelated, the value of their correlation is zero. 

The aim of PCA is to create such a transformation in the space so that the new variables 
are uncorrelated. For the covariance matrix (always a symmetric matrix), an orthogonal 

 22



basis can be created by finding the corresponding eigenvalues and eigenvectors. 
Mathematically, the equation that needs to be solved is 

NieeC iiix ,...,1, �� � ,       (4.2) 

where ei are the eigenvectors and λi are the corresponding eigenvalues. Let us assume, for 
simplicity, that the values λi of the eigenvalues are distinct. The eigenvalues and 
eigenvectors can be found by solving the equation 

0�� IC ix � ,       (4.3) 

where I is the identity matrix, and ||*|| is the determinant operator. In practice, it is 
preferable to use numerical methods to solve this equation as it will be explained in 
Section 4.2. The eigenvectors are ordered according to the values of the eigenvalues, and 
the created orthogonal basis has the largest variations of data on the first direction. 

 
Figure 4.1. The axes corresponding to the eigenvectors. 

Zero covariance does not determine the independence of the variables, so although PCA 
obtains variables with zero covariance, the variables are not necessarily independent.  

4.2. Computing Principal Components 
For clustering, we only need the first principal component. It corresponds to the largest 
eigenvalue, and the variance of the data along this direction is maximal. Eigenvalues are 
the solutions (in λ) or the equation: 

,0)det( ���� IxC �        (4.4) 

where I is the identity matrix, and C is the covariance matrix. The equation above is 
equivalent to solving an D-degree polynomial, where D is the number of dimensions in 
the space. Each value of λ has a corresponding eigenvector. If we determine the values of 
λ, then the eigenvectors are trivial to obtain. 

 23



Generally, the solutions for the equation above are not determined by solving the 
corresponding polynomial because a small error on a coefficient from the polynomial 
determines a large error in the solution. Instead, numerical methods are preferred. 

There are other methods for solving the equation (4.4), as well. Since for our proposed 
clustering method we only need the first component, we have chosen the simplest 
method: the power method [D1997]. The algorithm converges only if the largest 
eigenvalue is strictly larger than the next one:  

1�� DD �� ,        (4.5) 

where λD and λD-1 are the first two eigenvalues. The procedure is based on the recursion: 
)()()1( / kkk xCxCx ���

� ,      (4.6) 

which successively approximates the eigenvector corresponding to the largest eigenvalue. 
In each iteration, the inequality  

�� ���
� )()1( kk xx        (4.7) 

is tested. If ε is smaller than an imposed maximum value, the eigenvector is found as x(k). 

The pseudo-code for the power method is shown in Figure 4.2. The parameters for the 
method are the matrix C, the tolerance error ε and the maximum number of iterations 
It_Max. If the solution is not found within the maximum number of iterations allowed, 
then the algorithm could not converge quickly enough. Notice that other implementations 
of principal component are possible [D1997]. 

 
PROCEDURE Make_Principal_Component 
Parameters: C, ε 
Output: v, λ 
Locals: n := dimension(C), x(k), λ 

BEGIN 

 choose x(0) in Rn, |x(0)| = 1; 

 FOR k :=0 TO It_Max 
  x(k+1)=C x(k); 
  f(λ) = min λ { f(λ) / f(λ) = |x(k+1) - λ x(k)| } ; 

  IF f(λ) < ε 
   v = x(k+1); 
   λ := arg min λ { f(λ) / f(λ) = |x(k+1) - λ x(k)| } ; 
   return; 
  END 
 END 
 v = x(k+1); 
 λ := arg min λ { f(λ) / f(λ) = |x(k+1) - λ x(k)| } ; 
 return ; 

END-PROCEDURE 

Figure 4.2. First principal component computation by power method. 

 24



4.3. Other Linear Methods 
Principal component analysis is not the only linear method used for dimensionality 
reduction. For our algorithm, we have used the first principal component as the one-
dimensional subspace to map the data. Next, we will describe other linear methods that 
are currently used in cluster analysis and dimensionality reduction. 

4.3.1. Factor Analysis 
Factor Analysis (FA) is related to PCA in a sense that both of them are intended for 
second-order (Gaussian) models. It assumes the following model for data [H1999]: 

hAsx �� ,        (4.8) 
where x is the D-dimensional observed random variable, s is the unobserved vector of 
latent variables, A is a constant D � M matrix and h is the noise. All the variables in s and 
h are considered Gaussian. It is also assumed that the dimensionality of s is lower that the 
dimensionality of x, and this is the basis for dimensionality reduction. 

Most of the methods for solving the equation (4.8) are derived from PCA transformation. 
However, there is one important difference: the equation does not define the factors 
uniquely, but upon a rotation. Therefore, it is conventional to search the rotation of the 
factors for interesting properties [H1999]. 

4.3.2. Projection Pursuit 
Projection pursuit [F1987, FT1974] is another linear transformation method, which can 
incorporate information higher than second order. It can be used for non-Gaussian data 
sets as well. Projection pursuit is defined to be the search for interesting structured 
projections. 

Given a projection index that defines the interestingness of a direction, this method looks 
for directions that optimize the index. In case the projection index is defined by 
maximizing the second-order variance, then the same result as PCA is obtained. The 
Gaussian and uniform distributions are considered the least interesting, so other 
distribution functions will be searched for. 

This method specifies two things [RMH2004]: 

(1) an index I(α) that measures the interestingness of the projection α, 
(2) an algorithm that varies the projection direction to find optimal projections. 

A common high order projection index is the negative Shannon entropy. It is defined: 

�� dxxfxfxQ ))(log()()( ,      (4.9) 
where x is a random variable and f(x) is its probability density function (pdf). Since the 
Gaussian distribution minimizes this measure, a projection pursuit algorithm will try to 
maximize it. 

4.3.3. Independent Component Analysis 
As opposed to the PCA method which searches for orthogonal subspaces to maximize the 
variance, Independent Component Analysis (ICA) looks for linear independent 

 25



projections, but not necessary orthogonal. Considering N variables x1,…,xN, they are 
mutually independent (in statistical sense) if their density function can be factorized: 

)(...)(),...,( 11 nn xfxfxxf ���       (4.10) 

Statistical independence must be clearly distinguished by null correlation (see PCA), 
which is defined by: 

jixExExxE jiji ��� ),()(),(       (4.11) 

The property of statistical independence is stronger that non correlation, and for any 
function g1, g2, if xi, xj are independent [P1991]: 

))(())(())()(( 2121 jiji xgExgExgxgE �     (4.12) 
There are at least three definitions to linear ICA [H1999], and here is the most general 
definition [H1999]: ICA of the random vector x consists of finding a linear 
transformation  so that the components sWxs � i are as independent as possible, in the 
sense of maximizing some function F(s1,…,sn) that measures the statistical independence. 

This definition is general but vague, while the other definitions include assumptions of 
the data. In this work, we introduce some basic notions and the reader can find more 
detailed information in [H1999]. 

 
Figure 4.3. Data suitable for ICA learning [TGPL2004]. 

 26



5. Nonlinear Dimensionality Reduction 
Although studied and used intensively in various applications, the linear projection fails 
when the correlations of the data is highly non-linear. In this case, non-linear methods 
can better capture the model in the data. However, it is more difficult to find an 
appropriate projection because the danger of over-fitting the model, which have happened 
also  when we have used the Hamiltonian shortest path in Section 3.2. In literature, non-
linear methods are therefore less frequently applied than the linear ones. 

The methods that have been presented for linear dimensionality reduction in Section 4 
have also non-linear variants, e.g. non-linear PCA, and non-linear ICA, but methods 
based on other non-linear transformations exist as well. We will focus especially on 
methods known as principal curves. 

5.1. Principal Curves 
The principal curve has been introduced as a straightforward generalization of principal 
components [H1989]. The initial approach on principal curves defines them as smooth 
one-dimensional curves that pass through the “middle” of multi-dimensional data set in 
RD [H1989] (see Figure 5.1). We will refer to this curve as HS principal curve. The HS 
curve aims at modeling the data that was generated according to the model: 

iii efx �� )(� ,        (5.1) 

where λi is a M-dimensional vector, f is a vector of D functions and ei is the noise. As the 
principal curve is one-dimensional, M is equal to 1. 

The intuitive definition of the principal curve can be formally stated: Suppose X is an D-
dimensional random vector with continuous probability density h(x), G the class of 
differentiable one-dimensional curves in RD parameterized by λ and λ belongs to Λf for 
each f in G. For each λ and for each f in G, the projection index is defined as: 

))}((inf)(:{max)(,: ����� �� fxfxxR ff
D

f ������  (5.2) 

Principal curves are defined to be those curves of G that are self-consistent. A curve is 
self-consistent if: 

)())(/( ��� fXXE f �� ,      (5.3) 

for any λ in Λf. An informal definition of self-consistency property is that each point on 
the curve is the average of all points that project over it. The HS curve is defined so that it 
is not allowed to intersect with itself. 

 27



 
Figure 5.1. Each point on the HS principal curve is the average of the points that project 

there [H1989]. 

Next, more approaches will be considered for principal curves. An application for 
modeling the outlines of ice floes in satellite images that uses principal curves was 
developed in [BR1992] (see Figure 5.2). Another definition was given for the principal 
curves, as the curves are closed; the algorithm from HS curve is modified so that, for a 
fixed level of smoothness, the bias is reduced. This is achieved by estimation of error 
residuals in the expectation step of the algorithm. This curve will be referred to as the BR 
curve. 

 
Figure 5.2. On the left, a set of BR curves is shown [BR1992]. On the right,  

the BR curve (continuous line), and HS curve (dashed line). 

In [CG1], an improved variant of the algorithm for principal curves was proposed 
(hereafter the CG curve). The performance of the BR curve can be improved if the curve 

 28



is better initialized. The CG principal curve uses the HS curve as initialization and 
continues with the BR algorithm. 

 
Figure 5.3. Results of HS [H1989] algorithm on left, BR [BR1992] algorithm in the 

center and HS-BR [CG1] algorithm on right. Image is taken from [CG1]. 

The principal curve is used for feature extraction and Principal Curve Classifier is 
introduced. The Principal Curve Classifier builds a principal curve template for each 
class. The Principal Curve Feature Extractor reduces the dimensionality of the space 
replacing K linear dimensions with one non-linear dimension represented by the principal 
curve. The space is split in subspaces based on principal components, and from each 
subspace a principal curve is computed: the first curve is computed from the first K 
components subspace, the second curve from the next K components and so on. Thus, for 
one point, each K linear coordinates can be stored in one value, representing the value of 
the projection on the principal curve.  

Principal curves are defined in [KKLZ2000] as continuous curves of a given maximal 
length, which minimize the expected squared distance to the points of the space randomly 
chosen according to a given distribution. This curve will be referred to as the principal 
curve with length constraint. A practical method for the construction of the curve as a 
heuristic iterative algorithm that approximates it by a polygonal line is given in the 
referred paper. Because this variant of curve is used in our method for clustering, it will 
be detailed later in this section. 

An incremental method to find principal curves is introduced in [VVK2002] (see Figure 
5.4). Line segments are fitted to data using local linear models and then the segments are 
connected to form a polygonal line. The algorithm is similar to K-means iterative 
algorithm, but the centroids are generalized to segments. The set of unconnected 
segments is then transformed into a polygonal line. 

 29



 
Figure 5.4. Polygonal curves [VVK2002]  having different number of segments. 

Instead of considering the total length of the curve as in [KKLZ2000], the method in 
[SK2002] constrains the sum of the angles along the curve (the total turn). Actually, the 
total turn and the total length of the curve are closely related. As it has been shown in 
[KKLZ2000] and will be discussed later in Section 5.3, minimizing the turn indirectly 
implies modification in the length of the curve. The authors also present a theoretical 
algorithm for learning such curves. 

5.2. Other Methods 
Multi-dimensional scaling (MDS) [YH1987] finds a low dimensional representation of a 
higher dimensional data set preserving the proximity relations in the original set. 
Classical MDS considers the values of the (dis)similarity distances while ordinal MDS 
just the relation among them. Usually, the method is used for visualization and the 
dimension of the reduced space is two or three.  

Other methods try to find a continuous map to transform a high-dimensional space into a 
lattice space of a fixed number of dimensions. These methods are sometimes referred to 
as topologically continuous maps; this term is used rather than self-organizing-maps 
(SOM) [F2002], because the latter one might be confused with the particular method 
named Kohonen’s self-organizing-maps (KSOM). 

Kohonen’s self-organizing-maps [K2001] learn in an unsupervised way to map a space to 
a (usually) two-dimensional lattice. The method can be easily extended to a map of 
different dimensionality, also one-dimensional. The map can be seen as a type of neural 
network: a (two-dimensional) array of neurons. During the training, the activation of one 
neuron determines modifications not only to itself but also to its neighbors. This way, 
similar vectors will activate neurons in the same neighborhood. The method is usually 
used for visualization. 

Density networks [M1995] apply Bayesian learning to a data set with known probability 
distribution parameters to model data from the latent variables. A special type with 
density network based on a constrained mixture of Gaussians model, called Generative 
Topographic Mapping (GTM) [BSW1998], uses an Expectation-Maximization (EM) 
algorithm for parameter estimation. The method provides an alternative to KSOM and 

 30



overcomes its limitations, namely no criteria for optimization and no proof of 
convergence. 

5.3. Principal Curve with Length Constraint 
The main property of the principal curves with length constraint [KKLZ2000] is that it 
minimizes the expected squared distance to the curve ∆(f), given the maximal length of 
the curve. For any random vector X with a density function and for any ε>0, there exists a 
smooth curve so that ∆(f)<ε . If the density function covers a space with non-zero hyper-
volume, as the value of ε decreases, the length of the curve increases unlimited towards 
infinite. On the other hand, if the distribution of f is concentrated on a polygonal line, the 
polygonal line itself minimizes ∆(f) to 0, but the polygonal line is not smooth. Due to the 
two reasons above, two important consequences are found in the new definition of the 
curve: the curve is not necessarily smooth and the length is constrained. 

Definition: A curve f* is called a principal curve of length L for X if f* minimizes ∆(f) 
over all curves of length less than or equal to L. 

The authors prove the existence of this curve for any X that has finite second moments. 
For the practical case when the distribution X is not known but only as a data set 
representing values of the random vector X, the authors propose a learning algorithm. 
They prove first that if the points represent a closed convex set, the curve exists and the 
expected squared loss of the empirically optimal polygonal line with K segments (K~N1/3) 
and maximal length L converges, as N → ∞, to the squared loss of the principal curve L 
at a rate O(N-1/3). 

Unfortunately, the authors could not construct the curve according to their learning 
scheme, but they propose a sub-optimal polygonal line algorithm. This method is based 
on theoretical results obtained above, but the algorithm is mainly heuristic. The main 
difference to the theoretical algorithm is that the length L is not provided as a parameter 
but it is optimized by the algorithm. 

The algorithm is iterative, at each step a new polygonal approximation with larger 
number of segments is found. It is initialized with a segment on the first principal 
component as the first approximation for the curve. Every iteration includes a projection 
step, and the segment with the largest number of projected data points is split into two 
equal parts. After splitting, an optimization loop that minimizes a function of error and 
angle is performed for each vertex (see equation 5.4). The algorithm stops when the 
number of segments exceeds a given limit (which will be detailed later, see equation 5.6). 
The pseudo-code of the algorithm is shown in Figure 5.5, and a visual example is 
presented in Figure 5.6. 

 

 31



PROCEDURE Make_Principal_Curve 

Parameters: X 
Output: Principal_Curve 
Locals: k 

BEGIN 

 k := 1; 
 Initialize (Principal_Curve, X); 

 WHILE NOT Stopping_condition (Principal_Curve, X, k) 
k := k + 1; 
Find_segment_to_split (Principal_Curve, X); 
Split_segment (Principal_Curve, X); 

WHILE NOT convergence 
Project (X, Principal_Curve); 
Vertex_optimization (X, Principal_Curve); 

END 
 END 

END-PROCEDURE 

Figure 5.5. Principal curve [KKLZ2000] learning algorithm. 

Data set                    Initialization based on principal component  

  
Intermediate polygonal approximation            Final polygonal approximation 

  
Figure 5.6. The curve is constructed iteratively; it is initialized with the first principal 

component and, at each iteration, the number of segments is increased by 1. 

For the projection step, each point projects on the closest point of the curve (see Figure 
5.7). For finding the projection point, first of all the closest segment is found and then the 
point is projected on the support line of that segment. If the projection point is outside the 
segment, the projection point on the curve is chosen as the closest extremity of the 
segment. This results in a big amount of different points in the space that project on the 
boundaries of the segments. 

 32



 
Figure 5.7. Data set projection over the polygonal line. 

The most complex phase in the algorithm is the vertex optimization process. At the 
optimization process, the length of the curve is indirectly controlled. Each vertex position 
is separately optimized, keeping all the other vertexes fixed. The optimization step 
minimizes a function depending on both squared error and curvature, and it is defined as: 

)(
1

1)(1)( vP
k

v
N

vG NN
�

��� � ,     (5.4) 

where v is the vertex to optimize, N is the number of points, ∆N is the local error, λ is the 
smoothing coefficient, k is the current number of segments and P(v) is the penalty 
function. The local error ∆N considers the distortion of the points that project on the 
vertex and on the adjacent segments; the penalty function P(v) depends on the angle 
between the two segments and the other two angles the segments are adjacent to (more 
details in [KKLZ2000]). Thus, the function G() minimizes is a Lagrangian formulation 
combining the local distortion of the curve and the local curvature. Given the definition 
of the curve, it would appear more normal to introduce the length instead of the 
curvature. The reason why the formulation considers the curvature is that it confers more 
stability in practice. 

The factor λ (smoothing factor) determines the amount of smoothing. One can easily 
notice that if λ is 0, only the error is minimized. In this case, if the stopping criterion 
would be disabled, the curve will become a path in the graph and the total error would be 
0. On the other hand, if λ was very large the curve would be very smooth (at the extreme, 
just one line), but the error would be large. The formulation of λ, heuristically found is 
given as: 

12
1

,
3
1

)( �

�

�� rfkN NkNc�� ,      (5.5) 

where k is the current number of segments, N the number of points in the set, ∆N(fk,N) the 
total distortion of the set, r the radius of the data set and λc a constant coefficient (penalty 
coefficient). 

Another aspect of the algorithm consists in the stopping criterion for the number of 
segments. This was also determined heuristically, and the algorithm stops when k 
exceeds: 

 33



rfNK NkN
2
1

,
3
1

)(
��

�� �        (5.6) 

Increasing the number of segments does not modify further on the shape of the polygonal 
line because as the number of segments increases, the curvature penalty coefficient also 
modifies. This way, although more segments are split, the new vertexes hardly modify 
their positions (see Figure 5.8). 

Regarding the constant λc parameter that controls the smoothing coefficient, 
modifications determine significant changes in the shape of the curve. Its value was 
determined by experiments to 0.13. A bigger value gives a smoother curve (see Figure 
5.8). 

               3 segments approximation              40 segments approximation              80 segments approximation 

 
                  λc = 0.8               λc = 0.1           λc = 0.01 

 
Figure 5.8. The images above show the result when parameterized by the number of 

segments, and the images below when parameterized by the smoothing factor. 

 

 34



6. Clustering Based on Principal Curve  
As the principal axis based clustering did not yield very good results because the 
principal axis is too rigid to model the data, we propose to use the principal curve. The 
principal curve is a projection space that can capture the non-linearity from the data and 
can preserve better the adjacency from the space in the generated order.  

Among the many definitions of the principal curves, we have chosen the principal curve 
with length constraint [KKLZ2000]. The principal curve as it is defined in [KKLZ2000], 
minimizes the distortion of the points to the curve. This assures that the curve is as close 
as possible to the points, and the adjacency is better preserved. This way, the biggest 
drawback for the principal axis clustering algorithm is overcome.  

The clustering algorithm performs the same main steps as the principal axis clustering 
algorithm. First the curve is constructed, and second the data set is projected and ordered. 
The same dynamic programming algorithm for order constrained clustering is applied. 
The pseudo-code for the principal curve based clustering is shown in Figure 6.1 and a 
visual example is shown in Figure 6.2. The algorithm will also be referred to as PCU. 

 

PROCEDURE PCU 

Parameters: X, K 
Output: Q = {q1,…,qK} 
Locals: Principal_Curve 

BEGIN 

 Principal_Curve := Make_Principal_Curve (X); 
 Order_Dataset (X, N, Principal_Curve); 
 Q := DP_Cluster (X, K, N); 

END-PROCEDURE 

Figure 6.1. Clustering on principal curve (PCU). 

After the algorithm is run and the code vectors are obtained, the constraint of the 
sequence order is removed and the optimal partitioning (Voronoi cells) is formed. 
Compared to the principal axis based algorithm, the results are much better. The 
algorithm can be applied to much more complicated data sets and gives good results (see 
Figure 6.3). 

 35



  

 
Figure 6.2. Projection step (up left), partitioning step (up right), and  

Voronoi partitions (bottom). 

  
Figure 6.3. Results of the algorithm for two different data sets. 

 36



6.1. Choice of the Parameters 
Except for the number of clusters, the other parameters for the clustering algorithm are 
used for the curve construction. One parameter influences the stopping criterion (the 
number of segments) and the other one influences the curvature. While the algorithm 
works well for different types of data sets, the quality of the results varies significantly 
with the parameters of the curve. 

For our purpose, the heuristic value proposed by [KKLZ2000] for the stopping criterion 
is good enough. If one considers less run-time for the algorithm, the number of segments 
of the curve can be even reduced. However, if the number of segments is too small, 
clusters will project on the same regions of the curve, overlapping and thus worsening the 
quality of the codebook. 

The penalty coefficient has more influence over clustering (see Figure 6.4). It is desirable 
that the points from one cluster project on only one region of the curve. Longer curves 
make possible for points from one cluster to project on several regions of the curve. On 
the other hand, shorter curves allow different clusters to project on overlapping regions. 
This coefficient must therefore be tuned depending on the data. 

We have tested the influence of the penalty coefficient for different types of data sets, 
real and artificial, presenting or not clear evidence of clusters. 

For data sets that present distinct clusters, the mean squared error as function of penalty 
coefficient has a minimum. The optimum is obtained for lower values of penalty 
coefficient than those found in [KKLZ2000]. The curve used in our proposed algorithm 
should be longer than the original curve that is computed just to summarize the data. As 
the number of clusters increases and the data set is more complicated, the coefficient 
should be even smaller (and correspondingly, the curve longer). Good values for penalty 
coefficient have been found in range 0.01 to 0.08 (see Figure 6.4). Still, if the data set is 
not very complicated, the correct partitions can be found for larger values of the penalty 
coefficient. If the algorithm is used for quantization and the dataset does not reveal clear 
clusters, even values below 0.01 can be used for penalty coefficient. If one knows the 
characteristics of the data set, the coefficient can be set accordingly. Else, an algorithm 
that optimizes the value of the coefficient for optimum error can be applied. 

6.2. Improvement by K-means 
The resulted codebook can be further on optimized by iterating the K-means algorithm. 
The amount of improvement varies with the penalty coefficient used for curve. If the 
curve assures a good mean squared error for the codebook, the codebook is also very 
close to the local optimum and a small number of iterations is needed (see Figure 6.4). 

 

 

 

 

 37



   

  
Figure 6.4. Improvements of error after K-means tuning, depending on the penalty 

coefficient. 

6.3. Hierarchical Clustering on Principal Curve 
Clustering based on principal curve performs well if the data can be modeled by a curve. 
Worse results are observed for more complex data sets, when the penalty parameter for 
the curve needs to be fixed in a narrow range. Moreover, many data sets cannot be 
meaningfully modeled by the principal curve (see Figure 6.5), so that the algorithm 
presented in the previous section cannot obtain good results. 

 
Figure 6.5. The data cannot be modeled by a curve. 

 38



A way to overcome this problem is to split the data space and to apply the algorithm 
hierarchically. We split the data set attempting to create subsets that can be modeled 
better by principal curves. We cluster each subset using the principal curve based 
algorithm, and then we create the codebook of the whole data set using the partial 
codebooks. 

A pre-clustering algorithm followed by minimal spanning tree (MST) computation of the 
result can give a better model of the data. The MST of the codebook is simple to 
construct and has a more regular form than the MST for the whole data set. The MST can 
be split into branches and this way, the whole data set can be partitioned, as in Figure 6.6. 
The goal is to create a subset for each branch that can be modeled easily by the principal 
curve. For this, we will consider the next two rules: 

(1)  As long as a node of the tree has only one descendent, both of them can 
belong to the same branch.  

(2)  If one node has more descendents, they will be considered in different 
branches. 

  

   
Figure 6.6. The data set and the MST formed from the codebook (up left), the 

corresponding subsets (up right) and the principal curves for some of the subsets 
(bottom). 

 39



Initial clustering is performed and the data set is split according to the MST of the initial 
codebook. The tree is traced in a depth-first-search (DFS) manner. The root belongs to 
the first branch. If a node has only one descendent, both the node and its descendent 
belong to the same branch. If a node has more descendents, only one of them belongs to 
the same branch as the parent node. For the rest of the descendents, new branches are 
created. Thus, all the nodes of the tree correspond to some branches. On the other hand, 
each node corresponds to a code vector and to a cluster. The data points that are 
contained in the clusters corresponding to the nodes from one branch are grouped in one 
subset. The algorithm is detailed in Figure 6.7, and an example is shown in Figure 6.6. 

 

PROCEDURE Split_Data_Set 
Parameters: X, MST 
Output: X_set= {X1,…,XM} 
Locals: current_node 

BEGIN 

current_node := Get_Root (MST); 
i := 1; 
Make_New_Subset (Xi); 
Add (X_set, Xi); 
Add_To_Subset (Xi, current_node); 
Mark current_node as visited; 

WHILE MST has unvisited nodes 

IF current_node has one descendent 
current_node := Get_Descendent (MST, current_node); 
Add_To_Subset (Xi, current_node); 
Mark current_node as visited; 

END 

IF current_node has more descendents 
current_node = Get_Next_Descendent (MST, current_node); 

IF current_node is the first descendent  
Add_To_Subset (Xi, current_node); 
Mark current_node as visited; 

ELSE 
i := i + 1; 
Make_New_Subset (Xi); 
Add (X_set, Xi); 
Add_To_Subset (Xi, current_node); 
Mark current_node as visited; 

END 
END 

IF current_node has no descendents 
current_node := Get_Next_Node_DFS (MST); 

END 
END 

END-PROCEDURE 

Figure 6.7. The algorithm that splits the data set based on the MST. 

 40



Each subset is clustered by the principal curve algorithm, and the results are combined to 
form the codebook for the whole data set. A problem is the choice of the codebook size 
for each part of the data set. The principal curve clustering algorithm, as it has been 
defined, solves the K-clustering problem. After the data set has been split, the codebook 
size for each subset has to be decided. We propose to set the codebook size for one subset 
to the number of nodes in the corresponding branch. The general algorithm is presented 
in Figure 6.8, and will be referred as hierarchical principal curve clustering algorithm, or 
HPCU. 

 

PROCEDURE HPCU 

Parameters: X, K 
Output: Q = {q1,…,qK} 
Locals: Initial_Q, MST, X_temp, X_set, Q_temp, K_temp 

BEGIN 

Q := {}; 
Initial_Q := Precluster (X, K); 
MST := Build_MST(Initial_Q); 

X_set := Split_Data_Set (X, MST);FOR EACH subset X_temp of X 
contained in X_set 

 
K_temp := Get_CB_Size (X_temp, Initial_Q); 
Q_temp := Principal_Curve_Cluster(X_temp, K_temp); 
Add (Q, Q_temp); 

END 

END-PROCEDURE 

Figure 6.8. The basic hierarchical clustering using principal curves algorithm. 

6.4. Optimal Combination of Codebooks 
Considering that the curve will better fit the smaller data subsets, and thus the clustering 
will be better, the hierarchical algorithm proposed before will improve the initial solution. 
The drawback of the solution consists in the fact that the solution is improved only 
locally. If the first clustering algorithm did not fit well the number of clusters to each 
subset, although the error will be improved by the hierarchical algorithm, it might be far 
from the optimal solution. We propose a way to overcome this problem, by considering 
multiple codebook sizes for each subset and combine them to get the optimal result.  

Instead of considering just the optimization of the codebook of the local subsets, we will 
consider also the optimization of the codebook sizes. Our solution for this problem is to 
compute more codebooks for each data subset (see Figure 6.9) and combine them to keep 
the codebook size of the whole data set constant, but minimize the total distortion. 
Solving the K-clustering problem by using the principal curve as it was presented in this 
work solves actually all the clustering problems with the number of clusters smaller than 
K, without extra computational cost. Thus, the new approach does not introduce 
considerable computational delay. 

 41



 

 
Figure 6.9. Codebooks of different sizes constructed for the same data set. 

Let us consider the initial data set X and the number of clusters K. After a first cluster and 
split of the data set, the sub-problem will consist of clustering M subsets X1, X2, …,XM. 
We have to find the codebooks Q1, Q2, …, QM, having the corresponding codebook sizes 
K1, K2, … , KM and distortions D1, D2, … , DM, so that the total distortion D is minimum 
and the total codebook size is exactly K: 

MDDD ��� ...1        (6.1) 

        (6.2) MKKK ��� ...1

This is a classical optimization problem and the solution can be found by solving the 
recursion: 

))(),1((min),( mmmk kDkkmDkmD
m

���� ,   (6.3) 

where D(m, k) is the distortion of the first m data subsets having together the codebook 
size k, Dm(km) is the distortion of one codebook of size km for the data subset Xm. The 
optimal distortion for all the subsets Xi of X is D(M,K) and can be found using the 
dynamic programming technique to solve the recursion (6.3).  

Suppose that the initial codebook estimation for X finds the codebooks Q1’, Q2’, …, QM’ 
with codebook sizes K1’, K2’, … , KM’. We consider that the optimal allocation of 
codebook sizes might not be far from the initial allocation, so there is no need to search 
the whole solution space. Let us consider a limit ε, and we will search for the solution 
within the bounds of the formula (6.4). 

iii KK �� 'max�        (6.4) 

We search for codebooks of size from Ki’ - ε to Ki’ + ε for each subset Xi. Computation of 
all this codebooks is easily done by solving (Ki’+ε)-clustering problem by dynamic 
programming.  Optimal re-combination of partial codebooks to obtain the codebook for 
all data set will minimize the total distortion, and the sum of the codebook sizes will be 
constrained to K. The algorithm is presented in Figure 6.10. The codebook re-
combination algorithm receives as parameters a matrix of distortions, containing for each 
of the M subsets the distortions for different codebook sizes. 

 

 42



PROCEDURE DP_Combine 

Parameters: M, ε, K, Q_matrix [M, 2*ε], Dist_matrix [M, 2*ε], Local_K [M]; 
Output: Q = {q1,…,qK}; 
Locals: D[M, K], TB[M, K]; 

BEGIN 

 FOR j := max(1, Local_K[1] – ε) TO min(K, Local_K[1] + ε) 
D[1, j] = Dist_matrix[1 , j+1-max(1, Local_K[1] – ε) ]; 

END 

 FOR i := 2 TO M 
FOR j := 1 TO K 

D[i , i] := min { t = 1 : j-1, D[i-1,t] exists, ε ≥ j-t | 
D[i-1,t] + Dist_matrix[i , j-t]}; 

TB[i , j] := arg min { t = 1 : j-1, D[i-1,t] exists, ε ≥ j-t | 
   D[i-1,t] + Dist_matrix[i , j-t]}; 

END 
 END 
 limit := M; 

 FOR i:=M TO 2 
add (Q, Q_matrix [i, limit – TB[i, limit]); 
limit := TB[i,limit]; 

 END 
 Add (Q, Q_matrix [1, limit] ); 

END-PROCEDURE 

Figure 6.10. DP optimal combination of codebooks. 

To the basic hierarchical algorithms presented in Figure 6.8, we will add a new step that 
optimally combines the codebooks by the algorithm in Figure 6.10. For simplicity, we 
will further refer to the new algorithm as hierarchical clustering using principal curves 
(HPCU). The pseudo-code of the new algorithm is presented in Figure 6.11. For clarity, 
the pseudo-code of the HPCU algorithm does not present in detail all the parameters to 
the function DP_combine.  

 

 43



PROCEDURE HPCU 

Parameters: X, K, ε 
Output: Q = {q1,…,qK} 
Locals: Initial_Q, MST, X_temp, X_set, Q_set, Q_temp, K_temp 

BEGIN 

Q := {}; 
Initial_Q := Precluster (X, K); 
MST := Build_MST(Initial_Q); 
X_set := Split_Data_Set (X, MST); 

FOR EACH subset X_temp of X contained in X_set 
K_temp := Get_CB_Size (X_temp, Initial_Q); 

FOR i := max (0, K_temp - ε) TO min (K, K_temp + ε) 
Q_temp := Principal_Curve_Cluster(X_temp, K_temp); 
Add (Q_set, Q_temp); 

END 

DP_Combine (Q_set, K) 
END 

END-PROCEDURE 

Figure 6.11. The optimized hierarchical clustering using principal curves (HPCU). 

6.5. Complexity of the Method 
The basic principal curve clustering algorithm consists of three parts. In the first part, the 
principal curve is built. Each iteration contains a projection step that has the complexity 
of O(SN), S being the current number of segments of the iteration and N the total number 
of points of the data set. Each step, the number of segments is increased by one and in the 
end, the complexity becomes O(S2N).The stopping criterion which is used considers that 
the final number of segments is proportional to the cube root of N; the final complexity 
becomes O(N5/3). The computational complexity of the principal curve construction 
algorithm can be improved by adding more vertices at one step or by considering a 
smaller number of segments. 

Once the final curve is obtained and the data points are projected on it, they are sorted. 
The sorting procedure takes O(NlogN) time and the dynamic programming approach 
takes O(KN2), K being the codebook dimension. This part of the algorithm is similar to 
the principal axis based clustering. 

The most computational demanding part is the dynamic programming procedure for 
order constrained clustering which gives the overall algorithm complexity as O(KN2). 

The hierarchical principal curve clustering algorithm involves four major steps:  

(1) pre-clustering to K codebook size,  
(2) construction of the MST for codebook and partition of the space, 
(3) clustering along principal curve on each subset, 
(4) optimal construction of the codebook of dimension K for the whole set. 

 44



For the first step, we have chosen to apply the principal curve clustering algorithm. 
However, any other clustering algorithm can be applied. In our case, the complexity of 
this first part is O(KN2).  

There are more methods to construct the MST. We have used Prim’s algorithm. It is a 
greedy algorithm with the complexity O(K3), K being the number of clusters after the first 
quantization. 

Suppose the number of subsets is M, and each subset has Ni elements, . 
One can easily notice that the time complexity for solving all M clustering problems is 
lower than the time complexity for solving the problem for the whole subset. For the 
dynamic programming optimal combination of codebooks, the complexity does not 
depend on N as it is O(KMε).The parameter ε should be anyway lower than K, so that the 
upper bound for this part could be considered O(MK

NNN M ��� ...1

2). 

The overall complexity depends on the clustering method used for pre-clustering. In this 
work, we have used the principal curve based clustering but we did not restrict the 
hierarchical principal curve algorithm to this. Still, excepting the pre-clustering part, the 
complexity of the other three steps is upper bounded by O(KN2). 

 45



7. Estimating the Number of Clusters 
A very important, yet mostly unsolved problem in clustering analysis consists in 
determining the number of clusters. Part of the difficulty of this problem is the fact that 
not all data sets present clusters, and many times the partitions are very subjective. 
Numerous approaches have been considered in this sense and a set of references about 
them can be found in [H1996]. 

The parametric methods assume models for the clusters (e.g. distribution type), so they 
require some assumptions; however, they can give results for a large class of problems. 
On the other hand, the non-parametric models have usually been developed for specific 
applications. 

Clusters are regions with higher density of data points, separated by areas of lower 
density. One can estimate the local density around each data point and form the clusters 
based on this indication. The density around one point can be computed using the 
distances among the data points in the neighborhood. The K-nearest-neighbor (KNN) 
graph is a data structure that can be used for this purpose. However, if the local 
neighborhood is too small, the density structure can be irregular and clusters unidentified. 
On the other hand, if the local neighborhood is too large, clusters can be merged. The 
problem arises when the size of the local neighborhood is chosen. Good results can be 
achieved if the size of the local neighborhood is adaptive. 

Another method for computing the number of clusters is based on the kernel method. 
Having the probability density function (pdf) of the random variable, we could try to find 
clusters in the regions where the random variable is more probable. Since for the most 
data sets the real pdf is not known, it has to be estimated. 

7.1. Kernel Method 
The kernel method [CT2000] is a way to estimate the probability density function from a 
series of observations of a random vector. Considering the random vector X, known by a 
series of N observations xi, the Kernel Density Estimation )(xf

�

 for the density function 
 in the point x is given by: )(xf

��
��

��

�

�

N

i
ih

N

i

i xxK
Nh

xx
K

hN
xf

11
)(1)(1)(

�

,    (7.1) 

where K() denotes the kernel function and h the bandwidth. There are more possibilities 
to choose the kernel function: uniform, Epanechnikov, Gaussian. 

)1(),1(
4
3: 2

�� uIuovEpanechnik ,     (7.2) 

)1(,)1(
16
15: 22

�� uIuQuartic ,     (7.3) 

)1(),1(: �� uIuTriangular ,     (7.4) 

22
1 2

)2(:
u

eGauss
��

�� ,       (7.5) 

 46



)1(,
2
1: �uIUniform .      (7.6) 

From the two parameters required by the kernel method, not necessarily the kernel 
function K() is important, but the bandwidth parameter h. The theoretical support for this 
assumption has been given in [MN1998], by observing that the kernels can be rescaled, 
so that the difference between the two density estimates becomes negligible. 

The bandwidth h, also called the smoothing parameter, controls the degree of smoothing. 
For choosing h, the same problem appears as in the case of computing the local density 
using the KNN graph (and choosing the dimension of local neighborhood): a small value 
will generate functions that exhibit numerous peaks and will look very noisy. A large 
value will wipe out the details of the estimate. The solution is again choosing an adaptive 
bandwidth. 

There are two major categories of kernel estimators: balloon estimators and sample point 
estimators [S1994]. For balloon estimators, a different fixed bandwidth is selected for 
each estimation point x. The estimate at x is the average of identical kernel functions, 
each centered at each data point: 

�
�

�

�

N

i

i
h xh

xx
K

xNh
xf

1
)

)(
(

)(
1)(

�

      (7.7) 

The sample point estimator uses different kernel bandwidths for each data point and 
averages them in the estimation points: 

�
�

�

�

N

i i

i

i
h xh

xx
K

xhN
xf

1

)
)(

(
)(

11)(
�

      (7.8) 

The balloon estimators are easy to use; their biggest drawback is that the obtained pdf 
usually fails to integrate to one (a basic property of the density function). Sample point 
estimators do not have this problem, but they suffer from a phenomenon called non-
locality [TS1992]: the estimate at a point can be strongly affected by data that is far 
away. 

The bandwidth is typically selected on the basis of integrated squared error or mean 
integrated squared error: 

� �� dxxfxffISE hh
2)}()({)(      (7.9) 

� �� dxxfxfEfMISE hh
2)}()({)(      (7.10) 

In the equations 7.9 and 7.10, fh() is the estimated density function and f() is the real 
function. Unfortunately, the function to estimate f() is unknown. Silverman’s rule of 
thumb [S1986] considers f() as a normal distribution, and gives the optimal bandwidth for 
the Gaussian kernel bandwidth: 

���

�

�
�

�

� 4
1

4
1

)
2

4( DD N
D

h ,      (7.11) 

 47



where D is the dimensionality of the space and σ the standard deviation. As the 
distribution of data is further from normal distribution, the equation (7.11) gives worse 
results for the pdf estimate. Adaptive bandwidth selection methods that give local values 
for bandwidths have been developed. 

We assume that the projections of the clusters on the principal curve have normal 
distribution. This is a natural assumption since it has been observed that the distribution 
of the clusters on subspaces tends to be normal. We have developed an iterative 
algorithm that uses Silverman’s rule of thumb to estimate the probability density function 
of projected data set. At each iteration, an approximation for the pdf is computed. The 
first pdf estimation uses the bandwidth given by the rule (7.11) for the whole data set. For 
the next iteration, the space is partitioned according to the pdf: for each local maximum 
of the pdf we consider a partition. Each partition is approximated as Gaussian, and the 
rule of thumb is applied again. For the data set, there will be different bandwidths 
depending on the partition each point belongs. The global density function is estimated 
conform to new bandwidths. The process is iterated until it converges (the pdf does not 
change from one iteration to the next one).  

We do not theoretically prove the convergence of the method but experiments on 
clustered data sets showed that the method converges. We do not restrict the use of this 
algorithm to estimate the bandwidths as we just show that the principal curve can be 
successfully used to determine the number of clusters. 

For the univariate random variable, the algorithm is easy to implement and yields good 
results. Considering X a scalar random variable, Figure 7.1 presents the pseudo-code for 
clustering based on pdf estimation over principal curve. 

 

 48



PROCEDURE PDF_Partition 
Parameters: X 
Output: K, P = {P1,…, PK} 
Locals: pdf, H, local_h, local_partition 

BEGIN 

 local_h := Silverman (X); 

 FOR i := 1 TO |X| 
  H[ i ] = local_h ; 
 END 
 pdf := Compute_pdf (X , H); 

 WHILE PDF does not modify 

  FOR EACH local maximum m of pdf 
   local_partition := partition around m; 
   local_h := Silverman (local_partition); 

   FOR i := 1 TO |X| 
    IF (X[i] belongs to local_partition) 
     H [ i ] = local_h; 
    END 
   END 
  END 
  pdf:= Compute_pdf (X , H); 
 END 
 K := number of local maxima of pdf; 

 FOR EACH local maximum m of pfd 
  i := index of local maximum; 
  Pi := partition around m; 
 END 

END-PROCEDURE 

Figure 7.1. Partitioning univariate data based on PDF. 

7.2. Partitioning Based on PDF over Principal Curve  
As the number of dimensions increases, it is harder to use the pdf estimation methods 
because of the curse of dimensionality problem. However, the algorithms based on pdf 
estimation can be applied after dimensionality reduction. We have adapted the algorithm 
presented in Figure 7.1 for the principal curve subspace. 

There are two possible variants. We can just project the data set on the principal curve 
and use the projections as the one-dimensional case, or may compute the bandwidths in 
the multi-dimensional case and project the multi-dimensional pdf on the principal curve. 
For the former variant, the polygonal approximation of the curve introduces distortions in 
the knots of the curve. The latter version might work better for a low number of 
dimensions and for large enough data sets, but as the number of dimensions increases, the 
results may be worse due to the curse of dimensionality problem. 

 49



The results of the algorithm are good if the projections of clusters on the curve are as 
separate as possible. For that, we split the space in a similar way as in the hierarchical 
principal clustering algorithm presented in the previous section. Each data subset is 
simple enough to be well represented by a principal curve. We can determine the clusters 
for each subset and sum them to obtain the clustering of the whole data set. 

One possible way to get a good view of the multi-dimensional density function on one 
dimension is to project it as shown in Figure 7.2. 

 
Figure 7.2. Projection of pdf over the principal curve. 

To construct the projected pdf estimation on the curve, initially we uniformly sample the 
principal curve. Distances between kernel centers (data points) and the estimation points 
are computed based on their projections on the curve, and the pdf values in the estimation 
points are computed. 

We have used the algorithm in Figure 7.1 with one modification. The bandwidths are 
computed using the Euclidean distances in the multi-dimensional space and the 
Silverman’s rule of thumb for multi-dimensional space. This way, we avoid the errors in 
the projection introduced by the polygonal approximation of the curve. 

1. Curve construction 2.1st estimation 3. 2nd estimation of pdf 4. 3rd estimation of pdf 

 
Figure 7.3. Iterative estimation of the projection of the pdf on the principal curve; the 

algorithm converges in 3 steps. 

 50



7.3. Complexity of the Method 
The most important step in the method is the computation of the bandwidths. Using 
Silverman’s rule of thumb, standard deviation is computed in linear time, thus the 
bandwidths are computed linearly. The projection of the pdf on the curve  has the 
complexity O(MN), where M is the number of estimation points and N the number of data 
points. We consider M=N, so pdf projection takes O(N2) time. This can be heavily 
reduced, since there is no need to estimate the kernel for far estimation points (the added 
value is negligible). 

If the method converges, the number of different bandwidths increases each iteration 
reaching the number of clusters. In this case, it is upper-bounded by N, but for real cases 
the number of steps is much smaller than N. Thus, the complexity for the algorithm is 
bounded by O(N3). 

 

 51



8. Experiments 
For experimental purpose, we use three types of data sets:  

�� A sets, 
�� S sets, 
�� natural image data sets. 

The A data sets (A1, A2, A3) are artificial and contain different number of two-
dimensional Gaussian clusters having about the same characteristics and number of data 
points. The S sets (S1, S2, S3, S4) are also artificial and two-dimensional with varying 
complexity in terms of spatial data distributions. The real data sets (housec5, bridge, 
camera, missa2) do not necessary present natural clusters but they are used merely as test 
data for vector quantization. See Figures 8.1, 8.2 and 8.3 for illustration of the data sets.  

 

     
Figure 8.1. A1, A2 and A3 data sets. 

    
Figure 8.2. S1, S2, S3 and S4 data sets. 

    
Figure 8.3. Two first dimensions of the natural image data sets Missa2, Bridge, Camera 

and Housec5. 

 52



The real data sets in Figure 8.3 have been generated from the images shown in Figure 
8.4. The vectors in the Bridge and Camera sets are 4�4 non-overlapping blocks taken 
from the corresponding gray-scale images. In Missa2, the vectors were formed as 4�4 
difference blocks of two subsequent frames in the video sequence. The last data set, 
Housec5, consists of the color values of the RGB image pre-quantized to 5 bits per color. 

     
Figure 8.4. Bridge, Miss America, Camera and House images. 

8.1. Clustering Based on Principal Axis 
The results of the experiments for the algorithm based on principal axis (PAC) is shown 
in Table 8.1. For the clustered data sets, the number of clusters given to the algorithm is 
the real one, and the real data sets are quantized to 20 clusters.  

For the artificial data sets, the algorithm does not yield good results for the MSE, but it 
can be used as a tool for K-means initialization. For the natural data sets, the results are 
better as relatively small improvement was achieved by K-means. The reason is that real 
data sets come from natural images that present highly linear correlations, which are 
easier to model by linear projection than the more complex artificial data sets. The data is 
along the first diagonal, which matches the principal axis to offer a good model for data.  

 

Table 8.1. Results for the PAC and PAC + K-means algorithms. 

Dataset 
No of 
clusters 

No of 
dimensions MSE 

MSE after       
K-means 

K-means 
steps 

Improvement 
ratio 

A1 20 2 8.30*106 2.02*106 12 4.0
A2 35 2 15.65*106 2.74*106 18 5.7
A3 50 2 17.65*106 3.69*106 31 4.7
S1 15 2 8.40*109 1.43*109 20 5.8
S2 15 2 7.73*109 1.86*109 26 4.0
S3 15 2 5.71*109 1.68*109 15 3.3
S4 15 2 6.34*109 1.57*10 24 4.0
Housec5 20 3 51.67 39.35 10 1.2
Bridge 20 16 430.2 366.8 79 1.1
Camera 20 16 355.3 276.1 42 1.2
Missa2 20 16 13.07 10.05 15 1.3

 53



8.2. Clustering Based on Principal Curve 
The results of clustering on principal curve (PCU), shown in Table 8.2, are highly 
influenced by the quality of the curve. The penalty curve parameter determines the shape 
of the curve. We provide the results for several parameter values of the curve (the penalty 
coefficient) because it influences the results of clustering. 

As the value of the penalty coefficient gets lower, the algorithm suffers from overfitting, 
and as the value of the penalty coefficient gets higher, the principal curve looks more like 
the principal axis, and the result of the clustering becomes also worse. In the artificial 
data sets the minimum in the MSE can be observed more clearly. Unfortunately, the 
values of the penalty coefficient that give the best results are not the same for all the data 
sets. Still, values of the penalty coefficient in the rage 0.01 – 0.1 give good results for 
most of the data sets. 

8.3. Hierarchical Clustering Based on Principal Curve 
Table 8.3 presents the results for the hierarchical clustering based on principal curve 
algorithm. The table presents the values for pre-clustering step (based on principal curve), 
and the final results. The data containing the MSE values for the K-means iterated pre-
clustering results is given just for comparison, since the algorithm does not use that step. 

The hierarchical principal curve clustering improves the basic algorithm for the 
complicated data sets, when the data cannot be modeled by the principal curve. The best 
improvements are observed for the data set with the largest number of clusters, A3. The 
smallest improvements are observed for the natural image data sets. As a general model, 
the real image data sets are the simplest ones, as the data is along the first diagonal. 
 

 54



Table 8.2. Results for the PCU and PCU + K-means algorithms. 

Dataset 
Penalty 
Coefficient MSE 

MSE after 
K-means 

K-means 
steps 

Improvement 
ratio 

A1 0.01 2.06*106 2.02*106 5 1.0 
 0.04 2.03*106 2.02*106 5 1.0 
 0.1 2.10*106 2.02*106 5 1.0 
A2 0.01 1.93*106 1.93*106 3 1.0 
 0.04 1.95*106 1.93*106 5 1.0 
 0.1 3.18*106 2.13*106 9 1.5 
A3 0.01 2.05*106 1.92*106 7 1.1 
 0.04 2.18*106 2.07*106 14 1.1 
 0.1 2.93*106 2.32*106 11 1.3 
S1 0.01 8.96*108 8.91*108 3 1.0 
 0.04 8.91*108 8.91*108 2 1.0 
 0.1 8.91*108 8.91*108 2 1.0 
S2 0.01 1.59*109 1.32*109 6 1.2 
 0.04 1.32*109 1.32*109 4 1.0 
 0.1 1.33*109 1.32*109 4 1.0 
S3 0.01 2.23*109 1.85*109 18 1.2 
 0.04 1.73*109 1.68*109 7 1.0 
 0.1 1.70*109 1.68*109 10 1.0 
S4 0.01 1.97*109 1.65*109 20 1.2 
 0.04 1.68*109 1.65*109 31 1.0 
 0.1 1.62*109 1.57*109 14 1.0 
Housec5 0.01 37.3 36.3 12 1.0 
 0.04 37.6 36.2 13 1.0 
 0.1 41.9 38.6 8 1.1 
Bridge 0.01 380 371 19 1.0 
 0.04 405 369 46 1.1 
 0.1 428 373 39 1.1 
Camera 0.01 308 282 13 1.1 
 0.04 328 277 28 1.2 
 0.1 335 279 17 1.2 
Missa2 0.01 10.94 9.79 19 1.1 
 0.04 11.37 9.70 15 1.2 
 0.1 11.51 9.81 9 1.2 

 

 55



Table 8.3. Results for the HPCU and HPCU + K-means algorithms. 

Data set 
penalty 
coefficient Initial distortion after K-means 

K-
means 
steps 

after partition 
distortion after K-means 

K-
means 
steps 

A1 0.01 2.46*106 2.02*106 7 2.46*106 2.02*106 7
 0.04 2.03*106 2.02*106 5 2.02*106 2.02*106 2
 0.10 2.11*106 2.02*106 5 2.02*106 2.02*106 4
A2 0.01 2.11*106 1.93*106 7 1.94*106 1.93*106 4
 0.04 1.97*106 1.93*106 4 1.93*106 1.93*106 3
 0.10 2.28*106 1.92*106 5 1.99*106 1.93*106 5
A3 0.01 2.00*106 1.92*106 5 1.93*106 1.92*106 4
 0.04 3.14*106 2.11*106 10 2.22*106 2.05*106 14
 0.10 2.74*106 2.08*106 5 2.00*106 1.92*106 9
S1 0.01 15.23*108 14.19*108 7 14.15*108 14.11*108 12
 0.04 9.94*108 8.91*108 3 8.91*108 8.91*108 2
 0.10 8.93*108 8.91*108 2 8.91*108 8.91*108 2
S2 0.01 1.36*109 1.32*109 7 1.33*109 1.32*109 6
 0.04 1.33*109 1.32*109 4 1.32*109 1.32*109 3
 0.10 1.33*109 1.32*109 7 1.32*109 1.32*109 3
S3 0.01 2.33*109 1.88*109 23 1.78*109 1.68*109 10
 0.04 1.69*109 1.68*109 11 1.69*109 1.68*109 12
 0.10 1.70*109 1.68*109 10 1.69*109 1.68*109 6
S4 0.01 1.62*109 1.57*109 15 1.64*109 1.57*109 11
 0.04 1.60*109 1.57*109 13 1.58*109 1.57*109 10
 0.10 1.62*109 1.57*109 14 1.60*109 1.57*109 11
Housec5 0.01 38.25 36.19 22 38.25 36.19 22
 0.04 37.97 36.26 26 42.96 37.99 36
 0.10 41.48 38.61 7 39.25 36.45 10
Bridge 0.01 377.9 370.8 24 372.3 365.3 28
 0.04 408.2 370.1 40 405.8 366.6 93
 0.10 413.7 366.4 91 406.0 369.2 56
Camera 0.01 302.13 283.1 22 302.1 283.1 22
 0.04 302.43 278.3 21 289.0 277.3 19
 0.10 333.60 280.5 21 296.1 278.8 20
Missa2 0.01 10.13 9.71 11 10.86 9.73 17
 0.04 11.71 10.26 12 10.10 9.62 10
 0.10 12.32 10.03 13 10.43 9.70 13

8.4. Comparison of the Algorithms 
Next, we make a comparison between the different methods introduced in this work, see 
Tables 8.4, 8.5 and 8.6. Comparative results include randomized local search (RLS) 
[FK2000], and the popular K-means. The MSE-values for the RLS method has been 
considered when the value of the MSE seems to stabilize; a slightly better solution is 
found after a larger number of iterations. The K-means numbers are the best results 
obtained by 10 repeated trials. 

For the algorithms that are parameterized by the principal curve, we have chosen the best 
results for comparison. Both the PCU and HPCU algorithms tuned by K-means give 

 56



values that are very close to the RLS results. The difference to repeated K-means is also 
very small. The results for these algorithms are very close to the global optimum, for the 
studied data sets. While the best results of the HPCU algorithm do not show a much 
better improvement to the best results of the PCU, it is much more stable relative to the 
penalty coefficient. 

Table 8.4. Comparison of the algorithms for the A data sets. 

Method A sets 

 A1 A2 A3 

K-means 20.24*105 19.32*105 19.29*105

RLS 20.24*105 19.32*105 19.29*105

PAC 83.00*105 156.57*105 176.59*105

PAC + K-means 20.24*105 27.41*105 36.95*105

PCU 20.30*105 19.33*105 20.59*105

PCU + K-means 20.24*105 19.32*105 19.29*105

HPCU 20.24*105 19.42*105 19.36*105

HPCU + K-means 20.24*105 19.32*105 19.29*105

Table 8.5. Comparison of the algorithms for the S data sets. 

Method S sets 

 S1 S2 S3 S4 

K-means 134.44*107 13.27*108 16.88*108 15.70*108

RLS 89.17*107 13.27*108 16.88*108 15.70*108

PAC 840.48*107 77.34*108 57.11*108 63.40*108

PAC + K-means 143.54*107 18.65*108 16.88*108 15.70*108

PCU 89.18*107 13.29*108 16.94*108 15.91*108

PCU + K-means 89.17*107 13.27*108 16.88*108 15.70*108

HPCU 89.17*107 13.30*108 16.90*108 15.88*108

HPCU + K-means 89.17*107 13.27*108 16.88*108 15.70*108

Table 8.6. Comparison of the algorithms for the image data sets. 

Method Image data sets 

 Housec5 Bridge Camera Missa2 

K-means 36.4 365 278 9.64
RLS 35.6 364 270 9.50
PAC 51.6 430 355 13.07
PAC + K-means 39.3 366 276 10.05
PCU 37.3 377 295 9.99
PCU + K-means 36.1 365 273 9.69
HPCU 38.25 372 289 10.10
HPCU + K-means 36.19 365 277 9.62

 57



9. Conclusions 
In this work, we have considered different issues related to solving the clustering problem 
using one-dimensional projections of the data set. The one-dimensional projection is 
particularly interesting because optimal clusters in one-dimensional spaces, as opposed to 
VQ, can be optimally solved. 

Given the sequence of data, optimal segmentation relative to a usual clustering criterion 
(such as MSE) can be easily done using the dynamic programming technique. The 
method has been applied to scalar quantization. Thus, we have studied different ways to 
sequence the vector space data sets and apply the same method for multi-dimensional 
data sets. 

In the beginning, we have studied the projection on the principal axis. The method has 
been applied before for color quantization problem. Good results are obtained only for 
simple data sets, and fine-tuning by K-means is almost always obligatory. We have also 
tried to optimize the sequence in the sense of TSP problem. The order provided by the 
TSP sequence may contain the clusters as subsequences, but the optimal TSP sequence is 
another NP-complete problem. Still, the method proves to increase the accuracy of the 
results. 

The main part of the work concentrates on ordering along the principal curve. It has the 
advantage of being a non-linear projection that can model more complex types of data. 
The most sensitive aspect of the method consists in avoiding the overfitting problem. The 
coefficient that indirectly controls the length of the curve should be dependent on the 
characteristics of the data set. We have found a way to split the data set, so that the 
subsets are suitable for being modeled by the principal curves; this method can be applied 
to complex data sets. It does not completely solve the overfitting problem, but the choice 
of the parameters is less critical.  

The last part of the thesis concentrates on determining the number of clusters using the 
principal curve. The success of the proposed method depends on the quality of the curve. 
We did not provide the proof for the convergence of our method, but we showed that the 
problem can be solved using the projections on the principal curve.  

The current work shows that the principal curve can be successfully applied to cluster 
analysis. Future work should concentrate on defining and constructing curves, avoiding 
problems such as parameter tuning and overfitting. 

 58



References 
 

 

[BR1992] Banfield J. D. and Raftery A. E. Ice floe identification in satellite images using 
mathematical morphology and clustering about principal curves. Journal of the American 
statistical Association vol. 87, no. 417., pp. 7-16, 1992. 

[B1961] Bellman, R. Adaptive control processes: a guided tour. Princeton University 
Press, 1961. 

[BSW1998] Bishop C. M., Svensen M. and Williams C. K. I. The generative topographic 
mapping, Neural Computation, vol. 10, issue 1, pp. 215-235, 1998. 

 [CT2000] Cristianini N. and Taylor J. S. An Introduction to SVMs and Other Kernel 
Based Learning Methods, Cambridge University Press, 2000. 

[D1997] Demmel J. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997. 

[F2002] Fodor I. K. A Survey of Dimension Reduction Techniques. LLNL technical 
report, June 2002. UCRL-ID-148494. 

[FKSC2000] Fränti P., Kaukoranta T., Shen D.-F. and Chang K.-S. Fast and memory 
efficient implementation of the exact PNN, IEEE Transactions on Image Processing, vol. 
9, no. 5, pp. 773-777, 2000. 

[F2000] Fränti P. Genetic algorithm with deterministic crossover for vector quantization. 
Pattern Recognition Letters, vol. 21, no. 1, pp. 61-68, 2000. 

 [FK2000] Fränti P. and Kivijärvi J. Randomized Local Search Algorithm for the 
Clustering Problem, Pattern Analysis and Applications, vol. 3, pp. 358-369, 2000. 

  [FT1974] Friedman J. H. Tukey J. W. A projection pursuit algorithm for exploratory 
data analysis. IEEE Transactions on Computers, vol. 23, pp. 881-890, 1974. 

[F1987] Friedman J. H. Exploratory Projection Pursuit. Journal of American Statistical 
Association, vol. 82, pp. 249-266, 1987. 

 [GJ1979] Garey M. and Johnson D. Computers and Interactibility. W. H. Freeman, San 
Francisco, 1979. 

 [G2002] Gering, D. Linear and Nonlinear Data Dimensionality Reduction, 
http://www.ai.mit.edu/people/gering/areaexam/areaexam.pdf, 17.04.2002. 

[G1980] Gordon A. D. Classification. Chapman and Hall, London, 1980. 

 [H1996] Hardy A. On the number of clusters. Computational Statistics and Data 
Analysis, vol. 23, issue 1, pp. 83-96, 1996. 

 [H1989] Hastie T., Stuetzle W.  Principal Curves. Journal of the American Statistical 
Association vol. 84, no. 406, pp. 502-516, 1989. 

 [H1999] Hyvärinen A. Survey on Independent Component Analysis. Neural Computing 
Surveys 2:94--128, 1999.  

 59



 [JD1988] Jain A. K and Dubes R. C. Algorithms for clustering data. Prentice-Hall 
advanced reference series. Prentice-Hall, Inc, Upper Saddle River, NJ, 1988. 

[JMF1999] Jain A.K., Murty M. N. and Flynn P.J. Data Clustering: A review. ACM 
Computing Surveys, vol. 31, no. 3, 1999. 

[JW1992] Johnson R. A., Wichern D. W. Applied Multivariate Statistical Analysis. 
Prentice Hall, Englewood Cliffs, New Jersey, 1992. 

[KKLZ2000] Kegl B., Krzyzak A., Linder T. and Zeger K. Learning and Design of 
Principal Curves. IEEE Transactions on Pattern Analysis and Machine Intelligence vol. 
22, no. 3, pp. 281-297, 2000. 

[K2001] Kohonen T. Self-organizing maps, Springer Series in Information Sciences, 
vol. 30, Springer, Berlin, Heidelberg, New York, 2001 

[M1995] MacKay D. J. C. Bayesian Neural Networks and Density Networks. Nuclear 
Instruments and Methods in Physics Research, Section A, vol. 354, no.1, pp. 73-80, 
1995. 

 [M1967] MacQueen J. Some methods for classification and analysis of multivariate 
observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and 
probability, vol. 1, pp. 281-296, 1967. 

 [MKB1995] Mardia K.V., Kent J.T. and Bibby J.M. Multivariate analysis. Probability 
and Mathematical Statistics. Academic Press, 1995. 

 [MN1998] Marron J. S. and Nolan G. Canonical Kernels for Density Estimation. 
Statistics and Probability Letters, vol. 7, pp. 195-199, 1998. 

 [P1991] Papoulis A. Probability, Random Variables, and Stochastic Process. McGraw-
Hill. 3rd Edition, 1991. 

[RMH2004] Rome J.E., Miasnikov A.D. and Haralick R.M. A hierarchical projection 
pursuit algorithm. Proceedings of the International Conference on Pattern Recognition, 
2004. 

[S1994] Sain S. R. Adaptive Kernel Density Estimation. Ph.D. Thesis. Rice University, 
Houston, Texas, 1994. 

 [SK2002] Sandilya S and Kulkarni S. R. Principal curves with bounded turn. IEEE 
Transactions on Information Theory vol. 48, issue 10, pp. 2789-2793, 2002. 

 [S1986] Silverman B. W. Density Estimation for Statistics and Data Analysis. Chapman 
& Hall, London, New York, 1986. 

 [SCH1975] Slagle J. L., Chang C. L. and Heller S. L. A clustering and data-
reorganization algorithm. IEEE Transactions on Systems, Man and Cybernetics, vol. 5, 
pp. 121-128, 1975. 

 [SJ1993] Soong F. K. and Juang B. H. Optimal quantization of LSP parameters. IEEE 
Transactions on Speech and Audio Processing, vol. 1, issue 1, pp. 15-24, 1993. 

 [TS1992] Terrell G. R. and Scott D. W. Variable Kernel Density Estimation. The Annals 
of Statistics, vol. 20, pp. 1236-1265, 1992. 

 60



[TGPL2004] Theis F. J., Gruber P., Puntonet C. G. and Lang E. W. Connecting 
geometric independent component analysis to unsupervised learning algorithms. 
Proceedings of International Conference on Engineering of Intelligent Systems, accepted, 
2004. 

[VVK2002] Verbeek J.J., Vlassis N. and Krose B. A k-segments algorithm for finding 
principal curves. Pattern Recognition Letters vol. 23, issue 8, pp. 1009-1017, 2002. 

[W1992] Wu X.  Color Quantization by dynamic programming and principal analysis. 
ACM Transactions on Graphics, vol. 11, issue 4, pp. 348-372, 1992. 

[W1991] Wu X. Optimal quantization by matrix searching.  Journal of Algorithms, vol. 
12, issue 4, pp. 663-673, 1991. 

[YH1987] Young F.W. and Hamer R. M  Multidimensional scaling: history, theory and 
applications. Erlbaum, New York, 1987. 

[Z1971] Zahn C.T. Graph-theoretical methods for detecting and describing gestalt 
clusters. IEEE Transactions on Computers. C-20, 68-86, 1971. 

 

 61


	Ioan Cleju
	University of Joensuu

	Abstract
	Table of Contents
	1. Introduction
	1.1. Motivation
	1.2. Problem Definition
	1.3. Clustering Techniques
	1.4. Outline of the Thesis

	2. Order Constrained Clustering
	2.1. Dynamic Programming Technique
	2.2. Optimal Scalar Quantization
	2.3. Optimal Order Constrained Clustering

	3. Principal Axis Based Clustering
	3.1. Tuning by K-means
	3.2. Revising the Order by Hamiltonian Shortest Path
	3.3. Complexity of the Method

	4. Linear Dimensionality Reduction
	4.1. Principal Component Analysis
	4.2. Computing Principal Components
	4.3. Other Linear Methods
	4.3.1. Factor Analysis
	4.3.2. Projection Pursuit
	4.3.3. Independent Component Analysis


	5. Nonlinear Dimensionality Reduction
	5.1. Principal Curves
	5.2. Other Methods
	5.3. Principal Curve with Length Constraint

	6. Clustering Based on Principal Curve
	6.1. Choice of the Parameters
	6.2. Improvement by K-means
	6.3. Hierarchical Clustering on Principal Curve
	6.4. Optimal Combination of Codebooks
	6.5. Complexity of the Method

	7. Estimating the Number of Clusters
	7.1. Kernel Method
	7.2. Partitioning Based on PDF over Principal Curve
	7.3. Complexity of the Method

	8. Experiments
	8.1. Clustering Based on Principal Axis
	8.2. Clustering Based on Principal Curve
	8.3. Hierarchical Clustering Based on Principal Curve
	8.4. Comparison of the Algorithms

	9. Conclusions
	References

