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Abstract 

Outlier detection is a fundamental issue in data mining, specifically it has been used to 
detect and remove anomalous objects from data. Outliers arise due to mechanical faults, 
changes in system behaviour, fraudulent behaviour, network intrusions or human errors. 

Firstly, this thesis presents a theoretical overview of outlier detection approaches. A novel 
outlier detection method is proposed and analyzed, it is called Clustering Outlier Removal 
(COR) algorithm. It provides efficient outlier detection and data clustering capabilities in 
the presence of outliers, and based on filtering of the data after clustering process. The 
algorithm of our outlier detection method is divided into two stages. The first stage provides 
k-means process. The main objective of the second stage is an iterative removal of objects, 
which are far away from their cluster centroids. The removal occurs according to a chosen 
threshold. Finally, we provide experimental results from the application of our algorithm on 
a KDD Cup1999 datasets to show its effectiveness and usefulness. The empirical results 
indicate that the proposed method was successful in detecting intrusions and promising in 
practice. We also compare COR algorithm with other available methods to show its 
important advantage against existing algorithms in outlier detection. 

KEY WORDS: outlier detection, clustering, intrusions. 
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1. INTRODUCTION 

1.1. Basic definitions 

Data mining, in general, deals with the discovery of non-trivial, hidden and interesting 
knowledge from different types of data. With the development of information 
technologies, the number of databases, as well as their dimension and complexity, grow 
rapidly. It is necessary what we need automated analysis of great amount of information. 
The analysis results are then used for making a decision by a human or program. One of 
the basic problems of data mining is the outlier detection. 

An outlier is an observation of the data that deviates from other observations so much that 
it arouses suspicions that it was generated by a different mechanism from the most part of 
data [41]. Inlier, on the other hand, is defined as an observation that is explained by 
underlying probability density function. This function represents probability distribution of 
main part of data observations [17]. 

Outliers may be erroneous or real in the following sense. Real outliers are observations 
whose actual values are very different than those observed for the rest of the data and 
violate plausible relationships among variables. Erroneous outliers are observations that 
are distorted due to misreporting or misrecording errors in the data-collection process. 
Outliers of either type may exert undue influence on the results of statistical analysis, so 
they should be identified using reliable detection methods prior to performing data analysis 
[47]. 

Many data-mining algorithms find outliers as a side-product of clustering algorithms. 
However these techniques define outliers as points, which do not lie in clusters. Thus, the 
techniques implicitly define outliers as the background noise in which the clusters are 
embedded. Another class of techniques defines outliers as points, which are neither a part 
of a cluster nor a part of the background noise; rather they are specifically points which 
behave very differently from the norm [2]. 

Typically, the problem of detecting outliers has been studied in the statistics community. 
The user has to model the data points using a statistical distribution, and points are 
determined to be outliers depending on how they appear in relation to the postulated 
model. The main problem with these approaches is that in a number of situations, the user 
might simply not have enough knowledge about the underlying data distribution [36]. 

Outliers can often be individuals or groups of clients exhibiting behavior outside the range 
of what is considered normal. Outliers can be removed or considered separately in 
regression modeling to improve accuracy which can be considered as benefit of outliers. 
Identifying them prior to modeling and analysis is important [41]. The regression modeling 
consists in finding a dependence of one random variable or a group of variables on another 
variable or a group of variables. 
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In the context of outlier-based association method, outliers are observations markedly 
different from other points. When a group of points have some common characteristics, 
and these common characteristics are “outliers”, these points are associated [29]. 

Almost all studies that consider outlier identification as their primary objective are in 
statistics. The test depends on the distribution; whether or not the distribution parameters 
are known; the number of excepted outliers; the types of excepted outliers [25]. 

1.2. Practical applications 

The identification of an outlier is affected by various factors, many of which are of interest 
for practical applications. For example, fraud, or criminal deception, will always be a 
costly problem for many profit organizations. Data mining can minimize some of these 
losses by making use of the massive collections of customer data [35]. Using web log files 
becomes possible to recognize fraudulent behavior, changes in behavior of customers or 
faults in systems. Outliers arise by reasons of such incidents. Thus typical fault detection 
can discover exceptions in the amount of money spent, type of items purchased, time and 
location. Many fraud cases can happen, for example, if someone has your name, credit card 
number, expiration date and billing address. All this information is very easy to obtain 
even from your home mailbox or any on-line transaction that you had before [4]. So, 
automatic systems for preventing fraudulent use of credit cards detect unusual transactions 
and may block such transactions on earlier stages. 

Another example is a computer security intrusion detection system, which finds outlier 
patterns as a possible intrusion attempts. Intrusion detection corresponds to a suite of 
techniques that are used to identify attacks against computers and network infrastructures. 
Anomaly detection is a key element of intrusion detection in which perturbations of normal 
behavior suggest the presence of intentionally or unintentionally induced attacks, faults and 
defects [27]. Detecting outliers has practical application in more wide spheres: 
pharmaceutical research, weather prediction, financial applications, marketing and 
customer segmentation. 

The system applied to real network traffic data is illustrated in Figure 1. The basic steps 
consist of converting data, building detection model, analysis and summarizing of results. 

 

 
Figure 1. Outlier detection process in Data Mining. 

In handwritten word recognition some errors were caused by non-character images that 
were assigned high character confidence value [32]. Segmentation and dynamic 
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programming (DP)-based approaches are used for outlier rejection in off-line handwritten 
word recognition method. The flow diagram is shown in Figure 2. Segmentation splits a 
word image into partial characters than use character classifier and DP to obtain the 
optimal segmentation and recognition result. The recognition process assigns a match score 
to each candidate string and the highest score determines the result. The focus of this 
approach is to assign low character confidence values to non-character images, which 
means to reject outlier. The neural networks were used to realize outlier rejection, where 
valid patterns only activate the output node corresponding to the class, which the pattern 
belongs to. Outliers do not activate any output node [32]. 

 
 

Figure 2. Diagram of handwritten word recognition system. 

1.3. Outliers in clustering 

The outlier detection problem in some cases is similar to the classification problem. For 
example, the main concern of clustering-based outlier detection algorithms is to find 
clusters and outliers, which are often regarded as noise that should be removed in order to 
make more reliable clustering [17]. Some noisy points may be far away from the data 
points, whereas the others may be close. The far away noisy points would affect the result 
more significantly because they are more different from the data points. It is desirable to 
identify and remove the outliers, which are far away from all the other points in cluster 
[20]. So, to improve the clustering such algorithms use the same process and functionality 
to solve both clustering and outlier discovery [17]. 

1.4. Purpose of this research 

In this work, we consider outliers defined as points, which are far from the most of other 
data. The purpose of proposed approach is first to apply k-means algorithm and then find 
outliers from the resulting clusters. After that again apply k-means, and so on until the 
number of points will not be changed in dataset. The principle of outliers removal depends 
on the threshold and the distortion. Threshold is set by user and distortion defined as the 
ratio of distance for nearest point to the cluster centroid divided by distance of furthest 
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point in the same partition. If the distortion is less than the threshold, this furthest point is 
considered to be outlier for this cluster. So, we propose a clustering-based technique to 
identify outliers and simultaneously produce data clustering. Our outlier detection process 
at the same time is effective for extracting clusters and very efficient in finding outliers. 

1.5. Organization of the thesis 

The rest of the thesis is structured as follows. In Section 2, we present definition of 
clustering and general classification of clustering algorithms. In Section 3, we consider 
outlier detection methods in details, given classification by distribution-based, distance-
based and density-based approaches. In Section 4 we give detailed description of the new 
method. Experimental results are reported on the real KDD Cup 1999 data to show the 
performance of new algorithm in Section 5 and comparison to other outlier detection 
methods is presented. Concluding remarks are given in Section 6. 
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2. CLUSTERING 

2.1. Notations of terms 

In this section we formally define the notations used in the reminder of thesis. 

N  Number of data objects. 
M  Number of clusters. 
K  Number of attributes. 
X  Set of N data objects X = {x1, x2, ..., xN}. 
P  Set of N cluster indices P = {p1, p2, …, pN}. 
C  Set of M cluster representatives C = {c1, c2, …, cM}. 

2.2. Problem definition 

Clustering, or unsupervised classification, will be considered as a combination problem 
where the aim is to partition a set of data object into a predefined number of clusters. 
Number of clusters might be found by means of the cluster validity criterion or defined by 
user. Data object, feature vector and attribute are shown in Figure 3. The attributes of an 
object can be represented by a feature vector, where each element of the vector 
corresponds to one attribute. There are no examples that what kind of desirable relations 
should be valid among the data and that is why clustering is perceived as an unsupervised 
process. The objects with similar features should be grouped together and objects with 
different features placed in separate groups [10]. Dissimilarities are assessed based on the 
attribute values describing the objects. Often, distance measure between the two feature 
vectors is used to show dissimilarity between objects [45]. 

 

 
Figure 3. Explanations for basic concepts. 
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2.3. Clustering application 

Clustering problems are widely used in numerous applications, such as customer 
segmentation, classification, and trend analysis. For example, consider a retail database 
records containing items purchased by customers. A clustering procedure could group the 
customers in such a way that customers with similar buying patterns are in the same cluster 
[13]. Many real-word applications deal with high dimensional data. It has always been a 
challenge for clustering algorithms because of the manual processing is practically 
impossible [3]. A high quality computer-based clustering removes the unimportant features 
and replaces the original set by a smaller representative set of data objects. As a result, the 
size of data reduces and, therefore, cluster analysis can contribute in compression of the 
information included in data. Cluster analysis is applied for prediction. Suppose, for 
example, that the cluster analysis is applied to a dataset concerning patients infected by the 
same disease. The result is a number of clusters of patients, according to their reaction to 
specific drugs. So, for a new patient, we identify the cluster in which he can be classified 
and based on this decision his medication can be made [13]. 

2.4. Clustering problems 

The general clustering problem includes three subproblems: (i) selection of the evaluation 
function; (ii) decision of the number of groups in the clustering; and (iii) the choice of the 
clustering algorithm [10]. 

2.4.1. Evaluation of clustering 

An objective function is used for evaluation of clustering methods. The choice of the 
function depends upon the application, and there is no universal solution of which measure 
should be used. Commonly used a basic objective function is defined as (2.1): 

 ∑
=

=
N

i
pi i

cxdCPf
1

2),(),( , (2.1) 

where P is partition and C is the cluster representatives, d is a distance function. The 
Euclidean distance and Manhattan distance are well-known methods for distance 
measurement, which are used in clustering context. Euclidean distance is expressed as 
(2.2): 
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and Manhattan distance is calculated as (2.3): 

 ∑
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2.4.2. Number of clusters 

The choice of number of the clusters is an important subproblem of clustering. Since a 
priori knowledge is generally not available and the vectors dimensions are often higher 
than two, which do not have visually apparent clusters. The solution of this problem 
directly affects the quality of the result. If the number of clusters is too small, different 
objects in data will not be separated. Moreover, if this estimated number is too large, 
relatively regions may be separated into a number of smaller regions [46]. Both of these 
situations are to be avoided. This problem is known as the cluster validation problem. The 
aim is to estimate the number of clusters during the clustering process. The basic idea is 
the evaluation of a clustering structure by generating several clustering for various number 
of clusters and compare them against some evaluation criteria. In general, there are three 
approaches to investigate cluster validity [14]. In external approach, the clustering result 
can be compared to an independent partition of the data built according to our intuition of 
the structure of the dataset. The internal criteria approach uses some quantities or features 
inherent in the dataset to evaluate the result. The basic idea of the third approach, relative 
criteria, is the evaluation of a clustering structure by comparing it to other clustering 
schemes, produced by the same algorithm but with different input parameter values. The 
two first approaches are based on statistical tests and their major drawback is their high 
computational cost. In the third approach aim is to find the best clustering scheme that a 
clustering algorithm can define under certain assumptions and parameters. More 
information about clustering validity methods you can find in [14], [15]. 

2.5. Classification of methods 

Clustering algorithms can be classified according to the method adopted to define the 
individual clusters. The algorithms can be broadly classified into the following types: 
partitional clustering, hierarchical clustering, density-based clustering and grid-based 
clustering [33]. These algorithms are based on distance measure between two objects. 
Basically the goal is to minimize the distance of every object from the center of the cluster 
to which the object belongs. 

2.5.1. Partitional clustering 

Partition-based methods construct the clusters by creating various partitions of the dataset. 
So, partition gives for each data object the cluster index pi. The user provides the desired 
number of clusters M, and some criterion function is used in order to evaluate the proposed 
partition or the solution. This measure of quality could be the average distance between 
clusters; for instance, some well-known algorithms under this category are k-means, PAM 
and CLARA [23], [48]. One of the most popular and widely studied clustering methods for 
objects in Euclidean space is called k-means clustering. Given a set of N data objects xi and 
an integer M number of clusters. The problem is to determine C, which is a set of M cluster 
representatives cj, as to minimize the mean squared Euclidean distance from each data 
object to its nearest centroid. 
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The algorithm starts with an initial solution and then involves an iterative scheme that 
operates over a fixed number of clusters, while a stopping criterion is met, i.e. the centers 
of the clusters stop changing. 

Algorithm contains simple steps as follows. Firstly, initial solution is assigned to random 
to the M sets: 

),1(),,1( NrandomiMrandomjxc ij ==← . 

Then, in the first step, the data objects are partitioned as to each cluster centroid is closest 
to the data object in respect to the distance function: 

[ ]Nicxdp ji
Mj

i ,1),(minarg 2

1
∈∀←

≤≤
. 

In the second step, the cluster centroids are recalculated corresponding to the new partition: 

[ ]Mj
x

c

jp

jp
i

j

i
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1
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∑

=
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The number of iterations depends upon the dataset, and upon the quality of initial 
clustering data. The k-means algorithm is very simple and reasonably effective in most 
cases. Completely different final clusters can arise from differences in the initial randomly 
chosen cluster centers. In final clusters k-means do not represent global minimum and it 
gets as a result the first local minimum. Main advantage of the k-means method in follows: 
almost any solution not obtained by a k-means method can be improved. Disadvantage is 
that these methods only work well for finding clusters with spherical shapes and similar 
sizes. 

2.5.2. Hierarchical clustering 

Hierarchical clustering methods build a cluster hierarchy, i.e. a tree of clusters also known 
as dendogram. A dendrogram is a tree diagram often used to represent the results of a 
cluster analysis. Hierarchical clustering methods are categorized into agglomerative 
(bottom-up) and divisive (top-down) as shown in Figure 4. An agglomerative clustering 
starts with one-point clusters and recursively merges two or more most appropriate 
clusters. In contrast, a divisive clustering starts with one cluster of all data points and 
recursively splits into nonoverlapping clusters. 
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Figure 4. Example of dendogram. 

The process continues until a stopping criterion (frequently, the requested number M of 
clusters) is achieved. Hierarchical methods provide ease of handling of any form of 
similarity or distance, because use distance matrix as clustering criteria. However, most 
hierarchical algorithms do not improve intermediate clusters after their construction. 
Furthermore, the termination condition has to be specified. Hierarchical clustering 
algorithms include BIRCH [7] and CURE [11]. 

2.5.3. Density-based and grid-based clustering 

The key idea of density-based methods is that for each object of a cluster the neighborhood 
of a given radius has to contain a certain number of objects; i. e. the density in the 
neighborhood has to exceed some threshold. The shape of a neighborhood is determined by 
the choice of a distance function for two objects. These algorithms can efficiently separate 
noise [9]. DBSCAN [5] and DBCLASD [42] are the well-known methods in the density-
based category.  

The basic concept of grid-based clustering algorithms is that they quantize the space into a 
finite number of cells that form a grid structure. And then these algorithms do all the 
operations on the quantized space. The main advantage of the approach is its fast 
processing time, which is typically independent of the number of objects, and depends only 
on the number of grid cells for each dimension [33]. Famous methods in this clustering 
category are STING [40] and CLIQUE [1]. 

Other techniques available include model-based clustering, constraint-based and fuzzy 
clustering [37]. Model-based methods hypothesize a model for each of the clusters and 
find the best fit of that model to each other. One method from this category is EM 
algorithm [22]. The idea of constraint-based clustering is finding clusters that satisfy user-
specified constraints, for example as in COD CLARANS method [39]. Fuzzy clustering 
methods attempt to find the most characteristic objects in each cluster, which can be 
considered as the center of the cluster, and then, find the membership for each object in the 
cluster. A common fuzzy clustering algorithm is Fuzzy C-Means [13]. 
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3. OUTLIER DETECTION METHODS 

Most outlier detection techniques treat objects with K attributes as points in ℜK space and 
these techniques can be divided into three main categories. The first approach is distance-
based methods, which distinguish potential outliers from others based on the number of 
objects in the neighborhood [19]. Distribution-based approach deals with statistical 
methods that are based on the probabilistic data model. A probabilistic model can be either 
a priori given or automatically constructed using given data. If the object does not suit the 
probabilistic model, it is considered to be an outlier [34]. Third, density-based approach 
detects local outliers based on the local density of an object’s neighborhood [21]. These 
methods use different density estimation strategy. A low local density on the observation is 
an indication of a possible outlier [18]. 

3.1. Distance-based approach 

3.1.1. Distance-based definitions for outliers 

In Distance-based methods outlier is defined as an object that is at least dmin distance away 
from k percentage of objects in the dataset. The problem is then finding appropriate dmin 
and k such that outliers would be correctly detected with a small number of false 
detections. This process usually needs domain knowledge [18]. 

In the present section we define objects as points for simple interpretation and consider 
definitions as a special case of [18]. Firstly, consider the definition proposed by Knorr and 
Ng [36], which both a simple and intuitive: 

Definition: A point x in a dataset is an outlier with respect to the parameters k and 
d, if no more than k points in the dataset are at a distance d or less from x. 

To explain the definition by example we take parameter k = 3 and distance d as shown in 
Figure 5. Here are points xi and xj be defined as outliers, because of inside the circle for 
each point lie no more than 3 other points. And x′ is an inlier, because it has exceeded 
number of points inside the circle for given parameters k and d. 
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Figure 5. Illustration of outlier definition by Knorr and Ng. 

This approach does not require any a priori knowledge of data distributions as the statistics 
methods do. However, this distance-based approach has certain shortcomings: 
1. It requires the user to specify a distance d, which could be difficult to determine a-

priori. 

2. It does not provide a ranking for the outliers: for instance a point with a very few 
neighboring points within a distance d can be regarded in some sense as being a 
stronger outlier than a point with more neighbors within distance d. 

It becomes increasingly difficult to estimate parameter d with increasing dimensionality. 
Thus, if one picks radius d slightly small, then all points are outliers. If one picks d slightly 
large, then no point is an outlier. So, user needs to pick d to a very high degree of accuracy 
in order to find a modest number of points, which can be defined as outliers [2]. 

Consider by example how can such kind of imperfections appear. Actually, in Figure 6, xi 
and xj are outliers, but radius d1 is too large, hence inside the circles there are too many 
points. In this case we define xi and xj as incorrect inliers. Oppositely if the radius d2 is too 
small, so inside the circles lie very small number of points, and then xl and xk be wrong 
outliers. 
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Figure 6. Illustration of definition shortcomings. 

The next definition, proposed by Ramaswamy et al. [36], for outliers in the high 
dimensional data does not require user to specify the distance parameter d. Instead, it is 
based on the distance of the kth nearest neighbor of a point. Let  Dk(x) use to denote the 
distance of point x from its kth nearest neighbor and ranking points on the basis of their 
Dk(x) distance, leading to the following definition for k

nD . 
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Figure 7. Illustration of outlier definition for high dimensional data without parameter 
d. 

Definition: Given an input dataset with N points, parameters n  and k , a point x is a 
k
nD  outlier if there are no more than n-1 other points x' such that Dk(x')>Dk(x). 

Intuitively, Dk(x) is a measure of how much of an outlier point x is. For example, points 
with large values for Dk(x) have more sparse neighborhoods. In this definition, user has to 
specify the number of outliers n that he wants to get. In other words, if points are ranking 
according to their Dk(x) distance, the top n  objects in this ranking are considered to be 
outliers. We can use any of the Lp metrics such as L1 (Manhattan) or L2 (Euclidean) metrics 
for measuring the distance between a pair of objects. 

Consider one simple example of definition above. Let k=5 and n=2. In Figure 7 two 
outliers represent by points x and x′. Visually we can observe what distance of point x′ 
from 5 nearest neighbors Dk(x') more than Dk(x), that is distance of point x from its 5 
nearest neighbors. So, we conclude, if we will take n=3, we will have 3 outliers. 

3.1.2. Hybrid-random algorithm 

Hybrid-random algorithm was developed in [25]. It uses Donoho-Stahel Estimator (DSE) 
for distance-based operations in high-dimensional database. If two similar attributes are 
being compared, and these attributes are independent and have the same scale and 
variability, then all objects within distance d of a object xi lie within the circle of radius d 
centered at xi, as shown in Figure 8 on the left. In the presence of different scales, 
variability, and correlation, all objects within distance d of a object xi lie within an ellipse 
as in Figure 8 in the middle. If there is no correlation, then the major and minor axes of the 
ellipse lie on the standard coordinate axes but if there is correlation, then the ellipse is 
rotated through some angle θ, Figure 8 on the right. 
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Figure 8. Data objects of the same scale and variability (left). Different scales, 
variability and no correlation (middle). Different scales, variability and correlation 

(right). 

DSE is a robust space transformation, it is commonly used for comparing of different 
attributes, because they can have the different scales, units and variability. For example, 
blood pressure vs. body temperature, high variability for blood pressure vs. low variability 
for body temperature. Also attributes may be correlated, for instance age and blood 
pressure. At that rate, such attributes have to be normalized or standardized. But another 
solution is to use a robust space transformation. 

DSE possesses two important properties. The first is the Euclidean property. It says that 
while inappropriate in the original space, the Euclidean distance function becomes 
reasonable in the DSE transformation space. The second, and more important, property is 
the stability property. It says that the transformed space is robust against updates, in other 
words the scale in space does not change even after modifications of the data. 

In general, an estimator, which applies transformation, is also called a scatter matrix, it is a 
K× K square matrix, where K is the dimensionality of the original data space. DSE is 
defined through the fixed-angle algorithm. Short description of the algorithm include three 
steps: step 1 computes for each object and each angle θ, the degree of being outlier of the 
object with respect to θ. As a measure of how outlying each object is over all possible 
angles, step 2 computes, for each object, the maximum degree of outlyingness over all 
possible θ’s. In step 3, if this maximum degree for a object is too high, the influence of this 
object is weakened by a decreasing weight function. Finally, with all objects weighted 
accordingly, the location center and the covariance matrix are computed. 

In Hybrid-random algorithm subsumpling is first applied for a very small number of 
subsamples. Then from the fixed-angle algorithm, we know that projection vectors too 
close to each other do not give markedly different results. 

Using the Euclidean inner product and Law of Cosines, a collision between two vectors a 
and b occurs if  

222 )2()1(2),( δ≤−=−= bababadist T , 

where δ is a radius of a patch on the surface of the K-d unit hypersphere [26]. 
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3.1.3. A unified notion of outliers 

As the distributions of the attribute values are almost unknown and no standard distribution 
can adequately model the observed distribution, so choice of suitable tests requires non-
trivial computational effort for large datasets. We need a unified notion of outliers, in [25] 
it is defined as follows: 

Definition: An object xi in a dataset X  is a UO(p, d) - outlier if at least fraction p of 
the objects  in Х are more than distance d from xi. 

The term UO(p, d)-outlier is using as notation for a Unified Outlier with parameters p and 
d. The approach for finding all UO(p, d)-outliers relies on an cell structure. The idea is to 
reduce object-by-object processing to cell-by-cell processing [24]. 

In [25] is shown the cell structure for the two dimensional case, where the length of cell is 
22dl = . Let Cx,y denote the cell that is at the intersection of row x and column y. The 

Layer-1 (L1) neighbors of Cx,y are all the immediate neighboring cells of Cx,y as defined in 
the usual sense, i.e.,  

L1(Cx,y)={ Cu,v | u = x ± 1, v = y ± 1, Cu,v ≠ Cx,y }. 

The Layer-2 (L2) neighbors of Cx,y are all the cells within 3 cells of Cx,y, that is, 

L2(Cx,y) ={ Cu,v | u = x ± 3, v = y ± 3, Cu,v∉ L1(Cx,y), Cu,v ≠ Cx,y }. 

The general approach for computing outliers includes the following properties: 
a) If there are more than k objects in Cx,y, none of the objects in Cx,y is an outlier. 

b) If there are more than k objects in Cx,y∪L1(Cx,y), none of the objects in Cx,y is an 
outlier. 

c) If there are less or equal to k objects in Cx,y∪L1(Cx,y) ∪L2(Cx,y), every object in Cx,y  
is an outlier. 

Here k denotes the maximum number of objects that can be inside the d is the 
neighborhood of an outlier, i.e. k=N(1-p). These properties help to identify outliers or non-
outliers in a cell-by-cell manner rather on an object-by-object basis [25]. Algorithm 
FindAllOuts uses the cell structure as described above, is considered in [24]. 

3.1.4. Data association method 

In the outlier-based association method, an outlier score function is defined to measure the 
extremeness of a cell. The more extreme a cell is, the higher outlier score it gets [29]. Here 
cell c is defined as a vector of the values of attributes with dimension t, where t≤ K. So a 
cell is a subset of object’s attributes. For example, if the attributes are quantity, time, 
product and geography, then Sales, January 1994, Candy Bars and the United states will be 
a cell [30]. Since each object can also treated as a cell: cell(xi) = (x1, x2, …, xK). 

The following rule is used to associated data: for two objects xi and xj, we say xj and xj are 
associated with each other if and only if there exist a cell c, c contains both xi and xj, and 
f(c) exceeds some threshold value τ. 
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Definition: (union) 
c1 and c2 are two cells. We call cell c the union of c1 and c2 when both c1 and c2 are 
contained in c. 

Since each object can be treated as a cell, than expression  
Union(xi, xj)=Union(Cell(xi), Cell(xj)) 

is a generalization of the Union concept. From definition of the union cell, if any cell c 
contains both xi and xj, it contains Union(xi, xj). From more evidence property,  

f(Union(xi, xj)) ≥ f(c). 

Therefore, we can write the following equivalent data association rule: associate xi and xj, 
if  f(Union(xi, xj))≥τ. 
When the group of objects has some common characteristics and these characteristics are 
very different from others, given by the outlier score function, then those objects are 
associated [30]. 

3.2. Distribution-based approach 

Distribution-based methods originate from statistics, where object is considered as an 
outlier if it deviates too much from underlying distribution. For example, in normal 
distribution outlier is an object whose distance from the average object is three times of the 
variance [18]. 

3.2.1. A method for high dimensional data 

For high dimensional data it is better to examine the behaviour of the data in lower 
dimensional subspace. This is because by using full dimensional distance measures, it 
would be more difficult to detect outliers effectively because of the averaging behaviour of 
the noisy and irrelevant dimensions. So, in [2] outliers are defined by checking of those 
projections of the data, which have abnormally low density. Abnormally lower 
dimensional projections are those, in which the density of the data is exceptionally 
different from average density. Let the data be divided by fraction f =1/φ, where φ is the 
number of grid lines. Consider a k-dimensional cube, which is created by picking grid 
ranges from k different dimensions. Then, we calculate the sparsity coefficient S(D) of a 
cube D as follows: 
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where n(D) is the actual number of objects in the cell, N is the number of objects in the 
data, N⋅ f k is the expected number of objects per cell, and the divider is the standard 
deviation of the data objects in the cell.  

The main idea behind the equation (3.1) is that coefficient accounts differences for 
dimensionalities of subspaces. It provides an intuitive idea that is related to the level of 
significance for a given projection. 
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Cubes that contain significantly less number of objects what expected are classified as 
outliers (with negative sparsity coefficient). Level of significance can be find from 
confidence intervals. Intervals which correspond to the first few multiples of standard 
deviation are illustrated in Figure 9. It means what in 99.9% the cube contains fewer 
objects than expected, if sparsity coefficient is negative and equal to 3 standard deviations. 
If we choose 2 standard deviations than can exclude useful data, for 4 standard deviations 
some outliers not excluded. So, we define projection as outlier if sparsity coefficient is 
equal to around −3. 

 
Figure 9. Normal distribution. 

Consider the example for k = 2 and φ = 3 in the Figure 10. Suppose N = 100, n(D) = 2,  
N⋅f k =12, then S(D) = −3.22. The idea of sparsity coefficient in following: S(D) is the 
number of standard deviations by which the actual number of objects n(D) differed from 
the expected number of objects N⋅f k. In Figure 10 the negative sparsity coefficient defines 
cubes, which contain one and two objects, which are outliers. 

 

 
Figure 10. Outlier detection for abnormally low density. 

The problem is to find the subset of dimensions, which are sparsely populated. In general, 
it is not possible to predict the behaviour of the data when two sets of dimensions are 
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combined. Therefore, the best qualitative option is to develop search methods which can 
identify such hidden combinations of dimensions, because of a naive brute force algorithm 
is very slow, and the evolutionary algorithm much faster for such aim. The idea is 
borrowed from a class of evolutionary search methods in order to create an efficient and 
effective algorithm for the outlier detection problem. 

The evolutionary search technique starts with a population of random solutions and 
iteratively uses the process of selections, crossover and mutation in order to perform a new 
combination with most negative sparsity coefficient. The process continues until the 
population converged to a global optimum. At each stage of the algorithm, the best 
projections solutions were kept track of. 

An important issue in the algorithm is to be able to choose the projection parameters k and 
φ. Values of φ and k should be picked small enough so that the sparsity coefficient of cube 
containing exactly one object is reasonable negative. The level of significance can be 
quantified by using of the normal distribution tables, because n(D) is assumed to fit a 
normal distribution. At the same time φ should be picked high enough so that there are 
sufficient number of intervals on each dimension that corresponds to a reasonable notion of 
locality. Let k be determined by using the calculation of the sparsity coefficient of an 
empty cube. This is given by expression (3.2) from equation (3.1) 
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By expressing the equation (3.2) in terms of k we can get the dimension of projection k as: 

⎣ ⎦)1(log 2 += sNk φ . 

The method works by finding lower dimensional projections which are locally sparse, and 
cannot be discovered easily by brute force techniques because of the high number of 
possible combinations. Such techniques for outlier detection has advantages over distance 
based outliers, which cannot overcome the effects of the high dimensionality [2]. 

3.2.2. SmartSifter algorithm 

An outlier detector called SmartSifter (SS) is an on-line outlier detection algorithm based 
on unsupervised learning from data. It takes a data sequence as input in an on-line way, 
learns an underlying model from examples and gives a score to each object on the basis of 
the learned model. Thus a high score indicates a high probability that the object is an 
outlier. The central idea of SS is to learn the model with on-line learning algorithms and to 
calculate a score for a data [43]. 

Let X(x, y) denote a dataset, where x denotes a vector of categorical variables, which has 
two or more categories, but there is no intrinsic ordering to the categories, there is no 
agreed way to order these from highest to lowest. The second variable y denotes a vector of 
continuous variables that can take on any value in a certain range. The joint distribution of 
(x, y) is p(x, y) = p(x)p(y|x), where p(x) is represented by a histogram density with a finite 
number of disjoint cells. A histogram density forms a probability distribution p(x) = qj /Lj. 
Here Lj is the number of categorical variables in the jth cell. qj denotes the probability value 
for the jth cell, so that these parameters correlate as ∑ =

=
k

j jq
1

1, 0>q . For each cell a 
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finite mixture model is used to represent the probability density over the domain of 
continuous variables. 

A finite mixture model employs a Gaussian mixture model: 
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where k is a positive integer and each p(y) is a d-dimensional Gaussian distribution. 

So, there are as many finite mixture models as cells in the histogram density. Consider the 
situation where a sequence of data is given: (x1, y1), (x2, y2), … ,(xn, yn) in an on-line 
process. Identify the cell into falls given xt and update the histogram density to obtain pt(x). 
Then, for that cell, update the mixture model to obtain pt(y|x). In the both cases for 
updating are used SDLE and SDEM algorithms, which are presented in detail in [44]. For 
other cells, set p(t)(y|x)= p(t-1)(y|x). Then, SS gives a score to each value by the following 
equation 
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This score is calculated on the basis of the models before and after updating, that is 
measures how much the distribution p(t) has moved from p(t-1) after learning from (xt, yt). 
The described algorithm is demonstrated as flow diagram in the Figure 11. 

 

 

Figure 11. The flow diagram of SmartSifter algorithm. 

The main advantages of method are that the computational time is inexpensive and it can 
deal with both categorical and continuous variables. 
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3.2.3. Replicator neural network approach 

Replicator neural network (RNN) approach for outlier detection is a variation on the usual 
regression model where the input feature vectors are also used as the output [41]. 
Regression model in common case is used as an instrument for describing the dependence 
between input value and some factors. Thus, the RNN attempts to reproduce the input 
patterns in the output. 

During training RNN weights are adjusted to minimize mean square error for all training 
patterns so that common patterns are more likely to be well reproduced by the RNN. 
Consequently, those patterns representing outliers are worse reproduced by the RNN and 
have a higher reconstruction error. The reconstruction error is used as the measure of being 
outlier of a given attribute as: 

 ∑∑
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where N is the number of objects in the training set, K is the number of attributes. The 
attribute of the output from the RNN is oij [16]. 

For outlier detection Outlier Factor (OF) is defined as measure of the ith data object. OFi is 
the average reconstruction error over all features defined as: 
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This is calculated for all data using the trained RNN to score each data object [41]. 

 

3.3. Density-based approach 

Density-based methods have been developed for finding outliers in a spatial data. These 
methods can be grouped into two categories called multi-dimensional metric space-based 
methods and graph-based methods. In the first category, the definition of spatial 
neighborhood is based on Euclidean distance, while in graph-based spatial outlier 
detections the definition is based on graph connectivity. Whereas distribution-based 
methods consider just the statistical distribution of attribute values, ignoring the spatial 
relationships among items, density-based approach consider both attribute values and 
spatial relationship [38]. 

3.3.1. Local Outlier Factor 

Local Outlier Factor (LOF) is the density-based method, which detects local outliers based 
on the local density of an object’s neighborhood. LOF is intuitively a measure of 
difference in density between an object and its neighborhood objects [21]. We refer to LOF 
as a method from multi-dimensional metric space-based category of density-based 
approach. In a multidimensional dataset it is more meaningful to assign for each object a 
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degree of being an outlier. The key difference between LOF approach and existing notions 
of outliers is that being outlier is not a binary property. 

Local outliers are the objects which relative to their local neighborhoods with respect to the 
densities of the neighborhoods. Formal definition of local outliers was developed in [6]: 

Definition: (k-distance of an object xi) 
For any positive integer k, the k-distance of object xi, denoted as k-distance(xi), is 
defined as the Euclidean distance d(xi, xj) between xi and an object xj∈Х such that: 
(i)  for at least k objects xj’∈ Х \ { xi } it holds that d(xi, xj’)≤ d(xi, xj), and 
(ii) for at most k-1 objects xj’∈ Х \ { xi } it holds that d(xi, xj’)< d(xi, xj). 

Intuitively, k-distance(xi) provides a measure on the sparsity or density around the object 
xi. When the k-distance of xi is small, it means that the area around xi is dense and vice 
versa [21]. 

Definition: (k-distance neighborhood of an object xi) 
The k-distance of xi, the k-distance neighborhood of xi contains every object whose 
distance from xi is not greater than the k-distance, i. e. 

)}(),(|}{\{)()( iliilixdistancek xdistancekxxdxXxxN
i

−≤∈=− . 

These objects xl are called the k-nearest neighbors of xi. 

Definition: (reachability distance of an object xi w.r.t. object xj) 
The reachability distance of object xi with respect to object xj as defined as 

reach-distk(xi, xj) = max { k-distance(xj), d(xi, xj) }. 

If object xi is far away from xj, then the reachability distance between the two is simply 
their actual distance. However, if they are close, the actual distance is replaced by the k-
distance of xj [6]. 

Definition: (local reachability density of xi) 
The local reachability density of an object xi is the inverse of the average reachability 
distance from the k-nearest neighbors of xi: 
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Definition: (local outlier factor of xi) 
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LOF is the average of the ratios of the local reachability density of xi and those of xi’s k-
nearest-neighbors. Intuitively, xi’s local outlier factor will be very high if its local 
reachability density is much lower than those of its neighbors [21]. 

The extension of LOF method is presented in [21], where one method for finding the top-n 
local outliers in large databases is considered. The strength of that method is it avoids 
computation of LOF for most objects. And provide users to find only n most outstanding 
local outliers. 
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3.3.2. Graph-based algorithms 

Some of graph-based methods have been proposed in [18]. In the first method, named 
Outlier Detection using Indegree Number (ODIN) algorithm, outliers defined using k-
nearest neighbor (kNN) graph. kNN graph is a weighted directed graph, in which every 
vertex represents a single vector, and the edges correspond to pointers to neighbor vectors. 
Every vertex has exactly k edges to the k nearest vectors according to a given distance 
function. Weight of the edge eij is the distance between vectors vi and vj. A simple example 
of kNN graph for 4 vectors with k = 3 is illustrated in Figure 12. 

 
Figure 12. Illustration of kNN graph. 

We define outlier detection problem for methods from this category in the following way: 
graph G is presented as G = {S, E}, where S is a dataset of vertex and E is a collection of 
edges between locations in S. The definition of outliers is given below: 

Definition: Given kNN graph G for dataset S, outlier is a vertex, whose indegree is 
less than equal to T. 

In the first step of ODIN, a kNN graph is created for dataset S. Then, if vertex i has an 
indegree of T or less, mark it as an outlier and otherwise mark it as an inlier. The method 
has two control parameters: the number of outgoing edges k and the indegree threshold T. 

One more method is MeanDIST algorithm, which is defined as the mean of k nearest 
distances. It has been modified from method proposed in [35], which calculates kNN 
sparseness estimate for all vectors in dataset S. But instead of sorting in an ascending 
order, MeanDIST algorithm cuts objects in the sorted list specified by considering 
differences Li –Li-1. Where Li is mean distance of ith vector to nearest. Then the ordered list 
is scanned from smaller to larger distances and calculate threshold T: 

 ,)max( 1 tLLT ii ∗−= −  (3.5) 

where t∈]0, 1[ is a user defined parameter. In the first step of MeanDIST algorithm we 
compute threshold T as described above. Than we calculate kNN graph of S and sort 
vectors in ascending order by kNN density. If distance Li –Li-1 ≥ T, mark Li is outlier. 
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Figure 13. Example of kNN graph for KDIST algorithm. 

The application example of MeanDIST algorithm is shown in Figure 13. Let be defined 
kNN graph for k = 3 and weights determined as: e12 = 3, e23  = 6, e13  = 7, e41 = 3, e24 = 6, e34 
= 5. We find values of Li as: L1 is mean of e12, e41 and e13, L2 is mean of e12, e24 and e23, L3 
is mean of e23, e13 and e34; and L4 is mean of e41, e24 and e34. So we have L1 = 4.3, L2 = 5, L3 
= 6, L4 = 4.6. After sorting, we construct new sequence L1, L4, L2, L3 and then consider 
differences L3 – L2, L2 – L4, L4 – L1. Let t = 0.5, in this case T = 0.5. We can propose what 
vertex s3 is outlier, because of difference L3 – L2 = 1 exceeds T. 

In [8] was proposed a Mutual k-Nearest Neighbour (MkNN) graph approach. It uses a 
special case of kNN graph: there exists an undirected edge between two vectors vi and vj if 
they belong to each others k-neighborhood. Connected components are considered as 
clusters, if they contain more than one vector. Isolated vectors are denoted as outliers. 

Another graph-based algorithm for detecting outliers is designed in [38]. It provides a cost 
model for outlier detection procedure and design efficient fast algorithms to detect spatial 
outliers. 

Consequently, in this kind of approaches, there are two parameters that define the notion of 
density: a minimum number of objects and a parameter specifying a volume. They 
determine a threshold. That is, objects are connected if their neighborhood densities exceed 
the given density threshold. 
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4. PROPOSED METHOD 

The ability to detect outliers can be improved using a combined perspective from outlier 
detection and cluster identification. Some clustering-based algorithms like DBSCAN and 
ROCK [9], [12] can also handle outliers, but their main concern is clustering dataset, not 
outlier detection. Unlike the traditional clustering-based methods, the proposed algorithm 
provides much efficient outlier detection and data clustering capabilities in the presence of 
outliers. This approach is based on filtering of the data after clustering process. The 
purpose of our method is not only to produce data clustering but at the same time to find 
outliers from the resulting clusters. 

The algorithm of our outlier detection method is divided into two stages. The first stage 
provides k-means process and in the second stage outliers are removed according to a 
chosen threshold. k-means clustering algorithm is explained in Section 2 in more detail. In 
this section, we will consider our proposed method and implementation of outlier removal 
stage. Figure 14 on left shows a more detailed view of the whole algorithm. As input 
parameters we need dataset X, number of clusters M, threshold Th and the number of 
iterations R. An initial solution is produced by the same way as for k-means algorithm. 
Next follow k-means clustering and outlier removal stages. After removal it is necessary to 
clean old partition, so in this diagram it is performed by FreePartitioning procedure. 
Then we again create optimal partitioning like in k-means. The stop rule is defined as the 
difference between the initial number of objects in the dataset, and the resultant number. It 
would be also possible to stop for certain number of iterations R, in case if the number of 
algorithm iterations i will be equal to R. 

Pseudo code for the proposed Clustering Outliers Removal (COR) algorithm is listed in 
Figure 15. To describe it we use the same terminology as defined in Section 2. In addition 
we summarize data structures: 

  X[N]  array of N K-dimensional data objects 
  P[N]  array of N integer objects from X to C (partitions) 
  C[M] array of M K-dimensional vectors cluster representatives (centroids) 
  Pj       number of objects xi which belong to jth partition 
  [ ]∑

=

∈∀=
jp

j
i

MjP ,1,1 . 

The procedure begins by creating an initial solution. The REPEAT-UNTIL loop in the next 
step iterates until the number of objects will not change in the dataset. In addition, it can 
also stop, if the number of iterations becomes R. Inside the loop, we perform k-means 
iterations and outlier removal stages. 
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Figure 14. Flow diagram of the proposed algorithm (left). Flow diagram of k-mean and 
outlier removal functions (right). 
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PerformCOR(X) 
{ 
 // initial solution 
i := 0;               // i is a number of iterations 
C := SelectRandomRepresentatives(X); 
P := OptimalPartition(C, X); 
REPEAT  
 { 
  i := i+1; 
  // number of separately represented vectors in the dataset 
  freq := X[N]; 
  // calculate average distance between each vector and its  
  //current codevector 
  error := AverageErrorForSolution(X, C, P);  
  REPEAT 
   { 
    errornew:= error; 
    (Pnew, Cnew) := K-means(P, C, X); 
    error := AverageErrorForSolution(X, Cnew, Pnew); 
   } 
  UNTIL (error < errornew); 
  Xnew := OutlierRemoval(Pnew, X, Cnew);    
  freqnew := Xnew[N]; 
  FreePartitioning(Pnew); //  delete partition 
  P := OptimalPartition(Cnew, Xnew); 
  (X, C) := (Xnew, Cnew); 
  // it would be also possible to stop for R iterations  
  IF ( i = R ) BREAK;  
 } 
// stop when number of objects will not change in the data 
UNTIL (freq != freqnew); 
} 
 

Figure 15. Pseudo code of the COR algorithm. 

Figure 14 on right illustrates in greater detail outlier removal stage of the proposed 
algorithm. The principle of outliers removing depends on the difference between threshold 
and distortion. Threshold is set by user in range between 0 and 1. Distortion is calculated to 
show how far the furthest object lies from the nearest object in the partition. Under furthest 
and nearest object in partition we mean maximum and minimum distances correspondingly 
between objects and their current centroid. So, distortion is defined as the ratio of nearest 
distance to furthest distance in the same partition. 

Removal of the most distant object occurs under the following condition: if distortion is 
less than threshold, the furthest object is considered to be outlier for this partition. In cases 
if there is just one object in partition, this object is removed too. Sometimes it happens that 
we have empty partitions after the clustering process, i.e. no objects are mapped to the 
partition. In this situation, such partition is ignored for calculating distortion. 
Implementation design of outlier removal stage with such kind of exceptions is explained 
in the pseudo code in Figure 16.  
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OutliersRemoval (P, X, C) 
{ 
 // through all clusters  
 FOR j := 1 TO M DO 
  { 
  // through all objects in cluster ‘j’ 
  IF  Pj != 0 && Pj != 1 THEN { 
 //find minimum distance between vectors and their current 
 //codevector 
   dmin := NearestDistanceInPartition(Pj, j);  
   // find maximum distance between vectors and their current 
   //codevector; and index of furthest vector in a partition 
   (Furthest, dmax) := FurthestDistanceInPartition(Pj, j); 
   distortion = dmin / dmax;        // calculate distortion 
   IF  distortion < Th  THEN { 
   //remove vector with index ‘Furthest’ 
   Xnew := RemoveVector(Furthest); 
   ELSE   j = j + 1;  } 
  } 
  ELSE  IF Pj = 1  THEN { 
  //remove vector, because only one in partition  
  Xnew := RemoveVector(IndexV)  
     ELSE  j = j + 1; 
  } 
  X := Xnew; 
  } 
RETURN X; 
} 
 

Figure 16. Pseudo code of the OutliersRemoval function. 

The procedure begins with FOR operator, in which is looking for all objects in each cluster 
and calculate distances to their current codevectors. After maximum and minimum 
distances are chosen, in the next step calculate distortion and it compare with threshold 
value. Then outliers are removed on the base of conditions for empty partitions and only 
one object in the partition. 

 

Figure 17. Original data DATA_A1 (left), and after outliers have been removed (right). 

The performance of proposed algorithm for 5 iterations with threshold 0.009 is illustrated 
in Figure 17. In the original data, there are the most distant objects from centroids, some of 
such furthest objects are labeled by arrows in Figure 17 on the left. The algorithm proceeds 
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by removing the furthest objects from all partitions. Figure 17 on right demonstrates the 
resulting data after the algorithm. 

So, we propose a clustering-based technique to identify outliers and simultaneously 
produce data clustering. Proposed outlier detection process at the same time is effective for 
extracting clusters and very efficient in finding outliers. But the side effect is that we 
actually do not know how to choose threshold for outlier removal stage. 
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5. EXPERIMENTAL RESULTS 

In this section we present the results of an experimental study on synthetic unlabeled data 
and then on KDD Cup 1999 real-life labeled datasets [49] prepared for intrusion detection. 
The purpose of the experiment on real data was to detect intrusions. 

5.1. Evaluation results 

We have applied the Receiver Operating Characteristic (ROC) analysis to evaluate the 
performance of the evolved method. In each of ROC plot, the x-axis is the False 
Acceptance (FA) rate, it indicates the percentage of normal connections classified as an 
intrusion. FA is calculated as a number of inliers detected as outliers divided by all 
detections. The y-axis is the False Rejection (FR) rate; it indicates the percentage of not 
detected outliers. FR is calculated as a number of not detected outliers divided by all 
outliers. A data object in the down left corner of the plot with FA and FR axes corresponds 
to optimal performance, i.e., low FA rate with low FR rate. Half Total Error Rate (HTER) 
is a combination of FR and FA values. We will calculate HTER values and show how they 
are change with varying threshold and number of clusters. HTER define as (FR+FA)/2. 
Similar evaluation methodology has been used in [18], [28]. 

5.2. Experiments with synthetic data 

We ran our algorithm on the synthetic DATA_A1 dataset; it contains 3000 objects grouped 
in 20 clusters. DATA_A1 is illustrated in Figure 20 on left. At first, we should discuss some 
formal criteria. Given a dataset TS = DATA_A1, C is a codebook optimized for that dataset. 
TS* is a dataset TS from which outliers have been removed, and C* is a codebook 
optimized for TS*. C0 are original cluster centroids of the TS dataset, they were used for 
generating TS. TS*, C, C* we got after testing and used theirs to evaluate the efficiency of 
results. Thereto we calculated error for TS and C as f(TS, C) it means an average error from 
data to cluster centroids before any removing. Those errors have not much different from 
each other for parameter of various threshold values. Training error f(TS*, C*) means an 
average error from resultant data to their cluster centroids, its measure means the more 
outliers we remove, the less training error we get. Test error f(TS, C*) is an average error 
from original dataset to the resultant cluster centroids. It shows how much the distances are 
changed after removing. Also were measured the differences between the original clusters 
centroids and centroids of clustering process f(C0, C), f(C0, C*) is the differences between 
the original clusters centroids and resultant centroids. And the differences between 
centroids of clustering process and resultant centroids are presented as f(C, C*), it the 
bigger, the more outliers we remove.  

In these experiments we fix the number of clusters to 20 for the DATA_A1 and the 
threshold value ranging between 0.0001 and 0.1. In Table 1 are shown outlier detection 
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results. Here the second column represents the number of removed objects. The errors 
described above are listed in Table 1 as well. 

Table 1. Performance results for DATA_A1 dataset. 

From Table 1 we can conclude that f(C0, C) errors are less then f(C0, C*) errors for all the 
threshold values except only one, it means, original cluster centroids can be found more 
accurately by clustering the set TS. If to compare f(TS*, C*) and f(TS, C*) errors, we can 
observe that training error decrease as threshold value becomes bigger, but test error 
increase with growth of threshold. Error rates for comparison test and training errors is 
better visually observed in Figure 18. 

threshold outliers error 
f(TS, C) 

training error 
f(TS*, C*) 

test error 
f(TS, C*) f(C0, C) f(C0, C*) f(C, C*)

0.0001     2 2024389 2019963 2024418 3458   3711     27 
0.0002      6 2024389 2009233 2024549 3458   4153    155 
0.0003    26 2024389 1955907 2025004 3781   3458    603 
0.0004    46 2024376 1916140 2025317 3155   4697    896 
0.0005    51 2024376 1905228 2025503 3155   5021   1070 
0.0006    66 2024389 1873019 2025776 3458   4271   1299 
0.0007    85 2024389 1831758 2025874 3458   4329   1387 
0.0008    97 2024389 1812992 2026108 3458   4322   1578 
0.0009  120 2024376 1757738 2026554 3155   4477   2039 
0.0010  157 2024376 1676882 2029102 3155   6012   4527 
0.0020  315 2024389 1436421 2034449 3458  10272   9544 
0.0030  457 2024389 1235626 2037178 3458  13166  12250 
0.0040  584 2024376 1070212 2042436 3155  18061  17425 
0.0050  745 2024376  922081 2051081 3155  26982  23251 
0.0060  924 2024389  763320 2060465 3458  33477  31767 
0.0070 1030 2024389  663906 2069434 3458  40889 39703 
0.0080 1095 2024376  605353 2072014 3155  43127  41361 
0.0090 1125 2024376  574180 2074973 3155  45917  44854 
0.0100 1237 2024376  513739 2084782 3155  55925  49896 
0.0200 1725 2024376  244793 2104332 3155  76553  68295 
0.0300 2009 2024376  145301 2145282 3155 120776  99880 
0.0400 2200 2024376   95303 2197788 3155 175409 143335 
0.0500 2406 2024389   57325 2204561 3458 181442 152735 
0.0600 2532 2024389   27768 2224101 3458 203086 169347 
0.0700 2563 2024376   25051 2221189 3155 198709 166888 
0.0800 2669 2024376   13433 2252187 3155 230107 181105 
0.0900 2707 2024389   10543 2258766 3458 234962 185537 
0.1000 2725 2024389    9615 2266675 3458 242618 190005 
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From Figure 18 we summarize that training error decreases very fast. It occurs as the 
threshold becomes bigger, thus removing more and more number of objects and the 
distances are decrease from dataset to the cluster centroids. The test error increases not so 
very fast because of cluster centroids moved at smaller distance relatively to the distance 
from removed outliers. 
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Figure 19. Comparison of f(C0, C) and f(C0, C*) errors. 

The comparison of f(C0, C) and f(C0, C*) errors is summarized in  

Figure 19. We observe that choosing threshold value less than 0.0009 we have 
insignificant difference between two error curves. They are most close to each other for 
threshold value ranging between 0.0001 and 0.0009. It means that resultant cluster 
centroids are moved not far away from original centroids on this segment, but then 
threshold is bigger, the f(C0, C) curve is sharply increase. Thus, for threshold value bigger 
than 0.0009 we have centroids are moved far away and probably we lose useful data for 
those parameters. 

 

  

Figure 20. Original data DATA_A1 with cluster centroids (left), and the dataset after 
performance of the algorithm (right) for threshold value 0.0009, when 120 outliers 

have been removed. 
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Figure 21. Dataset after performance of the algorithm for threshold value 0.001, when 

157 outliers have been removed. 

The second example, shown in Figure 21, was produced also from DATA_A1 dataset with 
threshold value 0.001. Visually, by comparison with previous picture, one can see that if 
we will take bigger threshold value we, in fact, will be losing useful data, as in cluster 
marking by arrow, it consists only useful data. So for bigger threshold this useful data can 
be removed. 

In general, we deduce, it was correct to choose threshold is equal to 0.0009 to get at the 
same time good data filtering and very well clustering of the data. 

5.3. Network intrusion detection 

The 1998 DARPA Intrusion Detection Evaluation Program was prepared and managed by 
MIT Lincoln Labs. The purpose was to survey and evaluate research in intrusion detection. 
A standard set of data to be audited, which includes a wide variety of intrusions simulated 
in a military network environment, was provided. The raw training data was about four 
gigabytes of compressed binary TCP dump data from seven weeks of network traffic.  This 
was processed into about five million connection records. Similarly, the two weeks of test 
data yielded around two million connection records. A connection is a sequence of TCP 
packets starting and ending at some well defined times, between which data flows to and 
from a source IP address to a target IP address under some well defined protocol. Each 
connection is labeled as either normal, or as an attack, with exactly one specific attack 
type. Each connection record consists of about 100 bytes [49]. 

KDD Cup 1999 dataset is an extension of DARPA’98 dataset with a set of additionally 
constructed features. And it does not contain some basic information about the network 
connections; e.g. start time, IP addresses, ports, etc. 

Dataset is specified by 41 attributes (34 continuous and 7 categorical) and a label 
describing the attack type (22 kinds: normal, back, buffer_overflow, ftp_write, 
wazermaster, etc.) where all labels except “normal” indicate in attack. Table 2 shows 
examples of connection records. As in [44], we used four of the original 41 attributes 
(service, duration, src_bytes, dst_bytes) because these four were thought of as the most 
basic attributes. Service is a categorical feature while the other three are continuous 
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features. The list and description of chosen features shown in Table 3. The range of service 
is {http, smtp, finger, domain_u, auth, telnet, ftp, eco_i, ntp_u, ecr_i, other, pop_3, pop_2, 
ftp_data, ssh, gopher, domain, private, login, imap4, time, shell, IRC, urh_i, X11, urp_i, 
tftp_u, discard, tim_i, red_i, nntp, uucp,netbios_ssn, daytime, echo}. The number of 
service kids is 35, and we divided them into five subsets according to the five feature: http, 
smtp, ftp, ftp_data, others; because each categorical variable belonging to “others” has a 
low frequency. 

Table 2. Network connection records. 

Table 3. List of features. 

The original dataset contains 4,898,431 data, including 3,925,651 attacks (80.1%). This 
rate of attacks is too large. Therefore we took a sub dataset, which produced by picking up 
the original 10 % KDD Cup 1999 dataset. Details of the resultant dataset are listed in 
Table 4. Then we normalized it, where each continuous attribute values were concentrated 
around 0 according to the following equation: 

y=log(x+0.1). 

Table 4. The extracted datasets from KDD Cup 1999. 

Service Events Intrusions Proportion 
http 43047 74 0.17% 
smtp 9187 4 0.04% 

ftp_data 307 78 25.41% 
ftp 619 266 42.97% 

others 3908 260 6.65% 

Duration protocol_type service flag src_bytes dst_bytes land … label 
0 tcp http SF 219 1337 0 … normal
0 tcp http SF 217 2032 0 … normal
0 icmp ecr_i SF 1032 0 0 … smurf 

9400 udp other SF 147 105 0 … normal
13 tcp smtp SF 11994 1361 0 … normal
… … … … … … … … … 
25 tcp ftp SF 334 1063 0 … normal
0 tcp Private S0 0 0 0 … neptune

Feature name Description Type 
service network service on the destination, e.g., http, telnet, etc. discrete 
duration length (number of seconds) of the connection continuous
src_bytes number of data bytes from source to destination continuous
dst_bytes number of data bytes from destination to source continuous



 35

5.4. Experiments with real data 

Experiments were run on ftp, ftp_data, smtp, others and http datasets, that were described 
in previous section. The aim is to identify intrusions within each of the categories by 
identifying outliers. Figure 22, Figure 23, Figure 24, Figure 25 and Figure 26 illustrate 
original datasets extracted from KDD Cup 1999, on left and the results after running 
algorithm are illustrated on right. Here, by stars are shown cluster centroids for resultant 
datasets. 
 

 
Figure 22. Visualization of ftp dataset before outlier removing (left). Resultant ftp after 

applying proposed method with threshold value 0.005 and number of clusters 10 
(right). 

 

Figure 23. Visualization of ftp_data dataset before outlier removing (left). Resultant 
ftp_data after applying proposed method with threshold value 0.9 and number of 

clusters 5, is performed with 35 iterations (right). 
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Figure 24. Visualization of smtp dataset before outlier removing (left). Resultant smtp 
after applying proposed method with threshold value 0.0000005 and number of 

clusters 5 (right). 

 

Figure 25. Visualization of others dataset before outlier removing (left). Resultant 
others after applying proposed method with threshold value 0.05 and number of 

clusters 5 (right). 
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In these pictures, the clusters have different sizes and different shapes, and the nose has 
different intensities. The results demonstrate that the COR algorithm can achieve good 
identifying and eliminating noise. 
To demonstrate the effectiveness of this approach we report a computational results of 
evaluation method described in Section 5.1. Table 5, Table 6, Table 7, Table 8 and Table 9 
provides FA and FR rates for all five datasets enumerated above. Experiments are 
performed for different number of clusters and various threshold values. By marked cells 
in tables are represented the best minimum FA and FR errors for each of datasets. 

Table 5. List of FA rate and FR rate for ftp dataset. 

 

Figure 26. Visualization of http dataset before outlier removing (left). Resultant http 
after applying proposed method with threshold value 0.005 and number of clusters 5, 

is performed with 45 iterations (right). 

threshold number 
of 

clusters 

error 
rates 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001 

FA 67% 67% 51% 38% 30% 20% 33% 5 
FR 66% 72% 76% 77% 89% 89% 99% 
FA 50% 42% 28% 9% 4% 9% 33% 10 FR 19% 22% 78% 36% 68% 86% 99% 
FA 46% 43% 22% 15% 6% 14% 21% 15 FR 20% 25% 58% 43% 79% 89% 95% 
FA 50% 36% 21% 23% 27% 15% 18% 20 FR 25% 30% 49% 68% 90% 87% 96% 
FA 48% 38% 17% 28% 12% 21% 33% 25 FR 32% 36% 56% 77% 83% 94% 98% 
FA 53% 43% 40% 32% 23% 26% 25% 50 FR 46% 54% 75% 77% 91% 95% 97% 
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Table 6. List of FA and FR rates for ftp_data dataset. 

Table 7. List of FA and FR rates for smtp dataset. 

Table 8. List of FA and FR rates for others dataset. 

threshold number of 
clusters error rates 

0.9 0.5 0.1 0.05 0.01 0.005 0.001 
FA 71% 78% 83% 84% 90% 93% 88% 5 
FR 3% 24% 46% 50% 78% 85% 87% 
FA 74% 78% 82% 79% 85% 89% 81% 10 FR 3% 24% 46% 39% 79% 85% 91% 
FA 73% 78% 80% 77% 83% 90% 88% 15 FR 3% 26% 42% 41% 79% 89% 96% 
FA 72% 77% 78% 79% 88% 94% 91% 20 FR 5% 28% 43% 48% 85% 94% 96% 
FA 72% 78% 77% 75% 87% 93% 96% 25 FR 7% 30% 46% 47% 87% 93% 98% 
FA 67% 73% 74% 69% 72% 77% 82% 50 FR 8% 32% 50% 53% 79% 88% 96% 

threshold number 
of 

clusters 

error 
rates 0.0001 0.00005 0.00001 0.000005 0.000001 0.0000005 0.0000001 

FA 97% 97% 94% 50% 66% 50% 33% 3 FR 25% 25% 25% 50% 25% 50% 50% 
FA 97% 97% 93% 80% 66% 40% 50% 4 FR 25% 25% 25% 25% 25% 25% 50% 
FA 97% 97% 92% 80% 57% 25% 50% 5 FR 25% 25% 25% 25% 25% 25% 75% 
FA 98% 93% 100% 88% 57% 40% 50% 10 FR 25% 75% 100% 25% 25% 25% 75% 
FA 99% 100% 87% 80% 100% 80% 100% 15 FR 75% 100% 75% 50% 100% 75% 100% 

threshold number 
of 

clusters 
error rates 

0.5 0.1 0.05 0.01 0.005 0.001 0.0005 
FA 64% 70% 62% 70% 52% 87% 91% 5 
FR 22% 38% 21% 63% 63% 95% 96% 
FA 83% 84% 85% 92% 92% 98% 98% 10 FR 33% 45% 53% 86% 86% 97% 97% 
FA 85% 88% 89% 94% 91% 95% 97% 15 FR 23% 40% 55% 80% 71% 88% 95% 
FA 87% 89% 93% 95% 94% 95% 97% 

20 FR 22% 36% 62% 76% 77% 84% 95% 
FA 91% 88% 94% 95% 95% 96% 95% 25 FR 27% 25% 60% 74% 78% 88% 93% 
FA 94% 95% 95% 95% 94% 90% 90% 50 FR 21% 45% 60% 79% 82% 88% 91% 
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Table 9. List of FA and FR rates for http dataset. 

Analyzing the tables above we summarize that ftp_data and http datasets have very high 
FA rates. We can improve the outlier detection results for them by control the number of 
iterations. That implies that in this case the method is able to obtain the better results by 
decreasing the number of iterations. Table 10 and Table 11 shows FA and FR rates 
produced for 35 iterations on ftp_data dataset and 45 iterations on http dataset. 

Table 10. List of FA and FR rates for ftp_data dataset, 35 iterations. 

Table 11. List of FA and FR rates for http dataset, 45 iterations. 

From Table 10 and Table 11 we conclude that algorithm with less number of iterations on 
ftp_data and http datasets outperform the experiments results before iteration control. 35 
iterations for ftp_data give minimum FA rate 57% and FR rate 3% instead of before they 
are were 71% and 3% correspondingly. 45 iterations for http dataset give minimum FA 
rate 75% and FR rate 1% instead before they are were 82% and 1% correspondingly. 

threshold number 
of 

clusters 

error 
rates 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001 

FA 85% 85% 85% 85% 85% 82% 80% 5 FR 1% 1% 1% 1% 1% 1% 5% 
FA 98% 98% 92% 98% 93% 94% 91% 

10 FR 79% 86% 0% 86% 20% 27% 28% 
FA 95% 95% 95% 95% 99% 99% 93% 

15 FR 0% 0% 0% 0% 89% 89% 21% 
FA 96% 99% 99% 99% 99% 99% 98% 

20 FR 0% 85% 81% 33% 86% 95% 85% 
FA 96% 99% 99% 99% 99% 97% 99% 

25 FR 0% 85 83% 86% 89% 31% 93% 
FA 99% 99% 99% 99% 99% 99% 99% 

50 FR 85% 89% 87% 95% 89% 93% 95% 

threshold number of 
clusters 

error 
rates 0.9 0.5 0.1 0.05 0.01 0.005 0.001 
FA 57% 63% 67% 70% 84% 86% 77% 5 FR 3% 25% 47% 50% 76% 85% 87% 
FA 73% 77% 80% 81% 87% 90% 89% 10 FR 2% 24% 35% 50% 78% 87% 94% 

threshold number 
of 

clusters 

error 
rates 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001 

FA 76% 78% 78% 75% 78% 73% 71% 5 FR 2% 12% 10% 1% 29% 10% 9% 
FA 87% 87% 89% 97% 87% 90% 98% 

10 FR 0% 0% 22% 81% 22% 87% 86% 
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HTER values for ftp, ftp_data, smtp, others and http datasets are summarized in Table 12, 
Table 13, Table 14, Table 15 and Table 16. By marked cells are shown minimum HTER 
values. 

Table 12. HTER for ftp dataset. 

Table 13. List of HTER for ftp_data dataset. 

Table 14. List of HTER for smtp dataset. 

Table 15. List of HTER for others dataset. 

threshold number 
of 

clusters 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001 

5 67.10% 70.05% 63.73% 57.72% 60.30% 55.21% 66.29% 
10 34.93% 32.34% 53.66% 23.01% 36.69% 47.92% 66.29% 
15 33.38% 34.50% 40.59% 29.66% 43.05% 51.90% 58.64% 
20 37.78% 33.51% 35.15% 46.32% 59.00% 51.87% 57.39% 
25 40.59% 37.76% 37.31% 52.93% 47.72% 57.70% 65.91% 
50 49.83% 48.82% 58.06% 55.38% 57.34% 61.26% 61.37% 

threshold number 
of 

clusters 0.9 0.5 0.1 0.05 0.01 0.005 0.001 

5 37.71 % 51.21% 64.93% 67.04% 84.27% 89.69% 87.84% 
10 38.94% 51.33% 64.32% 59.65% 82.33% 87.85% 86.30% 
15 38.57% 52.58% 61.53% 59.50% 81.58% 90.05% 92.52% 
20 39.01% 53.07% 61.06% 63.99% 87.09% 94.49% 93.66% 
25 40.05% 54.40% 61.96% 61.58% 87.49% 93.63% 97.69% 
50 38.42% 52.36% 62.41% 61.79% 75.95% 82.98% 89.25% 

threshold number 
of 

clusters 0.0001 0.00005 0.00001 0.000005 0.000001 0.0000005 0.0000001 

3 61.01% 61.02% 59.86% 50.00% 45.83% 50.00% 41.66% 
4 61.42% 61.35% 59.30% 52.50% 45.83% 32.50% 50.00% 
5 61.47% 61.35% 58.55% 52.50% 41.07% 25% 62.50% 

10 61.86% 84.37% 100.00% 56.73% 41.07% 32.50% 62.50% 
15 87.27% 100.00% 81.25% 65.00% 100.00% 77.50% 100.00% 

threshold number 
of 

clusters 0.5 0.1 0.05 0.01 0.005 0.001 0.0005 

5 43.64% 54.15% 41.84% 66.94% 58.06% 91.36% 93.94% 
10 58.25% 65.14% 69.50% 89.87% 89.16% 97.88% 97.87% 
15 54.80% 64.40% 72.68% 87.41% 81.27% 92.08% 96.38% 
20 54.96% 63.21% 78.19% 85.86% 86.31% 89.93% 96.64% 
25 59.46% 57.04% 77.21% 85.03% 87.39% 92.25% 94.67% 
50 57.96% 70.41% 78.29% 87.66% 88.42% 89.61% 90.96% 
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Table 16. List of HTER for http dataset. 

HTER values for ftp_data and http datasets with smaller number of iterations is 
represented in Table 17 and Table 18. 

Table 17. List of HTER for ftp_data dataset, 35 iterations. 

Table 18. List of HTER for http dataset, 45 iterations. 

threshold number 
of 

clusters 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001 

5 43.39% 43.39% 43.39% 43.39% 43.39% 41.83% 43.03% 
10 89.03% 92.68% 46.30% 92.67% 56.87% 60.52% 60.04% 
15 47.53% 47.53% 47.53% 47.53% 94.28% 94.28% 57.58% 
20 48.15% 92.26% 90.17% 65.60% 92.94% 97.86% 91.96% 
25 48.46% 92.33% 91.64% 93.02% 94.39% 64.26% 96.38% 
50 92.44% 94.50% 93.82% 97.93% 94.48% 96.51% 97.82% 

threshold number 
of 

clusters 0.9 0.5 0.1 0.05 0.01 0.005 0.001 

5 30.61% 44.58% 57.57% 60.44% 80.49% 86.32% 82.22% 
10 37.85% 51.08% 57.98% 65.62% 82.71% 88.68% 92.30% 

threshold number 
of 

clusters 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001 

5 39.39% 45.28% 44.44% 38.54% 54.16% 42.36% 40.53% 
10 43.84% 44.75% 43.83% 43.84% 56.23% 89.15% 55.15% 
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Figure 27 visualize the error rates as a function of threshold value for all five subdatasets. 
Here is shown that the best parameter values for ftp dataset are threshold 0.005 and the 
number of clusters is equal to 5. That is obvious from diagram as a lowermost object. From 
Table 5, we will find the best minimum FR and FA rates, with the ratios 10% and 37% 
correspondingly for chosen parameters. Table 12 shows that HTER is equal to 23.01% in 
this case. 

According to the results for ftp_data dataset, in Table 13, we notice that minimum HTER 
ratio is reached 37.71%. However, if to decrease the number of iterations we will have 
significantly better result 30.61%, as shown in Table 17. From Figure 27 can be easily 
seen that by stroke lines is illustrated the minimum HTER error for threshold value 0.9 and 
the number of clusters is equal to 5 with 35 iterations. Table 10 shows that minimum FR 
and FA rates are 57% and 3% correspondingly, but before iterations decreasing the 
minimum FR and FA rates were 71% and 3% correspondingly, that is shown in Table 6. 
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Figure 27. Error rate as a function of threshold value for tested datasets. 
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An example for smtp dataset also is shown in Figure 27. Here is the best HTER ratio is 
reached 25%, it gives by threshold value 0.0000005 and number of clusters 5. Minimum 
FR and FA rates for each 25%, it can be find from Table 7. 

Experimental results on others dataset are shown in Table 15. The best HTER value gives 
41.84 % by threshold value 0.05 and by 5 numbers of clusters. From Table 8 can be find 
that FA ratio reached at 62% and FR ratio reached at 21%. Visual example of HTER 
curves is shown in Figure 27. 

The minimum HTER value of http dataset can be found from Table 16, it is equal to 
41.83%. If one look to Table 9 to FA and FR rates for same parameters, here can be found 
that FA is equal to 82% and FR is equal to 1%. We had tried to decrease such high FA rate 
by decreasing the number of iterations. We have tested proposed method on http dataset 
with 45 iterations and so, resultant dataset had 75% FA that is better ratio and FR is equal 
to 1%, that is the same. The HTER ratio in this case is reached 38.54%. An examples of 
how HTER curves changes with different threshold is shown in Figure 27, here is the best 
parameters are threshold value 0.005 and the number of clusters is equal to 5. 

5.5. Comparison with other outlier detection methods 

We compared the performance of ODIN and MkNN algorithms on ftp, ftp_data, smtp, 
others and http datasets against the proposed method. Table 19 shows the minimum values 
of HTER for all compared methods and datasets.  

Table 19. Summary of the results as error rate. 

Experimentally, COR algorithm is shown to perform very well on ftp, smtp and http 
datasets. Here it significantly superior to ODIN and MkNN. It occurs due to the spherical 
shape of data, in this case the clustering performed much better by k-means algorithm. So, 
outlier detection is better achieved. In another experiments, the datasets have clusters with 
non spherical shapes. For example, on others dataset proposed method has not very good, 
but superior result to ODIN and MkNN, the HTER ratio here is reached 41.84%. While 
ODIN outperform COR with the ftp_data dataset, the result can be improved by reducing 
the number of iteration, for 35 iterations algorithm detect outliers with HTER ratio of 
30.61%. Proposed algorithm on http dataset can detect intrusions with the HTER ratio of 
38.54% for 45 iterations, it significantly outperforms ODIN and MkNN algorithms. 

HTER Dataset 
proposed method ODIN MkNN 

ftp  23.01% 28.5% 59.62% 
ftp_data 30.61% 37.5% 65.36% 

smtp 25% 49.5% 74.61% 
others 41.84% 46.5% 51.38% 
http 38.54% 49.5% 65.31% 
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Moreover, another important observation from experimental results, that proposed method 
outperform the ODIN and MkNN in detecting false intrusions; it gives lower FA rates for 
all datasets. 

According to the experiments ROC works effectively especially where the data has 
spherical shape. Its performance appears to degrade with datasets containing radial dataset 
and so it is not recommended for this type of dataset. Our study indicates that for datasets 
which have non spherical shape, we can improve the outlier detection results by setting the 
number of iterations. 

In summary, the above experimental results on ftp, ftp_data, smtp, others and http datasets 
show that the proposed algorithm can identify outliers more successfully than existing 
algorithms. 
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6. CONCLUSIONS 

This thesis proposes and analyzes a new outlier detection method called COR algorithm. It 
provides efficient outlier detection and data clustering capabilities in the presence of 
outliers. This approach is based on filtering of the data after clustering process. It makes 
those two problems solvable for less time, using the same process and functionality for 
both clustering and outlier identification. Moreover, we discussed the different categories 
in which outlier detection algorithms can be classified, i.e. density-based, distribution-
based and distance-based methods. 

Furthermore, we applied algorithm to a real dataset KDD Cup 1999. Experimentally, COR 
is shown to perform very well on several real datasets. The results indicate that COR works 
effectively especially where the data has spherical shape. Its performance appears to 
degrade with datasets containing radial shape clusters and it is not recommended for this 
type of datasets. This study indicates that for datasets which have non spherical shape, we 
can improve the outlier detection results by setting the number of iterations. The 
experimental results demonstrate that the proposed method is significantly better than 
ODIN and MkNN in finding outliers. 

With simple modifications, the method can be implemented for other distance metrics. An 
important direction for further study is how to apply the COR algorithm to the more 
general case, where the number of clusters and the threshold value must also be solved.  
Also we can control the number of iterations. Moreover, a possible extension of this 
method would be to compare the performance of our method using different data clustering 
approaches. 

The main contribution of the present work is the design of an outlier detection process. 
Performed experiments demonstrate that COR algorithm was successful in detecting 
intrusions. 
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Appendix 

HTER Dataset error 
rates proposed method ODIN MkNN 
FA 9 57 55 ftp  FR 36 0 63 
FA 57 74 70 ftp_data FR 3 1 60 
FA 25 99 99 smtp FR 25 0 50 
FA 62 93 17 others FR 21 0 85 
FA 75 99 33 http FR 1 0 97 

 
 


