
Outlier Detection in Clustering
Svetlana Cherednichenko

24.01.2005

University of Joensuu

Department of Computer Science

Master’s Thesis

 ii

TABLE OF CONTENTS

1. INTRODUCTION ...1

1.1. BASIC DEFINITIONS... 1
1.2. PRACTICAL APPLICATIONS.. 2
1.3. OUTLIERS IN CLUSTERING ... 3
1.4. PURPOSE OF THIS RESEARCH ... 3
1.5. ORGANIZATION OF THE THESIS ... 4

2. CLUSTERING...5

2.1. NOTATIONS OF TERMS .. 5
2.2. PROBLEM DEFINITION... 5
2.3. CLUSTERING APPLICATION.. 6
2.4. CLUSTERING PROBLEMS .. 6

2.4.1. Evaluation of clustering ...6
2.4.2. Number of clusters ...7

2.5. CLASSIFICATION OF METHODS .. 7
2.5.1. Partitional clustering..7
2.5.2. Hierarchical clustering...8
2.5.3. Density-based and grid-based clustering ..9

3. OUTLIER DETECTION METHODS ..10

3.1. DISTANCE-BASED APPROACH.. 10
3.1.1. Distance-based definitions for outliers..10
3.1.2. Hybrid-random algorithm ...13
3.1.3. A unified notion of outliers ...15
3.1.4. Data association method ..15

3.2. DISTRIBUTION-BASED APPROACH ... 16
3.2.1. A method for high dimensional data...16
3.2.2. SmartSifter algorithm...18
3.2.3. Replicator neural network approach...20

3.3. DENSITY-BASED APPROACH.. 20
3.3.1. Local Outlier Factor ...20
3.3.2. Graph-based algorithms ...22

4. PROPOSED METHOD ..24

5. EXPERIMENTAL RESULTS ...29

5.1. EVALUATION RESULTS .. 29
5.2. EXPERIMENTS WITH SYNTHETIC DATA .. 29
5.3. NETWORK INTRUSION DETECTION .. 33
5.4. EXPERIMENTS WITH REAL DATA ... 35
5.5. COMPARISON WITH OTHER OUTLIER DETECTION METHODS..................................... 43

6. CONCLUSIONS..45

 iii

List of Figures

Figure 1. Outlier detection process in Data Mining. ...2
Figure 2. Diagram of handwritten word recognition system..3
Figure 3. Explanations for basic concepts. ...5
Figure 4. Example of dendogram..9
Figure 5. Illustration of outlier definition by Knorr and Ng...11
Figure 6. Illustration of definition shortcomings. ...12
Figure 7. Illustration of outlier definition for high dimensional data without parameter
d. ...13
Figure 8. Data objects of the same scale and variability (left). Different scales, variability
and no correlation (middle). Different scales, variability and correlation (right)...............14
Figure 9. Normal distribution. ..17
Figure 10. Outlier detection for abnormally low density. ..17
Figure 11. The flow diagram of SmartSifter algorithm. ..19
Figure 12. Illustration of kNN graph. ...22
Figure 13. Example of kNN graph for KDIST algorithm...23
Figure 14. Flow diagram of the proposed algorithm (left). Flow diagram of k-mean and
outlier removal functions (right). ...25
Figure 15. Pseudo code of the COR algorithm. ...26
Figure 16. Pseudo code of the OutliersRemoval function. ...27
Figure 17. Original data DATA_A1 (left), and after outliers have been removed (right)...27
Figure 19. Comparison of f(C0, C) and f(C0, C*) errors...32
Figure 20. Original data DATA_A1 with cluster centroids (left), and the dataset after
performance of the algorithm (right) for threshold value 0.0009, when 120 outliers have
been removed. ...32
Figure 21. Dataset after performance of the algorithm for threshold value 0.001, when
157 outliers have been removed. ..33
Figure 22. Visualization of ftp dataset before outlier removing (left). Resultant ftp after
applying proposed method with threshold value 0.005 and number of clusters 10 (right).35
Figure 23. Visualization of ftp_data dataset before outlier removing (left). Resultant
ftp_data after applying proposed method with threshold value 0.9 and number of
clusters 5, is performed with 35 iterations (right). ..35
Figure 24. Visualization of smtp dataset before outlier removing (left). Resultant smtp
after applying proposed method with threshold value 0.0000005 and number of clusters
5 (right). ...36
Figure 25. Visualization of others dataset before outlier removing (left). Resultant others
after applying proposed method with threshold value 0.05 and number of clusters 5
(right). ..36
Figure 26. Visualization of http dataset before outlier removing (left). Resultant http
after applying proposed method with threshold value 0.005 and number of clusters 5, is
performed with 45 iterations (right). ...37
Figure 27. Error rate as a function of threshold value for tested datasets.42

 iv

List of Tables

Table 1. Performance results for DATA_A1 dataset. ..30
Table 2. Network connection records. ...34
Table 3. List of features. ..34
Table 4. The extracted datasets from KDD Cup 1999. ..34
Table 5. List of FA rate and FR rate for ftp dataset..37
Table 6. List of FA and FR rates for ftp_data dataset...38
Table 7. List of FA and FR rates for smtp dataset. ...38
Table 8. List of FA and FR rates for others dataset. ...38
Table 9. List of FA and FR rates for http dataset. ..39
Table 10. List of FA and FR rates for ftp_data dataset, 35 iterations.39
Table 11. List of FA and FR rates for http dataset, 45 iterations. ...39
Table 12. HTER for ftp dataset. ..40
Table 13. List of HTER for ftp_data dataset. ..40
Table 14. List of HTER for smtp dataset...40
Table 15. List of HTER for others dataset. ...40
Table 16. List of HTER for http dataset..41
Table 17. List of HTER for ftp_data dataset, 35 iterations. ...41
Table 18. List of HTER for http dataset, 45 iterations. ..41
Table 19. Summary of the results as error rate. ...43

 v

Abstract

Outlier detection is a fundamental issue in data mining, specifically it has been used to
detect and remove anomalous objects from data. Outliers arise due to mechanical faults,
changes in system behaviour, fraudulent behaviour, network intrusions or human errors.

Firstly, this thesis presents a theoretical overview of outlier detection approaches. A novel
outlier detection method is proposed and analyzed, it is called Clustering Outlier Removal
(COR) algorithm. It provides efficient outlier detection and data clustering capabilities in
the presence of outliers, and based on filtering of the data after clustering process. The
algorithm of our outlier detection method is divided into two stages. The first stage provides
k-means process. The main objective of the second stage is an iterative removal of objects,
which are far away from their cluster centroids. The removal occurs according to a chosen
threshold. Finally, we provide experimental results from the application of our algorithm on
a KDD Cup1999 datasets to show its effectiveness and usefulness. The empirical results
indicate that the proposed method was successful in detecting intrusions and promising in
practice. We also compare COR algorithm with other available methods to show its
important advantage against existing algorithms in outlier detection.

KEY WORDS: outlier detection, clustering, intrusions.

 vi

Acknowledgments

I am particularly grateful to my senior supervisor, Professor Pasi Fränti, for his helpful and
constructive comments, for his guidance during my study. I would like to express my thanks
to Ville Hautamäki for support and assistance. Also, I would like to express my gratitude to
Ismo Kärkkäinen for providing information. I wish to thank my friends for their
encouragement. And most importantly, this has been a great work that would not have
possible without the moral support of my parents. I truly appreciate their help.

 1

1. INTRODUCTION

1.1. Basic definitions

Data mining, in general, deals with the discovery of non-trivial, hidden and interesting
knowledge from different types of data. With the development of information
technologies, the number of databases, as well as their dimension and complexity, grow
rapidly. It is necessary what we need automated analysis of great amount of information.
The analysis results are then used for making a decision by a human or program. One of
the basic problems of data mining is the outlier detection.

An outlier is an observation of the data that deviates from other observations so much that
it arouses suspicions that it was generated by a different mechanism from the most part of
data [41]. Inlier, on the other hand, is defined as an observation that is explained by
underlying probability density function. This function represents probability distribution of
main part of data observations [17].

Outliers may be erroneous or real in the following sense. Real outliers are observations
whose actual values are very different than those observed for the rest of the data and
violate plausible relationships among variables. Erroneous outliers are observations that
are distorted due to misreporting or misrecording errors in the data-collection process.
Outliers of either type may exert undue influence on the results of statistical analysis, so
they should be identified using reliable detection methods prior to performing data analysis
[47].

Many data-mining algorithms find outliers as a side-product of clustering algorithms.
However these techniques define outliers as points, which do not lie in clusters. Thus, the
techniques implicitly define outliers as the background noise in which the clusters are
embedded. Another class of techniques defines outliers as points, which are neither a part
of a cluster nor a part of the background noise; rather they are specifically points which
behave very differently from the norm [2].

Typically, the problem of detecting outliers has been studied in the statistics community.
The user has to model the data points using a statistical distribution, and points are
determined to be outliers depending on how they appear in relation to the postulated
model. The main problem with these approaches is that in a number of situations, the user
might simply not have enough knowledge about the underlying data distribution [36].

Outliers can often be individuals or groups of clients exhibiting behavior outside the range
of what is considered normal. Outliers can be removed or considered separately in
regression modeling to improve accuracy which can be considered as benefit of outliers.
Identifying them prior to modeling and analysis is important [41]. The regression modeling
consists in finding a dependence of one random variable or a group of variables on another
variable or a group of variables.

 2

In the context of outlier-based association method, outliers are observations markedly
different from other points. When a group of points have some common characteristics,
and these common characteristics are “outliers”, these points are associated [29].

Almost all studies that consider outlier identification as their primary objective are in
statistics. The test depends on the distribution; whether or not the distribution parameters
are known; the number of excepted outliers; the types of excepted outliers [25].

1.2. Practical applications

The identification of an outlier is affected by various factors, many of which are of interest
for practical applications. For example, fraud, or criminal deception, will always be a
costly problem for many profit organizations. Data mining can minimize some of these
losses by making use of the massive collections of customer data [35]. Using web log files
becomes possible to recognize fraudulent behavior, changes in behavior of customers or
faults in systems. Outliers arise by reasons of such incidents. Thus typical fault detection
can discover exceptions in the amount of money spent, type of items purchased, time and
location. Many fraud cases can happen, for example, if someone has your name, credit card
number, expiration date and billing address. All this information is very easy to obtain
even from your home mailbox or any on-line transaction that you had before [4]. So,
automatic systems for preventing fraudulent use of credit cards detect unusual transactions
and may block such transactions on earlier stages.

Another example is a computer security intrusion detection system, which finds outlier
patterns as a possible intrusion attempts. Intrusion detection corresponds to a suite of
techniques that are used to identify attacks against computers and network infrastructures.
Anomaly detection is a key element of intrusion detection in which perturbations of normal
behavior suggest the presence of intentionally or unintentionally induced attacks, faults and
defects [27]. Detecting outliers has practical application in more wide spheres:
pharmaceutical research, weather prediction, financial applications, marketing and
customer segmentation.

The system applied to real network traffic data is illustrated in Figure 1. The basic steps
consist of converting data, building detection model, analysis and summarizing of results.

Figure 1. Outlier detection process in Data Mining.

In handwritten word recognition some errors were caused by non-character images that
were assigned high character confidence value [32]. Segmentation and dynamic

 3

programming (DP)-based approaches are used for outlier rejection in off-line handwritten
word recognition method. The flow diagram is shown in Figure 2. Segmentation splits a
word image into partial characters than use character classifier and DP to obtain the
optimal segmentation and recognition result. The recognition process assigns a match score
to each candidate string and the highest score determines the result. The focus of this
approach is to assign low character confidence values to non-character images, which
means to reject outlier. The neural networks were used to realize outlier rejection, where
valid patterns only activate the output node corresponding to the class, which the pattern
belongs to. Outliers do not activate any output node [32].

Figure 2. Diagram of handwritten word recognition system.

1.3. Outliers in clustering

The outlier detection problem in some cases is similar to the classification problem. For
example, the main concern of clustering-based outlier detection algorithms is to find
clusters and outliers, which are often regarded as noise that should be removed in order to
make more reliable clustering [17]. Some noisy points may be far away from the data
points, whereas the others may be close. The far away noisy points would affect the result
more significantly because they are more different from the data points. It is desirable to
identify and remove the outliers, which are far away from all the other points in cluster
[20]. So, to improve the clustering such algorithms use the same process and functionality
to solve both clustering and outlier discovery [17].

1.4. Purpose of this research

In this work, we consider outliers defined as points, which are far from the most of other
data. The purpose of proposed approach is first to apply k-means algorithm and then find
outliers from the resulting clusters. After that again apply k-means, and so on until the
number of points will not be changed in dataset. The principle of outliers removal depends
on the threshold and the distortion. Threshold is set by user and distortion defined as the
ratio of distance for nearest point to the cluster centroid divided by distance of furthest

 4

point in the same partition. If the distortion is less than the threshold, this furthest point is
considered to be outlier for this cluster. So, we propose a clustering-based technique to
identify outliers and simultaneously produce data clustering. Our outlier detection process
at the same time is effective for extracting clusters and very efficient in finding outliers.

1.5. Organization of the thesis

The rest of the thesis is structured as follows. In Section 2, we present definition of
clustering and general classification of clustering algorithms. In Section 3, we consider
outlier detection methods in details, given classification by distribution-based, distance-
based and density-based approaches. In Section 4 we give detailed description of the new
method. Experimental results are reported on the real KDD Cup 1999 data to show the
performance of new algorithm in Section 5 and comparison to other outlier detection
methods is presented. Concluding remarks are given in Section 6.

 5

2. CLUSTERING

2.1. Notations of terms

In this section we formally define the notations used in the reminder of thesis.

N Number of data objects.
M Number of clusters.
K Number of attributes.
X Set of N data objects X = {x1, x2, ..., xN}.
P Set of N cluster indices P = {p1, p2, …, pN}.
C Set of M cluster representatives C = {c1, c2, …, cM}.

2.2. Problem definition

Clustering, or unsupervised classification, will be considered as a combination problem
where the aim is to partition a set of data object into a predefined number of clusters.
Number of clusters might be found by means of the cluster validity criterion or defined by
user. Data object, feature vector and attribute are shown in Figure 3. The attributes of an
object can be represented by a feature vector, where each element of the vector
corresponds to one attribute. There are no examples that what kind of desirable relations
should be valid among the data and that is why clustering is perceived as an unsupervised
process. The objects with similar features should be grouped together and objects with
different features placed in separate groups [10]. Dissimilarities are assessed based on the
attribute values describing the objects. Often, distance measure between the two feature
vectors is used to show dissimilarity between objects [45].

Figure 3. Explanations for basic concepts.

 6

2.3. Clustering application

Clustering problems are widely used in numerous applications, such as customer
segmentation, classification, and trend analysis. For example, consider a retail database
records containing items purchased by customers. A clustering procedure could group the
customers in such a way that customers with similar buying patterns are in the same cluster
[13]. Many real-word applications deal with high dimensional data. It has always been a
challenge for clustering algorithms because of the manual processing is practically
impossible [3]. A high quality computer-based clustering removes the unimportant features
and replaces the original set by a smaller representative set of data objects. As a result, the
size of data reduces and, therefore, cluster analysis can contribute in compression of the
information included in data. Cluster analysis is applied for prediction. Suppose, for
example, that the cluster analysis is applied to a dataset concerning patients infected by the
same disease. The result is a number of clusters of patients, according to their reaction to
specific drugs. So, for a new patient, we identify the cluster in which he can be classified
and based on this decision his medication can be made [13].

2.4. Clustering problems

The general clustering problem includes three subproblems: (i) selection of the evaluation
function; (ii) decision of the number of groups in the clustering; and (iii) the choice of the
clustering algorithm [10].

2.4.1. Evaluation of clustering

An objective function is used for evaluation of clustering methods. The choice of the
function depends upon the application, and there is no universal solution of which measure
should be used. Commonly used a basic objective function is defined as (2.1):

 ∑
=

=
N

i
pi i

cxdCPf
1

2),(),(, (2.1)

where P is partition and C is the cluster representatives, d is a distance function. The
Euclidean distance and Manhattan distance are well-known methods for distance
measurement, which are used in clustering context. Euclidean distance is expressed as
(2.2):

 ∑
=

−=
K

i

ii xxxxd
1

2
2121)(),((2.2)

and Manhattan distance is calculated as (2.3):

 ∑
=

−=
K

i

ii xxxxd
1

2121),(. (2.3)

 7

2.4.2. Number of clusters

The choice of number of the clusters is an important subproblem of clustering. Since a
priori knowledge is generally not available and the vectors dimensions are often higher
than two, which do not have visually apparent clusters. The solution of this problem
directly affects the quality of the result. If the number of clusters is too small, different
objects in data will not be separated. Moreover, if this estimated number is too large,
relatively regions may be separated into a number of smaller regions [46]. Both of these
situations are to be avoided. This problem is known as the cluster validation problem. The
aim is to estimate the number of clusters during the clustering process. The basic idea is
the evaluation of a clustering structure by generating several clustering for various number
of clusters and compare them against some evaluation criteria. In general, there are three
approaches to investigate cluster validity [14]. In external approach, the clustering result
can be compared to an independent partition of the data built according to our intuition of
the structure of the dataset. The internal criteria approach uses some quantities or features
inherent in the dataset to evaluate the result. The basic idea of the third approach, relative
criteria, is the evaluation of a clustering structure by comparing it to other clustering
schemes, produced by the same algorithm but with different input parameter values. The
two first approaches are based on statistical tests and their major drawback is their high
computational cost. In the third approach aim is to find the best clustering scheme that a
clustering algorithm can define under certain assumptions and parameters. More
information about clustering validity methods you can find in [14], [15].

2.5. Classification of methods

Clustering algorithms can be classified according to the method adopted to define the
individual clusters. The algorithms can be broadly classified into the following types:
partitional clustering, hierarchical clustering, density-based clustering and grid-based
clustering [33]. These algorithms are based on distance measure between two objects.
Basically the goal is to minimize the distance of every object from the center of the cluster
to which the object belongs.

2.5.1. Partitional clustering

Partition-based methods construct the clusters by creating various partitions of the dataset.
So, partition gives for each data object the cluster index pi. The user provides the desired
number of clusters M, and some criterion function is used in order to evaluate the proposed
partition or the solution. This measure of quality could be the average distance between
clusters; for instance, some well-known algorithms under this category are k-means, PAM
and CLARA [23], [48]. One of the most popular and widely studied clustering methods for
objects in Euclidean space is called k-means clustering. Given a set of N data objects xi and
an integer M number of clusters. The problem is to determine C, which is a set of M cluster
representatives cj, as to minimize the mean squared Euclidean distance from each data
object to its nearest centroid.

 8

The algorithm starts with an initial solution and then involves an iterative scheme that
operates over a fixed number of clusters, while a stopping criterion is met, i.e. the centers
of the clusters stop changing.

Algorithm contains simple steps as follows. Firstly, initial solution is assigned to random
to the M sets:

),1(),,1(NrandomiMrandomjxc ij ==← .

Then, in the first step, the data objects are partitioned as to each cluster centroid is closest
to the data object in respect to the distance function:

[]Nicxdp ji
Mj

i ,1),(minarg 2

1
∈∀←

≤≤
.

In the second step, the cluster centroids are recalculated corresponding to the new partition:

[]Mj
x

c

jp

jp
i

j

i

i ,1
1

∈∀←
∑
∑

=

= .

The number of iterations depends upon the dataset, and upon the quality of initial
clustering data. The k-means algorithm is very simple and reasonably effective in most
cases. Completely different final clusters can arise from differences in the initial randomly
chosen cluster centers. In final clusters k-means do not represent global minimum and it
gets as a result the first local minimum. Main advantage of the k-means method in follows:
almost any solution not obtained by a k-means method can be improved. Disadvantage is
that these methods only work well for finding clusters with spherical shapes and similar
sizes.

2.5.2. Hierarchical clustering

Hierarchical clustering methods build a cluster hierarchy, i.e. a tree of clusters also known
as dendogram. A dendrogram is a tree diagram often used to represent the results of a
cluster analysis. Hierarchical clustering methods are categorized into agglomerative
(bottom-up) and divisive (top-down) as shown in Figure 4. An agglomerative clustering
starts with one-point clusters and recursively merges two or more most appropriate
clusters. In contrast, a divisive clustering starts with one cluster of all data points and
recursively splits into nonoverlapping clusters.

 9

Figure 4. Example of dendogram.

The process continues until a stopping criterion (frequently, the requested number M of
clusters) is achieved. Hierarchical methods provide ease of handling of any form of
similarity or distance, because use distance matrix as clustering criteria. However, most
hierarchical algorithms do not improve intermediate clusters after their construction.
Furthermore, the termination condition has to be specified. Hierarchical clustering
algorithms include BIRCH [7] and CURE [11].

2.5.3. Density-based and grid-based clustering

The key idea of density-based methods is that for each object of a cluster the neighborhood
of a given radius has to contain a certain number of objects; i. e. the density in the
neighborhood has to exceed some threshold. The shape of a neighborhood is determined by
the choice of a distance function for two objects. These algorithms can efficiently separate
noise [9]. DBSCAN [5] and DBCLASD [42] are the well-known methods in the density-
based category.

The basic concept of grid-based clustering algorithms is that they quantize the space into a
finite number of cells that form a grid structure. And then these algorithms do all the
operations on the quantized space. The main advantage of the approach is its fast
processing time, which is typically independent of the number of objects, and depends only
on the number of grid cells for each dimension [33]. Famous methods in this clustering
category are STING [40] and CLIQUE [1].

Other techniques available include model-based clustering, constraint-based and fuzzy
clustering [37]. Model-based methods hypothesize a model for each of the clusters and
find the best fit of that model to each other. One method from this category is EM
algorithm [22]. The idea of constraint-based clustering is finding clusters that satisfy user-
specified constraints, for example as in COD CLARANS method [39]. Fuzzy clustering
methods attempt to find the most characteristic objects in each cluster, which can be
considered as the center of the cluster, and then, find the membership for each object in the
cluster. A common fuzzy clustering algorithm is Fuzzy C-Means [13].

 10

3. OUTLIER DETECTION METHODS

Most outlier detection techniques treat objects with K attributes as points in ℜK space and
these techniques can be divided into three main categories. The first approach is distance-
based methods, which distinguish potential outliers from others based on the number of
objects in the neighborhood [19]. Distribution-based approach deals with statistical
methods that are based on the probabilistic data model. A probabilistic model can be either
a priori given or automatically constructed using given data. If the object does not suit the
probabilistic model, it is considered to be an outlier [34]. Third, density-based approach
detects local outliers based on the local density of an object’s neighborhood [21]. These
methods use different density estimation strategy. A low local density on the observation is
an indication of a possible outlier [18].

3.1. Distance-based approach

3.1.1. Distance-based definitions for outliers

In Distance-based methods outlier is defined as an object that is at least dmin distance away
from k percentage of objects in the dataset. The problem is then finding appropriate dmin
and k such that outliers would be correctly detected with a small number of false
detections. This process usually needs domain knowledge [18].

In the present section we define objects as points for simple interpretation and consider
definitions as a special case of [18]. Firstly, consider the definition proposed by Knorr and
Ng [36], which both a simple and intuitive:

Definition: A point x in a dataset is an outlier with respect to the parameters k and
d, if no more than k points in the dataset are at a distance d or less from x.

To explain the definition by example we take parameter k = 3 and distance d as shown in
Figure 5. Here are points xi and xj be defined as outliers, because of inside the circle for
each point lie no more than 3 other points. And x′ is an inlier, because it has exceeded
number of points inside the circle for given parameters k and d.

 11

Figure 5. Illustration of outlier definition by Knorr and Ng.

This approach does not require any a priori knowledge of data distributions as the statistics
methods do. However, this distance-based approach has certain shortcomings:
1. It requires the user to specify a distance d, which could be difficult to determine a-

priori.

2. It does not provide a ranking for the outliers: for instance a point with a very few
neighboring points within a distance d can be regarded in some sense as being a
stronger outlier than a point with more neighbors within distance d.

It becomes increasingly difficult to estimate parameter d with increasing dimensionality.
Thus, if one picks radius d slightly small, then all points are outliers. If one picks d slightly
large, then no point is an outlier. So, user needs to pick d to a very high degree of accuracy
in order to find a modest number of points, which can be defined as outliers [2].

Consider by example how can such kind of imperfections appear. Actually, in Figure 6, xi
and xj are outliers, but radius d1 is too large, hence inside the circles there are too many
points. In this case we define xi and xj as incorrect inliers. Oppositely if the radius d2 is too
small, so inside the circles lie very small number of points, and then xl and xk be wrong
outliers.

 12

Figure 6. Illustration of definition shortcomings.

The next definition, proposed by Ramaswamy et al. [36], for outliers in the high
dimensional data does not require user to specify the distance parameter d. Instead, it is
based on the distance of the kth nearest neighbor of a point. Let Dk(x) use to denote the
distance of point x from its kth nearest neighbor and ranking points on the basis of their
Dk(x) distance, leading to the following definition for k

nD .

 13

Figure 7. Illustration of outlier definition for high dimensional data without parameter
d.

Definition: Given an input dataset with N points, parameters n and k , a point x is a
k
nD outlier if there are no more than n-1 other points x' such that Dk(x')>Dk(x).

Intuitively, Dk(x) is a measure of how much of an outlier point x is. For example, points
with large values for Dk(x) have more sparse neighborhoods. In this definition, user has to
specify the number of outliers n that he wants to get. In other words, if points are ranking
according to their Dk(x) distance, the top n objects in this ranking are considered to be
outliers. We can use any of the Lp metrics such as L1 (Manhattan) or L2 (Euclidean) metrics
for measuring the distance between a pair of objects.

Consider one simple example of definition above. Let k=5 and n=2. In Figure 7 two
outliers represent by points x and x′. Visually we can observe what distance of point x′
from 5 nearest neighbors Dk(x') more than Dk(x), that is distance of point x from its 5
nearest neighbors. So, we conclude, if we will take n=3, we will have 3 outliers.

3.1.2. Hybrid-random algorithm

Hybrid-random algorithm was developed in [25]. It uses Donoho-Stahel Estimator (DSE)
for distance-based operations in high-dimensional database. If two similar attributes are
being compared, and these attributes are independent and have the same scale and
variability, then all objects within distance d of a object xi lie within the circle of radius d
centered at xi, as shown in Figure 8 on the left. In the presence of different scales,
variability, and correlation, all objects within distance d of a object xi lie within an ellipse
as in Figure 8 in the middle. If there is no correlation, then the major and minor axes of the
ellipse lie on the standard coordinate axes but if there is correlation, then the ellipse is
rotated through some angle θ, Figure 8 on the right.

 14

Figure 8. Data objects of the same scale and variability (left). Different scales,
variability and no correlation (middle). Different scales, variability and correlation

(right).

DSE is a robust space transformation, it is commonly used for comparing of different
attributes, because they can have the different scales, units and variability. For example,
blood pressure vs. body temperature, high variability for blood pressure vs. low variability
for body temperature. Also attributes may be correlated, for instance age and blood
pressure. At that rate, such attributes have to be normalized or standardized. But another
solution is to use a robust space transformation.

DSE possesses two important properties. The first is the Euclidean property. It says that
while inappropriate in the original space, the Euclidean distance function becomes
reasonable in the DSE transformation space. The second, and more important, property is
the stability property. It says that the transformed space is robust against updates, in other
words the scale in space does not change even after modifications of the data.

In general, an estimator, which applies transformation, is also called a scatter matrix, it is a
K× K square matrix, where K is the dimensionality of the original data space. DSE is
defined through the fixed-angle algorithm. Short description of the algorithm include three
steps: step 1 computes for each object and each angle θ, the degree of being outlier of the
object with respect to θ. As a measure of how outlying each object is over all possible
angles, step 2 computes, for each object, the maximum degree of outlyingness over all
possible θ’s. In step 3, if this maximum degree for a object is too high, the influence of this
object is weakened by a decreasing weight function. Finally, with all objects weighted
accordingly, the location center and the covariance matrix are computed.

In Hybrid-random algorithm subsumpling is first applied for a very small number of
subsamples. Then from the fixed-angle algorithm, we know that projection vectors too
close to each other do not give markedly different results.

Using the Euclidean inner product and Law of Cosines, a collision between two vectors a
and b occurs if

222)2()1(2),(δ≤−=−= bababadist T ,

where δ is a radius of a patch on the surface of the K-d unit hypersphere [26].

 15

3.1.3. A unified notion of outliers

As the distributions of the attribute values are almost unknown and no standard distribution
can adequately model the observed distribution, so choice of suitable tests requires non-
trivial computational effort for large datasets. We need a unified notion of outliers, in [25]
it is defined as follows:

Definition: An object xi in a dataset X is a UO(p, d) - outlier if at least fraction p of
the objects in Х are more than distance d from xi.

The term UO(p, d)-outlier is using as notation for a Unified Outlier with parameters p and
d. The approach for finding all UO(p, d)-outliers relies on an cell structure. The idea is to
reduce object-by-object processing to cell-by-cell processing [24].

In [25] is shown the cell structure for the two dimensional case, where the length of cell is
22dl = . Let Cx,y denote the cell that is at the intersection of row x and column y. The

Layer-1 (L1) neighbors of Cx,y are all the immediate neighboring cells of Cx,y as defined in
the usual sense, i.e.,

L1(Cx,y)={ Cu,v | u = x ± 1, v = y ± 1, Cu,v ≠ Cx,y }.

The Layer-2 (L2) neighbors of Cx,y are all the cells within 3 cells of Cx,y, that is,

L2(Cx,y) ={ Cu,v | u = x ± 3, v = y ± 3, Cu,v∉ L1(Cx,y), Cu,v ≠ Cx,y }.

The general approach for computing outliers includes the following properties:
a) If there are more than k objects in Cx,y, none of the objects in Cx,y is an outlier.

b) If there are more than k objects in Cx,y∪L1(Cx,y), none of the objects in Cx,y is an
outlier.

c) If there are less or equal to k objects in Cx,y∪L1(Cx,y) ∪L2(Cx,y), every object in Cx,y
is an outlier.

Here k denotes the maximum number of objects that can be inside the d is the
neighborhood of an outlier, i.e. k=N(1-p). These properties help to identify outliers or non-
outliers in a cell-by-cell manner rather on an object-by-object basis [25]. Algorithm
FindAllOuts uses the cell structure as described above, is considered in [24].

3.1.4. Data association method

In the outlier-based association method, an outlier score function is defined to measure the
extremeness of a cell. The more extreme a cell is, the higher outlier score it gets [29]. Here
cell c is defined as a vector of the values of attributes with dimension t, where t≤ K. So a
cell is a subset of object’s attributes. For example, if the attributes are quantity, time,
product and geography, then Sales, January 1994, Candy Bars and the United states will be
a cell [30]. Since each object can also treated as a cell: cell(xi) = (x1, x2, …, xK).

The following rule is used to associated data: for two objects xi and xj, we say xj and xj are
associated with each other if and only if there exist a cell c, c contains both xi and xj, and
f(c) exceeds some threshold value τ.

 16

Definition: (union)
c1 and c2 are two cells. We call cell c the union of c1 and c2 when both c1 and c2 are
contained in c.

Since each object can be treated as a cell, than expression
Union(xi, xj)=Union(Cell(xi), Cell(xj))

is a generalization of the Union concept. From definition of the union cell, if any cell c
contains both xi and xj, it contains Union(xi, xj). From more evidence property,

f(Union(xi, xj)) ≥ f(c).

Therefore, we can write the following equivalent data association rule: associate xi and xj,
if f(Union(xi, xj))≥τ.
When the group of objects has some common characteristics and these characteristics are
very different from others, given by the outlier score function, then those objects are
associated [30].

3.2. Distribution-based approach

Distribution-based methods originate from statistics, where object is considered as an
outlier if it deviates too much from underlying distribution. For example, in normal
distribution outlier is an object whose distance from the average object is three times of the
variance [18].

3.2.1. A method for high dimensional data

For high dimensional data it is better to examine the behaviour of the data in lower
dimensional subspace. This is because by using full dimensional distance measures, it
would be more difficult to detect outliers effectively because of the averaging behaviour of
the noisy and irrelevant dimensions. So, in [2] outliers are defined by checking of those
projections of the data, which have abnormally low density. Abnormally lower
dimensional projections are those, in which the density of the data is exceptionally
different from average density. Let the data be divided by fraction f =1/φ, where φ is the
number of grid lines. Consider a k-dimensional cube, which is created by picking grid
ranges from k different dimensions. Then, we calculate the sparsity coefficient S(D) of a
cube D as follows:

)1(

)()(
kk

k

ffN

fNDnDS
−⋅⋅

⋅−
= , (3.1)

where n(D) is the actual number of objects in the cell, N is the number of objects in the
data, N⋅ f k is the expected number of objects per cell, and the divider is the standard
deviation of the data objects in the cell.

The main idea behind the equation (3.1) is that coefficient accounts differences for
dimensionalities of subspaces. It provides an intuitive idea that is related to the level of
significance for a given projection.

 17

Cubes that contain significantly less number of objects what expected are classified as
outliers (with negative sparsity coefficient). Level of significance can be find from
confidence intervals. Intervals which correspond to the first few multiples of standard
deviation are illustrated in Figure 9. It means what in 99.9% the cube contains fewer
objects than expected, if sparsity coefficient is negative and equal to 3 standard deviations.
If we choose 2 standard deviations than can exclude useful data, for 4 standard deviations
some outliers not excluded. So, we define projection as outlier if sparsity coefficient is
equal to around −3.

Figure 9. Normal distribution.

Consider the example for k = 2 and φ = 3 in the Figure 10. Suppose N = 100, n(D) = 2,
N⋅f k =12, then S(D) = −3.22. The idea of sparsity coefficient in following: S(D) is the
number of standard deviations by which the actual number of objects n(D) differed from
the expected number of objects N⋅f k. In Figure 10 the negative sparsity coefficient defines
cubes, which contain one and two objects, which are outliers.

Figure 10. Outlier detection for abnormally low density.

The problem is to find the subset of dimensions, which are sparsely populated. In general,
it is not possible to predict the behaviour of the data when two sets of dimensions are

 18

combined. Therefore, the best qualitative option is to develop search methods which can
identify such hidden combinations of dimensions, because of a naive brute force algorithm
is very slow, and the evolutionary algorithm much faster for such aim. The idea is
borrowed from a class of evolutionary search methods in order to create an efficient and
effective algorithm for the outlier detection problem.

The evolutionary search technique starts with a population of random solutions and
iteratively uses the process of selections, crossover and mutation in order to perform a new
combination with most negative sparsity coefficient. The process continues until the
population converged to a global optimum. At each stage of the algorithm, the best
projections solutions were kept track of.

An important issue in the algorithm is to be able to choose the projection parameters k and
φ. Values of φ and k should be picked small enough so that the sparsity coefficient of cube
containing exactly one object is reasonable negative. The level of significance can be
quantified by using of the normal distribution tables, because n(D) is assumed to fit a
normal distribution. At the same time φ should be picked high enough so that there are
sufficient number of intervals on each dimension that corresponds to a reasonable notion of
locality. Let k be determined by using the calculation of the sparsity coefficient of an
empty cube. This is given by expression (3.2) from equation (3.1)

1−

−= k

Ns
φ

. (3.2)

By expressing the equation (3.2) in terms of k we can get the dimension of projection k as:

⎣ ⎦)1(log 2 += sNk φ .

The method works by finding lower dimensional projections which are locally sparse, and
cannot be discovered easily by brute force techniques because of the high number of
possible combinations. Such techniques for outlier detection has advantages over distance
based outliers, which cannot overcome the effects of the high dimensionality [2].

3.2.2. SmartSifter algorithm

An outlier detector called SmartSifter (SS) is an on-line outlier detection algorithm based
on unsupervised learning from data. It takes a data sequence as input in an on-line way,
learns an underlying model from examples and gives a score to each object on the basis of
the learned model. Thus a high score indicates a high probability that the object is an
outlier. The central idea of SS is to learn the model with on-line learning algorithms and to
calculate a score for a data [43].

Let X(x, y) denote a dataset, where x denotes a vector of categorical variables, which has
two or more categories, but there is no intrinsic ordering to the categories, there is no
agreed way to order these from highest to lowest. The second variable y denotes a vector of
continuous variables that can take on any value in a certain range. The joint distribution of
(x, y) is p(x, y) = p(x)p(y|x), where p(x) is represented by a histogram density with a finite
number of disjoint cells. A histogram density forms a probability distribution p(x) = qj /Lj.
Here Lj is the number of categorical variables in the jth cell. qj denotes the probability value
for the jth cell, so that these parameters correlate as ∑ =

=
k

j jq
1

1, 0>q . For each cell a

 19

finite mixture model is used to represent the probability density over the domain of
continuous variables.

A finite mixture model employs a Gaussian mixture model:

∑
=

Λ=
k

i
iii ypcyp

1
),()(µθ ,

where k is a positive integer and each p(y) is a d-dimensional Gaussian distribution.

So, there are as many finite mixture models as cells in the histogram density. Consider the
situation where a sequence of data is given: (x1, y1), (x2, y2), … ,(xn, yn) in an on-line
process. Identify the cell into falls given xt and update the histogram density to obtain pt(x).
Then, for that cell, update the mixture model to obtain pt(y|x). In the both cases for
updating are used SDLE and SDEM algorithms, which are presented in detail in [44]. For
other cells, set p(t)(y|x)= p(t-1)(y|x). Then, SS gives a score to each value by the following
equation

()∑∫ −−=
x

tt
ttH dyyxpyxpyxS

2
)1()(),(),(),(

This score is calculated on the basis of the models before and after updating, that is
measures how much the distribution p(t) has moved from p(t-1) after learning from (xt, yt).
The described algorithm is demonstrated as flow diagram in the Figure 11.

Figure 11. The flow diagram of SmartSifter algorithm.

The main advantages of method are that the computational time is inexpensive and it can
deal with both categorical and continuous variables.

 20

3.2.3. Replicator neural network approach

Replicator neural network (RNN) approach for outlier detection is a variation on the usual
regression model where the input feature vectors are also used as the output [41].
Regression model in common case is used as an instrument for describing the dependence
between input value and some factors. Thus, the RNN attempts to reproduce the input
patterns in the output.

During training RNN weights are adjusted to minimize mean square error for all training
patterns so that common patterns are more likely to be well reproduced by the RNN.
Consequently, those patterns representing outliers are worse reproduced by the RNN and
have a higher reconstruction error. The reconstruction error is used as the measure of being
outlier of a given attribute as:

 ∑∑
= =

−=
N

i

K

j
ijij ox

NK
e

1 1

2)(1 , KjNi ...,,2,1,,...,2,1 ==∀ , (3.3)

where N is the number of objects in the training set, K is the number of attributes. The
attribute of the output from the RNN is oij [16].

For outlier detection Outlier Factor (OF) is defined as measure of the ith data object. OFi is
the average reconstruction error over all features defined as:

∑
=

−=
K

j
ijiji ox

K
OF

1

2)(1 .

This is calculated for all data using the trained RNN to score each data object [41].

3.3. Density-based approach

Density-based methods have been developed for finding outliers in a spatial data. These
methods can be grouped into two categories called multi-dimensional metric space-based
methods and graph-based methods. In the first category, the definition of spatial
neighborhood is based on Euclidean distance, while in graph-based spatial outlier
detections the definition is based on graph connectivity. Whereas distribution-based
methods consider just the statistical distribution of attribute values, ignoring the spatial
relationships among items, density-based approach consider both attribute values and
spatial relationship [38].

3.3.1. Local Outlier Factor

Local Outlier Factor (LOF) is the density-based method, which detects local outliers based
on the local density of an object’s neighborhood. LOF is intuitively a measure of
difference in density between an object and its neighborhood objects [21]. We refer to LOF
as a method from multi-dimensional metric space-based category of density-based
approach. In a multidimensional dataset it is more meaningful to assign for each object a

 21

degree of being an outlier. The key difference between LOF approach and existing notions
of outliers is that being outlier is not a binary property.

Local outliers are the objects which relative to their local neighborhoods with respect to the
densities of the neighborhoods. Formal definition of local outliers was developed in [6]:

Definition: (k-distance of an object xi)
For any positive integer k, the k-distance of object xi, denoted as k-distance(xi), is
defined as the Euclidean distance d(xi, xj) between xi and an object xj∈Х such that:
(i) for at least k objects xj’∈ Х \ { xi } it holds that d(xi, xj’)≤ d(xi, xj), and
(ii) for at most k-1 objects xj’∈ Х \ { xi } it holds that d(xi, xj’)< d(xi, xj).

Intuitively, k-distance(xi) provides a measure on the sparsity or density around the object
xi. When the k-distance of xi is small, it means that the area around xi is dense and vice
versa [21].

Definition: (k-distance neighborhood of an object xi)
The k-distance of xi, the k-distance neighborhood of xi contains every object whose
distance from xi is not greater than the k-distance, i. e.

)}(),(|}{\{)()(iliilixdistancek xdistancekxxdxXxxN
i

−≤∈=− .

These objects xl are called the k-nearest neighbors of xi.

Definition: (reachability distance of an object xi w.r.t. object xj)
The reachability distance of object xi with respect to object xj as defined as

reach-distk(xi, xj) = max { k-distance(xj), d(xi, xj) }.

If object xi is far away from xj, then the reachability distance between the two is simply
their actual distance. However, if they are close, the actual distance is replaced by the k-
distance of xj [6].

Definition: (local reachability density of xi)
The local reachability density of an object xi is the inverse of the average reachability
distance from the k-nearest neighbors of xi:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
=

−

∈∑
−

)(

),(
1

)(

)(

ixdistancek

Nx jik

k xN

xxdistreach
/lrd

i

ixdistancekj .

Definition: (local outlier factor of xi)

)(
)(
)(

)(
)(

idistancek

Nx
ik

jk

ik xN
xlrd
xlrd

xLOF
ixdistancekj

−

∈∑
−

=

LOF is the average of the ratios of the local reachability density of xi and those of xi’s k-
nearest-neighbors. Intuitively, xi’s local outlier factor will be very high if its local
reachability density is much lower than those of its neighbors [21].

The extension of LOF method is presented in [21], where one method for finding the top-n
local outliers in large databases is considered. The strength of that method is it avoids
computation of LOF for most objects. And provide users to find only n most outstanding
local outliers.

 22

3.3.2. Graph-based algorithms

Some of graph-based methods have been proposed in [18]. In the first method, named
Outlier Detection using Indegree Number (ODIN) algorithm, outliers defined using k-
nearest neighbor (kNN) graph. kNN graph is a weighted directed graph, in which every
vertex represents a single vector, and the edges correspond to pointers to neighbor vectors.
Every vertex has exactly k edges to the k nearest vectors according to a given distance
function. Weight of the edge eij is the distance between vectors vi and vj. A simple example
of kNN graph for 4 vectors with k = 3 is illustrated in Figure 12.

Figure 12. Illustration of kNN graph.

We define outlier detection problem for methods from this category in the following way:
graph G is presented as G = {S, E}, where S is a dataset of vertex and E is a collection of
edges between locations in S. The definition of outliers is given below:

Definition: Given kNN graph G for dataset S, outlier is a vertex, whose indegree is
less than equal to T.

In the first step of ODIN, a kNN graph is created for dataset S. Then, if vertex i has an
indegree of T or less, mark it as an outlier and otherwise mark it as an inlier. The method
has two control parameters: the number of outgoing edges k and the indegree threshold T.

One more method is MeanDIST algorithm, which is defined as the mean of k nearest
distances. It has been modified from method proposed in [35], which calculates kNN
sparseness estimate for all vectors in dataset S. But instead of sorting in an ascending
order, MeanDIST algorithm cuts objects in the sorted list specified by considering
differences Li –Li-1. Where Li is mean distance of ith vector to nearest. Then the ordered list
is scanned from smaller to larger distances and calculate threshold T:

 ,)max(1 tLLT ii ∗−= − (3.5)

where t∈]0, 1[is a user defined parameter. In the first step of MeanDIST algorithm we
compute threshold T as described above. Than we calculate kNN graph of S and sort
vectors in ascending order by kNN density. If distance Li –Li-1 ≥ T, mark Li is outlier.

 23

Figure 13. Example of kNN graph for KDIST algorithm.

The application example of MeanDIST algorithm is shown in Figure 13. Let be defined
kNN graph for k = 3 and weights determined as: e12 = 3, e23 = 6, e13 = 7, e41 = 3, e24 = 6, e34
= 5. We find values of Li as: L1 is mean of e12, e41 and e13, L2 is mean of e12, e24 and e23, L3
is mean of e23, e13 and e34; and L4 is mean of e41, e24 and e34. So we have L1 = 4.3, L2 = 5, L3
= 6, L4 = 4.6. After sorting, we construct new sequence L1, L4, L2, L3 and then consider
differences L3 – L2, L2 – L4, L4 – L1. Let t = 0.5, in this case T = 0.5. We can propose what
vertex s3 is outlier, because of difference L3 – L2 = 1 exceeds T.

In [8] was proposed a Mutual k-Nearest Neighbour (MkNN) graph approach. It uses a
special case of kNN graph: there exists an undirected edge between two vectors vi and vj if
they belong to each others k-neighborhood. Connected components are considered as
clusters, if they contain more than one vector. Isolated vectors are denoted as outliers.

Another graph-based algorithm for detecting outliers is designed in [38]. It provides a cost
model for outlier detection procedure and design efficient fast algorithms to detect spatial
outliers.

Consequently, in this kind of approaches, there are two parameters that define the notion of
density: a minimum number of objects and a parameter specifying a volume. They
determine a threshold. That is, objects are connected if their neighborhood densities exceed
the given density threshold.

 24

4. PROPOSED METHOD

The ability to detect outliers can be improved using a combined perspective from outlier
detection and cluster identification. Some clustering-based algorithms like DBSCAN and
ROCK [9], [12] can also handle outliers, but their main concern is clustering dataset, not
outlier detection. Unlike the traditional clustering-based methods, the proposed algorithm
provides much efficient outlier detection and data clustering capabilities in the presence of
outliers. This approach is based on filtering of the data after clustering process. The
purpose of our method is not only to produce data clustering but at the same time to find
outliers from the resulting clusters.

The algorithm of our outlier detection method is divided into two stages. The first stage
provides k-means process and in the second stage outliers are removed according to a
chosen threshold. k-means clustering algorithm is explained in Section 2 in more detail. In
this section, we will consider our proposed method and implementation of outlier removal
stage. Figure 14 on left shows a more detailed view of the whole algorithm. As input
parameters we need dataset X, number of clusters M, threshold Th and the number of
iterations R. An initial solution is produced by the same way as for k-means algorithm.
Next follow k-means clustering and outlier removal stages. After removal it is necessary to
clean old partition, so in this diagram it is performed by FreePartitioning procedure.
Then we again create optimal partitioning like in k-means. The stop rule is defined as the
difference between the initial number of objects in the dataset, and the resultant number. It
would be also possible to stop for certain number of iterations R, in case if the number of
algorithm iterations i will be equal to R.

Pseudo code for the proposed Clustering Outliers Removal (COR) algorithm is listed in
Figure 15. To describe it we use the same terminology as defined in Section 2. In addition
we summarize data structures:

 X[N] array of N K-dimensional data objects
 P[N] array of N integer objects from X to C (partitions)
 C[M] array of M K-dimensional vectors cluster representatives (centroids)
 Pj number of objects xi which belong to jth partition
 []∑

=

∈∀=
jp

j
i

MjP ,1,1 .

The procedure begins by creating an initial solution. The REPEAT-UNTIL loop in the next
step iterates until the number of objects will not change in the dataset. In addition, it can
also stop, if the number of iterations becomes R. Inside the loop, we perform k-means
iterations and outlier removal stages.

 25

Figure 14. Flow diagram of the proposed algorithm (left). Flow diagram of k-mean and
outlier removal functions (right).

 26

PerformCOR(X)
{
 // initial solution
i := 0; // i is a number of iterations
C := SelectRandomRepresentatives(X);
P := OptimalPartition(C, X);
REPEAT
 {
 i := i+1;
 // number of separately represented vectors in the dataset
 freq := X[N];
 // calculate average distance between each vector and its
 //current codevector
 error := AverageErrorForSolution(X, C, P);
 REPEAT
 {
 errornew:= error;
 (Pnew, Cnew) := K-means(P, C, X);
 error := AverageErrorForSolution(X, Cnew, Pnew);
 }
 UNTIL (error < errornew);
 Xnew := OutlierRemoval(Pnew, X, Cnew);
 freqnew := Xnew[N];
 FreePartitioning(Pnew); // delete partition
 P := OptimalPartition(Cnew, Xnew);
 (X, C) := (Xnew, Cnew);
 // it would be also possible to stop for R iterations
 IF (i = R) BREAK;
 }
// stop when number of objects will not change in the data
UNTIL (freq != freqnew);
}

Figure 15. Pseudo code of the COR algorithm.

Figure 14 on right illustrates in greater detail outlier removal stage of the proposed
algorithm. The principle of outliers removing depends on the difference between threshold
and distortion. Threshold is set by user in range between 0 and 1. Distortion is calculated to
show how far the furthest object lies from the nearest object in the partition. Under furthest
and nearest object in partition we mean maximum and minimum distances correspondingly
between objects and their current centroid. So, distortion is defined as the ratio of nearest
distance to furthest distance in the same partition.

Removal of the most distant object occurs under the following condition: if distortion is
less than threshold, the furthest object is considered to be outlier for this partition. In cases
if there is just one object in partition, this object is removed too. Sometimes it happens that
we have empty partitions after the clustering process, i.e. no objects are mapped to the
partition. In this situation, such partition is ignored for calculating distortion.
Implementation design of outlier removal stage with such kind of exceptions is explained
in the pseudo code in Figure 16.

 27

OutliersRemoval (P, X, C)
{
 // through all clusters
 FOR j := 1 TO M DO
 {
 // through all objects in cluster ‘j’
 IF Pj != 0 && Pj != 1 THEN {
 //find minimum distance between vectors and their current
 //codevector
 dmin := NearestDistanceInPartition(Pj, j);
 // find maximum distance between vectors and their current
 //codevector; and index of furthest vector in a partition
 (Furthest, dmax) := FurthestDistanceInPartition(Pj, j);
 distortion = dmin / dmax; // calculate distortion
 IF distortion < Th THEN {
 //remove vector with index ‘Furthest’
 Xnew := RemoveVector(Furthest);
 ELSE j = j + 1; }
 }
 ELSE IF Pj = 1 THEN {
 //remove vector, because only one in partition
 Xnew := RemoveVector(IndexV)
 ELSE j = j + 1;
 }
 X := Xnew;
 }
RETURN X;
}

Figure 16. Pseudo code of the OutliersRemoval function.

The procedure begins with FOR operator, in which is looking for all objects in each cluster
and calculate distances to their current codevectors. After maximum and minimum
distances are chosen, in the next step calculate distortion and it compare with threshold
value. Then outliers are removed on the base of conditions for empty partitions and only
one object in the partition.

Figure 17. Original data DATA_A1 (left), and after outliers have been removed (right).

The performance of proposed algorithm for 5 iterations with threshold 0.009 is illustrated
in Figure 17. In the original data, there are the most distant objects from centroids, some of
such furthest objects are labeled by arrows in Figure 17 on the left. The algorithm proceeds

 28

by removing the furthest objects from all partitions. Figure 17 on right demonstrates the
resulting data after the algorithm.

So, we propose a clustering-based technique to identify outliers and simultaneously
produce data clustering. Proposed outlier detection process at the same time is effective for
extracting clusters and very efficient in finding outliers. But the side effect is that we
actually do not know how to choose threshold for outlier removal stage.

 29

5. EXPERIMENTAL RESULTS

In this section we present the results of an experimental study on synthetic unlabeled data
and then on KDD Cup 1999 real-life labeled datasets [49] prepared for intrusion detection.
The purpose of the experiment on real data was to detect intrusions.

5.1. Evaluation results

We have applied the Receiver Operating Characteristic (ROC) analysis to evaluate the
performance of the evolved method. In each of ROC plot, the x-axis is the False
Acceptance (FA) rate, it indicates the percentage of normal connections classified as an
intrusion. FA is calculated as a number of inliers detected as outliers divided by all
detections. The y-axis is the False Rejection (FR) rate; it indicates the percentage of not
detected outliers. FR is calculated as a number of not detected outliers divided by all
outliers. A data object in the down left corner of the plot with FA and FR axes corresponds
to optimal performance, i.e., low FA rate with low FR rate. Half Total Error Rate (HTER)
is a combination of FR and FA values. We will calculate HTER values and show how they
are change with varying threshold and number of clusters. HTER define as (FR+FA)/2.
Similar evaluation methodology has been used in [18], [28].

5.2. Experiments with synthetic data

We ran our algorithm on the synthetic DATA_A1 dataset; it contains 3000 objects grouped
in 20 clusters. DATA_A1 is illustrated in Figure 20 on left. At first, we should discuss some
formal criteria. Given a dataset TS = DATA_A1, C is a codebook optimized for that dataset.
TS* is a dataset TS from which outliers have been removed, and C* is a codebook
optimized for TS*. C0 are original cluster centroids of the TS dataset, they were used for
generating TS. TS*, C, C* we got after testing and used theirs to evaluate the efficiency of
results. Thereto we calculated error for TS and C as f(TS, C) it means an average error from
data to cluster centroids before any removing. Those errors have not much different from
each other for parameter of various threshold values. Training error f(TS*, C*) means an
average error from resultant data to their cluster centroids, its measure means the more
outliers we remove, the less training error we get. Test error f(TS, C*) is an average error
from original dataset to the resultant cluster centroids. It shows how much the distances are
changed after removing. Also were measured the differences between the original clusters
centroids and centroids of clustering process f(C0, C), f(C0, C*) is the differences between
the original clusters centroids and resultant centroids. And the differences between
centroids of clustering process and resultant centroids are presented as f(C, C*), it the
bigger, the more outliers we remove.

In these experiments we fix the number of clusters to 20 for the DATA_A1 and the
threshold value ranging between 0.0001 and 0.1. In Table 1 are shown outlier detection

 30

results. Here the second column represents the number of removed objects. The errors
described above are listed in Table 1 as well.

Table 1. Performance results for DATA_A1 dataset.

From Table 1 we can conclude that f(C0, C) errors are less then f(C0, C*) errors for all the
threshold values except only one, it means, original cluster centroids can be found more
accurately by clustering the set TS. If to compare f(TS*, C*) and f(TS, C*) errors, we can
observe that training error decrease as threshold value becomes bigger, but test error
increase with growth of threshold. Error rates for comparison test and training errors is
better visually observed in Figure 18.

threshold outliers error
f(TS, C)

training error
f(TS*, C*)

test error
f(TS, C*) f(C0, C) f(C0, C*) f(C, C*)

0.0001 2 2024389 2019963 2024418 3458 3711 27
0.0002 6 2024389 2009233 2024549 3458 4153 155
0.0003 26 2024389 1955907 2025004 3781 3458 603
0.0004 46 2024376 1916140 2025317 3155 4697 896
0.0005 51 2024376 1905228 2025503 3155 5021 1070
0.0006 66 2024389 1873019 2025776 3458 4271 1299
0.0007 85 2024389 1831758 2025874 3458 4329 1387
0.0008 97 2024389 1812992 2026108 3458 4322 1578
0.0009 120 2024376 1757738 2026554 3155 4477 2039
0.0010 157 2024376 1676882 2029102 3155 6012 4527
0.0020 315 2024389 1436421 2034449 3458 10272 9544
0.0030 457 2024389 1235626 2037178 3458 13166 12250
0.0040 584 2024376 1070212 2042436 3155 18061 17425
0.0050 745 2024376 922081 2051081 3155 26982 23251
0.0060 924 2024389 763320 2060465 3458 33477 31767
0.0070 1030 2024389 663906 2069434 3458 40889 39703
0.0080 1095 2024376 605353 2072014 3155 43127 41361
0.0090 1125 2024376 574180 2074973 3155 45917 44854
0.0100 1237 2024376 513739 2084782 3155 55925 49896
0.0200 1725 2024376 244793 2104332 3155 76553 68295
0.0300 2009 2024376 145301 2145282 3155 120776 99880
0.0400 2200 2024376 95303 2197788 3155 175409 143335
0.0500 2406 2024389 57325 2204561 3458 181442 152735
0.0600 2532 2024389 27768 2224101 3458 203086 169347
0.0700 2563 2024376 25051 2221189 3155 198709 166888
0.0800 2669 2024376 13433 2252187 3155 230107 181105
0.0900 2707 2024389 10543 2258766 3458 234962 185537
0.1000 2725 2024389 9615 2266675 3458 242618 190005

 31

From Figure 18 we summarize that training error decreases very fast. It occurs as the
threshold becomes bigger, thus removing more and more number of objects and the
distances are decrease from dataset to the cluster centroids. The test error increases not so
very fast because of cluster centroids moved at smaller distance relatively to the distance
from removed outliers.

0

500000

1000000

1500000

2000000

2500000

0.0
00

1

0.0
00

3

0.0
00

5

0.0
00

7

0.0
00

9

0.0
02

0

0.0
04

0

0.0
06

0

0.0
08

0

0.0
10

0

0.0
30

0

0.0
50

0

0.0
70

0

0.0
90

0

Threshold

er
ro

r

training error
test error

Figure 18. Comparison of training and test errors.

 32

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

0.0
00

1

0.0
00

3

0.0
00

5

0.0
00

7

0.0
00

9

0.0
02

0

0.0
04

0

0.0
06

0

0.0
08

0

0.0
10

0

0.0
30

0

0.0
50

0

0.0
70

0

0.0
90

0

Threshold

er
ro

r

f(C0, C)
f(C0, C*)

Figure 19. Comparison of f(C0, C) and f(C0, C*) errors.

The comparison of f(C0, C) and f(C0, C*) errors is summarized in

Figure 19. We observe that choosing threshold value less than 0.0009 we have
insignificant difference between two error curves. They are most close to each other for
threshold value ranging between 0.0001 and 0.0009. It means that resultant cluster
centroids are moved not far away from original centroids on this segment, but then
threshold is bigger, the f(C0, C) curve is sharply increase. Thus, for threshold value bigger
than 0.0009 we have centroids are moved far away and probably we lose useful data for
those parameters.

Figure 20. Original data DATA_A1 with cluster centroids (left), and the dataset after
performance of the algorithm (right) for threshold value 0.0009, when 120 outliers

have been removed.

 33

Figure 21. Dataset after performance of the algorithm for threshold value 0.001, when

157 outliers have been removed.

The second example, shown in Figure 21, was produced also from DATA_A1 dataset with
threshold value 0.001. Visually, by comparison with previous picture, one can see that if
we will take bigger threshold value we, in fact, will be losing useful data, as in cluster
marking by arrow, it consists only useful data. So for bigger threshold this useful data can
be removed.

In general, we deduce, it was correct to choose threshold is equal to 0.0009 to get at the
same time good data filtering and very well clustering of the data.

5.3. Network intrusion detection

The 1998 DARPA Intrusion Detection Evaluation Program was prepared and managed by
MIT Lincoln Labs. The purpose was to survey and evaluate research in intrusion detection.
A standard set of data to be audited, which includes a wide variety of intrusions simulated
in a military network environment, was provided. The raw training data was about four
gigabytes of compressed binary TCP dump data from seven weeks of network traffic. This
was processed into about five million connection records. Similarly, the two weeks of test
data yielded around two million connection records. A connection is a sequence of TCP
packets starting and ending at some well defined times, between which data flows to and
from a source IP address to a target IP address under some well defined protocol. Each
connection is labeled as either normal, or as an attack, with exactly one specific attack
type. Each connection record consists of about 100 bytes [49].

KDD Cup 1999 dataset is an extension of DARPA’98 dataset with a set of additionally
constructed features. And it does not contain some basic information about the network
connections; e.g. start time, IP addresses, ports, etc.

Dataset is specified by 41 attributes (34 continuous and 7 categorical) and a label
describing the attack type (22 kinds: normal, back, buffer_overflow, ftp_write,
wazermaster, etc.) where all labels except “normal” indicate in attack. Table 2 shows
examples of connection records. As in [44], we used four of the original 41 attributes
(service, duration, src_bytes, dst_bytes) because these four were thought of as the most
basic attributes. Service is a categorical feature while the other three are continuous

 34

features. The list and description of chosen features shown in Table 3. The range of service
is {http, smtp, finger, domain_u, auth, telnet, ftp, eco_i, ntp_u, ecr_i, other, pop_3, pop_2,
ftp_data, ssh, gopher, domain, private, login, imap4, time, shell, IRC, urh_i, X11, urp_i,
tftp_u, discard, tim_i, red_i, nntp, uucp,netbios_ssn, daytime, echo}. The number of
service kids is 35, and we divided them into five subsets according to the five feature: http,
smtp, ftp, ftp_data, others; because each categorical variable belonging to “others” has a
low frequency.

Table 2. Network connection records.

Table 3. List of features.

The original dataset contains 4,898,431 data, including 3,925,651 attacks (80.1%). This
rate of attacks is too large. Therefore we took a sub dataset, which produced by picking up
the original 10 % KDD Cup 1999 dataset. Details of the resultant dataset are listed in
Table 4. Then we normalized it, where each continuous attribute values were concentrated
around 0 according to the following equation:

y=log(x+0.1).

Table 4. The extracted datasets from KDD Cup 1999.

Service Events Intrusions Proportion
http 43047 74 0.17%
smtp 9187 4 0.04%

ftp_data 307 78 25.41%
ftp 619 266 42.97%

others 3908 260 6.65%

Duration protocol_type service flag src_bytes dst_bytes land … label
0 tcp http SF 219 1337 0 … normal
0 tcp http SF 217 2032 0 … normal
0 icmp ecr_i SF 1032 0 0 … smurf

9400 udp other SF 147 105 0 … normal
13 tcp smtp SF 11994 1361 0 … normal
… … … … … … … … …
25 tcp ftp SF 334 1063 0 … normal
0 tcp Private S0 0 0 0 … neptune

Feature name Description Type
service network service on the destination, e.g., http, telnet, etc. discrete
duration length (number of seconds) of the connection continuous
src_bytes number of data bytes from source to destination continuous
dst_bytes number of data bytes from destination to source continuous

 35

5.4. Experiments with real data

Experiments were run on ftp, ftp_data, smtp, others and http datasets, that were described
in previous section. The aim is to identify intrusions within each of the categories by
identifying outliers. Figure 22, Figure 23, Figure 24, Figure 25 and Figure 26 illustrate
original datasets extracted from KDD Cup 1999, on left and the results after running
algorithm are illustrated on right. Here, by stars are shown cluster centroids for resultant
datasets.

Figure 22. Visualization of ftp dataset before outlier removing (left). Resultant ftp after

applying proposed method with threshold value 0.005 and number of clusters 10
(right).

Figure 23. Visualization of ftp_data dataset before outlier removing (left). Resultant
ftp_data after applying proposed method with threshold value 0.9 and number of

clusters 5, is performed with 35 iterations (right).

 36

Figure 24. Visualization of smtp dataset before outlier removing (left). Resultant smtp
after applying proposed method with threshold value 0.0000005 and number of

clusters 5 (right).

Figure 25. Visualization of others dataset before outlier removing (left). Resultant
others after applying proposed method with threshold value 0.05 and number of

clusters 5 (right).

 37

In these pictures, the clusters have different sizes and different shapes, and the nose has
different intensities. The results demonstrate that the COR algorithm can achieve good
identifying and eliminating noise.
To demonstrate the effectiveness of this approach we report a computational results of
evaluation method described in Section 5.1. Table 5, Table 6, Table 7, Table 8 and Table 9
provides FA and FR rates for all five datasets enumerated above. Experiments are
performed for different number of clusters and various threshold values. By marked cells
in tables are represented the best minimum FA and FR errors for each of datasets.

Table 5. List of FA rate and FR rate for ftp dataset.

Figure 26. Visualization of http dataset before outlier removing (left). Resultant http
after applying proposed method with threshold value 0.005 and number of clusters 5,

is performed with 45 iterations (right).

threshold number
of

clusters

error
rates 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

FA 67% 67% 51% 38% 30% 20% 33% 5
FR 66% 72% 76% 77% 89% 89% 99%
FA 50% 42% 28% 9% 4% 9% 33% 10 FR 19% 22% 78% 36% 68% 86% 99%
FA 46% 43% 22% 15% 6% 14% 21% 15 FR 20% 25% 58% 43% 79% 89% 95%
FA 50% 36% 21% 23% 27% 15% 18% 20 FR 25% 30% 49% 68% 90% 87% 96%
FA 48% 38% 17% 28% 12% 21% 33% 25 FR 32% 36% 56% 77% 83% 94% 98%
FA 53% 43% 40% 32% 23% 26% 25% 50 FR 46% 54% 75% 77% 91% 95% 97%

 38

Table 6. List of FA and FR rates for ftp_data dataset.

Table 7. List of FA and FR rates for smtp dataset.

Table 8. List of FA and FR rates for others dataset.

threshold number of
clusters error rates

0.9 0.5 0.1 0.05 0.01 0.005 0.001
FA 71% 78% 83% 84% 90% 93% 88% 5
FR 3% 24% 46% 50% 78% 85% 87%
FA 74% 78% 82% 79% 85% 89% 81% 10 FR 3% 24% 46% 39% 79% 85% 91%
FA 73% 78% 80% 77% 83% 90% 88% 15 FR 3% 26% 42% 41% 79% 89% 96%
FA 72% 77% 78% 79% 88% 94% 91% 20 FR 5% 28% 43% 48% 85% 94% 96%
FA 72% 78% 77% 75% 87% 93% 96% 25 FR 7% 30% 46% 47% 87% 93% 98%
FA 67% 73% 74% 69% 72% 77% 82% 50 FR 8% 32% 50% 53% 79% 88% 96%

threshold number
of

clusters

error
rates 0.0001 0.00005 0.00001 0.000005 0.000001 0.0000005 0.0000001

FA 97% 97% 94% 50% 66% 50% 33% 3 FR 25% 25% 25% 50% 25% 50% 50%
FA 97% 97% 93% 80% 66% 40% 50% 4 FR 25% 25% 25% 25% 25% 25% 50%
FA 97% 97% 92% 80% 57% 25% 50% 5 FR 25% 25% 25% 25% 25% 25% 75%
FA 98% 93% 100% 88% 57% 40% 50% 10 FR 25% 75% 100% 25% 25% 25% 75%
FA 99% 100% 87% 80% 100% 80% 100% 15 FR 75% 100% 75% 50% 100% 75% 100%

threshold number
of

clusters
error rates

0.5 0.1 0.05 0.01 0.005 0.001 0.0005
FA 64% 70% 62% 70% 52% 87% 91% 5
FR 22% 38% 21% 63% 63% 95% 96%
FA 83% 84% 85% 92% 92% 98% 98% 10 FR 33% 45% 53% 86% 86% 97% 97%
FA 85% 88% 89% 94% 91% 95% 97% 15 FR 23% 40% 55% 80% 71% 88% 95%
FA 87% 89% 93% 95% 94% 95% 97%

20 FR 22% 36% 62% 76% 77% 84% 95%
FA 91% 88% 94% 95% 95% 96% 95% 25 FR 27% 25% 60% 74% 78% 88% 93%
FA 94% 95% 95% 95% 94% 90% 90% 50 FR 21% 45% 60% 79% 82% 88% 91%

 39

Table 9. List of FA and FR rates for http dataset.

Analyzing the tables above we summarize that ftp_data and http datasets have very high
FA rates. We can improve the outlier detection results for them by control the number of
iterations. That implies that in this case the method is able to obtain the better results by
decreasing the number of iterations. Table 10 and Table 11 shows FA and FR rates
produced for 35 iterations on ftp_data dataset and 45 iterations on http dataset.

Table 10. List of FA and FR rates for ftp_data dataset, 35 iterations.

Table 11. List of FA and FR rates for http dataset, 45 iterations.

From Table 10 and Table 11 we conclude that algorithm with less number of iterations on
ftp_data and http datasets outperform the experiments results before iteration control. 35
iterations for ftp_data give minimum FA rate 57% and FR rate 3% instead of before they
are were 71% and 3% correspondingly. 45 iterations for http dataset give minimum FA
rate 75% and FR rate 1% instead before they are were 82% and 1% correspondingly.

threshold number
of

clusters

error
rates 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

FA 85% 85% 85% 85% 85% 82% 80% 5 FR 1% 1% 1% 1% 1% 1% 5%
FA 98% 98% 92% 98% 93% 94% 91%

10 FR 79% 86% 0% 86% 20% 27% 28%
FA 95% 95% 95% 95% 99% 99% 93%

15 FR 0% 0% 0% 0% 89% 89% 21%
FA 96% 99% 99% 99% 99% 99% 98%

20 FR 0% 85% 81% 33% 86% 95% 85%
FA 96% 99% 99% 99% 99% 97% 99%

25 FR 0% 85 83% 86% 89% 31% 93%
FA 99% 99% 99% 99% 99% 99% 99%

50 FR 85% 89% 87% 95% 89% 93% 95%

threshold number of
clusters

error
rates 0.9 0.5 0.1 0.05 0.01 0.005 0.001
FA 57% 63% 67% 70% 84% 86% 77% 5 FR 3% 25% 47% 50% 76% 85% 87%
FA 73% 77% 80% 81% 87% 90% 89% 10 FR 2% 24% 35% 50% 78% 87% 94%

threshold number
of

clusters

error
rates 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

FA 76% 78% 78% 75% 78% 73% 71% 5 FR 2% 12% 10% 1% 29% 10% 9%
FA 87% 87% 89% 97% 87% 90% 98%

10 FR 0% 0% 22% 81% 22% 87% 86%

 40

HTER values for ftp, ftp_data, smtp, others and http datasets are summarized in Table 12,
Table 13, Table 14, Table 15 and Table 16. By marked cells are shown minimum HTER
values.

Table 12. HTER for ftp dataset.

Table 13. List of HTER for ftp_data dataset.

Table 14. List of HTER for smtp dataset.

Table 15. List of HTER for others dataset.

threshold number
of

clusters 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

5 67.10% 70.05% 63.73% 57.72% 60.30% 55.21% 66.29%
10 34.93% 32.34% 53.66% 23.01% 36.69% 47.92% 66.29%
15 33.38% 34.50% 40.59% 29.66% 43.05% 51.90% 58.64%
20 37.78% 33.51% 35.15% 46.32% 59.00% 51.87% 57.39%
25 40.59% 37.76% 37.31% 52.93% 47.72% 57.70% 65.91%
50 49.83% 48.82% 58.06% 55.38% 57.34% 61.26% 61.37%

threshold number
of

clusters 0.9 0.5 0.1 0.05 0.01 0.005 0.001

5 37.71 % 51.21% 64.93% 67.04% 84.27% 89.69% 87.84%
10 38.94% 51.33% 64.32% 59.65% 82.33% 87.85% 86.30%
15 38.57% 52.58% 61.53% 59.50% 81.58% 90.05% 92.52%
20 39.01% 53.07% 61.06% 63.99% 87.09% 94.49% 93.66%
25 40.05% 54.40% 61.96% 61.58% 87.49% 93.63% 97.69%
50 38.42% 52.36% 62.41% 61.79% 75.95% 82.98% 89.25%

threshold number
of

clusters 0.0001 0.00005 0.00001 0.000005 0.000001 0.0000005 0.0000001

3 61.01% 61.02% 59.86% 50.00% 45.83% 50.00% 41.66%
4 61.42% 61.35% 59.30% 52.50% 45.83% 32.50% 50.00%
5 61.47% 61.35% 58.55% 52.50% 41.07% 25% 62.50%

10 61.86% 84.37% 100.00% 56.73% 41.07% 32.50% 62.50%
15 87.27% 100.00% 81.25% 65.00% 100.00% 77.50% 100.00%

threshold number
of

clusters 0.5 0.1 0.05 0.01 0.005 0.001 0.0005

5 43.64% 54.15% 41.84% 66.94% 58.06% 91.36% 93.94%
10 58.25% 65.14% 69.50% 89.87% 89.16% 97.88% 97.87%
15 54.80% 64.40% 72.68% 87.41% 81.27% 92.08% 96.38%
20 54.96% 63.21% 78.19% 85.86% 86.31% 89.93% 96.64%
25 59.46% 57.04% 77.21% 85.03% 87.39% 92.25% 94.67%
50 57.96% 70.41% 78.29% 87.66% 88.42% 89.61% 90.96%

 41

Table 16. List of HTER for http dataset.

HTER values for ftp_data and http datasets with smaller number of iterations is
represented in Table 17 and Table 18.

Table 17. List of HTER for ftp_data dataset, 35 iterations.

Table 18. List of HTER for http dataset, 45 iterations.

threshold number
of

clusters 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

5 43.39% 43.39% 43.39% 43.39% 43.39% 41.83% 43.03%
10 89.03% 92.68% 46.30% 92.67% 56.87% 60.52% 60.04%
15 47.53% 47.53% 47.53% 47.53% 94.28% 94.28% 57.58%
20 48.15% 92.26% 90.17% 65.60% 92.94% 97.86% 91.96%
25 48.46% 92.33% 91.64% 93.02% 94.39% 64.26% 96.38%
50 92.44% 94.50% 93.82% 97.93% 94.48% 96.51% 97.82%

threshold number
of

clusters 0.9 0.5 0.1 0.05 0.01 0.005 0.001

5 30.61% 44.58% 57.57% 60.44% 80.49% 86.32% 82.22%
10 37.85% 51.08% 57.98% 65.62% 82.71% 88.68% 92.30%

threshold number
of

clusters 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

5 39.39% 45.28% 44.44% 38.54% 54.16% 42.36% 40.53%
10 43.84% 44.75% 43.83% 43.84% 56.23% 89.15% 55.15%

 42

Figure 27 visualize the error rates as a function of threshold value for all five subdatasets.
Here is shown that the best parameter values for ftp dataset are threshold 0.005 and the
number of clusters is equal to 5. That is obvious from diagram as a lowermost object. From
Table 5, we will find the best minimum FR and FA rates, with the ratios 10% and 37%
correspondingly for chosen parameters. Table 12 shows that HTER is equal to 23.01% in
this case.

According to the results for ftp_data dataset, in Table 13, we notice that minimum HTER
ratio is reached 37.71%. However, if to decrease the number of iterations we will have
significantly better result 30.61%, as shown in Table 17. From Figure 27 can be easily
seen that by stroke lines is illustrated the minimum HTER error for threshold value 0.9 and
the number of clusters is equal to 5 with 35 iterations. Table 10 shows that minimum FR
and FA rates are 57% and 3% correspondingly, but before iterations decreasing the
minimum FR and FA rates were 71% and 3% correspondingly, that is shown in Table 6.

ftp

0,00 %

10,00 %

20,00 %

30,00 %

40,00 %

50,00 %

60,00 %

70,00 %

80,00 %

0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

Threshold

H
TE

R

5 clusters

10 clusters

15 clusters

20 clusters

25 clusters

50 clusters

ftp _ d a ta

0 ,0 0 %

2 0 ,0 0 %

4 0 ,0 0 %

6 0 ,0 0 %

8 0 ,0 0 %

1 0 0 ,0 0 %

1 2 0 ,0 0 %

0 .9 0 .5 0 .1 0 .0 5 0 .0 1 0 .0 0 5 0 .0 0 1

T h re s h o ld

H
TE

R

5 c lu s te rs
1 0 c lu s te rs
1 5 c lu s te rs
2 0 c lu s te rs
2 5 c lu s te rs
5 0 c lu s te rs
5 c lu s te rs 3 5 ite rs tio n s
1 0 c lu s te rs 3 5 ite ra tio n s

smtp

0,00 %

20,00 %

40,00 %

60,00 %

80,00 %

100,00 %

120,00 %

0.0001 0.00005 0.00001 0.000005 0.000001 0.0000005 0.0000001

Threshold

H
TE

R

3 clusters

4 clusters

5 clusters

10 clusters

15 clusters

others

0,00 %

20,00 %

40,00 %

60,00 %

80,00 %

100,00 %

120,00 %

0.5 0.1 0.05 0.01 0.005 0.001 0.0005

Threshold

H
TE

R

5 cluster
10 clusters
15 clusters
20 clusters
25 clusters
50 clusters

h ttp

0 ,0 0 %

2 0 ,0 0 %

4 0 ,0 0 %

6 0 ,0 0 %

8 0 ,0 0 %

1 0 0 ,0 0 %

1 2 0 ,0 0 %

0 .1 0 .0 5 0 .0 1 0 .0 05 0 .0 0 1 0 .0 00 5 0 .0 0 01

T h re s h o ld

H
TE

R

5 c lus ters 10 c lus te rs
15 c lus te rs 20 c lus te rs
25 c lus te rs 50 c lus te rs
5 c lus ters 45 ite ra tions 10 c lus te rs 45 ite ra tions

Figure 27. Error rate as a function of threshold value for tested datasets.

 43

An example for smtp dataset also is shown in Figure 27. Here is the best HTER ratio is
reached 25%, it gives by threshold value 0.0000005 and number of clusters 5. Minimum
FR and FA rates for each 25%, it can be find from Table 7.

Experimental results on others dataset are shown in Table 15. The best HTER value gives
41.84 % by threshold value 0.05 and by 5 numbers of clusters. From Table 8 can be find
that FA ratio reached at 62% and FR ratio reached at 21%. Visual example of HTER
curves is shown in Figure 27.

The minimum HTER value of http dataset can be found from Table 16, it is equal to
41.83%. If one look to Table 9 to FA and FR rates for same parameters, here can be found
that FA is equal to 82% and FR is equal to 1%. We had tried to decrease such high FA rate
by decreasing the number of iterations. We have tested proposed method on http dataset
with 45 iterations and so, resultant dataset had 75% FA that is better ratio and FR is equal
to 1%, that is the same. The HTER ratio in this case is reached 38.54%. An examples of
how HTER curves changes with different threshold is shown in Figure 27, here is the best
parameters are threshold value 0.005 and the number of clusters is equal to 5.

5.5. Comparison with other outlier detection methods

We compared the performance of ODIN and MkNN algorithms on ftp, ftp_data, smtp,
others and http datasets against the proposed method. Table 19 shows the minimum values
of HTER for all compared methods and datasets.

Table 19. Summary of the results as error rate.

Experimentally, COR algorithm is shown to perform very well on ftp, smtp and http
datasets. Here it significantly superior to ODIN and MkNN. It occurs due to the spherical
shape of data, in this case the clustering performed much better by k-means algorithm. So,
outlier detection is better achieved. In another experiments, the datasets have clusters with
non spherical shapes. For example, on others dataset proposed method has not very good,
but superior result to ODIN and MkNN, the HTER ratio here is reached 41.84%. While
ODIN outperform COR with the ftp_data dataset, the result can be improved by reducing
the number of iteration, for 35 iterations algorithm detect outliers with HTER ratio of
30.61%. Proposed algorithm on http dataset can detect intrusions with the HTER ratio of
38.54% for 45 iterations, it significantly outperforms ODIN and MkNN algorithms.

HTER Dataset
proposed method ODIN MkNN

ftp 23.01% 28.5% 59.62%
ftp_data 30.61% 37.5% 65.36%

smtp 25% 49.5% 74.61%
others 41.84% 46.5% 51.38%
http 38.54% 49.5% 65.31%

 44

Moreover, another important observation from experimental results, that proposed method
outperform the ODIN and MkNN in detecting false intrusions; it gives lower FA rates for
all datasets.

According to the experiments ROC works effectively especially where the data has
spherical shape. Its performance appears to degrade with datasets containing radial dataset
and so it is not recommended for this type of dataset. Our study indicates that for datasets
which have non spherical shape, we can improve the outlier detection results by setting the
number of iterations.

In summary, the above experimental results on ftp, ftp_data, smtp, others and http datasets
show that the proposed algorithm can identify outliers more successfully than existing
algorithms.

 45

6. CONCLUSIONS

This thesis proposes and analyzes a new outlier detection method called COR algorithm. It
provides efficient outlier detection and data clustering capabilities in the presence of
outliers. This approach is based on filtering of the data after clustering process. It makes
those two problems solvable for less time, using the same process and functionality for
both clustering and outlier identification. Moreover, we discussed the different categories
in which outlier detection algorithms can be classified, i.e. density-based, distribution-
based and distance-based methods.

Furthermore, we applied algorithm to a real dataset KDD Cup 1999. Experimentally, COR
is shown to perform very well on several real datasets. The results indicate that COR works
effectively especially where the data has spherical shape. Its performance appears to
degrade with datasets containing radial shape clusters and it is not recommended for this
type of datasets. This study indicates that for datasets which have non spherical shape, we
can improve the outlier detection results by setting the number of iterations. The
experimental results demonstrate that the proposed method is significantly better than
ODIN and MkNN in finding outliers.

With simple modifications, the method can be implemented for other distance metrics. An
important direction for further study is how to apply the COR algorithm to the more
general case, where the number of clusters and the threshold value must also be solved.
Also we can control the number of iterations. Moreover, a possible extension of this
method would be to compare the performance of our method using different data clustering
approaches.

The main contribution of the present work is the design of an outlier detection process.
Performed experiments demonstrate that COR algorithm was successful in detecting
intrusions.

 46

REFERENCES

[1] R. Agrawal, J. Gehrke, D. Gunopulos and P. Raghavan, “Automatic Subspace
Clustering of High Dimensional Data for Data Mining Applications”. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, Volume
27, Issue 2, pages 94 – 105, June 1998.

[2] C. Aggarwal and P. Yu, “Outlier Detection for High Dimensional Data”. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, Volume 30, Issue 2, pages 37 – 46, May 2001.

[3] C. Aggarwal and P. Yu, “Redefining Clustering for High-Dimensional
Applications”. In Proceedings of the IEEE International Conference on Transaction
of Knowledge and Data Engineering, Volume 14, Issue 2, pages 210 – 225, April
2002.

[4] S. Alfuraih, N. Sui and D. McLeod, “Using Trusted Email to Prevent Credit Card
Frauds in Multimedia Products”. World Wide Web: Internet and Web Information
Systems, Volume 5, Issue 3, pages 244 – 256, 2002.

[5] B. Borah, D. K. Bhattacharyya, “An Improved Sampling-based DBSCAN for Large
Spatial Databases”. In Proceedings of the International Conference on Intelligent
Sensing and Information, page 92, 2004.

[6] M. Breunig, H.-P. Kriegel, R. Ng and J. Sander, “LOF: Identifying Density-Based
Local Outliers”. In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, pages 93 – 104, 2000.

[7] Brian S. Everitt, “Cluster analysis”. Third Edition, 1993.

[8] M. Brito, E. Chávez, A.Quiroz and J. Yukich, “Connectivity of the Mutual k-
Nearest-Neigbor Graph in Clustering and Outlier Detection”. Statistics & probability
Letters, Volume 35, Issue 1, pages 33-42, August 1997.

[9] M. Ester, H-P. Kriegel, J. Sander and X. Xu, “A Density-based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise”. In Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, pages
226 – 231, 1996.

[10] P. Fränti and J. Kivijärvi, “Randomised Local Search Algorithm for the Clustering
Problem”. Pattern Analysis and Applications, Volume 3, Issue 4, pages 358 – 369,
2000.

[11] S. Giha, R. Rasstogi and K. Shim, “CURE: an efficient clustering algorithm for large
databases”. In Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data, pages 73 – 84, June 1998.

 47

[12] S. Guha, R. Rastogi and K. Shim, “ROCK: A Robust Clustering Algorithm for
Categorical Attributes”. In Proceedings of the 15th International Conference on
Data Engineering, page 512, March 1999.

[13] M. Halkidi, Y. Batiskakis and M. Vazirgiannis, “Clustering algorithm and validity
measures”. In Proceedings of the Thirteenth International Conference on Scientific
and Statistical Database Management, pages 3 – 22, Fairfax, Virginia, USA, July,
2001.

[14] M. Halkidi, Y. Batistakis and M. Vazirgiannis, “Cluster Validity Methods: part I”. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, Volume 31, Issue 2, pages 40 – 45, June 2002

[15] M. Halkidi, Y. Batistakis and M. Vazirgiannis, “Clustering Validity Checking
Methods: Part II”. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Volume 31, Issue 3, pages19 – 27, September 2002.

[16] S. Hawkins, H. He, G. Williams and R. Baxter, “Outlier Detection Using Replicator
Neural Networks”. In Proceedings of the Fourth International Conference on Data
Warehousing and Knowledge Discovery, pages 170 – 180, 2002.

[17] Z. He, X. Xu and S. Deng, “Discovering Cluster-based Local Outliers”. Pattern
Recognition Letters, Volume 24, Issue 9-10, pages 1641 – 1650, June 2003.

[18] V. Hautamäki, I. Kärkkäinen and P. Fränti, “Outlier Detection Using k-Nearest
Neighbor Graph”. In Proceedings of the International Conference on Pattern
Recognition, Volume 3 pages 430 – 433, Cambridge, UK, August 2004.

[19] T. Hu and S. Y. Sung, “Detecting pattern-based outliers”. Pattern Recognition
Letters, Volume 24, Issue 16, pages 3059 – 3068, December 2003.

[20] M. Jaing, S. Tseng and C. Su, “Two-phase Clustering Process for Outlier Detection”.
Pattern Recognition Letters, Volume 22, Issue 6 – 7, pages 691 – 700, May 2001.

[21] W. Jin, A. Tung and J. Han, “Mining Top-n Local Outliers in Large Databases”. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 293 – 298, 2001.

[22] H. Jin, M.-L. Wong and K.-S. Leung, “Scalable Model-based Clustering by Working
on Data Summaries”. In Proceedings of the Third IEEE International Conference on
Data Mining, pages 91 – 98, November 2003.

[23] L. Kaufman and P. Rousseeuw, “Finding Groups in Data: An Introduction to
Cluster Analysis”. John Wiley Sons, New York, USA, 1990.

[24] E. Knorr and R. Ng, “A Unified Approach for Mining Outliers”. In Proceedings of
the 1997 Conference of the Centre for Advanced Studies on Collaborative Research,
page 11, 1997.

 48

[25] E. Knorr and R. Ng, “A Unified Notion of Outliers: Properties and Computation”. In
Proceedings of the Third International Conference on Knowledge Discovery and
Data Mining, pages 219 – 222, August 1997.

[26] E. Knorr, R. Ng and R. Zamar, “Robust Space Transformation for Distance-based
Operations”. In Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 126 – 135, August 2001.

[27] A. Lazarevic, L. Ertoz, A. Ozgur, J. Srivastava, V. Kumar, “A Comparative Study of
Anomaly Detection Schemes in Network Intrusion Detection”. In Proceedings of the
Third SIAM Conference on Data Mining, May 2003.

[28] W. Lee, S. Stolfo, K. Mok, “A Data Mining Framework for Building Intrusion
Detection Models”. In Proceedings of the 1999 IEEE Symposium on Security and
Privacy, pages120 – 132, May 1999.

[29] S. Lin and D. Brown, “An Outlier-based Data Association Method”. In Proceedings
of the SIAM International Conference on Data Mining, San Francisco, CA, May
2003.

[30] S. Lin and D. Brown, “An Outlier-based Data Association Method for Linking
Criminal Incidents”. In Proceedings of the SIAM International Conference on Data
Mining, October 2004.

[31] J. Liu and P. Gader, “Outlier Rejection with MLPs and Variants of RBF Networks”.
In Proceedings of the 15th Iinternational Conference on Pattern Recognition,
Volume 2, page 680 – 683, Barcelona, Spain, September 2000.

[32] J. Liu and P. Gader, “Neural Networks with Enhanced Outlier Rejection Ability for
Off-line Handwritten Word Recognition”. The journal of the Pattern Recognition
society, Volume 35, Issue 10, pages 2061 – 2071, October 2002.

[33] E. Paquet, “Exploring anthropometric data through cluster analysis”. Published in
Digital Human Modeling for Design and Engineering (DHM), pages, Rochester, MI,
June, 2004.

[34] M. Petrovskiy, “Outlier Detection Algorithms in Data Mining Systems”.
Programming and Computing Software, Volume 29, Issue 4, pages 228 – 237, July
2003.

[35] C. Phua, D. Alahakoon and V. Lee, “Minority Report in Fraud Detection:
Classification of Skewed Data”. Special Issue on Learning from Imbalanced
Datasets, Volume 6, Issue 1, pages 50 – 59, 2004.

[36] S. Ramaswamy, R. Rastogi and K. Shim, “Efficient Algorithms for Mining Outliers
from Large Data Sets”. In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, Volume 29, Issue 2, pages 427 – 438, May
2000.

 49

[37] M. Sato, Y. Sato and L.C. Jain, “General Fuzzy Clustering Model and Neural
Networks”. In Proceedings of the Electronic Technology Directions to the Year
2000, pages 104 – 112, May 1995.

[38] S. Shekhar, C.-T. Lu and P. Zhang, “Detecting Graph-based Spatial Outliers:
algorithms and applications (A summary of results)”. In Proceedings of the Seventh
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 371 – 376, 2001.

[39] A. Tung, J. Hou and J. Han, “Spatial Clustering in the Presence of Obstacles”. In
Proceedings of the 17th International Conference on Data Engineering, pages 359 –
367, April 2001.

[40] W. Wang, J. Yang and R. Muntz, “Sting: a Statistical Information Grid Approach to
Spatial Data Mining”. In Proceedings of the 23rd International Conference on Very
Large Data Bases (VLDB), pages 186 – 195, 1997.

[41] G. Williams, R. Baxter, H. He, S. Hawkins and L. Gu, “A Comparative Study for
RNN for Outlier Detection in Data Mining”. In Proceedings of the 2nd IEEE
International Conference on Data Mining, page 709, Maebashi City, Japan,
December 2002.

[42] X. Xu, M. Ester, H.-P. Kriegel, J. Sander, “A Distribution-based Clustering
Algorithm for Mining in Large Spatial Databases”. In Proceedings of the 14th
International Conference on Data Engineering, pages 324 – 331, February 1998.

[43] K. Yamanishi and J. Takeuchi, “Discovering Outlier Filtering Rules from Unlabeled
Data: combining a supervised learner with an unsupervised learner”. In Proceedings
of the Seventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 389 – 394, 2001.

[44] K. Yamanishi, J. Takeuchi, G. Williams and P. Milne, “On-Line Unsupervised
Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms”. In
Proceedings of the International Conference on Knowledge Discovery and Data
Mining, Volume 8, Issue 3, pages 275 – 300, May 2004.

[45] Y.-F. Zhang, J.-L. Mao and Z.-Y. Xiong, “An Efficient Clustering algorithm”. In
Proceeding of the Second International Conference on Machine Learning and
Cybernetics, Volume 1, pages 261 – 265, November 2003.

[46] J. Zhang and J. Modestino, “A Model-Fitting Approach to Cluster Validation with
Application to Stochastic Model-Based Image Segmentation”. In Proceedings of the
IEEE International Conference on Pattern Analysis and Machine Intelligence,
Volume 12, Issue 10, pages 1009 – 1017, October 1990.

[47] B. Ghosh-Dastidar and J.L. Schafer, “Outlier Detection and Editing Procedures for
Continuous Multivariate Data”. ORP Working Papers, September 2003.
(http://www.opr.princeton.edu/papers/), visited 20.09.2004.

 50

[48] J. Han and M. Kamber, “Data Mining: Concepts and Techniques”. The Morgan
Kaufmann Series in Data Management Systems, Jim Gray, Series Editor Morgan
Kaufmann Publishers, 550 pages, August 2000.
(http://www.cs.sfu.ca/~han/DM_Book.html), visited 11.11.2004.

[49] KDD Cup 1999 Data,
(http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html), visited 18.10.2004.

 51

Appendix

HTER Dataset error
rates proposed method ODIN MkNN
FA 9 57 55 ftp FR 36 0 63
FA 57 74 70 ftp_data FR 3 1 60
FA 25 99 99 smtp FR 25 0 50
FA 62 93 17 others FR 21 0 85
FA 75 99 33 http FR 1 0 97

