

Speaker Clustering in Speech Recognition

Olga Grebenskaya

04.03.2005

University of Joensuu
Department of Computer Science
Master’s Thesis

 ii

TABLE OF CONTENTS

1 INTRODUCTION...1

1.1 Automatic speech recognition system (ASR) ...1

1.2 ASR classification...1

1.3 General ASR structure..2

1.4 Structure of the theses...3

2 SPEECH RECOGNITION BASICS..4

2.1 Speech..4

2.2 Phonology basics...6

2.3 Probabilistic speech model...8

3 FEATURE EXTRACTION...11

3.1 Pre-emphasis ...11

3.2 Windowing ..12

3.3 Linear predictive coding (LPC) ...13

3.4 Mel-frequency cepstrum (MFCC) ...14

3.5 Dynamic characteristics..15

4 HIDDEN MARKOV MODELS..17

4.1 Fundamentals of HMMs...17

4.2 Recognition with HMM..19

4.3 Viterbi decoding..22

4.4 HMM training ...24

4.5 Context dependent modeling..29

5 USING SPEAKER INFORMATION IN SPEECH RECOGNITION.............................32

5.1 Speaker adaptation..32

 iii

5.2 Speaker clustering...35

6 SPEECH RECOGNITION SYSTEM BUILDING ...42

6.1 HTK description..42

6.2 Training ...42

6.3 Testing ...47

7 EXPERIMENTS ...50

7.1 Test setup...50

7.2 Results..51

7.3 Discussion..52

8 CONCLUSIONS ...54

REFERENCES ..55

APPENDIX A...59

APPENDIX B...61

APPENDIX C...62

 iv

List of Figures

Figure 1.1: Classification of ASR systems. ..1
Figure 1.2: Basic ASR blocks..2
Figure 2.1: Human speech production apparatus. ..4
Figure 2.2: Glottis oscillation. ...5
Figure 2.3: Source-filter model of speech production. Examples are given for two case of F0:
100 Hz (upper picture) and 200 Hz. ..6
Figure 2.4: Spectrogram (left) and a waveform for phoneme /ih/...7
Figure 2.5: English consonants classification based of the manner of articulation. [±V] denotes
voced/unvoised characteristics. ...8
Figure 2.6: Probabilistic speech recognition model. ..10
Figure 3.1: Unprocessed (left) and pre-emphasized (right) signals. ...11
Figure 3.2: Short-time speech analysis. ..12
Figure 3.3: LPC and LPCC computation flowchart. ..14
Figure 3.4: Critical band filters used in MFCC computation and their outputs (s1 s2…sM).14
Figure 4.1: “HMM in action”. ...17
Figure 4.2: Isolated word recognition with HMMs λ2, λ2… λK...19
Figure 4.3: An example of 3-state HMM for modeling. ..20
Figure 4.4: Forward algorithm proceeding. ..21
Figure 4.5: Backward algorithm proceeding. ...22
Figure 4.6: Viterbi algorithm proceeding. The resulting state sequence is 1-2-3.24
Figure 4.7: Segmental k-means algorithm example. ..26
Figure 4.8: The tree-based state clustering algorithm flowchart. ..30
Figure 4.9: Tree-based state clustering example for the central state of ‘ao’ triphones.31
Figure 5.1: MLLR adaptation for means. ...34
Figure 5.2: Regression class tree for MLLR. Wi denotes the transformation matrix shared by
the specific class. ..34
Figure 5.3: Speaker clustering utilized in speech recognition...35
Figure 5.4: Flowchart of the proposed metaclustering algorithm. ..39
Figure 5.5: Steps involved in metaclustering. Step 3 and 4 represent one iteration of the
algorithm while the first two steps are initialization. ...39
Figure 5.6: Pseudocode for calculations of the distance between two codebooks.....................40
Figure 5.7: Involving metaclustering in training process. ...40
Figure 6.1: The main parts of HTK: training and recognition tools..42
Figure 6.2: Steps of ASR building using HTK...43
Figure 6.3: HMM with three emitting states used for monophones..44
Figure 6.4: Creating a composite HMM for embedded training. ..44
Figure 6.5: Silence (‘sil’) and short-pause (‘sp’) models with tied states and added transitions.
...45
Figure 6.6: The main steps in triphones-based speech recognition system training.47
Figure 6.7: The testing process outline. ..47
Figure 6.8: Word network example for words ‘yes’ and ‘no’. ..48
Figure 6.9: Expanded network where each word is substituted by the corresponding phone
sequence. Word-end node is denoted as WE..48
Figure 6.10: The last step in network compilation. Each node is replaced by corresponding
HMM...49
Figure 6.11: An example of possible errors during recognition. ‘S’ denotes substitution, ‘D’
deletion and ‘I’ insertion..49

 v

Figure 7.1: Recognition accuracy for varying number of speaker clusters (speaker codebook
size = 64)...51
Figure 7.2: Recognition accuracy for varying codebook size (number of speaker clusters = 4).
...52
Figure 7.3: Metaclustering tested on 2D artificial data for the case of two clusters..................53
Figure 7.4: Male/female division in a case of 4 clusters and codebook size of 8.53
Figure C.1: Speaker recognition system schema..62
Figure C.2: VQ-based speaker identification process..63

 vi

List of Tables

Table 4.1: Within- and cross-word expansion example for the first two words in the sentence
“The emperor had a mean temper”..29
Table 7.1: Speakers and sentences of the testing and training sets. ..50
Table 7.2: Recognition accuracy for varying number of speaker clusters..................................51
Table 7.3: Recognition accuracy for varying codebook size (number of speaker clusters = 4).
...52
Table B.1: Phone mapping from 45 to 39-phone set..61

 vii

Abstract

Automatic speech recognition along with speaker recognition and text to speech conversion is a
fundamental task in speech processing. Natural speech recognition is a difficult and challenging
research area. Since the latest 1970s, the performance of speech recognition engines has
significantly increased due to involving stochastic approaches for acoustic modeling. However,
there is still a wide gap to fill in for building high performance speech recognition systems. For
example, the task of spontaneous speech recognition is still far from to be solved. One of the
latest tendencies in improving accuracy is incorporation of speaker information in speech
recognition. This includes speaker adaptation, normalization and clustering techniques as well as
their combinations. Achievements in speaker recognition research show another way of
incorporating information of speaker individuality in speech recognition. Speaker recognition
techniques are computational effective and make a reliable decision based on a limited data (just
few seconds of speech). This fact can be used for fast speaker adaptation.

This thesis presents clustering algorithm based on speaker models obtained using vector
quantization (VQ) method. Such speaker representation is simple and provides fast algorithms for
speaker recognition. The idea of the method is to group all speakers into clusters based on their
models. Finding clusters of similar speakers on the training stage and treating clusters’ speech
material as coming from the same speaker we can create separated sets of models for speech
recognition. During recognition, speech from an unknown speaker is used to determine the
closest cluster and speech recognition is done on the model set obtained for this cluster. There is
a number of different ways to perform speaker grouping. Some of them are outlined in the current
work.

The topic studied in this thesis explores knowledge from different parts of digital signal
processing, statistics and phonetics. First, we discuss speech recognition basics, then consider
possible ways of taking advantages of speaker information and finally present the results of the
speech recognition with involved speaker clustering. The experiments of speaker clustering were
performed on TIMIT database. The best improvement obtained was 6.8% relative word error
reduction compared to the baseline results.

Key Words: speech recognition, speaker recognition, clustering, speaker adaptation, Hidden
Markov Models.

 viii

Acknowledgments

I would like to thank my supervisor Pasi Fränti for his guidance and comments during my work
on the thesis. I wish to express gratitude to Tomi Kinnunen for his help, knowledge, ideas he
shared with me, for his deep interest to speech technology. I would also like acknowledge Juhani
Saastamoinen for his HTK advices. My friends, my special thanks for understanding and moral
support go to you! Finally, I appreciate my parents for their love, patience and support in all
aspects.

 1

1 INTRODUCTION

1.1 Automatic speech recognition system (ASR)

Automatic speech recognition (ASR) is a process of interpreting a human’s speech by a
computer. It is a wide term and it involves a number of technologies and research areas like
signal processing and statistics. A closer related area is speaker recognition, in which the task is
to recognize/verify a person’s identity.

A wide range of possible applications of ASR includes:

• Dictation applications.
• Interactive voice response systems. Such applications allow to free people from a routine

job of talking to the clients answering to simple and often arisen questions. It provides an
interactive customer self-service.

• Command and control systems. Provides a natural way of interacting to computer or other
device (i.e. mobile phone). Saying something like “File”, “Save” lets the users to use their
voices as a “third hand”. This idea can be extended to domestic applications like
“intelligent flat”. One just utters commands such as “turn on/off the light/music”. Such
applications require some action after the command is recognized.

• Wearables. It is natural to use speech because of limited input possibilities.
• Applications for people with typing or hearing difficulties. Speech recognition solutions

can help them to write texts or convert a caller’s speech to text.
• Combination of speech and speaker recognition applications for security needs.

1.2 ASR classification

Depending on the chosen criterion ASR systems can be classified as it is shown in Figure 1.1.

Figure 1.1: Classification of ASR systems.

ASR

Speaker mode Vocabulary size Speaking style Speech mode

Isolated
utterances

Continuous
speech

Speaker
independent

Speaker
dependent

Speaker
adaptive

Small

Medium

Large

Dictation

Spontaneous

 2

Speech mode

An isolated utterances recognition task requires marking beginning and end of every utterance.
User is supposed to make pauses to denote a word (or phrase) to be recognized. On the other
hand, continuous speech recognition allows uttering normal phrases used in everyday life. This is
very difficult task for recognizers since there are no clear word boundaries available. But such
systems are on the target of ASR market because of their possible wide applications.

Speaker mode

Speaker independent (SI) systems are meant to recognize speech regardless who is actually
speaking. They are supposed to be good enough for any possible speaker. In the opposite to them
speaker dependent (SD) systems aim to fit an individual speaker better than others and hence
perform for him/her better in comparison to SI case. But SI systems meet industrial requirements
much more often. Speaker adaptive (SA) case can be thought as a “bridge” between these two
ASR types. Adaptation is an approach to bring SI performance close to SD one based on acoustic
information from the user who is currently using the system.

Vocabulary size

Every ASR system uses vocabulary (or lexicon). The vocabulary is considered small if it contains
tens of words, medium if it contains hundreds, and large if it consists of thousands of words. The
vocabulary content and size are highly dependent on the task it is meant for. For example, a
simple digit recognizer requires ten words only while a dictation task cannot work without large
dictionary.

Speaking style

Dictation is a read speech and it is the most common task for nowadays speech recognition
systems. Spontaneous speech recognition systems should handle different features of a common
speech like stumbling, “em”- and “ah”-like words.

1.3 General ASR structure

The main building blocks of a typical ASR are depicted in Figure 1.2.

Figure 1.2: Basic ASR blocks.

The signal processing module aims to represent a speech signal as a set of vectors called feature
vectors. It provides all signal processing steps necessary to obtain those features like digitizing

Signal processing

Speech

Recognition
engine Acoustic models

Language models

Adaptation

 3

the speech signal, pre-emphasizing, framing etc. The recognition engine decodes these features
using acoustic and language models. The former represents knowledge about acoustic realization
of a single recognition unit. The latter represents knowledge of what word sequences are likely to
appear in the speech. Acoustic models are trained using a big amount of data came from different
speakers and probably from different environments. These models are supposed to be well
enough for any speaker. Adaptation module adjusts acoustic models so that they represent current
testing conditions and speaker better. Although Figure 1.2 does not show the connections
between language models and adaptation blocks, it is possible to adapt them as well. However,
language model adaptation is out of the scope of this thesis.

1.4 Structure of the theses

The thesis is organized as follows. In the Section 2 the speech recognition basics are given
containing phonetics and speech production issues. Section 3 gives an overview of speech
processing techniques. Acoustic modeling with Hidden Markov Models is discussed in Section 4.
Ways of incorporating speaker information into speech recognition process are discussed in
Section 5. Section 6 is devoted to issues of speech recognition system building and Section 7
discusses recognition results of applying speaker clustering to speech recognition. Final
conclusions are given in Section 8.

 4

2 SPEECH RECOGNITION BASICS

2.1 Speech

Speech can be defined as a process of creating vocal sounds, which form words to express ideas,
thoughts etc. These vocal sounds are produced by the human’s speech production apparatus. All
the apparatus parts (see Figure 2.1) contribute to the speech production process by changing their
shapes, lengths and interacting with each other. The main voice characteristics such as pitch,
loudness, and timbre are the result of it. Different sounds can be classified according to the
articulators’ positions and analyzed using their spectrograms.

2.1.1 Speech production

Figure 2.1: Human speech production apparatus.

The speech production process proceeds as follows. Air, expelled from the lungs reaches the
larynx (or vocal cords). They form a V-like opening, which is called the glottis. Larynx separates
the trachea from the vocal tract and plays an important role in speech production. It is
responsible for the type of the sound produced (voiced/unvoiced) and can be in different stages:

• Vibration: the vocal cords are held close to each other and open/close periodically
producing series of puffs (voiced consonants like /z/, /v/ and vowels)

• Completely open: no vibration, the cords are apart from each other forming a "V" shaped
opening (unvoiced sounds like /s/, /f/)

 5

• An intermediate position between closed and opened (whisper).

In the oscillation mode, the frequency of vibrations is called the fundamental frequency (or pitch)
and commonly denoted as F0. Its average value is about 120 Hz, 220 Hz and 330 Hz for males,
females and children respectively [21]. The vibration process is shown in Figure 2.2. Periods of
completely closed vocal cords (zero amplitude) alternate with opened ones.

Figure 2.2: Glottis oscillation.

Next, the air flow passes through the vocal tract. It consists of the pharynx (the throat cavity), the
velum (or soft palate), and the oral and nasal cavities.

The shape of the nasal cavity is fixed while the oral cavity’s characteristics can vary depending
on sounds being pronounced. The vocal tract is composed of different articulators that change
the length and a shape of the vocal tract. These articulators are:

• Pharynx: connects the larynx and the oral cavity
• Velum: closes or opens the nasal cavity for pronunciation of such sounds as /m/ and /n/
• Tongue: the most flexible articulator. Its movements in different direction allow to change

the oral cavity shape. For example, pronouncing a sound /s/ a tongue moves forward
creating a narrow area with a hard palate while /a/ sound requires an open oral cavity exit
so the tongue moves down

• Teeth: used for pronunciation of many sounds while contacting with a tongue
• Lips: for some consonants (/p/, /m/ etc.) lips are completely closed while for vowels they

can be rounded (/o/) or spread (/i/)
• Hard palate: a bony roof of the mouth. It separates the mouth from the nasal cavity and

allows producing some consonants
• Alveolar ridge: is placed between top teeth and hard palate. With a tongue contributes in

producing such sounds as /d/ and /t/.

The vocal tract can be thought as a tube (or a concatenation of tubes) of varying cross-sectional
area. One end is closed (larynx) and the other one is opened (lips). Acoustic theory predicts that
the transfer function of such tube can be described in terms of the natural frequencies
(resonances). These frequencies are called the formants and they pass the most part of the
acoustic energy. The first three formants (<3500 Hz) play the most significant role in vowel
recognition. It will be explained further in the section 2.2 while considering consonants and
vowels features.

2.1.2 Source-filter model

A useful for speech analysis way of describing a vocal tract is a source-filter model [18]. The
speech production process is thought as a sound source (glottal air flow) passing through the

 6

filter (vocal tract). The filter shapes the source spectra as it is illustrated by the Figure 2.3. This
example is given for the neutral vowel /ə/ (“bird”) [15]:

Figure 2.3: Source-filter model of speech production. Examples are given for two case of F0:

100 Hz (upper picture) and 200 Hz (bottom picture).

It follows from the filter transfer function (pictures in the middle) that the vocal tract has first
three formants equal to 500 Hz, 1500 Hz and 2500 Hz. Actually these values can be calculated
analytically using the following formula [14]:

L

cnFn 4
)12(−= , (2.1)

where L is a vocal tract length, n is a formant number and c is a velocity of sound.

As it is seen in the Figure 2.3 the final spectrum is formed by two components: source, or fast-
varying part, and filter, or slow-varying component. A filter transfer function changes when other
vowels are pronounced. This is because articulators modify their positions changing vocal tract
length as well. The main assumption of the source-filter model is an independence of its two parts
from each other. It gives good approximation but is not true in general. Moreover, the popular
feature extraction methods based on cepstral analysis (discussed in the following chapter) exploit
this assumption trying to separate excitation (i.e. source) and filter characteristics.

2.2 Phonology basics

The central notations of phonetics are phoneme and phone. According to the definition in the
linguistic dictionary [38], a phoneme is “the smallest contrastive unit in the sound system of a
language”. A phone can be thought as a realization of a phoneme. For example in words “come”
and “milk” phoneme /m/ has slightly different pronunciation and can be seen as two different
phones. The principal feature of a phoneme is its property to differentiate between words, i.e. if
we change even single phoneme in a word the meaning will change as well, e.g. “milk” and
“silk”. The ways of phonemes production, their features, and influence on each other play an
important role in speech recognition.

 7

The classification of phonemes to consonants and vowels is intuitive and they will be considered
further in accordance with such division.

2.2.1 Vowels

Vowels are caused by the periodical air puffs generated by larynx and passed through the vocal
tract. Figure 2.4 gives an example of the waveform and spectrogram of the vowel /ih/ in the word
“fill” pronounced by the author. On the spectrogram vowels have well seen dark regions
corresponding to formant frequencies while waveform demonstrates their periodic nature.

Figure 2.4: Spectrogram (left) and a waveform for phoneme /ih/.

The articulators are responsible for vowels individuality by changing the oral cavity shape. The
most important organ in this process is tongue. Depending on its position vowels are classified as
low (/aa/, /ae/ etc.), high (/iy/, /uw/ etc.), front (/eh/, /iy/ etc.) and back (/ao/, /uw/ etc). Another
important articulator are lips. Such vowels, like /ao/, /ow/, are called rounded because of lips
shape. If tongue and other articulators are tense the vowel is classified as tense (/iy/, /uw/ etc)
otherwise lax (/uh/, /eh/).

2.2.2 Consonants

Consonants differ from vowels by a constriction or an obstruction that occurs in the pharyngeal
or oral parts of the vocal tract. If vocal cords vibrate while producing consonant the sound is
called voiced, otherwise unvoiced. Figure 2.5 illustrates a possible consonant classification if we
consider the manner of articulation as a criterion.

 8

Figure 2.5: English consonants classification based of the manner of articulation. [±V] denotes

voced/unvoised characteristics.

Nasal consonants are caused by the airflow passing through the nasal cavity (opened by the
velar). The oral cavity is closed at this time. The position of the oral cavity closure defines the
sound being pronounced: lips (/m/), alveolar hump (/n/), close to the velum (/ng/). Semivowels are
vowel-like sounds by their nature. They are highly influenced by the context they appear in.
Fricatives are produced when almost complete blockage at some point in the oral cavity causes a
turbulence of the airflow. A concrete fricative realization is conditioned to the position of the
constriction. Stops are produced by rapid release of the airflow trapped by the complete closure in
the oral cavity. This blockage occurs at the lips (/b/, /p/), back of teeth (/d/, /t/) or next to the velar
(/g/, /k/). The class of complex consonants, which combine two manners of articulation, is called
affricates, e.g. /ch/ in the word ‘church’ is a combination of /t/ and /sh/ sounds. Another way to
classify consonants is “place of articulation” based. It can be found in [18] as well as manner-
based classification described above.

Information about phoneme classes becomes particularly important for building ASR system
based on complex sub-word units (e.g. triphones).

2.3 Probabilistic speech model

A probabilistic model of a speech can be described as follows. A word sequence W produces
observations X. The speech recognition system should decode this sequence of observations into
words string. This decoded string will have a maximum a posteriori probability [34]:

)()|(maxarg
)(

)()|(maxarg)|(maxargˆ WPWXP
XP

WPWXPXWPW
WWW

=== . (2.2)

P(X) was neglected because it does not depend on W. Term P(X|W) represents a probability of an
observation sequence X subjected to the word sequence W. It is called an acoustic model. The
second term is called a language model and evaluates a probability of a specified word sequence.
It is especially useful for medium and large vocabulary systems and it brings a significant
improvement in recognition rate.

If we assume each word in the sequence independent from another we can write

Consonants

Nasals Semivowels

Fricatives Stops Affricates

Liquid Glide

[+V] v,z,dh,zh
[-V] f,s,th,sh,hh

[+V] b,d,g
[-V] p,t,k

[+V] jh
[-V] ch

[+V] m,n,ng

[+V] l,r

[+V] w,y

 9

 ∏
=

=
K

i
i

i wXPWXP
1

)|()|(, (2.3)

where wi is the i-th word in the sequence and X={X1, X2,…, XK}. Equation (2.3) is a whole-word
modeling. Assuming further independence of phonemes, term P(X i|wi) can be written as

 ∏
=

=
M

j
ij

i
ji

i phXPwXP
1

,
)()|()|(, (2.4)

where phj,i is a j-th phoneme in the i-th word and M is a number of phonemes in the i-th word.
Equation (2.4) represents phoneme-based word models.

Acoustic model P(X|W) estimates a sequence of observations conditioned to the word string [34].
It should take into account speaker and pronunciation variations, phonetic context-dependency, as
well as to be able to be adapted to new environment or speaker. Hidden Markov Models
discussed in the chapter 4 is a popular approach for acoustic modeling.

Statistical Language Model (SLM) represents a probability of a word string W. In other words it
shows how frequently W is met as a sentence. It is written in the form

 ∏
=

−−=
M

i
iii wwwwpwpWP

2
1211),...,,|()()(, (2.5)

where sequence of the words wi-1, wi-2,… ,w1 is called the history and M is its length.

Since it is impossible to estimate all word sequences given by equation (2.5), short histories are
considered only. So the equation (2.5) can be approximated by N-grams language model:

 ∏
=

+−−−≈
M

i
Niiii wwwwpwpWP

2
1211),...,,|()()(. (2.6)

History length defines the class of the SLM. Some examples are:

• Unigrams

 ∏
=

≈
M

i
iwpwpWP

2
1)()()((2.7)

• Bigrams

 ∏
=

−≈
M

i
ii wwpwpWP

2
11)|()()((2.8)

• Trigrams

 ∏
=

−−≈
M

i
iii wwwpwpWP

2
211),|()()((2.9)

The speech recognition scheme can be now summarized as illustrated in Figure 2.6.

 10

Figure 2.6: Probabilistic speech recognition model.

The language P(W) and acoustic P(X|W) models are estimated from the training material. The
former is out of the scope of this thesis while training techniques for the later will be considered
further.

Acoustic model

Language model

FE Decoding Result

P(X|W)

P(W)

Training
speech

 11

3 FEATURE EXTRACTION
The goal of feature extraction is to give a good representation of a speech signal capturing an
important information about sounds pronounced. The modern feature extraction approaches are
divided into production-based and perception-based methods. Linear predictive coding (LPC)
belongs to the first group while Mel-frequency cepstral coefficients (MFCC) and Perceptual
Linear Prediction (PLP) are the representatives of the perception-based approaches family. The
LPC and MFCC techniques are considered in this section.

3.1 Pre-emphasis

Pre-emphasis is a process of passing the signal through a filter, which emphasizes higher
frequencies. In speech signal, the most part of the energy is carried by the low frequencies. When
the frequency increases pre-emphasis also increases the energy of the signal. It also serves to
emphasis the formant peaks, to make them more “visible” in the spectrum. Figure 3.1 shows an
example of pre-emphasis. On the left side of the figure, an unprocessed signal is plotted along
with its short-time magnitude spectrum and spectrogram. The right side illustrates the same
characteristics for the emphasized signal.

Figure 3.1: Unprocessed (left) and pre-emphasized (right) signals.
As can be seen from the picture pre-emphasis makes the spectrum more flat by rising the energy
in high frequency region. This effect is also well seen on the spectrogram where darker parts
correspond to higher energy.

 12

Pre-emphasis filter designed to compensate the effect of the glottal-source and energy radiation
from the lips [21] when the spectrum of the recorded speech signal is 6 dB/octave lower than the
original, i.e. vocal tract, spectrum. Such filter is implemented by the formula:

]1[][][−−= naxnxny , (3.1)

and its transfer function is given by:

 11)(−−= azzH , (3.2)
where a≈ 1.0 (e.g. 0,97).

3.2 Windowing

For extracting the spectral features of a speech signal a short-time analysis is applied [18]. The
signal is assumed to be stationary within a short time interval, i.e. characteristics of the signal
remain uniform and vocal tract parameters can be estimated. These regions are often referred to
as frames and their length is around 20-25 ms. The frame length should be short enough to
answer the assumption of the stationary signal and at the same time quite long to capture enough
samples to calculate the parameters. The frames are also overlapped by approximately 10ms. To
every frame a windowing function is applied to suppress the effect of discontinuities at frames
edges. All the feature extraction techniques will analyze these windowed frames further. The
most popular window is the Hamming window given by [18]:

 ≤≤−

=
otherwise

Nn
N

n
nw

,0

0,2cos46.054.0
][

π
. (3.3)

The process of framing and windowing is shown in Figure 3.2.

Figure 3.2: Short-time speech analysis.

Windowing

Feature vectors

 13

3.3 Linear predictive coding (LPC)

LPC analysis is a popular technique in speech recognition. It provides a representation of a signal
by a small number of parameters obtained by simple calculations [11]. The idea of LPC method
is that a speech sample at time n can be represented as a linear combination of p previous samples
weighted with some coefficients ak, where coefficients are constant over a single speech frame:

][...]2[]1[][21 pnxanxanxanx p −++−+−≈ . (3.4)

A reasonable way to obtain ak is to minimize the squared error function

 ∑ ∑

−−=

=n

p

k
km jnxanxE

2

1

][][. (3.5)

It can be done by taking the derivatives of Equation (3.5) with respect to ak and equating them to
zero:

 0=
∂
∂

k

m
a
E

, pk ≤≤1 . (3.6)

The equation (3.6) becomes

]0,[],[
1

iRkiRa
p

k
k =∑

=

 pi ≤≤1 , (3.7)

where
 ∑ −−=

n
knxinxkiR][][],[. (3.8)

The equation (3.7) can be solved using autocorrelation method and Durbin’s recursion [18]
obtaining the resulting algorithm for ak calculation:

1. Initialization
E0=R[0]

2. Iteration
For i=1,…,p do recursion:

 1
1

1

1

][][−
−

−

−−= ∑

=

i
i

k

i
ki EkiRaiRk (3.9)

 i
i
i ka = (3.10)

 11 −
−

− −= i
kii

i
k

i
k akaa , pk ≤≤1 (3.11)

 1)1(2 −−= i
i

i EkE (3.12)

3. Termination
 p

kk aa = , pk ≤≤1 (3.13)

 14

LPC represents the spectral envelope by low-dimension feature vectors. For speech sampled by
8kHz the common choice is 10 LPC coefficients. A serious problem with the LPCs is that they
are highly correlated. However, it is desirable to obtain less correlated features for acoustic
modeling. In order to decorrelate LPC coefficients, LPC cepstral coefficients (LPCC) are used
[2]:

 1]1[ac = , (3.14)

 ini
n

i
n ca

n
ianc −

−

=
∑ −+=

1

1
)1(][for 1<n<p, (3.15)

 ini
n

i
ca

n
inc −

−

=
∑ −=

1

1
)1(][for n>p. (3.16)

Figure 3.3 summarizes the steps required for LPC and LPCC computations.

Figure 3.3: LPC and LPCC computation flowchart.

3.4 Mel-frequency cepstrum (MFCC)

There is an experimental evidence that the human perception of the frequency spectrum of sound
does not have a linear characteristic. Taking auditory characteristics into account, the mel-scale
frequency axis is often used. The relation between mel- and frequency in KHz is given by [11]:

)1(log1000 2 fMel += . (3.17)

Mel-frequency cepstral coefficients are defined as a discrete cosine transform of the log
filterbank amplitudes. Each filter computes the average spectrum around each central frequency.
An example of a filterbank used in MFCC calculations is shown in Figure 3.4.

Figure 3.4: Critical band filters used in MFCC computation and their outputs (s1 s2…sM).

Speech
Preprocessing Autocorrelation Durbin’s

recursion
LPC cepstrum
computation

LPC
coefficients

LPCC
coefficients

1

Frequency

Magnitude

s1 s2 sM …

 15

The MFCC computation involves the following steps:

1. Computing of the FFT-based spectrum

 ∑
−

=

−

=
1

0

2
][][

N
N

n

nkj
enxkX

π
, Nk <≤0 . (3.18)

2. Passing the magnitude spectrum X[k] through the mel filterbank. It is equal to multiply

each DFT magnitude coefficient by the corresponding filter value. The result of this step
is the set of M values representing the energy in each band, where M is a number of filters
in the filterbank.

3. Log-energy computation at the output of each filter

= ∑

−

=

1

0

2][]][[ln][
N

k
m kHkXms , Mm <≤0 . (3.19)

4. Convert log-energies to the cepstral coefficients using discrete cosine transform (DCT)

 ∑
−

=

−
=

1

0
))5.0(cos(][][

M

m M
mnmsnc π . (3.20)

It is seen from the formula (3.20) that c[0] can be considered as a total spectral energy. For
speech recognition, the first 13 cepstrum coefficients are usually used. MFFC feature extraction
approach gives a good discrimination and a small correlation between components.

The basic idea of the cepstral analysis is to separate source and a filter in the signal and represent
them as a linear combination [6]. It is important since the main interest of feature extraction in
speech recognition is to estimate filter, i.e. vocal tract, parameters (see section 2.1.2). The
cepstrum involves logarithm of the magnitude which results in summation of logarithms of
source and filter magnitudes. After applying inverse discrete Fourier transform (or DCT in
MFCC case) we get the characteristics of the slow-varying part (i.e. filter) concentrated in the
low cepstral coefficients.

3.5 Dynamic characteristics

The vocal tract is characterized not by “static” parameters only (like LPCC or MFCC). During
speech production, different articulators change their positions continuously. Measuring the
character of these movements might be beneficial for speech recognition. The dynamic
information of the speech spectrum is estimated by so-called delta-features. These characteristics
can be computed as [18]:
 22 +− −=∆ kkk ccc , (3.21)

where ci is cepstral coefficient.

 16

Replacing ck by Δck we get second-order derivatives which are called delta-delta or acceleration
coefficients. Acceleration parameters are appended to each feature vector resulting in 3*N
dimensional vector, where N is the number of LPCC or MFCC coefficients:

 FV=[c1, c2,…, cK,, Δc1, Δc2… ΔcK, Δ2c1,, Δ2c2,…, Δ2cK]T.

 17

4 HIDDEN MARKOV MODELS
This chapter discusses the most popular approach in speech recognition - Hidden Markov Models
(HMM). The following sections outline HMM basics and explain the main problems need to be
solved in order to use HMMs for speech recognition tasks.

4.1 Fundamentals of HMMs

Hidden Markov Model is a stochastic state machine with a finite number of states [37]. It can be
thought as a pair of stochastic processes: a hidden Markov chain and an observable process – a
probabilistic function of the chain states [40]. At every time moment, HMM changes its state
according to the state transition probabilities and omits an observation based on the probability
density function (pdf) attached to the current state. The illustration of this process is given in
Figure 4.1, where aij refers to the transition probability from state i to j, and oi is an output
observation in the state i.

Figure 4.1: “HMM in action”.

HMM can be also thought as a “black box” generating some sequence of observations after some
number of steps. The state sequence is “hidden” as we do not know which state has produced
which observation.

Applying HMMs for speech recognition causes an agreement with two main assumptions. First,
it is assumed that the transition from one state to another depends on the current state and the
state of destination only. This is known as a first-order Markov assumption. The second main
assumption is an output-independent assumption: all observations are considered to be
independent from each other and dependent on state they were generated by. Both of them are not
valid for speech. However, in practice, involving second-order HMMs and taking into account
correlations between speech frames did not show significant accuracy improvement. It also
demands increase in computational complexity [18].

Formally, HMM is defined by the following parameters [33]:
§ The number of states in the model N
§ The set of all possible states in the model S = {s1, s2…sN}
§ The number of different observation objects M
§ Set of all possible objects observed V= {v1, v2… vM}
§ State transition probability distribution A= {aij}, where aij = P (qt+1 = sj | qt = si) (i,j ≤ N)
§ Observation probability distribution in state j, B= {bj(k)}, where

o1

4 3 2
a12 a23 a34 a45

a22 a33 a44

2 3 4

o2

a12 a23 a34 a45

a22 a33 a44

2 3 4

o3

a12 a23 a34 a45

a22 a33 a44

t=1 t=2 t=3

 18

 bj(k) = P(ot=vk |qt=sj)
§ The initial state distribution π = {πi}, where πi = P (q1=si).

In a compact form, HMM is defined as a triplet λ={A,B,π}. The parameter B will be also referred
to as “state output function”, and it plays an important role in HMM theory as it defines the type
of the HMM.

Modeling of output spectral distributions is done using one of the following approaches:

• Discrete modeling
• Continuous modeling
• Semi-continuous modeling.

In the discrete case, the VQ approach (see Appendix A) is used for reducing the number of
observations into a limited set of classes. In this case, every observation vector gets a label to
show which class it belongs to. Therefore, a HMM state output function is just a histogram where
each symbol has a probability emitted by a state.

Applying VQ method, we always get a quantization error: some information in speech signal is
lost. If we leave the data, i.e. feature vectors, as they are, without any changes, we can apply a
continuous density HMMs. In this case, the output function is modeled using a pdf such as the
Gaussian distribution [18]:

))()((

2
1

||)2(

1),;(
μxUμx 1-

U
Uμx

−−−
=

T

eN
nπ

, (4.1)

where n is a dimensionality of vector x, µ is a mean vector and U is a covariance matrix.

Since Gaussian is the unimodal distribution, i.e. it has only one “peak”, its modeling power is
limited. The solution is to use mixture of Gaussians or Gaussian Mixture Model (GMM). Most of
the modern continuous speech recognition systems are based on GMMs. The GMM output
function for state j is given by:

 ∑
=

=
M

k
jkjkjkj Ncb

1
tt),;()(Uoo µ , (4.2)

where cjk, μjk and Ujk are the weight, mean vector and covariance matrix of the k-th Gaussian
component of the mixture in the j-th state and M is a number of Gaussians in the mixture. The
coefficient cjk can be thought as a probability to choose k-th component in the mixture. Therefore,
they have to satisfy the stochastic constraints:

 1
1

=∑
=

M

k
jkc and 0≥jkc Nj ≤≤1 , Mk ≤≤1 . (4.3)

The semi-continuous (tied mixture) modeling case is a compromise between VQ and GMM. All
output functions share the same set of mixture components, i.e. mean vectors and covariance
matrixes stored in a codebook.

 19

HMM in speech recognition is a template for recognition units. If, for example, the basic
modeling unit for ASR is a word, then each HMM will be a template for single word, and
recognition process converges to one illustrated in Figure 4.2, where an isolated word recognition
case is assumed.

Figure 4.2: Isolated word recognition with HMMs λ2, λ2… λK.

Given a sequence of observations and set of HMMs, we can calculate which of the models has
most likely produced this sequence. This is actually a speech recognition case: given models for
units, we would like to know which HMM (or HMM string) matches the observation sequence
better. Two main answers arise:

1. How to obtain a proper HMM for every modeling unit
2. Given HMM set, how to find the “best matcher” for a given observation sequence.

These questions actually correspond to the three basic problems of HMMs [34]:

1. Given a model λ and observation sequence O how to efficiently compute P(O|λ)
(recognition problem)

2. Given a model λ and sequence of observations O, how to find a state sequence that has
most likely produced O (decoding problem)

3. How to obtain HMM parameters λ= {A, B, π} to maximize P(O|λ) (training problem).

The following sections discuss ways to answer these questions.

4.2 Recognition with HMM

The likelihood P(O|λ) can be calculated as follows. Let Q= {q1, q2…qT} be a fixed state sequence.
Than the probability of the observations O and the state sequence Q given the model λ is

 [] [])()...()()...(),|()|()|,(21 21132211 Tqqqqqqqqqq TTT

bbbaaaQPQPQP oooOO ⋅==
−

πλλλ . (4.4)

The probability of O given the λ is obtained by summation P(O,Q|λ) over all state sequences:

 ∑ ∑ −

==
Q qqq

Tqqqqqqqqqq
T

TTT
baababQPP

...,
21

21
13222111

)(...)()()|,()|(oooOO πλλ . (4.5)

Using formula (4.5) we need to perform order of 2TNT calculations and therefore the equation
(4.5) can hardly be used. There are more efficient algorithms for calculating the P(O|λ) value,
namely forward and backward approaches [33]. Both of them are based on calculating auxiliary
variables called forward and backward variables correspondingly.

Feature
extraction

λ1 (word w1)

λ2 (word w2)

λK (word wK)

…
Select

maximum

P(O| λ1)
)

P(O| λ2)
)

P(O| λK)
)

w*=argmax(P(O| λK))
 k

Speech

 20

4.2.1 Forward algorithm

The forward approach iteratively computes the forward variable αt(i) which represents the
probability of being in the state i at the time t and observe a partial sequence o1o2…ot given the
model λ:

)|,...()(21 λα ittt sqPi == ooo . (4.6)

The steps of the algorithm are summarized as follows:

1. Initialization

)()(11 oiibi πα = Ni ≤≤1 (4.7)

2. Iteration

)()()(1
1

1 +
=

+

= ∑ ti

N

j
jitt baji oαα Ni ≤≤1 , 11 −≤≤ Tt (4.8)

3. Termination

 ∑
=

=
N

i
T iP

1
)()|(αλO (4.9)

The first step initializes forward variable α1(i) as a joint probability of two events: being in state si
and observing the first element, o1, from the observation sequence. During the induction the
variable αt(i) is calculated at each time moment t for every state i. The last step calculates the
final result, P(O|λ), as a sum of αT(i) variables.

Let us consider an example of 3-state HMM with continuous probability densities and one-
dimensional feature vectors as illustrated in Figure 4.3. We will find the probability P(O|λ) using
forward algorithm.

Figure 4.3: An example of 3-state HMM for modeling.

Let us assume that the observation sequence is O={o1, o2, o3}={‘y’ ‘eh’ ‘s’}. The Figure 4.4
shows the computation involved in the forward algorithm.

1 3

2

0.3 0.2 0.4

0.6 0.7

b1(‘s’)=0.2
b1(‘eh’)=0.3
b1(‘y’)=0.5

b2(‘s’)=0.2
b2(‘eh’)=0.7
b2(‘y’)=0.1

b3(‘s’)=0.8
b3(‘eh’)=0.1
b3(‘y’)=0.1

0.8

 21

Figure 4.4: Forward algorithm proceeding.

So the total probability of the sequence O passed through the HMM given in the Figure 4.3 is
P(O|λ)= 0.1422. In the next section, the same result will be obtained by another method called
backward algorithm.

4.2.2 Backward algorithm

The idea of the backward algorithm is the same as that one of the forward algorithm. Instead of
forward variable αt(i) it uses a backward one, βt(i). This variable is defined as the probability of
the partial sequence started at (t+1), ot+1, ot+2…oT, given the state si at time t and model λ:

),|...()(21 λβ itTttt sqPi == ++ ooo (4.10)
This algorithm consists of three steps [33]:

1. Initialization

 1)(=iTβ Ni ≤≤1 (4.11)

2. Iteration

)()()(1
1

1 +
=

+∑= t

N

j
jijtt baji oββ Ni ≤≤1 , 11 ≥≥− tT (4.12)

3. Termination

 ∑
=

=
N

i
ii ibP

1
11)()()|(βπλ oO Ni ≤≤1 (4.13)

Unlike in the forward algorithm the recursion works backward in time. We consider the result
obtained for the moment of time (t+1) for all states, accounting for the transitions between them

0.5

0

0

0.06

0.21

0

Σ

Σ

0.0048

0.0198

0.1176

t=1 t=2

State 1

State 2

State 3

Σ

0.1422

P(O|λ)

α1(1)

α1(2)

α1(3)

α2(1)

α2(2)

α2(3)

α3(1)

α3(2)

α3(3)

*0.3 *0.4 Σ

*0.6

*0.3 *0.7

*0.7

*0.2 *0.1

*0.2 *0.4 Σ

*0.2

*0.6

*0.3 Σ

Σ
*0.7

*0.2 *0.8

b1(‘eh’)

b2(‘eh’)

b3(‘eh’)

t=3

b1(‘s’)

b2(‘s’)

b3(‘s’)

Direction of computations

 22

to the current state si (aij), observation ot+1 omitted in each of that state (bt+1(i)) and the remaining
partial observation sequence ot+1, ot+2… oT from each state (βt+1(i)). The termination occurs when
the recursion reaches the first state.

As an example of this method we will consider the task presented in the previous section and
illustrated in Figure 4.3. In the beginning the backward variable is initialized by the value of ‘1’:
β3(2)=1, β3(3)=1 and β3(4)=1. Figure 4.5 illustrates the process of P(O|λ) calculating with
backward algorithm.

Figure 4.5: Backward algorithm proceeding.

So, the result is the same as one obtained by the forward algorithm. The principal difference
between these two approaches is that the backward case requires the information about the whole
sequence of observations before starting its calculations

For both forward and backward algorithms order of calculations is N2T. That is much better
compare to “brute force” calculation given by equation (4.5). A forward variable, as well as a
backward one, are involved in training Baum-Welch procedure. Since both algorithms obtain an
exact value of P(O|λ) they can also be used for recognition.

4.3 Viterbi decoding

Since a set of states represents a hidden data in HMM, we can never know the exact sequence,
which produced an observation sequence. However, the sequence, which has most likely
produced the given observations, can be obtained via Viterbi algorithm. It goes like follows.
First, we need to define the quantity [33]:

t=1 t=2

State 1

State 2

State 3

t=3

Direction of computations

1

1

1

β3(1)

β 3(2)

β 3(3)

0,2

*0.6

Σ *0.4 *0.2

*0.2

0,62 *0.3

*0.7
Σ *0.2

*0.8

0,16 *0.2 Σ *0.8

0,2844

*0.6

Σ *0.4 *0.3

*0.7

0,1414 *0.3

*0.7
Σ *0.7

*0.1

0,0032 *0.2 Σ *0.1

β2(1)

β 2(2)

β 2(3)

β 1(1)

β 1(2)

β 1(3)

*0.1

*0.1

*0.5 *1.0

*0

*0

Σ

0,1422

P(O|λ)
bj(‘s’) bj(‘eh’)

bj(‘y’)

 23

)|...,...(max)(2121
..., 121

λδ tit
qqq

t sqqqPi
t

ooo==
−

. (4.14)

It is the highest probability along a single path, at time t, which accounts for the first t
observations and ends in state si. In order to find the best state sequence we need to keep the
argument which maximizes the δt(t). An array ψt(i) will be used for it. The steps of the Viterbi
algorithm are given as follows:

1. Initialization
)()(11 oiibi πδ = , 0i =)(1ψ Ni ≤≤1 (4.15)

2. Iteration

)()(max)(1
1

tijit
Nj

t baji o

= −

≤≤
δδ , Ni ≤≤1 , Tt ≤≤2 (4.16)

])([maxarg)(1

1
jit

Nj
t aji −

≤≤
= δψ , Ni ≤≤1 , Tt ≤≤2 (4.17)

3. Termination

)(max)|(

1
* jP T

Nj
δλ

≤≤
=O (4.18)

)(maxarg

1

* jq T
Nj

T δ
≤≤

= (4.19)

4. Path backtracking

)(1

*
1

*
++= ttt qq ψ , 11 ≥≥− tT (4.20)

The Viterbi procedure is similar to the forward algorithm. The only difference is the substitution
of the summation with maximization operation over previous states. The Viterbi algorithm is a
form of the dynamic programming method [11]. An example of Viterbi best state sequence
searching for the example given above is shown in Figure 4.6.

 24

Figure 4.6: Viterbi algorithm proceeding. The resulting state sequence is 1-2-3.

Using the formulas given above leads to extremely small probability values during calculations
and therefore underflow problem occurs. In order to avoid it the observation probability at each
step is usually represented in a logarithmic form [43]:

 [] ())(log)log()(max)(1

1
tijit

Nj
t baji o++= −

≤≤
δδ . (4.21)

Although the value of P*(O|λ) is a likelihood of O through one path only, it can be also used for
recognition purposes as it can be considered instead of the total likelihood obtained by forward or
backward methods for recognition purposes.

4.4 HMM training

The goal of the training step is to find the parameters of the model λ={π, A, B} such that the
likelihood of training data P(O|λ) is maximized. Before starting the training process we need to
define the following:

• HMM’s topology (type)
• Method for observation modeling, i.e. the type of output function
• Initialization.

The choice of the topology is rather straightforward: left-to-right model with self-loops is
commonly used [18]. Such structure reflects the speech as a continuous process in time and self-
loops model quasi-stationary segments is speech when parameters do not vary much. The number
of states in the model is chosen taking into account the modeling unit. For instance, if the goal is
to model full words, the number of states can be chosen depending on the word length, while for
phoneme modeling three state models is commonly a good choice [43].

0.5

0

0

0.06

0.21

0

max

max

0.0048

0.0126

0.1176

t=1 t=2

State 1

State 2

State 3

max

0.1176

P*(O|λ)
q3

*=3

δ1(1)
ψ1(1)=0

δ 1(2)
ψ1(2)=0

δ 1(3)
ψ1(3)=0

δ2(1)
ψ2(1)=1

δ 2(2)
ψ2(2)=1

δ 2(3)
ψ2(3)=2

δ 3(1)
ψ3(1)=1

δ 3(2)
ψ3(2)=2

δ 3(3)
ψ3(3)=2

*0.3 *0.4 max

*0.6

*0.3 *0.7

*0.7

*0.2 *0.1

*0.2 *0.4 max

*0.2

*0.6

*0.3 max

max
*0.7

*0.2 *0.8

bj(o2)

t=3

bj(o3) aij aij

 25

The choice of the type of output pdf is less obvious. Discrete HMM quantizes observations that
can lead to degradation in recognition. On the other hand, discrete HMMs can outperform
continuous HMMs in decoding speed as demonstrated in [7]1. Therefore, there is probably no
clear answer, which HMM type should be preferred, and this choice depends on the actual
requirements for ASR system.

The HMM parameters are initialized before the actual training procedure started. In general, the
initialization can go by one of the following ways:

• So called “flat start”, i.e. all models are identical. For example, the global mean and
variance can be computed and assigned as initial estimates for each model [43]. Initial
values for state transitions are assigned by hand, randomly or uniformly subjecting to
certain constraints.

• Segmental k-means algorithm. It uses Viterbi algorithm to strictly assign each feature
vector to some state, i.e. it creates a state-frame alignment. Having such alignment we
can calculate initial values for transitions and Gaussian parameters.

• Another way is to use an existing HMM set, which is already trained for some
task.

When the issues mentioned above are decided and feature vectors obtained we can start training
acoustic models. There are at least two methods available for HMM training [33]:

1. Segmental k-means algorithm
2. Baum-Welch algorithm

Both the Baum-Welch and the segmental k-means approaches are examples of the maximum
likelihood estimation (MLE) [18]. MLE assumes that the training data is large enough and can be
used to find robust estimates of the model parameters.

4.4.1 Segmental k-means algorithm

This algorithm is often used for initializing the parameters of HMM. At the same time, it can be
used as a training method itself. The steps of algorithm are summarized as follows:

1. Divide each of the training utterances arbitrarily into N segments, where N is the number
of states in the HMM. Flat start, manual alignment or force alignment approaches are
available.

2. Given vectors corresponding to one segment split this state into M regions Vjk (j=1…N,
k=1…M) using VQ, where M is a number of mixtures being used for modeling the states
output functions.

3. For each mixture component in each segment (Vjk) compute new values for means and
covariance matrices:

j

jk
jk N

N
c = , (4.22)

 jkjk xμ = , (4.23)

1 Actually, in [7] authors invented a discrete-mixture HMM which can be thought as an extension of conventional
discrete HMM.

 26

 ∑
∈

−−=
jkt V

jkt
T

jkt
jk

jk N
U

o
oo)()(1 xx , (4.24)

where Njk is the number of vectors in Vjk segment, Nj is the number of vectors in the whole
segment j and xjk is a centroid of Vjk.

4. Given the new parameter estimates, re-segment each training utterance into states using
Viterbi algorithm. If the distance, which represents the statistical similarity between new
and old models, exceeds some threshold the algorithm is repeated from the 2nd step.

Updated values for aij are obtained by dividing the number of transitions from state i to j by the
number of transitions from state i to any state (including itself).

Let us consider an example of k-means segmentation shown in Figure 4.7. We will construct 3-
state HMM, in which the output density function is represented as a mixture of 2 Gaussians.

In the first step, we divide the training utterance into N=3 equal parts. This is an example of the
“flat start” approach. The second step performs splitting of every state into M=2 regions using
VQ. Our next goal is to calculate new values for mixture coefficients cjk, mean vectors μjk and
covariance matrices Ujk for every state. This is done on the third step. After that, the Viterbi
algorithm is applied. It re-segments the data and if the new model differs from the previous one,
i.e. if a distance score that reflects the statistical similarity of the HMMs is larger than the
threshold, the algorithm proceeds from the second step.

Figure 4.7: Segmental k-means algorithm example.

1st step. Select initial states 2nd step. Each state is clustered into 2
regions using VQ

3rd step. New values for cjk, μjk and Ujk
are calculated.

4th step. An example of a probable data re-
segmentation with VQ and the parameter
recalculations applied. Some of the feature

vectors have changed the states they
belonged to.

 27

4.4.2 Baum-Welch algorithm

The task of maximizing P(O|λ) does not have a closed-form analytical solution. An iterative
Baum-Welch algorithm is used instead. It locally maximizes P(O|λ) applying ideas of the
expectation maximization (EM) algorithm [3] to HMMs parameter estimation. To describe the re-
estimation process, we need to define two auxiliary variables [34]. The first one represents the
probability of being in i-th state at time t and in j-th state at time (t+1), given the model and the
observation sequence:

),|,(),(1t λξ OjsisPji tt === + . (4.25)

The second variable, often referred to as a state occupation, defines the probability of being in
state i at time t given the model and the observation sequence:

),|()(λγ OisPi tt == . (4.26)

In terms of forward and the backward variables, ξt(i,j) and γt(i) can be expressed as:

∑∑
= =

++

++++ ==
N

i

N

j
ttjijt

ttjijtttjijt
t

jbai

jbai
P

jbai
ji

1 1
11

1111

)()()(

)()()(
)|(

)()()(
),(

βα

βα

λ

βα
ξ

o

o
O
o

, (4.27)

∑
=

==
N

i
tt

tttt
t

ii

ii
P

ii
i

1
)()(

)()(
)|(
)()(

)(
βα

βα
λ

βα
γ

O
, (4.28)

where P(O|λ) is a normalization factor. There is a relation between these two variables:

 ∑
=

=
N

j
tt jii

1
),()(ξγ . (4.29)

Now, if we sum up γt(i) over T, the quantity we will get is an expected number of times the state
si was visited. Similarly, sum of ξt(i,j) represents an expected number of transitions from state si
to sj. In a case of GMM, the quantity

=

∑∑
==

M

m
jmjmtjm

jkjktjk
N

n
tt

tt
t

Nc

Nc

nn

jj
kj

11
),,(

),,(

)()(

)()(
),(

Uμo

Uμo

βα

βα
γ (4.30)

is an estimated number of times the k-th mixture of the j-th state was occupied at time t.

 28

Using the expressions (4.25) and (4.26), the following formulas for the HMM parameters can be
obtained.

Transition probabilities

∑

∑

∑

∑
−

=

−

=
−

=

−

−

=

−
+

=

=

==

= 1

1

1

1
1

1

)1(

1

1

)1(
1

)(

),(

)|,(

)|,,(

T

t
t

T

t
t

T

t

i
t

T

t

i
tt

ij

i

ji

iqp

jqiqp
a

γ

ξ

λ

λ

O

O
. (4.31)

For continuous HMMs the formula for aij is identical to those in a discrete case.

State output function

• Discrete case

∑

∑

∑

∑

=

=
=

=

−

=
=

−

=

=

=

=
T

t
t

T

vts
t

t

T

t

i
t

T

vts
t

i
t

j

j

j

jqp

jqp

kb ktkt

1

..
1

1

)1(

..
1

)1(

)(

)(

)|,(

)|,(

)(
γ

γ

λ

λ

oo

O

O

. (4.32)

• Continuous case

∑∑

∑

= =

== T

t

M

k
t

T

t
t

jk

kj

kj
c

1 1

1

),(

),(

γ

γ
, (4.33)

∑

∑

=

=
⋅

= T

t
t

T

kt
tt

jk

kj

kj

1
),(

),(

γ

γ o
μ , (4.34)

∑

∑

=

=
−−⋅

= T

t
t

T

t

T
jktjktt

jk

kj

kj

1

1

),(

))((),(

γ

µµγ oo
U , (4.35)

where state is denoted by j and k refers to the mixture component.

 29

Every step of re-estimation of the model λ using formulas (4.31)-(4.35) results in a new model λ’
such that P(O|λ’)≥ P(O| λ). It means that the new model is guaranteed to represents the same or a
better fit to training data.

Comparing two training strategies, we can notice that k-means segmental algorithm makes hard
decision about observations and state alignment, while Baum-Welch involves states occupations
taking thus soft decision. The observations in the last case are assigned to the state proportionally
to the probability the HMM was in that state when this observation occurred.

4.5 Context dependent modeling

Before training HMMs we need to decide what kind of acoustic units they represent. One
possible choice is whole word modeling. In this case each HMM corresponds to one word and
hence the number of models increases with the vocabulary size. For small vocabulary tasks like
digit recognition whole-word modeling can be used, but for large vocabularies such models are
not convenient anymore and sub-word units are used instead. Phone is a common choice. Using
phones also reduces the size of ASR and allows recognizing the words, which do not appear in
the training data.

The amount of phonemes is limited but the number of their variations is huge because of different
surrounding phones. So called context-dependent modeling tries to catch a context the phone
occurs in. Taking into account left and right phones, we get a triphone system. The phone will be
also referred to as monophone denoting context independent unit. There are two strategies of
expanding phones to triphones: within-word and cross-word (see Table 4.1). In the former case,
monophones are not expanded through words boundaries, while in the latter case word
boundaries are ignored.

Table 4.1: Within- and cross-word expansion example for the first two words in the sentence
“The emperor had a mean temper”.

Word Phoneme
transcription

Within-word
expansion

Cross-word
expansion

dh dh+ah dh+ah The ah dh-ah dh-ah+eh
pause sp sp sp

eh eh+m ah-eh+m
m eh-m+p eh-m+p
p m-p+er m-p+er
er p-er+er p-er+er

Emperor

er er-er er-er+hh
pause sp sp sp

…

Simple calculations show that for a 39 phone set, the theoretical number of possible triphones is
59319. Getting a sufficient training data for all contexts is not possible in practice. To solve this
problem one can use tree-based clustering. Its idea is to pool similar states into one cluster and
consider it as one state. The algorithm block scheme is shown in Figure 4.8 [32].

 30

Figure 4.8: The tree-based state clustering algorithm flowchart.

The phonetic decision tree is a binary tree with questions attached to each node [43]. These
questions have two answers only: yes and no. The goal is to find a question that maximizes an
increase in data likelihood. An example set of questions is:
Q1: Is the left context stop consonant?
Q2: Is the left context central consonant?
Q3: Is the right context fricative?
Q4: Is the left context vowel?
etc.

After every splitting step, the data likelihood in the two created children nodes will be larger than
in the parent node since the same data is modeled by twice larger number of parameters. The
question should maximize this difference. It should be mentioned here that in order to calculate
an increase in the log likelihood we do not need actual observations. Means, covariance matrices
and occupancies of states in a cluster can be used instead. A minimal occupancy threshold
ensures that no outlier cluster is created and all clusters with occupancy below this threshold are
merged with their nearest neighbors.

In summary, for the tree-based clustering one needs to specify the following:

Pool all states in the root
node

Re-estimate
HMMsparameters

N

N

Y

Y

Find a node and a question,
which maximizes the increase
of log likelihood after splitting

Increase
exceeds

threshold?

Split the node found

Choose two leafs, which give
minimum decrease in
likelihood if merged

Decrease is
less than

threshold?

Merge nodes found

 31

• Set of phonetic-based questions for splitting
• Threshold for log likelihood increase
• Threshold for minimum state occupancy
• The likelihood of the data given pooled set of tied states.

Figure 4.9 illustrates tree-based state clustering example for the central state of all triphones of
the ‘ao’ phone. Questions Q1, Q2 … are assumed to be the “best” ones within corresponding
node. The set of questions applied was given above.

Figure 4.9: Tree-based state clustering example for the central state of ‘ao’ triphones.

Q1: L=stop consonant?

Q3: R=fricative?

Q4: L=vowel?

t-ao+s
f-ao+l n-ao+z

f-ao+l n-ao+z t-ao+s

Y N

t-ao+s

Y N Y N

f-ao+l n-ao+z

t-ao+s

f-ao+l

n-ao+z
 ...

…

… …

…

 32

5 USING SPEAKER INFORMATION IN SPEECH
RECOGNITION
All speech recognition systems can be divided into three classes based on speaker constraint
introduced to them. These classes are speaker independent (SI), speaker adaptive (SA) and
speaker dependent (SD) systems. If the training material relates to one speaker only, the models
built are considered speaker dependent. Usually thousands of training utterances are needed to
build well trained acoustic models, and they hardly can be taken from a single person. So training
data from many different speakers is used to obtain speaker independent HMMs. These HMMs
have larger variances than speaker dependent ones, and hence, we can say they are “averaged”
among all speakers. Since an error rate for such systems is significantly higher than for ones
trained to one speaker (a WER reduction can reach 50% [16]), adaptation techniques were
developed to fill this gap. Adaptation methods are aimed to adjust the parameters of “averaged”
models to better fit a current testing speaker based on small speech material from him only. In
other words, speaker adaptive systems are obtained by “moving” speaker independent models
towards dependent ones.

Another way to involve speaker constraints in speech recognition is clustering [24], [36], [31].
The main idea is to create clusters of similar speakers, and train separate HMMs for every cluster
or use data from the cluster as an adaptation material. In both cases, speaker clustering and
matching are needed. In the case of clustering, an adaptation for a speaker is done by selecting
the most “close” cluster or a group of clusters.

5.1 Speaker adaptation

Depending on the conditions an adaptation can be:
• Supervised or unsupervised. If we are given an exact transcription of the adaptation data,

adaptation is done in a supervised mode, otherwise in an unsupervised one.
• Static or dynamic. If the adaptation data is available as one block, adaptation is said to be

static. Otherwise, it can be done incrementally.

According to [19] there are three groups of adaptation techniques in state-of-the-art speaker
adaptation:

• Linear transformation family
• Bayesian learning family
• Speaker space family.

The first group is represented by the maximum likelihood linear regression (MLLR) method [27]
and its extensions. MLLR aims to find the “best” transformation of parameters which brings
speaker independent model closer to speaker dependent one. The main representative of the
Bayesian learning family is maximum a posteriori estimation (MAP) technique [13]. An
adaptation process here is driven by prior information about existing models. Speaker space
family is represented by eigenvoices approach [25]. The idea behind this method is to use a
“speaker basis” (eigenvoices), derived from the training data, and to represent any test speaker as
a weighted combination of them.

 33

5.1.1 Maximum a posteriori estimation (MAP)

The MAP approach incorporates an idea of combining prior knowledge of model parameters and
some limited adaptation data. Suppose that we have observed a sequence of random samples {x1,
x2… xN} which are distributed with a pdf p(x|λ), where λ is a parameter vector. The posterior
distribution for λ is defined as [18]:

)(

)|()()|(
xp
xppxp λλ

λ = . (5.1)

For maximization of (5.1) we can drop the denominator because it does not depend on parameters
λ. While the maximum likelihood estimation deals with the likelihood of training data p(x|λ), the
MAP approach considers a posterior distribution p(λ)p(x|λ). The prior distribution p(λ) is
considered as a knowledge of λ before the observations are available.

The MAP estimation incorporates prior information in the learning process. The presence of prior
distribution p(λ) means that less data is needed for robust parameter estimation and therefore
MAP is useful for speaker adaptation. The mathematical derivation of MAP formulas can be
found in [13]. For instance, the result for mean value of one Gaussian is:

∑

∑

=

=

+

+
= T

t

T

t

t

t

1

1
t0

)(

)(
ˆ

γτ

γτ oμ
μ , (5.2)

where μ0 is a mean of the prior Gaussian, γ(t) is an occupation count of this Gaussian at time t, ot
is observation vector and τ is a parameter measuring the “faith” in prior model. Equation (5.2)
represents a weighted sum of the prior mean μ0 and ML mean estimate and can be interpreted as
a balance between prior and new data. Parameter τ is a balancing factor between the prior mean
and ML estimate [18], and if it is set to zero we get the pure ML estimation as a special case.

When the amount of training data approaches to infinity, the MAP converges to ML estimation
and the estimated model converges to the speaker dependent one. The main disadvantage of this
method is that it is a local approach, i.e. it modifies those parameters only, which are observed in
the adaptation data. In order to overcome this problem some extensions of MAP are proposed.
For example, the regression-based model prediction (RMP) approach [1] calculates intra-
Gaussian correlations on the training stage. During adaptation, it updates observed Gaussians
with MAP and the rest using estimated correlations.

5.1.2 Maximum likelihood linear regression (MLLR)

In the MLLR approach, the idea is to transform linearly the model parameters to obtain an
adapted model. The adaptation of mean vector of each Gaussian component is performed via
linear regression-based transform [42]:

 WξbAμμ =+=ˆ , (5.3)

 34

where W is a transformation matrix dimension n × (n+1) and ξ is an extended mean vector
ξT=[1,μ1… μn], where μi is the i-th component of the mean vector μ. The matrix W is estimated to
maximize the likelihood of the adaptation data. The mathematical derivations and the resulting
formulas can be found e.g. in [27]. The computation of the matrix W is expensive. In order to
make it more efficient, we can use a diagonal transformation matrix. However, as mentioned in
[28] the full matrix gives better results. Applying MLLR to means results in changing the
location of mixture components in the acoustic space preserving their shapes as it is depicted in
Figure 5.1.

Figure 5.1: MLLR adaptation for means.

The main advantage of MLLR compared to MAP is its ability adapt to “unseen” Gaussians. This
is done by tying mixture components to regression classes based on their acoustic similarity. The
idea behind this is that acoustically similar components are supposed to share the same
transformation so that they move in the same direction. In Figure 5.1 there are two regression
classes and mixtures belonging to each of them transformed similarly. This allows using a small
amount of adaptation data effectively. Gaussians can be grouped e.g. at the phone level and
arranged in hierarchical structure. Example of such a regression class tree is shown in Figure 5.2.

Figure 5.2: Regression class tree for MLLR. Wi denotes the transformation matrix shared by the

specific class.

The special case is a global MLLR adaptation when one transformation is applied to all
Gaussians. Another way to construct the tree is a centroid splitting algorithm [43].

According to the MAP and MLLR comparison given in [18], the transformation-based approach
outperforms MAP for smaller number of adaptation utterances (<400). However, when the
amount of the adaptation data increases, MAP gives better results, since it converges to ML

Regression class 1

Regression class 2

New locations of
mixtures after linear

transformations

All speech

Consonants Vowels

Voiced Unvoiced Front Back

W

Wc Wv

Wcv Wcu Wvf Wvb

 35

estimates. These two methods can be combined by using first a global MLLR estimation,
followed by MAP [43].

5.2 Speaker clustering

Different factors influence speaker’s acoustic characteristics. It includes gender, speaking rate
and dialect differences. Speaker clustering aims to group similar speakers together in order to
reduce speaker variability within each cluster. In the recognition phase, the cluster, which is the
closest one to the target speaker is selected and utilized in recognition. The general schema of
using speaker clustering in speech recognition is shown in Figure 5.3.

Figure 5.3: Speaker clustering utilized in speech recognition.

The steps of developing system outlined in Figure 5.3 can be summarized as follows:

1. Using training material from a large number of speakers, create speaker clusters.
2. Estimate acoustic models for each cluster. There are two commonly used approaches:

a) Training HMMs for every cluster to get “cluster-dependent” set of models
b) Using cluster’s data, perform adaptation (MLLR, MAP) of the speaker

independent HMMs.
3. During recognition, the cluster that matches the current speaker better is determined, and

its HMMs are used for actual recognition.
The first and second are done during development phase and the last one is a recognition itself.

A fundamental issue is the selection of clustering approach to be used. Dividing the speakers into
groups can be done either manually or by automatic clustering algorithms. The most
straightforward, and an efficient clustering is a gender-based one. The fundamental frequency as
well as formant frequencies varies a lot among genders and numerous algorithms for gender
identification utilize this fact [41]. Gender-based clustering approaches give an improvement to
the performance, but the number of clusters is restricted to two. In order to create an arbitrary
number of groups, automatic clustering methods are used.

Cluster N
representative

Cluster 1
representative

…

Cluster
dependent

HMMs …

Cluster
dependent

HMMs

FE Cluster
 identification

Speech
recognizer

…

Cluster 1 Cluster N

Transcription

Cluster
index

Speech

 36

For speaker clustering we need to fix the following:
• Cluster representative
• Distance measure, i.e. how to measure the closeness between speakers and clustering

units representatives

In our case, the cluster representative should be a characteristic of a speaker that represents the
cluster. Speaker representations can be divided into two groups: model-based representations via
GMMs, HMMs or Hidden Markov Nets (HMNets) [36], [24], and non-parametric ones, such as
estimated vocal tract (VT) parameters [31].

Choice of the distance or similarity measure depends on the chosen speaker representation. For
the model-based representation, this is usually likelihood measure. For the non parametric case,
the Euclidean distance is popular.

Training cluster-dependent HMMs requires a large amount of data for each cluster. It is not
always possible to get enough data for training. One of the ways to overcome this problem is
clustering in combination with adaptation techniques, e.g. instead of training cluster-dependent
acoustic models they can be obtained by adapting speaker independent ones.

5.2.1 Related work

Both [24] and [36] represent tree-based speaker clustering. In [24], speaker-dependent HMNets
and Bhattacharyya distance measure between them are involved in building a top-down tree. The
clustering procedure divides nodes with the maximum sum of distances at each step until the
average distance between centroid and each HMNet in the cluster is less than predefined
threshold. A centroid HMNet is chosen as one with the minimum sum of distances. Adaptation
proceeds as follows: at every depth (tree level), the best HMNet is found using an adaptation
utterance and used for recognition. This can be considered as an adaptation method in which no
parameter transformation is done. The authors reported that this method reduces the error rate by
8.5%.

In the method proposed in [36], a speaker tree is created based on GMMs trained for each
speaker. Relative entropy is used as a distance measure. The building process starts from the
leaves and the two closest nodes are merged at each step (i.e. bottom-up approach). Thus, each
node represents a speaker cluster. Cluster-based HMMs are either trained, or obtained via
adaptation of a SI system based on the data assigned to the cluster. During evaluation, the closest
cluster (i.e. tree node) is determined, and the corresponding HMMs are used in recognition. As an
alternative approach the authors considered “leave” clusters only, i.e. ones representing
individual speakers from the training set. A predefined number of these clusters which are the
closest ones for target speaker are picked up and models for recognition are built by averaging
means and variances of ones corresponding to chosen clusters. 5% improvement over speaker
independent baseline system was achieved in this case.

A nonparametric approach was proposed in [31]. This method uses 2-dimensional vocal tract
(VT) parameters: lengths of the oral and pharyngeal sections. First, these parameters are
estimated for every training speaker using a mapping procedure. The next step is to create
clusters based on estimated VT parameters by the LBG algorithm. Adaptation process is
performed by selecting the best cluster and using its acoustic models for testing. Authors

 37

suggested two ways of making a decision about what cluster the target speaker belongs to. First
one is based on the Euclidean distance between speaker’s VT parameters and ones averaged
among all speakers belonging to the cluster. The second one is the maximum likelihood criterion
based approach when the recognition starts with not one but several cluster dependent HMMs
and during testing models with the highest likelihood are chosen. The method was tested for
phoneme recognition task and 11% of error reduction compared to baseline was obtained for the
first recognition approach. At the same time, the likelihood-based cluster selection method was
shown to provide no sufficient improvement.

Clustering approaches mentioned above use hard clustering when new speaker is assigned to one
cluster. As an extension of this approach soft clustering techniques were proposed. Examples of
soft clustering techniques are cluster adaptive training (CAT) [12] and eigenvoices mentioned
above.

Eigenvoices have got an intensive interest recently due to their particular effectiveness for rapid
speaker adaptation [26]. The steps involved in finding eigenvoices are (training set consists of N
speakers) [25]:

• For N speakers in the training set obtain N speaker dependent HMM sets
• For each speaker a supervector is composed. Each HMM contributes in this vector by

mean vector from every mixture component of every HMM state
• For all N supervectors mean and covariance matrix are computed
• Apply the principle component analysis (PCA) to get N eigenvoices
• Select first K eigenvoices.

Now a new speaker is represented as a weighted sum of K eigenvoices. The weights are obtained
via maximum likelihood eigen-decomposition (MLED) [25]. Another way to exploit the
eigenvoice ideas is presented in [8]. The speaker clustering based on speaker specific weight
vectors, estimated by MLED, is done using bottom-up approach and simple distance measure:

 dij=|wi - wj|, (5.4)

where wj and wi are the weights obtained for i-th and j-th speakers. The distance between two
clusters is defined as a maximum dij between all speakers from these clusters. Bottom-up
clustering approach assumes merging two clusters with the minimal distances. It stops when the
desired number of clusters achieved. As reported in [8], for K=2 eigenvoice case this method
leads to clear male/female separation. The best result was obtained for 8 clusters and showed
29.1% WER compare to 31.2% baseline result (i.e. 6.7% relative error reduction).

An interesting way of incorporating speaker information into speech recognition is a combination
of speaker and speech recognition [17], [9]. In [17], this combination is considered as a joint
maximization of a posteriori probability of a speaker and word sequence, given the observed
speech. A possible application for this framework is spoken identity claims.

In [9], a framework for adaptive speech recognition integrated with speaker identification is
presented. Authors propose to use GMMs for speaker recognition. If it is known a priori which
speakers can appear during testing, then GMM and adapted acoustic models are created for them.
On the recognition phase the system checks if the target speaker’s GMM is already created. If it

 38

is, the system performs decoding on “speaker-adapted” acoustic models. Otherwise, (an unknown
speaker) the system creates a new GMM for him/her and adapts speaker independent models
using a short part of the utterance.

The main advantage of speaker recognition involvement into speech recognition task is the fact
that short utterance, e.g. 3 seconds, is still too short for good speaker adaptation while speaker
recognition has achieved reliable results even for such limited test material [23]. In combination
with speaker clustering it can lead to fast speaker cluster detection and thus fast speaker
adaptation.

5.2.2 Proposed codebooks clustering

Model-based speaker clustering approaches proposed in [36], [24] and outlined above, describe
speakers models by HMMs or GMMs. We propose to use a simple approach based on speaker
models generated using VQ (see Appendix C). The advantages of much simpler distance
measures and computation effectiveness of VQ approach for real-time speaker identification can
be exploited. The method proposed here is a combination of VQ-based speaker recognition and
clustering techniques.

The method of VQ model grouping will be referred to as metaclustering. The choice of this name
follows from the fact that the objects for clustering, i.e. speakers codebooks, are results of
clustering by themselves. Metaclustering exploits ideas from the k-means clustering algorithm
(see Appendix A) extended to codebooks.

Input parameters for this method are:

• X[N] is an array of N codebooks. Each codebook contains K vectors of the same
dimension

• M is a number of clusters required
• T is a number of k-means iterations

A block scheme for this method is shown in Figure 5.4. Initial steps and one iteration are
illustrated in Figure 5.5 for the case of N=5 and M=2. Theoretically, metaclustering can perform
on full feature vector set but it would strongly slow down the clustering procedure.

 39

Figure 5.4: Flowchart of the proposed metaclustering algorithm.

The metaclustering algorithm utilizes all steps from the conventional k-means. The key
differences are the procedures of finding cluster representatives and partitions. The idea in the
former one is to find a “centroid codebook” and treat it as a representative of the cluster. This is
done by pooling all codebook vectors from one cluster together and performing any clustering
procedure on this merged vector set. We use the Randomized local search algorithm [10] for
obtaining the centroid codebook from the pool of vectors.

Figure 5.5: Steps involved in metaclustering. Step 3 and 4 represent one iteration of the

algorithm while the first two steps are initialization.

Begin

Select randomly M representative
codebooks into meta-codebook C

Generate partition P for C

i=0

i<T

Find representatives C’ for the current
partition P

Generate partition P’ for the new
representatives C’

P=P’

End

yes

no

i=i+1

Step 1. Select randomly
N codebooks

Step 2. Generate
partition P

Step 3. Find
representatives C’ for

every cluster

Step 4. Generate new
partition P’ for C’

* ** *
*

* ** *
*

*** ** *** *
*

 40

The procedure of finding the optimal partition assigns every data codebook to the closest centroid
codebook. The “closeness” of two codebooks X and Y is measured using the following symmetric
distance measure:

),(),(),(XYYXYX distdistD += , (5.5)

where dist(X,Y) is calculated as a sum of minimum distances between every vector in X and
every vector in Y. The measure (5.5) is shown to be a distance function since it is nonnegative,
symmetric and zero if and only if X=Y [20]. A pseudocode for computing the sum of minimum
distances dist(X,Y) is given below.

Figure 5.6: Calculation of the distance between two codebooks.

The whole scheme of the training/recognition process with VQ codebooks clustering is shown in
Figure 5.7.

Figure 5.7: Involving metaclustering in training process.

Training
material

(N speakers)

Feature
extraction

FV set 1

FV set 2

FV set 3

FV set N

Create
codebook for
every FV set

CB 1

CB 2

CB 3

CB N

Meta-
clustering

Number of
clusters (M) Centroid

CB 1

M centroid
codebooks

Centroid
CB 2

Centroid
CB M

function dist(X,Y)
{

sum := 0;
FOR every vector xi in X DO
{

d := EuclideanDist(xi, y1);

FOR every vector yj in Y DO
{

IF (d > EuclideanDist(xi, yj))
{

d := EuclideanDist(xi, yj);
}

}

sum := sum + d;
}

return sum;
 }

 41

First, feature vector sets (FV sets) are extracted from the speech material of every speaker. Based
on these feature vectors, VQ-based speaker modeling is used for producing the speaker
codebooks (see Appendix C). After that, metaclustering is performed on these codebooks as it
was described above. The results of the metaclustering are the M cluster-dependent centroid
codebooks and the partitioning, i.e. information about which clusters each speaker belongs to.
After this, HMM training/adaptation is performed for every cluster based of the data assigned to
it.

The recognition process is going as it was illustrated in the Figure 5.3. Cluster identification is
simply a speaker identification procedure as explained in Appendix C, which treats the centroid
codebooks as cluster representatives. It should be noted here, that for recognition purposes we do
not need to create test speaker model, just feature vectors are in use.

 42

6 SPEECH RECOGNITION SYSTEM BUILDING

6.1 HTK description

Hidden Markov Toolkit (HTK) [43] is a software toolkit developed at Cambridge University. It
provides a wide set of functions and programs for working with both continuous and discrete
HMMs. This toolkit is meant for speech recognition tasks mostly. Hand-written text and speaker
recognition systems can be implemented using HTK as well. The toolkit consists of four major
groups of tools: data preparation, training, testing and analyzing tools. Figure 6.1 gives and
overview of the HTK structure.

Figure 6.1: The main parts of HTK: training and recognition tools.

6.2 Training

The philosophy of the HTK is to build a recognition system incrementally, step by step. Sound
files and their transcriptions are necessary for the training phase. If phone level transcriptions are
not available, they can be obtained from the word level transcriptions and a lexicon using HTK
tool HDMan.

The sequence of steps used for ASR building is illustrated in Figure 6.2.

Transcriptions
test1.wav bye
test2.wav hello
…

Training tools (HErest, HCompv
etc.)

Training speech
hello.wav
bye.wav
…

Transcriptions
hello.wav hh ah l ow
bye.wav b ay
…

Recognition tools (HVite)
Unknown speech
test1.wav
test2.wav
…

 43

Figure 6.2: Steps of ASR building using HTK.

Feature extraction
HCopy

Training speech

Transcriptions

Flat start
HCompv

HMM reestimation
3xHErest

Fixing silence model

HVite

HMM reestimation
 2xHErest

Data realignment
HVite

HMM reestimation
 2xHErest

Triphone set generation
 HLEd, HHEd

HMM reestimation
 2xHErest

Tree-based clustering
 HHEd

HMM reestimation
 2xHErest

Triphone-based models,
one mixture per state

Monophone-based models,
one mixture per state

Mixture incrementing
 HHEd

HMM reestimation
 2xHErest
 Triphone-based models,

N mixtures per state

 44

Feature extraction (HCopy)

The first step for any ASR building is a feature extraction from the training speech. This is
accomplished by HTK tool HCopy. We need to specify parameters for speech processing (like
what kind of features we would like to obtain, window size, window shift, number of mel filters
etc.) and list of sound files the features will be extracted from.

Flat start (HCompV)

First, a monophone-based system was built using 5-state left-to-right HMMs with three emitting
states and one mixture per state (see Figure 6.3).

Figure 6.3: HMM with three emitting states used for monophones.

Feature extraction and determination of HMM structure are followed by the training phase. First,
we need to obtain initial parameter values. This can be done by HTK tool HCompV. It calculates
a global covariance and mean, and assigns these values to all states in the model. When such
“prototype” model has been initialized, it is duplicated for every monophone used in the system.

Parameter estimation (HErest)

HMM training in HTK is carried out by the HErest tool. It does not require any information about
phone boundaries in the word and performs so called embedded training, which means that all
models are updated simultaneously. First, every sentence is represented as a word string. Then
each word is composed of the corresponding phonemes according to its pronunciation. Next, this
phoneme-level chain is transformed into model-level chain. It is done by substituting every
phoneme by corresponding HMM. Figure 6.4 illustrates this process. A forward-backward
training is then applied to this composite HMM.

Figure 6.4: Creating a composite HMM for embedded training.

2 3 4

d ih d y uw iy t y eh t

DID YOU EAT YET?

DID YOU EAT YET

 45

Silence fixing

Two kinds of pauses are treated differently while building the speech recognition system: short
pause (‘sp’) and silence (‘sil’). Silence represents a long pause, which usually occurs in the
beginning or in the end of a sentence. On the other hand, short pause is invented to capture short
periods of silence between words. HMM structure for it is shown in Figure 6.5.

Figure 6.5: Silence (‘sil’) and short-pause (‘sp’) models with tied states and added transitions.

HMM with three states, including the only emitting state, and transition from the first to the last
state is used to represent short pause. This structure is called the “tee model” because of its shape.
This model is added to the end of every word in the lexicon to model an optional silence between
words in an utterance.

Data realignment (HVite)

Until now, no information about multiple word pronunciation has been involved. For example,
any occurrence of word “aware” in the training material was assumed to be spoken in the same
way. However, the lexicon contains e.g. two possible transcriptions for this word: it is caused by
slight difference in speaking between different people (e.g. dialects):

aware ah w ae r
aware ah w eh r

All training speakers may pronounce the same word more or less differently. Since we have
already obtained trained monophone HMMs, we can find which transcription better matches the
actual pronunciation. If a word in a training speech file is labeled as “aware”, HVite tool finds
which pronunciation is the nearest one to it. It is done by composing a network with all possible
pronunciations and finding the best path through it.

Actually, a set of monophone-based HMMs can be already used for testing, but recognition rate
will be quite poor (in our case it is around 50%). One of the reasons of poor monophone-based

2 sp:

2 3 4 sil:

Tied states
 (share the same
parameters)

 46

HMMs performance is their ignorance of the context, i.e. monophone HMM averages all possible
variations in phoneme pronunciation.

The recognition rate can be improved by involving context dependency and using Gaussian
mixtures instead of monogaussian output function.

Triphone set generation (HLEd, HHEd)

In order to capture the context information, we decided to use triphone-based models. As was
explained in the section 4.5, they model left and right context of a phone. A within-word context
expansion was used in this thesis. Fist of all, list of all triphones encountered in the training data
was created by the tool HLEd. After this, monophone HMMs were cloned according to the
following rule: for each triphone of the form L-p+R, a HMM corresponding to phoneme ‘p’ is
cloned. After this step, all HMMs for different contexts of ‘p’ will be identical. Certainly, training
material is not large enough to provide sufficient data for estimating huge number of models. A
tree-based state clustering was used to overcome this problem (see section 4.5).

Mixture incrementing (HHEd)

Until now, we have been working with HMMs with one Gaussian per state. To represent the data
more accurately we can increase the number of Gaussian components used to model one state. In
HTK framework, this process is called mixture splitting. Tool HHed allows incrementing mixture
components step by step, controlling performance of the system after each stage. The component
with the largest weight is considered, and its parameters are changed as follows:

• The weight is divided by two and copied as a weight of a new component
• The means of both components are calculated according to the formula:

 v*2.0±= μμmix , (6.1)

where μmix is a new mean, μ is a mean and ν is a standard deviation of the current component.

Mixture splitting is continued until desired performance of the system is achieved or overtraining
occurred. Since multiple mixtures try to fit the training data it can happen that mixture will start
to fit the data “too much” after some steps. Therefore, the system will not be able to match
variations occurring in a testing speech, which certainly decreases the performance. Thus, a
compromise for the number of mixtures should be found. Finally, two more re-estimation steps
accomplish the speech recognition building process. Figure 6.6 sums up the whole training
process [44].

 47

Figure 6.6: The main steps in triphones-based speech recognition system training.

6.3 Testing

The testing stage falls into two steps: recognition and evaluation. It is illustrated in Figure 6.7 and
explained in details in the following subsections.

Figure 6.7: The testing process outline.

Mohophone HMMs
training

Mohophone HMMs
cloning to create
triphone HMMs.

Tree clustering and
state tying.

Mixture
incrementing.

‘s’

‘ao-s+t’ ‘iy-s+k’ ‘eh-s+k’

… …

‘ao-s+t’ ‘iy-s+k’ ‘eh-s+k’

‘ao-s+t’ ‘iy-s+k’ ‘eh-s+k’

Recognition

HVite
Testing speech

Word
network

Recognized
transcriptions

Evaluation
HResults

Statistics

Correct
transcriptions

 48

Recognition

The aim of this stage is to generate a recognized speech transcription. First, HTK decoder
compiles a word network defined by user and creates one big HMM necessary for recognition.
This network defines a task grammar (in our case it is just a word loop). The language model
likelihoods are attached to the links of the network, if any language modeling is used. Task
grammar defines possible word sequences, which can be met during recognition. Word loop
arises when there is no way to invent any kind of task grammar and any word from the dictionary
can appear in any position during recognition. Figure 6.8 gives an example of a word network
consisting of two words ‘yes’ and ‘no’ with bigram language model incorporated.

Figure 6.8: Word network example for words ‘yes’ and ‘no’.

On the next step, every word in the network is substituted by its pronunciation from the lexicon.
The number of substitutions per word is equal to the number of its pronunciations available. A
word-end node (WE) is added after the end of each word (see Figure 6.9).

Figure 6.9: Expanded network where each word is substituted by the corresponding phone

sequence. Word-end node is denoted as WE.

Next, all but end-word nodes are replaced by the corresponding HMMs. Ultimately, the compiled
network is composed of the individual HMM states [43]. Figure 6.10 illustrates an example of the
final stage of word network compilation. Each node is replaced by the corresponding HMM.

Now the task is to obtain the best path through this HMM. A token passing algorithm [45] is used
for decoding. The word-end nodes are used for recording information about transitions between
words.

n

y

sil sil

ow sp

eh s sp

WE

WE

no

yes

sil sil

 49

Figure 6.10: The last step in network compilation. Each node is replaced by corresponding

HMM.
Evaluation

When testing speech has been recognized and its transcription obtained, the last stage of the
testing is an evaluation of the result. There are three kinds of errors: insertion, deletion and
substitution (see Figure 6.11).

Figure 6.11: An example of possible errors during recognition. ‘S’ denotes substitution, ‘D’

deletion and ‘I’ insertion.

HTK evaluation tool HResults is meant for comparing the recognized and the correct
transcriptions. It performs an optimal string matching using dynamic programming. Each error
type has its own score and HResults uses the dynamic programming to obtain the best label
string, i.e. the string with the lowest score.

We will use the recognition accuracy as a performance measure:

 %100*
N

IDSNAcc −−−= , (6.2)

where N is a total number of words in a reference transcription, S is a number of substitution
errors, D is a number of deletion errors and I is a number of wrongly inserted words.

n ow sp

y eh sp s

WE

WE

 THE EMPEROR HAD A MEAN TEMPER

THE EMPEROR ADD _ MEAN TEMP ERROR
S D I S

 50

7 EXPERIMENTS

7.1 Test setup

The TIMIT database [30] was used for all experiments presented here. This corpus contains an
American English read speech and is dedicated for speech research. It provides speech material
for eight dialect regions from both males and females. There are three sentence types in TIMIT
corpus, labeled as SA (dialect sentences), SX (phonetically-compact) and SI (phonetically-
diverse). The first type consists of two sentences shared by all speakers. It is used to study accent
variations mostly and should be removed from the test and train sets. SX sentences represent
good phonetic coverage and are spoken by seven speakers each. According to TIMIT
documentation, SI sentences were selected to provide a diversity to phonetic contexts. Every SI
sentence is spoken once by each speaker and every speaker speaks two SA, five SX and three SI
sentences. For testing purposes, we used the TIMIT core set, which consists of 192 sentences
(1569 words) spoken by 24 speakers (see Table 7.1). The core and development sets are disjoint,
i.e. 24 test speakers are not included in the training set.

Table 7.1: Speakers and sentences of the testing and training sets.
 Development set Evaluation set
Number of sentences 3696 192
Number of speakers 462 24
Number of males 326 16
Number of females 136 8
Dialect coverage 8 8

In order to start creating a speech recognition system a phone set must be fixed. TIMIT uses 45
phones set for its lexicon, and this lexicon does not provide a multiple words pronunciation. On
the other hand, CMU pronunciation dictionary [39] makes use of 39 phones set and consists of
multiple transcriptions for its words. In order to provide the system with more than one possible
pronunciation per word we decided to use the CMU phone set and map 45 TIMIT phonemes into
it. Furthermore, a smaller phone set is supposed to increase robustness of training since more data
per phone are available in this case [5]. The mapping was done according to the rules given in
Appendix B. After that, TIMIT and CMU lexicons were merged, and phone-level transcriptions
were generated based on the new dictionary.

For feature extraction, 39-dimention feature vectors with 12 MFCC coefficients plus energy,
delta and acceleration coefficients1 were used. The window size of 25 msec and frame increment
of 10 msec was chosen to extract those vectors. The bigram language model trained from all
TIMIT sentences was also involved. The baseline system without speaker clustering/adaptation
results in 6.63% word error rate.

1in HTK terms it is MFCC_E_D_A

 51

7.2 Results

The speaker clustering approach explained in Section 5.2.2 was tested for different number of
clusters and codebook sizes. The experiments were divided into two parts. In the first part we
studied the influence of the number of speaker clusters on recognition accuracy. In the second
part, we kept the number of speaker clusters fixed and varied the speaker codebook sizes.

Number of clusters

To study the effect of the number of clusters on recognition rate, we fixed the speaker codebook
size to 64. Cluster-dependent set was obtained by adapting speaker independent HMMs using
data from the cluster. The adaptation was done using MLLR, MAP and MAP+MLLR
approaches. Results are given in Table 7.2 and illustrated in Figure 7.1.

Table 7.2: Recognition accuracy for varying number of speaker clusters
 (speaker codebook size = 64).

Number of
clusters MLLR MAP MLLR+MAP

2 7.9% 6.69% 8.8%
4 6.31% 6.69% 6.5%
8 6.63% 7.07% 6.63%

16 6.82% 6.88% 7.46%
32 7.07% 6.63% 7.1%
64 6.88% 7.27% 8.03%
128 7.84% 7.14% 9.24%
256 7.78% 6.44% 10.71%

5

6

7

8

9

10

11

2 4 8 16 32 64 128 256

Num. of clusters

W
ER

 (%
)

MLLR MAP MAP+MLLR Baseline

Figure 7.1: Recognition accuracy for varying number of speaker clusters (speaker codebook size
= 64).

 52

For 4 - 32 clusters, the accuracy is close to the baseline results and for 2, 128 and 256 clusters,
MLLR and MAP+MLLR are inferior to baseline. For 4 clusters, MAP reduced WER from 6.63%
to 6.31%.

Codebook size

Next, we varied the speaker codebook size from 4 to 256 and kept the number of speaker clusters
fixed to 4. Methods for obtaining cluster dependent HMM sets were kept the same as in the
previous test. The results are shown in Table 7.3 and illustrated in Figure 7.2

Table 7.3: Recognition accuracy for varying codebook size (number of speaker clusters = 4).

Speaker
codebook

size
MLLR MAP MLLR+MAP

4 7.01% 6.82% 6.82%
8 6.44% 6.18% 6.63%
16 6.69% 6.69% 6.76%
32 6.44% 6.63% 6.37%
64 6.31% 6.69% 6.5%

128 6.76% 6.44% 6.37%
256 6.37% 6.5% 6.37%

6

6,2

6,4

6,6

6,8

7

7,2

4 8 16 32 64 128 256

Codebook size

W
ER

 (%
)

MLLR MAP MLLR+MAP Baseline

Figure 7.2: Recognition accuracy for varying codebook size (number of speaker clusters = 4).

The best result of 6.18% WER was obtained in the case of MAP adaptation and codebook size
equal to 8, i.e. it gave 6.8% relative WER reduction compare to the baseline.

7.3 Discussion

From the first experimental part we can see that in general clustering does not improve accuracy.
The best result obtained was about 5% relative WER reduction. For the case of 2 clusters, we
repeated the metaclustering algorithm ten times. We found out that in six cases it assigned almost
all speakers in a single cluster. The smallest mean squared error was obtained in one of those six

 53

cases. The clustering approach is based on suboptimal k-means algorithm, which strongly
depends on initial solution. This explains why partitions differ from each other between
repetitions.
 Clustering was tested on an artificial data composed of 2-dimensional vectors and it showed
reasonable cluster distribution (see Figure 7.3). It allows concluding that there are no two clear
speaker groups in the test set. This effect disappeared when number of clusters was increased.

Figure 7.3: Metaclustering tested on 2D artificial data for the case of two clusters.

We can conclude from Figure 7.2 that the codebook size does not have much effect on
recognition results. The only exception is codebook with the size of 4, for which the WER
obtained is 7.01%. This can be explained by poor speaker representation.

It is quite interesting to analyze the data assigned to each cluster. The division into 4 clusters in a
case of codebook size 8 is shown in Figure 7.4.

0
20
40
60
80

100
120
140
160
180

1 2 3 4

Cluster num ber

male female

Figure 7.4: Male/female division in a case of 4 clusters and codebook size of 8.
In this case the metaclustering algorithm divides speakers into male/female groups with almost
100% probability. This is even more interesting when we compare the results obtained for 2
clusters mentioned above.

 54

8 CONCLUSIONS
In this thesis, we first studied the theoretical background of speech recognition, considering
feature extraction steps along with acoustic modeling issues. After that, we discussed two ways
of involving speaker information into speech recognition task: adaptation and clustering. Two
classical adaptation approaches, MAP and MLLR, were outlined. Speaker grouping was attacked
from different directions. First, we discussed tree-based and plain hard clustering as well as
eigenvoices and vocal tract based grouping. The next step of considering speaker in speech
recognition was to examine how speaker identification techniques can contribute to our task. Two
methods of combining speech and speaker recognition were studied, which approached us to the
proposed clustering algorithm.

The proposed speaker grouping method clusters speaker codebooks obtained via VQ based
speaker modeling. We first trained speaker models with size of 64 using TIMIT training data.
After that we applied clustering algorithm to them and obtained different number of clusters. The
cluster dependent HMM sets were created by adapting speaker independent models, using the
data assigned to each cluster. After that, using speaker identification techniques, we mapped each
sentence from the test set to some cluster and used models from that cluster for evaluation. We
obtained 5% WER reduction for 4 clusters. Next, we addressed the effect of codebook size. The
best result of 6.8% WER reduction compared to the baseline was obtained for the codebook size
of 8.

We also examined the clusters’ content in the best case and found out that gender separation
among clusters was almost 100%. We did not observe dependency between number of clusters
and recognition performance. However, for more than 64 clusters, MLLR showed performance
degradation. Small codebooks with the size of 4 also turned out to give high error rate due to poor
speaker representation.

Speaker clustering itself can be also considered as a kind of speaker adaptation where HMM
parameters are not changed, but “the best” model set is found. VQ speaker representation
provides us with the fast speaker identification process and hence allows adapting speaker
recognition system rapidly.

Combining speech and speaker recognition can be extended further. First, shifting from hard
clustering to the soft one. It requires some weighting function to measure the contribution of
every cluster-dependent model set in recognition. An interesting testing would be a comparison
of different cluster selection approaches. I.e. it is interesting to find out how different results
likelihood-based and matching-based selection strategies would show. In this work we
considered speech recognition improvement using speaker recognition. A particularly interesting
would be to do the other way round, i.e. to improve speaker identification/verification involving
speech recognition.

 55

REFERENCES

[1] S. M. Ahadi and P.C Woodland, “Combined Bayesian and Predictive Techniques for Rapid
Speaker Adaptation of Continuous Density Hidden Markov Models”. Computer Speech
and Language, vol. 11, no. 3, pp. 187-206, 1997.

[2] B. S. Atal, “Effectiveness of Linear Prediction Characteristics of the Speech Wave for
Automatic Speaker Identification and Verification”. Journal of the Acoustic Society of
America vol. 55, no. 6, pp. 1304-1312, 1974.

[3] J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Applications to Parameter
Estimation for Gaussian Mixture and Hidden Markov Models”. Technical report,
International Computer Science Institute, Berkeley CA, 1998.

[4] J. P. Campbell, “Speaker Recognition: a Tutorial”. In Proc. of the IEEE, vol. 85, no. 9, pp.
1437- 1462, 1997.

[5] J.-C. Chen, J.-L. Lo and J.-S. Roger Jang, “Computer Assisted Spoken English Learning
for Chinese in Taiwan”. International Symposium on Chinese Spoken Language Processing
(ISCSLP), Hong Kong, 2004.

[6] J.R Deller, J.H.L. Hansen and J.G. Proakis, ”Discrete–Time Processing of Speech Signals”.
IEEE Press, 2nd edition, New York, 2000.

[7] V. Digalakis, S. Tsakalidis, C. Harizakis and L. Neumeyer, “Efficient Speech Recognition
Using Subvector Quantization and Discrete-Mixture HMMs”. Computer Speech and
Language, no. 14, pp. 33-46, 2000.

[8] P. Faltlhauser and G. Ruske, “Robust Speaker Clustering in Eigenspace”. In Proc.
ASRU2001, pp. 57-60, 2001.

[9] G.A. Fink and T. Plötz, “Integrating Speaker Identification and Learning With Adaptive
Speech Recognition”. In ODYS, pp. 185-192, 2004.

[10] P. Fränti and J. Kivijärvi, “Randomized Local Search Algorithm for the Clustering
Problem”. Pattern analysis and Applications, vol. 3, no. 4, pp. 358-369, 2000.

[11] S. Furui, “Digital Speech Processing, Synthesis, and Recognition”. Marcel Dekker, 2nd
edition, New York, 2001.

[12] M. J. F. Gales, “Cluster Adaptive Training of Hidden Markov Models”. IEEE Transactions
on Speech and Audio Processing, vol. 8, no. 4, pp. 417-428, 2000.

[13] J.-L. Gauvain and C.-H. Lee, “Maximum a Posteriori Estimation for Multivariate Gaussian
Mixture Observations of Markov Chains”. IEEE Transactions on speech and audio
processing, vol. 2, pp. 291-298, 1994.

[14] J. Harrington and S. Cassidy. “Techniques in Speech Acoustics”. Kluwer Academic
Publishers, Dordrecht, 1999.

 56

[15] Haskins Laboratories, WWW page. http://www.haskins.yale.eduhaskins/ EADS/MMSP/
acoustic.html (last visit 03.03.2005).

[16] T. J. Hazen, ”A Comparison of Novel Techniques for Rapid Speaker Adaptation”. Speech
Communication, vol. 31, no. 1, pp. 15-33, 2000.

[17] L.P. Heck and D. Genoud, “Combining Speaker and Speech Recognition Systems”. In
Proc. International Conference on Spoken Language Processing, pp. 1369-1372, 2002.

[18] X. Huang, A. Acero and H.-W. Hon, “Spoken Language Processing”. Prentice-Hall, Upper
Saddle River, New Jersey, USA, 2001.

[19] C. Huang, T. Chen and E. Chang, "Adaptive Model Combination For Dynamic Speaker
Selection Training". In Proc. International Conference on Spoken Language Processing,
pp. 65-68, 2002.

[20] E. Karpov, T. Kinnunen and P. Fränti, "Symmetric Distortion Measure for Speaker
Recognition". In Proc. 9th International Conference Speech and Computer
(SPECOM'2004), pp. 366-370, 2004.

[21] T. Kinnunen, “Spectral Features for Automatic Text-Independent Speaker Recognition”.
Licentiate’s thesis, University of Joensuu, 2003.

[22] T. Kinnunen, T. Kilpeläinen and P. Fränti, “Comparison of Clustering Algorithms in
Speaker Identification”. In Proc. IASTED International Conference Signal Processing and
Communications, pp. 222-227, 2000.

[23] T. Kinnunen and Ismo Kärkkäinen, “Class-Discriminative Weighted Distortion Measure
for VQ-based Speaker Identification”. International Workshop on Structural and Syntactic
Pattern Recognition (SSPR), pp. 681-688, 2002.

[24] T. Kosaka, S. Matsunaga and S. Sagayama, “Speaker-Independent Speech Recognition
Based on Tree-Structured Speaker Clustering”. Computer Speech and Language, vol. 10,
no. 1, pp. 55-74, 1996.

[25] R. Kuhn, J.-C. Junqua, P. Ngyuen and N. Niedzielski, “Rapid Speaker Adaptation in
Eigenvoice Space”. IEEE Transactions on Speech and Audio Processing, vol. 8, no. 6, pp.
695-707, November 2000.

[26] R. Kuhn, F. Perronnin and J.-C. Junqua, “Time is Money: Why Very Rapid Adaptation
Matters”. In Adaptation-2001, pp. 33-36, 2001.

[27] C.J. Leggeter and P.C. Woodland, “Speaker Adaptation of HMMs Using Linear
Regression”. Technical report, Cambridge University Engineering Department, 1994.

[28] C. J. Leggetter and P. C. Woodland, “Flexible Speaker Adaptation Using Maximum
Likelihood Linear Regression”. In Proc. ARPA Spoken Language Technology Workshop,
pp. 104-109, February 1995.

[29] Y. Linde, A. Buzo and R. M. Gray, “An Algorithm for Vector Quantizer Design”. IEEE
Transactions on Communications, vol. 28, no. 1, 1980.

http://www.haskins.yale.eduhaskins/

 57

[30] Linguistic data consortium, WWW page. http://www.ldc.upenn.edu/ (last visit 01.03.2005).

[31] M. Naito, L. Deng and Y. Sagisaka, “Speaker Clustering for Speech Recognition Using
Vocal-Tract Parameters”. Speech Communication, vol. 36, no. 3, pp. 305-315, 2002.

[32] J. J. Odell, “The Use of Context in Large Vocabulary Speech Recognition”. PhD thesis,
Queens’ College, Cambridge, 1995.

[33] L.R. Rabiner, “A Tutorial on Hidden Markov Model and Selected Applications in Speech
Recognition”. In Proc. of the IEEE, vol. 77, no. 2, pp. 257-286, 1989.

[34] L.R. Rabiner and B.W. Juang, “Fundamentals of Speech Recognition”. Prentice-Hall,
Englewood Cliffs, NJ, USA, 1993.

[35] D. Reynolds and R. Rose, “Robust Text-Independent Speaker Identification Using
Gaussian Mixture Speaker Models”. IEEE Transactions on Speech and Audio Processing,
vol. 3, no. 1, pp. 72-83, 1995.

[36] A. Sankar, F. Beaufays and V. Digalakis, “Training Data Clustering for Improved Speech
Recognition”. In Proc. of the European Conference on Speech Communication and
Technology, vol. 1, no. 2, pp. 503-506, 1995.

[37] M. N. Stuttle, “A Gaussian Mixture Model Spectral Representation for Speech
Recognition”, Ph.D thesis, Department of Engineering, University of Cambridge, 2003.

[38] Summer Institute of Linguistics, glossary of linguistic terms, WWW page. http://www.sil.
org/linguistics/glossaryoflinguisticterms/ (last visit 01.03.2005).

[39] The CMU Pronouncing Dictionary, WWW page. http://www.speech.cs.cmu.edu/cgi-
bin/cmudict?in=C+M+U+Dictionary (last visit 01.03.2005).

[40] E. Trentin and M. Gori, “A Survey of Hybrid ANN/HMM Models for Automatic Speech
Recognition”. Neurocomputing, vol. 37, pp. 91-126, 2001.

[41] R. Vergin, A. Farhat and D. O’Shaughnessy, “Robust Gender-Dependent Acoustic-
Phonetic Modeling in Continuous Speech Recognition Based on a New Automatic
Male/Female Classification”. In Proc. International Conference on Spoken Language, vol.
2, pp. 1081-1084, 1996.

[42] P. C. Woodland, “Speaker Adaptation: Techniques and Challenges”. In Proc. IEEE
International Workshop on Automatic Speech Recognition and Understanding, pp. 85-90,
1999.

[43] S. Young, J. Jansen, D. Ollason and P. Woodland, “The HTK Book (for HTK version 3.2)”.
Cambridge University Engineering Department, 2001.

[44] S. J. Young, J. J. Odell and P.C. Woodland, ”Tying for High Accuracy Acoustic
Modeling”. In Proc. ARPA Human Language Technology Conference, Plainsboro, 1994.

http://www.ldc.upenn.edu/
http://www.sil
http://www.speech.cs.cmu.edu/cgi

 58

[45] S. J. Young, N. H. Russell and J. H. S. Thornton, “Token Passing: a Simple Conceptual
Model for Connected Speech Recognition Systems”. Technical report, Cambridge
University Engineering Department, 1989.

 59

Appendix A

Vector quantization (VQ)

Vector quantization (VQ) [29] is a popular source coding technique. It aims to represent a
continuous space by a discrete symbols. Let x be a k-dimensional vector whose components are
real-valued random values. A vector quantizer maps (quantizes) vector x to another k-
dimensional vector y so:

)q(xy = , (B.1)
where q(⋅) is a quantization operator.

A finite set of vectors Y={yi, 1<i<M} is referred to as a codebook and each vector yi is a
codevector. The size of the codebook, M, is called the number of partitions or levels in the
codebook. VQ requires two main things to be defined:

• Distance measure
• Codebook.

While performing quantization an input vector is mapped against each codevector, and the closest
one is chosen. In order to measure such closeness, we need to define a distortion (or distance)
measure d(x, yi). Using this notation, we can write that vector x is mapped to codevector yi if and
only if i=argmin(d(x, yj)). Usually a sum of squared errors is used [18]:

 ∑
=

−=
K

i
ii yx

1

2)(),d(yx , (B.2)

where K is a vector dimension.

Another distance measure is Mahalanobis distance and it is defined as follows:

)()(),d(1 yxΣyxyx −−= − , (B.3)

where Σ-1 denotes inverse covariance matrix of y.

The design of codebook is a NP-hard problem, i.e. there is no way to find an optimal solution in
polynomial time. Thus, all algorithms suggest suboptimal solution only. A popular algorithm is
the k-means algorithm.

K-means clustering

K-means is an iterative clustering algorithm for codebook design. Its goal is to minimize an
objective function, given by the equation B.4:

j

 60

 ∑ ∑
= ∈

=
M

j j
jf

1

2)
Cx

y-(x , (B.4)

where M is a codebook size, Cj is a j-th partition and yj is a centroid of this partition.

Suppose we are given a vector set X and a required number of clusters N. The k-means algorithm
consists of the following four steps [11]:
1. Initialization

Randomly select N initial codevectors y1, y2… yN. An initial codebook can be also given as an
algorithm input.
Set m=0, where m is an iteration variable.

2. Classification
Classify every vector x from X into the nearest cluster according to the rule:
x ∈ Ci(m) iff d(x,yi(m))< d(x,yj(m)) for all j≠ i, 1≤j,i≤N.

3. Codebook updating
Update every codevector computing the centroid of every cluster Ci(m).
yi=centroid(Ci(m)), 1≤ i≤N.
Set m=m+1.

4. Termination
If an objective function value falls below a predefined threshold or codebook does not
change, terminate algorithm, otherwise go to the step 2.

 61

Appendix B

Phoneme mapping

The mapping from the 45-phone set of the TIMIT to the 39-phone set of the CMU dictionary is
shown in Table B.1. In [5] the mapping was applied to 60-phone set used in TIMIT
transcriptions. However, these transcriptions (i.e. phone-boundary information) were not used in
this work and Table B.1 represents the mapping of those phonemes only which are used in
TIMIT lexicon.

Table B.1: Phone mapping from 45 to 39-phone set.

Original phone New phone
ax ah
axr er
ix ih
el ah l

em ah m
en ah n

 62

Appendix C

VQ-based speaker identification

Any speaker recognition system consists of three main parts: feature extraction, speaker
modeling and speaker matching [22] as it is illustrated in Figure C.1.

Figure C.1: Speaker recognition system schema.

Feature extraction aims to create feature vectors from the input speech. MFCC, LPC feature
extraction techniques are commonly used on this stage in the similar to speech recognition case
manner [21].

On the modeling step, a mathematical model for each speaker is created. There are two types of
models: template (or non-parametric) and stochastic (or parametric) ones [4]. Vector quantization
models [22] and Gaussian mixture models [35] are two popular approaches for speaker modeling.
The former belongs to non-parametric type while the latter is a representative of the stochastic
model type.

On the matching stage feature vectors extracted from the testing speaker speech are matched
against speakers’ models stored in the system. A choice of matching algorithm is driven by
model type decided for modeling. A matching score calculated here is either distance measure (in
template model case) or likelihood (in the stochastic case).

VQ-based speaker recognition belongs to non-parametric approaches. Its idea is to model each
speaker with his/her codebook. The general VQ algorithm is outlined in Appendix A. Fig. C.2
gives an illustration of the VQ-based speaker identification.

Speakers models

FE

Modeling

Matching

SpkrN
Spkr2

Spkr1

Decision

Speech from
unknown speaker Feature

vectors

 63

Figure C.2: VQ-based speaker identification process.

Modeling is done by creating individual codebooks for every training speaker via VQ approach.
A codebook C={c1, c2,… cN} of size N is a set of N vectors ci, which are centroids of clusters
created from an individual speaker’s features. These clusters are obtained via some clustering
algorithm such as GLA (Generalized Lloyd algorithm), RLS (randomized local search), SOM
(self-organizing maps) and others [22].

Matching score is found by calculating the average quantization distortion, i.e. the average of
distances between each input vector and its nearest neighbor in the codebook:

 ∑
= ∈

=
T

i Cc
Q d

T
D

k1
)},({min1),(kiCX cx , (C.1)

where X={x1, x2… xT} is a set of feature vectors extracted from the speech of an unknown
speaker, and C is a set of individual codebooks created on the training step. The smaller the
distortion is the better codebook matches input vectors. A common choice for vector distance is
an Euclidean distance measure. A speaker whose codebook is the nearest one to the unknown
speaker is taken as the decision about speaker identity.

Testing

N speaker
codebooks

Decision
Begin

Feature extraction

Training

Clustering every
vector set

…

Unknown
speaker

Feature extraction

Matching
…

Feature
vector set

N sets of
feature vectors

N training
speakers

…

…

