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Abstract 

Demands for reliable person identification systems have increased significantly due to highly 
security risks in our everyday life. Biometric systems have been a major research focus area 
since the traditional means of security are not reliable and convenient enough. A recent trend 
in biometrics is to combine different modalities by using multiple human characteristics to 
increase the system’s effectiveness. 

This thesis addresses the problem of a bimodal biometric system for person identification 
from audio-video shots. The solution consists in fusion of the face and speaker recognition 
classifiers results. We cover both modalities with the emphasis on face recognition and the 
fusion techniques. 

For face modality, we first address the face detection task and then we study statistical 
methods for recognition such as Eigenfaces and Fisherfaces. We describe the face space and 
we present one method for selection of the most representative faces from a video sequence 
by clustering the face space.  

We give a short introduction to the speaker recognition technology. Then, we introduce the 
information fusion theory and we discuss different methods for classifier integration. Our 
work deals with multi-modal multi-expert fusion strategy. We regard only the offline fusion 
approach when we combine the results after both classifiers processed the test sequence. We 
perform experiments for both classifiers and then we integrate the results at score level.  

 

Keywords: audio-video person recognition, face recognition from video sequence, face 
detection, speaker recognition, information fusion, multi-modality, biometrics, audio-video 
databases. 
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1. Introduction 
Demands for reliable person identification systems have increased significantly due to highly 
security risks in our everyday life. Application areas for person identification are broad, 
including low enforcement, control access to financial transactions, to computer networks and 
to secured locations. Most of the current systems are based on identity claims (e.g.  tokens, 
cards, keys) or recognizing passwords or personal identification numbers. The weaknesses of 
these systems are the possible fake or loss of the identity claims and the discovery of 
passwords and numbers, and using them without detection. 

Biometric identification systems have been a major research focus area since the traditional 
means of security are not reliable and convenient enough. A biometric is a measurable 
physical characteristic or personal behavioral trait used to recognize the identity, or to verify 
the claimed identity of an enrollee [24]. Moreover, they are more difficult to fake, and thus 
they ensure much greater security than traditional identification methods.  

Although relatively high recognition rates have been achieved using a single biometric, a 
recent trend is to combine different modalities by using multiple human characteristics. The 
goal is to complement one modality with another when one of them performs poorly, so it will 
not affect the final decision. 

1.1 Problem Definition 

In this thesis, we address the problem of a bimodal biometric system that recognizes people 
from audio-video sequences based on the fusion of facial and speech features that are already 
stored in a database of known individuals. More specifically, our interest is in recognition 
from shots where only one person appears in the image while talking, and his or her identity 
does not change during the session. Our aim is to study different data fusion techniques of the 
two recognition modules to achieve higher recognition rate than using only one of the 
modalities alone. 

Although most of the literature in audio-visual based biometrics includes only dynamic visual 
features of faces such as lip movement, opening a new chapter of visual speech and speaker 
recognition [9, 16, 26, 58, 80], we approach the visual recognition from the whole face region 
combined with different methods for speaker recognition. We are not aware of a general 
statement of this problem [15, 38, 58, 81]. We consider an offline approach where we perform 
recognition and integration of both classifiers after the audio-video sequence has been 
processed.  
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1.2 Description of the System 

Figure 1-1 presents the layout of the system that consists of a face recognition module, a 
speaker recognition module and a fusion module. The two recognition modules represent 
unimodal biometric systems based on a common sensor, an audio-video camera, and a 
database of facial and speaker features assigned for each known individual. The audio and 
visual streams are separated and both of them are processed in parallel by its corresponding 
module for feature extraction. Both modules output a matching score reflecting their 
confidence in the presumed identity. The fusion module combines the two scores to make the 
final recognition decision. This is the basic structure of most multimodal biometric systems, 
in the same way we could combine many other recognition classifiers by the fusion module.  
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Speaker Recognition 
Module
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Face 
confidence

Speaker 
confidence

Final 
decision

User

Speech

Image 
sequence

Face & Speaker 
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Figure 1-1: Overview of a bimodal biometric system. 

Figure 1-2 depicts the components of any person recognition module while Figure 1-3 depicts 
the related tasks involved for face recognition, in particular. In a realistic environment for face 
recognition, shots do not have always the same background, pose or facial expression and that 
is why we need to detect faces in any kind of background. 
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Figure 1-2: Components of any person recognition system. 
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Figure 1-3: Configuration of a typical face recognition system. 

1.3 Scenarios 

Person recognition scenarios can be classified in two types: identification and verification. 
Person identification refers the process that given an unknown subject, the system reports his 
or her identity by looking up a database of known individuals whereas in verification 
problems, the system confirms or rejects the claimed identity of the person from the input shot 
(Figure 1-4).  

In order to achieve these tasks, we distinguish two operating modes (Figure 1-2): training 
mode (enrollment) and recognition mode. In training mode, the system employs a feature 
extraction step, in which it acquires face and voice information of all users, and stores it in the 
database with labeled identity. They represent the models or templates of the registered 
persons in the database. In recognition mode, face and voice are acquired from an unknown 
person. Finally, a decision is taken based on the matching score between the models of the 
unknown and the already registered individuals.  

While identification involves comparing the acquired biometric information against face and 
voice templates corresponding to all users in the database, verification involves comparison 
with only those templates corresponding to the claimed identity [39, 60]. Moreover, if the user 
is already modeled, then the recognition is a closed-set problem, while if the testing person’s 
model might not be stored, then it is an open-set task. 

A visual representation of recognition tasks is shown in Figure 1-4, where identification and 
verification engines have the structure from Figure 1-1. The identification and verification 
scenarios as well as the training and recognition operating modes are applicable for each of 
the biometric modules.  
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Figure 1-4: Identification and verification subtasks 

1.4 General terms 

Face detection and recognition deal with the main following problems (Figure 1-5): 

a) Orientation (tilted faces) = subjects rotate their heads having different orientation of 
faces.   

b) Illumination = shots taken when source of light is not uniform, or from different 
angles 

c) Face expression = subject does not have a neutral face expression. 

      

    

       

Figure 1-5: Examples of problems for the face recognition and detection tasks:  
orientation (top row), illumination (middle row) and face expression (bottom row) 

Vector Representation of Images = an image I(rows, cols) can be represented as a N-
dimensional vector by lexicographic ordering of the pixel elements that is concatenating each 
row or column of the image, where N = rows× cols. 

Image Space = all image vectors establish an image space, where each axis corresponds to a 
pixel of the image, and the coordinate is its gray intensity level. By this representation, each 
image is mapped to a point in a high dimensional vector space. 
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Train Image = an image of an individual that is stored in the database. It is also known as 
gallery image. 

Test image = an image that needs to be classified as belonging to a known individual from the 
database or not. It is also known as probe image. 

1.5 Outline of the Thesis 

For a concise presentation of the chosen topic, we organized the paper as follows. Section 2 
includes description of various methods for face detection. Section 3 is reserved for the face 
recognition task from still images, while the video sequences are regarded in Section 4. 
Section 5 gives a short introduction to the speaker recognition technology and we reserved 
Section 6 for presenting different fusion strategies. We perform experiments for separate and 
combined modalities and we discuss the results in section 7. We draw the conclusions in the 
last section. 
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2. Face Detection 

2.1 Introduction 

Many of the current face recognition methods assume that the faces in an image have been 
already localized, are frontal and they have similar sizes [33, 81]. In realistic application 
scenarios, however, facial images are acquired under natural conditions and it is common that 
faces occur in many different positions and scales, within a complex background. These 
conditions represent an uncontrolled environment. These factors might affect the performance 
of a face recognition system, and in order to correct this, we should perform first an accurate 
face detection process with the purpose of localizing and extracting the face regions from the 
background. Normalization ensures that the training and testing faces have all the same 
illumination, orientation and sizes. 

In this section, we will make a summary of this topic, highlighting the basic approaches and 
detail some algorithms for a better understanding. Detailed surveys of face detection 
algorithms can be found in [33, 75].  

The problem of face detection can be defined as following: given a still image, the goal is to 
determine whether there are faces in the image. If faces are present, localize each of them 
regardless of their positions, scales, orientations, poses and lighting conditions [75, 80] 
(Figure 2-1).  

This is a challenging problem because human faces are highly non-rigid objects with a high 
degree of variability in size, shape, color and texture. The solution of the problem involves 
segmentation, face and feature extraction, verification of faces and possibly extraction of 
facial features [33]. Face detection and feature extraction used in face recognition can be 
achieved simultaneously because the facial features such as eyes, nose and mouth are often 
used in face detection process (Figure 1-3). 

       
Figure 2-1: Visual representation of face detection. 

Existing face detection methods use two main approaches: the geometrical and appearance-
based approach (image-based). The first makes explicit use of face knowledge for deriving 
low-level features. It exploits face geometry by manipulating distances, angles and area 
measurement of the visual features derived from the scene. In the second approach, the 
models are learned from a set of training images that should capture the representative 
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variability of facial appearance [33, 75]. A preview over the approaches regarded in this 
section can be found in Figure 2-2.  

Face Detection methods

Image based 
approach

(Eigenfaces)

Geometrical 
Approach

Low-level analysis Feature analysis

Edge 
representation 

Gray information

Skin color Feature searching 

Constellation analysis

Template Matching

 
Figure 2-2: Classification of face detection methods described in this section. 

2.2 

2.2.1 

Geometrical Approach 

We can divide the techniques further into two areas: low-level analysis extracts facial features 
by segmenting the images using pixel-level properties such as color and gray-scale. Feature 
analysis is based on simple rules about face geometry. In general, a face appears in one image 
with two eyes that are symmetric to each other, a nose and a mouth; their relative distances 
and positions can represent the relationship between features. First, facial features in an input 
image are extracted by low-level analysis. Then, by feature analysis, possible face candidates 
are identified based on the rules created and usually verified to reduce false detections [75].  

Low-Level Analysis 

Edge Representation 
Edge representation is a primitive feature often used in computer vision applications. It can be 
also used to find facial features defined by the edges: eyebrows, eyes, nose, mouth and 
hairline. Edge features within the head outline are then subject to feature analysis using shape 
and position information of the face [33]. 

This approach is based on edge detection.  Many different types of edge operators have been 
applied but the most commonly used are Sobel [10] and Marr-Hildreth [48]. Varieties of first 
and second derivatives (Laplacian) of Gaussians have also been used [31, 32, 33, 61].  
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In this approach, edges need to be labeled and matched to a face model in order to verify 
correct detections. Govindaraju et al. presented in [28] a method for face localization from a 
cluttered background, in which face hypothesis are generated and tested. The Marr-Hildreth 
operator is used to detect the curves of the left side, the hairline and the right side of a frontal 
face and to obtain an edge map of the input image (Figure 2-3b). A filter is used to remove the 
components whose contours are unlikely to be part of a face. Pairs of fragmented contours are 
linked based on their proximity and relative orientation. Corners are detected to split the 
contours into features curves, which will be labeled by checking their geometric properties 
and relative positions in the neighborhood. Pairs of three feature curves (Figure 2-3c) are 
joined by edges  to form possible face candidate locations to check if they match against a 
face model using the golden ratio1 for an ideal face [28, 33, 75]:   

2
51�

�

width
height    

The same approach was also used in [66] with the difference that they make use of the 
elliptical structure of the human head. The edge map is created by using Canny edge detector 
[33]. After the segments have been labeled and linked, the algorithm takes pairs of segments 
and tries to fit an ellipse to them (Figure 2-3d). Facial features can be found by finding first 
the horizontal and vertical edges of the image (Figure 2-3e). 

The problem of segmenting faces from a uniform background is not very difficult in this 
approach. The edge map of the image can give a good outline of the image containing the face 
region. In this case, searching for a candidate is limited because all edges in such images 
represent the face region, which is not the case of a cluttered background. 

     

a) b) c) d) e) 

Figure 2-3: Edge detection approach. 

Gray Information 
The gray information within a face can be used for finding features because eyebrows, pupils 
and lips appear generally darker than their surroundings facial regions. Based on this, several 
facial feature extraction algorithms search for local gray minima within segmented facial 
regions [7, 29, 41].  In order to make detection easier, the input images are first enhanced by 
several image processing techniques such as contrast-stretching and gray-scale morphological 

                                                 
1 An aesthetically proportioned rectangle used by artists 
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routines to improve the quality of local dark patches, which are further extracted by gray-scale 
thresholding [33] (Figure 2-4). 

    

Original Image Contrast-stretched Eroded 3 times Threshold = 90 

Figure 2-4: Face detection based on gray-scale thresholding. 

Another method [33] consists in finding possible face candidates by horizontal and vertical 
projections of the gray level pixels. Let I(x, y) be the intensity value of an m n image at 
position (x, y). We define the two projections as: 
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Two local minima of the horizontal projection (HI) correspond to the left and right side of the 
head, while the local minima of the vertical projection (VI) determine the locations of chin, 
mouth lips, nose tip, eyes and forehead (Figure 2-5a).  

Images can also be preprocessed by applying two gradient operators to obtain horizontal and 
vertical edges. This approach is suitable for frontal and uniform background images but it 
cannot detect multiple faces in one image because it cannot distinguish between two faces that 
are on the same coordinate as in Figure 2-5b where local minima of horizontal projection for 
the chin corresponds to the both faces. Despite its simplicity at a first glance, this method 
could lead to false features candidates because of many local-minima in the projection values 
and that is why we have to strengthen them according to some other feature-searching 
techniques (see next section).  

A coarse-to-fine or focus-of-attention strategy for face detection creates a multi-resolution 
hierarchy of images of three levels by reducing the resolution gradually by either sub-
sampling or averaging as shown in Figure 2-6. The face candidates are found at the lowest 
resolution (Level 1) by scanning a window over the input image and searching for uniform 
regions by locally thresholding. At Level 2, histogram equalization is performed on the face 
candidates received from Level 1, followed by edge detection [75]. Surviving candidates 
regions are verified at Level 3 by the existence of prominent features such as eyes and mouth 
using local gray minima, similar to the first method in this category. 
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HI(x) 
HI(x) 
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Figure 2-5: Face detection and locating features by vertical and horizontal projections.  

  

original image (n = 1) Level 3  (n = 8) Level 2  (n = 16) Level 1  (n = 32) 

 Figure 2-6: Multi-resolution hierarchy of images. Each square cell consists of n x n pixels, in 
which is pixel is replaced by the average intensity of the pixels in that cell. 

Skin Color 
Human skin color is an efficient feature for identifying facial areas but fragile in the same 
time due to the variation of illumination in uncontrolled environments. The basic ideas that 
this approach relies on are that color composition of human skin differs little across 
individuals and the difference between different skin colors is because of their intensity 
(brightness) rather than their chrominance [29, 33, 75, 77].  

Current algorithms use for skin representation a variety of color models such as RGB, 
normalized RGB, HSI, YCrCb, YIQ,  CIE-xyz, CIE-L*a*b* and CIE-L*u*v*. From all these, 
RGB representation is one of the most widely used color model, though normalized RGB 
colors should be preferred over RGB for canceling the luminance effect [33, 75]. In general, 
the apparent color of objects depends on the illumination conditions, so the intensity or 
brightness of the color is discarded in order to obtain a high level of invariance to the intensity 
of ambient illumination.  

One intuitive way for color segmentation is to use skin color thresholds in YCrCb color 
system using only the Cr and Cb components2 [14]. We chose the thresholds [Crmin, Crmax] 
and [Cbmin, Cbmax] from samples of skin color pixels from a training set, and in order to 
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classify one pixel as being a skin region, its red and blue component must be within the 
interval (see Figure 2-7 for an example).  

More complex, statistical methods use Gaussian density functions [75, 78, 12] and a mixture 
of Gaussians [79] to model the skin color variance within a wide set of samples of faces. The 
histogram models are superior in accuracy, and computational cost is lower than for the 
mixture models [75], but the last ones have the advantage of adapting new color variation of 
the new users by a learning approach [33].  

Every color model has some advantages over the others. For example, HSI color model is 
useful for extracting facial features as lips, eyes and eyebrows [42] while the YIQ suppress 
the background of other colors as well [33]. The most common drawbacks of this approach 
are their sensitivity to variation of illumination and that we can detect background objects of 
similar color to human faces as well (Figure 2-8). They are not efficient alone and that is why 
combination of shape analysis, color segmentation and motion information are preferred. 
Despite this, the advantage of using skin color is that it is rotation invariant and is one of the 
fastest detection methods with application in video-sequence face segmentation.  

 Cb 
   

 Skin color 
pixel values 

 

   

Cbmax 

Cbmin 

CrCrmin Crmax 
Figure 2-7: Skin color pixel values in CbCr color space. 

 

  
Figure 2-8: Original image, luminance, red and blue chrominance from YCrCb and picture 

thresholded. 
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2.2.2 Feature Analysis 
If low-level analysis can provide ambiguous features, methods based on feature-analysis use 
knowledge of face geometry to enhance their confidence. In general, face detection is a two-
stage process: first face features candidates are generated and feature analysis is then 
employed for verification of the candidates. The second step performs actually the facial 
feature extraction. We will present two approaches including feature searching based on 
relative positioning of individual facial features and constellations that use different face 
models [33].   

Feature Searching 
Feature searching techniques aim at finding out the prominent facial features as a pair of eyes 
[76, 19, 34, 29], main face axes [18], outline of the head [18, 65] and body [68]. Feature 
candidates are detected by the methods previously mentioned in Section 2.2.1 and then their 
confidence is enhanced by the existence of the near-by features based on the relative 
positioning and anthropometric distances (Figure 2-9). The pair of eyes is the most applied 
feature because of its symmetry.  

Constellation Analysis 
Probabilistic face models have been proposed by grouping facial features in face-like 
constellations. A set of local feature detectors identify candidate locations for facial features 
as eyes, nose and nostrils. For a better accuracy in finding features, the method makes use of 
relative distances between features, which are modeled by a Gaussian distribution. The 
arrangement of facial features is reffered as constellation. It can be viewed as a graph, in 
which the nodes correspond to the features and the edge lengths represent the distances 
between the features (Figure 2-9) [43]. Finding the best constellation becomes a of graph 
matching problem [33] in which we try to match the graph model of the face candidate to the 
graph model of the template face.  

 

Left 
eye

Right 
eye

nose

mouth

 
Figure 2-9: Examples of feature-analysis. Facial features and distances (left), and facial 

features graph model (right). 
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Template Matching 
Predefined or parameterized templates can model face outlines and facial features on the 
basis of a priori information about the expected shapes. Templates are built using manually 
determined fiducially3 points from a set of training images, and variations of these points 
include objects of different sizes and poses. Face evidence is determined based on the 
cumulative correlation values between the standard templates and the patterns computed from 
the facial features of the input image. Templates are defined in terms of line segments or their 
contour can be discretized into a set of labeled points (Figure 2-10). 

Deformable templates describe a higher level of appearance of features by employing an 
elastic model for facial features. Once initialized near a feature, they will interact with local 
image features (edges, brightness) and gradually deform themselves  by translation, scale or 
rotate operations to take the shape of the feature but they constrained in the same time to be 
similar to the shapes of the training set [33] (Figure 2-10). The best fit of the elastic model is 
found by minimizing an energy function of the parameters [75], and the final parameter 
values are used as descriptors of the features. 

 

   

Figure 2-10: Deformable template. Label points from the eye template. Initialization of the 
template. Steps in the minimization process for eye detection. 

2.3 

                                                

Image-based Approach 

The geometrical approach implies knowledge about face for creating models and if these 
models are not properly designed, the face detection process may fail due to cluttered-
intensive background and unpredictability of the face appearance. In image-based approach, 
face templates are learned from a set of example images by a training process and, in this 
way, possible modeling errors because of incomplete or inaccurate face knowledge will be 
eliminated.  

Face detection can be treated as a pattern recognition problem, in which the image is 
considered as a 2-D intensity array. In general, these methods find out statistical 

characteristics of face and non-face images in order to classify the examples. The learned 
characteristics are in the form of distribution models or discriminant functions (threshold 
function, decision surface).  

 
3 Important point from the face, e.g. eye and nose corners  
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Most of the methods based on this approach apply a multi-resolution window scanning 
technique, which is just an exhaustive search of the input image for all possible face locations 
at all scales [33]. Face likelihood for each observation in the window are computed for all 
locations in the image and they are used as a measure of faceness [68] to build a face map 
(distance map). Then, a face can be detected from finding the global minima of the face map 
and comparing to a threshold value, which is chosen experimentally [33 , 75].  

These algorithms are in general computational expensive but window scanning can be 
avoided by combining the image-based approach with feature-based methods with the 
purpose of guiding the search based on visual clues such as skin color. Perhaps the most 
popular algorithm is the one based on Principal Component Analysis [67] but we will detail it 
Section 3.3.2 since it is commonly used for face recognition as well. Other methods are based 
on Linear Discriminant Analysis, Neural Networks and Hidden Markov Models [33 , 75]. 

2.4 Face Detection Algorithm 

Since face detection was not the main goal of our work, we present here a naïve algorithm we 
have used for extracting frontal faces from an image sequence from Cuave database [20]. We 
apply low-level and feature analysis of images such as edges and gray levels, skin color, and 
knowledge about facial features, all described in Section 2.2. We summarize all the steps in 
Figure 2-11. We constrain our algorithm to work only one face present in the image, simple 
background and no profile faces. 

The algorithm consists of the following main phases: 

�� Detect face region 
�� Detect facial features 
�� Face normalization. 

For detecting the face region from image img, first we model the widths of the faces (d1) and 
heights of the foreheads (d2) by two Gaussian distributions N1(µ1, ) and N1� 2(µ2, ). For 

this, we label manually an arbitrary set of faces to get the distances. We calculate the means 
µ

2�

1, µ2 and variances � , 1 2�  and we choose the maximum width of face and range for the 

forehead’s height as: 

d1 max = µ1 + 2� = 202 + 2 * 13 = 228 1

[d2,min d2,max] = [µ2 - 2� , µ2 2 + 2� ]2  = [129 -  2 * 15, 129 + 2 * 15] = [99, 159] 

Next, we construct one face space FS with the faces cropped manually. We choose 
experimentally the threshold �  such as: 

� � facefFSfd ii ��� ,,max�  
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We separate the two color planes Cr and Cb from img (Figure 2-11.1). We threshold Cr and 
Cb by Otsu method4 (Figure 2-11.2), and then combine the resulting images by OR function 
into image binImg (Figure 2-11.3).  

We label binImg and extract the biggest object as being the body. Get the center of mass 
vertical position xcenter and limit (crop) the original image to the object’s boundaries (Figure 
2-11.4). We calculate vertical projection (Equation 1). Then, we find left and right edge of 
face as being the local minima within the range [xcenter – d1, max / 2]  and [xcenter + d1,max / 2] 
(Figure 2-11.6, 7). We find horizontal edges by Sobel operator (Figure 2-11.8) and then find 
the top of the head as being the first horizontal line from top (Figure 2-11.9).  

For detecting facial features, we calculate horizontal projection and find horizontal position 
of the eyes as being the local minima in range [d2,min d2,max] (Figure 2-11.10). Eyebrows are 
the first horizontal edges starting from d2,min. Then, find the beginning of the left and ending 
of the right one to get rid of the hair (Figure 2-11.11). Next, we erode and threshold, and then 
label the objects, sort them in descendent order of the area size (Figure 2-11.12). Set 
restrictions for area, position and length. Centroids are centre of the eyes. Get the coordinates 
x, y of each eye. 

For normalization, we calculate the rotation angle of the eyes axis. 

21
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Next, we rotate the image by angle �  such that eyes axis becomes horizontal in the image 
plane (Figure 2-11.13). 

Further, we are looking for the rest of the facial features. We use low pass filter to remove 
small edges.  Get horizontal edges by Sobel and enhance the edges. Starting from eyes 
position, we find horizontal edges for: nostrils, upper and lower lip.  Find chin by horizontal 
edge and horizontal projection. 

We normalize faces f to have same size: 63 x 74 and in the end we verify the presence of the 
face by calculating distance(f, Fs) to be less than threshold  

                                                

� . 

 
4 Otsu is a threshold selection method from gray level histograms (http://iul.cs.byu.edu/morse/550-
F95/node25.html ) 
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Original image 1. Color separation 2. Thresholding 3. Combining 

 

 

 

 

 

4. Mass center 5. Center image 6. Vertical projection 7. Vertical cropping 

  
 

 
8. Sobel gradients 9. Find top of face 10. Horizontal projection 11. Eye regions 

   

 
 

12. Erode+threshold 13. Calculate angle 14. Low-level features 15. Normalize size 
 

 

  
 

Figure 2-11: Illustration of the steps of face detection. 
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3. Face Recognition from Still Images 

3.1 Introduction 

With a wide range of successful applications such as commercial, information security, law 
enforcement and surveillance, the area of face recognition attracted researchers from 
disciplines as image processing, pattern recognition, neural networks, computer vision, 
computer graphics and psychology. Face recognition proved to be perhaps the most natural 
way of identification. Comparing to other intrusive physiological characteristics such as 
fingerprints, retina and iris patterns, hand geometry and voice, the face analysis is often 
effective even without cooperation or knowledge of the participants [38]. Although over than 
30 years of extensive research has been conducted in this area, there still exist open research 
issues, the performance of the current algorithms being still far from that of human 
perception. 

The goal of the face recognition is to identify or verify the persons present in the shots based 
on their facial features, despite of wide variations in pose, facial expressions and illumination 
changes [81, 38]. This topic has led to the new branches such as recognition from still and 
video images, while they can be applied for frontal or profile shots.  

Although numerous literatures exists in the field, only main techniques in face recognition are 
briefly summarized in this thesis. Detailed surveys are recommended in [38, 81]. We will 
regard in the current section only several important methods for designing a face recognition 
module from frontal still images. 

A typical face recognition problem involves the sub tasks shown in Figure 1-3. In a realistic 
environment, shots do not have always the same background, pose or facial expression and 
that is why we need reliable face detection in any kind of background.  The next step would 
be to extract features from face regions but we might achieve this simultaneously with 
detection of faces. Finally, the matching module makes the classification decision. 

Existing face recognition approaches can be classified into two broad categories: analytic and 
holistic methods, and they can be combined into hybrid approaches. Figure 3-1 presents an 
outlook over this classification and the approaches regarded in this section. We will shortly 
overview basic methods for analytic approach, and then focus more on the traditional 
algorithms for holistic approach, such as PCA (Eigenfaces) and LDA (Fisherfaces). Finally, 
we review the hybrid methods. Here we assume that an accurate face detection process has 
normalized all faces beforehand. 
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Figure 3-1: Classification of face recognition methods. 

3.2 Analytic Methods 

Early research on face recognition focused on analytic (or feature-based) methods that 
employ geometry of the facial features such as: eyes, nose, mouth, and eyebrows. First, we 
need to perform a feature extraction step as described in Section 2.2.2. Properties and 
relations between facial features (areas, distances and angles) form feature vectors that are 
used for discriminating the test face from the training samples. Typically, a high number of 
geometrical features are extracted in [10], in total 35 features including eyebrow thickness, 
vertical position of the eye center, a coarse description of the left eyebrow arches, nose 
vertical position and width, mouth vertical position, width, height of the upper and lower lips, 
radial description of chin shape, face width at nose position (Figure 3-2). It is clear that the 
performance depends on the feature extraction precision, and it would be rotation invariant 
because all distances are relative to other features. For a good accuracy, the features should be 
geometrically normalized, independent of the position, scale and rotation of the face in the 
image [54].  

Recognition can be employed by Bayesian or nearest neighbor classifiers [10]. For the latter 
case, Principal Component Analysis is first employed to reduce the 35-dimensional feature 
vector space and then Euclidean distance is the most commonly used metric. When face 
detection was done by template matching, recognition is performed by computing the 
correlation between the templates from the test image and the trained templates from the face 
database.  

Different algorithms have been compared in one of the most comprehensive survey about face 
recognition technology, at the time of writing [81]. Thus, the experimental results denote 
Elastic Bunch Graph Matching [72] approach as being one of the most successful. It is based 
on Gabor wavelets and Dynamic Link Architecture [40].  In this method, each face is 
represented by a graph whose nodes are local feature vectors calculated at different fiducially 
points from the face. Actually, these points correspond to the nodes of a coarse, rectangular 
grid placed over the image. The features are called jets and they consist of Gabor wavelet 
coefficients for different scales and rotation, which makes them robust to illumination and 
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geometrical changes. Elasticity is required to be able to fit the graph to whichever face and 
thus, the problem of comparing two faces resumes to matching and adapting a grid over one 
image to the features of the other image.  

 
Figure 3-2: Relations between facial features 

3.3 

3.3.1 

                                                

Holistic Methods 

Recently research in face recognition focused more on holistic5 methods that do not depend 
on detailed geometry of the faces. The main difficulty in recognizing faces by feature-based 
approach is that it is not easy to design proper face models due to large variability of face 
appearance, e.g. pose and light variance. Rather than constructing face models based on 
geometry, a face recognition system should learn the models automatically from a collection 
of training images, that is to learn what attributes of appearance will be the most effective in 
recognition [69].  Of course, enough training data should be available in order the system to 
account for variations in images. 

These methods use global representation of faces by treating images as a vector of gray level 
intensities. Hence, this approach can be referred as image or appearance-based.  

Motivation 
It is obvious that exhaustive searching for visually similar images in the image space demand 
very large number of distances calculations because the size of the vectors is the number of 
pixels in the image. As the resolution of images increases, the dimensionality o the image 
space increases also. For example, only for 8x8 binary images, the whole image space has 264 
points. 

We can treat a collection of M possible face images under different illumination, scale and 
position as a set of M points in the image space, which define a manifold6 within the whole 
image space [69]. The problem of matching would be relatively easy if all images of faces are 
clustered in the image space and if this cluster is well separated of other objects clusters. In 
this case, a simple metric such as Euclidean distance could be used to determine the nearest 
face (nearest neighbor) within the face cluster: 

 
5 Emphasizing the functional relation between parts and the whole 
6 A collection, a multiple set of points, a group 
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where x is the test image, ix  are the existing training faces and k is the size of the training set. 
Although we limited the search to the face space, many calculations are still needed because 
of the high dimensionality vectors. 

Face images, even with several transformations, are similar in general and it is expected that 
they are not randomly distributed in this huge space, but they will occupy a relatively small 
and distinct region in the space. Moreover, it is assumed that different people occupy different 
regions in the space [69] (Figure 3-3). 

The holistic approach uses statistical methods to analyze the distribution of these points in the 
whole image space, and to derive an effective representation of them. This representation is in 
sense of features, which are not related to facial features. This way, face recognition becomes 
a matching problem between the extracted features of the test image and the ones extracted 
from the training set. Most common, linear analysis methods aim to find a lower 
dimensionality representation of the human faces subspace. 

 
Figure 3-3: A representation of the image space. 
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3.3.2 Eigenfaces Method 
Eigenfaces method [68] is perhaps the most common method based on holistic approach for 
face recognition. It employs Principal Component Analysis (PCA, also known as Karhunen-
Loève transform) in order to analyze the distribution of the points in the image space, and to 
express their variation in a number of principal components, which is an orthonormal set of 
axes (Figure 3-4). For a thorough understanding of the method, we recommend a tutorial 
about PCA in [67].  

Original distribution of the data: Principal components found by PCA: 

  

Figure 3-4: Principal Components in a 2D space. 
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Figure 3-5: Flowchart of the Eigenfaces algorithm. 
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Figure 3-5 represents a flow chart of the method. We distinct two main phases: training and 
recognition. Training is an offline initialization procedure when we construct the face space 
for the training images by calculating their eigenfaces. The face space needs to be 
reconstructed whenever the train set changes because the covariation between images will 
also change. We extract features from the training images as being the projection coefficients 
onto the face space. They are needed in order to classify the test images as belonging to the 
persons present the training set. Next, we choose the classification threshold. 

Recognition is an online step, which is performed for every test image. To recognize a face, 
first we extract the features with the respect to the face space. We calculate distance from the 
face space to verify if the test image is a face, in general, and if not, the input image is 
classified as “unknown”. We match the images according to the extracted features of the test 
image and the training set. We will detail these steps in the following, but first we will define 
the face space. 

Face Space 
Let us consider 

� � Mixi �1, �  

as being a set of M training images  (Figure 3-6) represented by a matrix X where 

� �MxxxX �21�  

and X is of dimension N×M, where xi is the vector representation of the image and N is the 
number of the pixels from the image.  

        

       
Figure 3-6: A set of training images from Yale database [74].  

In mathematical terms, the principal components of a distribution of a set of faces X are the 
eigenvectors of the covariance matrix of that set. We recall from statistical analysis that if the 
standard deviation or variance measure the spread of data in one dimension, then the 
covariance reflects the variances of the dimensions from the mean with respect to each other. 
It is always measured between two dimensions and the covariance between one dimension to 
itself is the variance itself [67].  
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For face recognition, the dimensions are the training face images represented by a column 
vector of size N, and therefore, the covariance matrix represents all the different covariances 
between all the face images. The matrix is order N and square, and since this measure is 
symmetric, then the matrix is symmetric with respect to the main diagonal, which is zero. We 
can calculate in total N number of eigenvectors, each having size N. 

Because the eigenvectors have the same number of pixels from the images, they can be 
reshaped in a 2-dimensional array to have a visual representation. They are linear 
combinations of the face images, thus they have a face-like appearance as shown in Figure 
3-7, and they are therefore called Eigenfaces [68].  

    
3.0305 x107 2.6272 x107 1.2117 x107 0.8981 x107 0.6741 x107 0.4375 x107 0.3656 x107 0.3424 x107 

       
0.2934 x107 0.2572 x107 0.2287 x107 0.1811 x107 0.1093 x107 0.1056 x107 0.0010 x107 

Figure 3-7: Fifteen eigenfaces of the training set from Figure 3-6 sorted in descending 
according to their eigenvalue.  

One eigenface shows how the face images are related to it, by calculating the significant 
variation among faces with respect to it. Their associated eigenvalues reflect the significance 
of their encoding and therefore we sort the eigenvectors descendant according to their 
eigenvalue in order to ignore the eigenfaces of less importance. Thus, the first eigenface 
encodes to the most variation between faces in one direction, while the rest of them 
correspond to the remaining variations. We consider only those eigenvectors associated with 
the largest eigenvalues to be the axes (principal components) of the image subspace, which is 
called face space or eigenspace [69]. Rest of the eigenvectors is discarded. 

The face space spans onto the eigenfaces calculated from the training set, and becomes the 
new feature space. Moreover, it has significantly smaller dimensionality than the original 
image space because of considering only the largest eigenvectors.  

Next, all images are linearly transformed to the face space by projecting them, aiming to 
minimize the mean squared projection error. Thus, each image from the whole image space is 
mapped to a point in the face space. Therefore, we will represent the faces by a lower 
dimensionality feature vector that contains the projection coefficients (weights) on each axe 
of the face space (Figure 3-8).  
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Figure 3-8: Mapping of one point from the original image space  

into a point from the face space. 

Construct the Face Space 
We calculate the mean face image from the set X as (Figure 3-9) 
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Figure 3-9: The mean image of the set from Figure 3-6. 

We denote by Y the difference matrix between X and the mean face image: 
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The covariance matrix of the distribution of faces is order N�N: 
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In PCA, the projection Uopt is chosen to maximize the determinant of the total scatter matrix 
after applying the linear transformation UT. The eigenvectors are the column vectors of the 
matrix Uopt where  

CUUU T

Uopt maxarg�  

and satisfy the property:  

� � iii
T

iii uuYYuCu �� ���  (3) 

where  are the eigenvalues corresponding to the eigenvectors . The matrix C has an order 

of N, and therefore can have N eigenvectors. In practice, we have to calculate a very large 
number of big dimension eigenvectors, which is an intractable problem [69]. For example, if 
we consider images of size 100�100 we have to calculate 10,000 eigenvectors. It was proved 
in [68] that there are only M-1 non-zero eigenvalues of an M�M matrix, where M is the 
number of the faces in the image space, and in general, the size of the training set is 
significantly smaller than N: 

i� iu
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Let us consider the eigenvectors v  of the matrix i YYD T
�  so that: 

iii
T vvYY ��  

If we multiply both sides at left by matrix Y, we obtain: 

� � � �iii
T

iii
T YvvYYYvYvYYY �� ���  

From this we observe that Y  are in fact the eigenvectors of matrix C  from (3), 

because  are scalars.  
iv TYY�

i�

We showed that, first we can calculate M number of eigenvectors of matrix YYD T
�  and 

then get the eigenvectors  of the covariance matrix C  by a linear combination of the 

eigenvectors : 
iu TYY�

iv

Yvu �    MivYu ii �1, ����

The eigenvectors of a large matrix C are equal to the eigenvectors of a smaller matrix D, pre-
multiplied by Y. By this observation, the complexity of the algorithm reduces significantly, 
from calculating M eigenvectors instead of N.  

We reduced the dimensionality of the image space from N to M, in other words, from the 
number of pixels in the image to the number of eigenfaces. The M eigenvectors u  are column 

vectors of dimension N.  
i

Next, we sort the eigenvectors in descending order according to their associated eigenvalues. 
Although M is much smaller than N, for a large training set we will still have large feature 
vectors, thus a sparse feature space. PCA can encode the data by choosing a smaller number 
of the components (eigenvectors), ignoring the components with less significance 
(eigenvalues) [67]. Of course, the problem is how to select the optimal number of 
components. We will see later in the experiments results in Section 7 that a relatively small 
number of eigenfaces is enough for recognition, since the exact reconstruction of the test 
image is not necessary for classification purpose.  

Figure 3-7 shows also the eigenvalues associated to their eigenfaces obtained during 
experiments. We can see that the first three eigenvalues are the biggest, while the last one is 
even 1000 times less than the previous ones. This means that the first three eigenfaces encode 
most of the variation, while the last one is arbitrary and irrelevant, reflected by its eigenvalue 
and appearance. We can ignore the last eigenface so the face space will span onto M-1 
dimensions. The first three eigenfaces are the most discriminant and we found in our 
experiments that they are enough for recognition on specific test conditions.  

In principle, if all eigenfaces were selected, then the reconstruction of the original image 
would be lossless, that is SNR (Signal-to-Noise Ratio) should be infinite. Moreover, the 
smaller number of eigenfaces chosen, the bigger would be the reconstruction error (Figure 
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3-12). In practice, during the experiments, we obtained a SNR of 65dB between one image 
from the training set and its reconstructed image using all the set of eigenfaces. We explain 
this by the rounding and gray levels normalization errors.  

Feature Extraction 
We represent the training set images in the face space by calculating the projections of all 
images onto all eigenfaces (axes) as:  

Yuw T
�  

The training faces can be reconstructed by the formula: 
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The procedure is similar for any test image to be recognized. First, we reshape the image as a 

column vector, denoted by  and extract the mean image of the training setTx x : 
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We project  on the face space by: Ty

T
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And it can be reconstructed by: 
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where  are the projections of the test image in the face space.  i
Tw Tx

Figure 3-10 shows an intuitive representation of the face space. The projection coefficients for 
all face images represent their coordinates in the face space and they are considered the 
features for classification. These holistic features are in contrast to the features extracted by 
the geometric-based approaches for face recognition, as they store the relevant information 
about the geometry of the face. The weight wi encodes how far are the images from the mean 
face on the dimension ui, while the eigenfaces encode the way to morph the mean face into 
specific faces [49].  
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Figure 3-10: Representation of a face space spanned on first three eigenfaces,  
few sample projected faces, and two random images.  

Let us consider an example of a test image as shown in Figure 3-11, and the face space 

spanned over the first three eigenfaces. We can reconstruct the image as: 
Tx
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Figure 3-11: Reconstruction of a face image as a linear combination of eigenfaces. 

The weights describe the contribution of each eigenface in representing the input face image 
and the more information we use for decoding the images, the smaller the reconstruction 
errors would be, because more eigenfaces contribute for the facial features to become more 
evident. Figure 3-12 shows the losses during the encoding of the first face from the training 
set, reconstructed with a variable number of eigenfaces.  
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Figure 3-12: Reconstruction errors of a face from the training set using different number of 
eigenfaces (NE). 

      

Figure 3-13: Different images reconstructed from the face space. 

As we can see from Figure 3-13, face images do not change radically when projected into the 
face space, while the projection of random non-face images appear different from the 
originals and even have eigenface-appearance because they are reconstructed as a linear 
combination of them, which encode the most variation, so the result should have a face 
appearance. We emphasize that the face space is a representation of the manifold of points 
from image space, which correspond to the training face images.  

If test images are very different from the training set then they do not belong to this manifold, 
moreover, they are far from it and the face space does not reflect their distribution. This can 
be described by calculating the distance from the face space, which is in fact the distance from 
the mean image in the center of the space, and represents how different is the test image from 
the mean face. In other words, it is a measure of “faceness” of one image (Figure 3-10). 

Eigenfaces approach has also been used for face detection [68] by applying a window 
scanning to detect the presence of a face in the local image (see Section 2.3). If the distance is 
greater than a threshold experimentally chosen, then it does not represent a face and we can 
classify the image as unknown.  
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Matching 
Considering the image containing a face and having feature vectors, face recognition process 
becomes a typical pattern recognition task of matching images, which is to find out the class 
in which the face image belongs to. A common approach is to apply nearest neighbor 
criterion to find the training face from the face space that is closest to the test image or, in 
mathematical terms, to find the closest vector from feature space that minimizes the distance: 

� �Ti
Mi

wwdd ,min
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�  

where Tw  and iw  are the feature vectors of test and training face images and M is the size of 
training set. During the training phase, each image and its features were assigned to some 
known individual. The test face is classified as belonging to person i if the minimum distance 
di is below a given threshold , otherwise as being an “unknown” person (open-set 
identification). This classification threshold is experimentally chosen according to the false 
acceptance/rejection rates imposed by a specific application.  

�

The most common metric used for calculating the similarity between feature vectors is the 
Euclidian distance [81, 68, 38]: 
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Conclusions 
The eigenfaces method is simple and recognition rates as high as 96% have been reported in 
[68] for lighting variation, 85% for orientation variation, and 64% for size variation. The 
common drawbacks of Eigenfaces method are the poor recognition rates for illumination and 
pose variation conditions. An intuitive workaround for this would be to train the system with 
different views of faces that are similar to the test conditions: faces at different orientation and 
illuminated from different angles [56]. However, for a large number of points for each 
individual class in the face space, PCA may not provide a good discrimination between 
classes after the projection, so we have to find another representation of the face space that 
separates intra-class and inter-class variations of faces. 

The eigenfaces approach has been the basis for several other algorithms, from which we 
mention only few. Second-order eigenfaces [71] uses not only one set of eigenfaces for the 
original image but also the set of second-order eigenfaces of the residual images defined by 
the differences between the original and the reconstructed images obtained from the set of 
eigenfaces.  

Eigenphases method [64] performs PCA in the frequency domain on the phase spectrum of 
the images. In Self-Eigenfaces approach, each person is modeled with a different set of 
eigenfaces. In Composite PCA [27], face images of size NxN are divided into L2 blocks of size 
N/L x N/L before performing eigenfaces method. Probabilistic eigenfaces [52] employ 
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probability density estimation by decomposing the input space into two mutually exclusive 
subspaces, the principal and its orthogonal subspaces, leading to dual eigenfaces 
(extrapersonal and intrapersonal). This approach is more robust to variations in lighting and 
facial expressions.  

Discussion 
The idea to use multiple views for each individual in the training set leads to bad 
discrimination in Eigenfaces method because the dimensionality reduction is performed by 
PCA, which finds the directions that maximize the variance across all images.  As Moses et 
al. [53] stated, the biggest drawbacks of the appearance-based methods is that  

“the variations between the images of the same face due to illumination and viewing direction 
are almost always larger than image variations due to change in face identity” 

This means that the eigenfaces encode the variation due to lighting and pose [8], whereas our 
goal is to encode variation across classes of individuals.  

We recall that the basic assumption is that the set of all face images forms a cluster in the 
image space. Starting from this idea, we are interested to see if the face images of the same 
individual form clusters inside the face space as well. In order to demonstrate the PCA’s 
drawback about poor discrimination, we performed experiments to see how a collection of 
face images clusterizes in the eigenspace. We considered a set of cropped images from Yale 
database [74] as training with C=15 subjects and M=11 different image conditions for each 
pose, such as facial expression and illumination variation (left and right side light sources). 
We constructed the eigenspace corresponding to the whole C×M=165 training set and we 
considered all number of eigenfaces for an accurate discrimination. We represented the 
sample set by their projections onto face space and applied K-means clustering [47] algorithm 
using Euclidean distance for the feature vectors and considering 15 clusters (the number of 
individuals).  

We introduce the notion of face-centroid as being the center of a set of faces that form a 
cluster in the face space, or in other words, the most representative sample from that set. As 
expected, the poses for each subject under different facial expressions were clustered well in a 
face-centroid very similar to individual’s normal face (Figure 3-14). However, samples from 
the three specific light conditions clusterized in 3 different clusters and have the appereance 
of the mean image under the same light conditions.  

Experiments on ATT database [4] with 40 subjects on 10 different head positions performed 
good clusters for face images. Some of them were very close to one of the training images and 
some were an average between individual’s faces.  
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Faces of one subject from one cluster: Face-centroid: 

        

Faces of multiple subjects from one cluster under the same illumination:  Face centroid: 

         

Figure 3-14: Samples from the Yale database and clusters obtained by k-means algorithm 
from the face space for Eigenfaces method. 

If we consider different instances of the same person’s face with variations in lighting, pose or 
facial expressions, to be in the same class, and faces of different subjects to be from different 
classes, after we build the face space we need to preserve this classification. PCA does not 
take into account the underlying class structure (i.e. class membership of each image) and it 
finds the projections as all the samples are from one class of images. 

3.3.3 Fisherfaces Method 
Fisherfaces method [8] derives from Fisher’s Linear Discriminant Analysis (FLD or LDA) 
[25] and it works on the same principle as the Eigenfaces method: it provides a linear 
description of the face subspace by reducing the dimensionality of the image space. 

The objective of LDA is to perform dimensionality reduction while preserving as much of the 
class discriminatory information as possible by finding directions along which the classes are 
best separated. In contrary, PCA is aimed at representation (encodes the maximum variance 
along one component) because a PCA projection does not create an optimal discrimination for 
different classes, as shown in Figure 3-15. In our case, LDA distinguishes better the variation 
due to identity, from variation due to other sources such as illumination and expression.  

PCA finds the projections that maximize the determinant of the total scatter matrix of the 
data. LDA calculates a set of optimal projections that maximize the ratio of the determinants 
of the between-class over within-class scatter matrices. The between-class scatter matrix, also 
called the inter-personal, represents variations in appearance due to differences in identity 
while the within-class scatter matrix, also called intra-personal, represents variations in 
appearance of the same individual due to different poses [54].  
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Figure 3-15: A comparison of the projections found by PCA and LDA [8]. 

Let us consider a training set of c classes of individuals. We compute the between-class (SB) 
and within-class (SW) scatter matrices as follows: 
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where x  is the mean of all images, ix  is the mean image of class Xi, , and Ni is the number of 
samples from class Xi.  

If SW is non-singular, then LDA determines the projections that are the columns of the 
transformation matrix Wopt, which maximizes the ratio of the determinant of the SB to the 
determinant of SW  as: 
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where � 1,,2,1 �� ciwi � � are the generalized eigenvectors with non-zero eigenvalues of SB 

and SW  that satisfy: 
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We note that there are only c-1 eigenvectors [23]. If we consider the example of two-
dimensional space from Figure 3-15, only one projection is enough to discriminate between 
the two classes of samples. By this transformation, we reduce the dimensionality to minimum 
c-1 but as in the Eigenfaces method, we select only the m eigenvectors that have the largest 
eigenvalues associated, where m < c-1.  Matrix  

nxn
WS �� , 
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where n is the number of pixels in the image.  

� � cNSrank W ��  

because there can be only N-c columns that are linearly independent (one image from one 
class is independent on the other N-c images), and therefore the within-class scatter matrix is 
always singular .  

In order to avoid this, Fisherfaces method applies first PCA to reduce the dimensionality to 

N-c, thus the new within-class scatter matrix is  and non-singular. The 

second step reduces the dimensionality to c-1 by performing standard FLD. Here, W  can be 

calculated as:  

� � � cNxcN
WS ��

��
�

�

opt

T
PCA

T
FLDopt WWW �  

where W  are the eigenvectors of the total-scatter matrix of data, from which we 

select only the first N-c eigenvectors. The term W  contains the generalized 

eigenvectors of the matrices  W  and W : 
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PCA

�

��
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�

��
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PCA
T

WFLD maxarg�  

The eigenvectors of this method are called Fisherfaces and we show them in Figure 3-16. 
Reconstruction of faces, feature extraction and classification can be done in the same way as 
in the eigenfaces method. 

       

       

Figure 3-16: Fourteen Fisherfaces constructed from 15 subjects from Yale database each 
with 11 poses.  
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Discussion 
In order to prove that Fisherfaces method finds a better representation of the face space by 
preserving the class discriminatory information of the training images, we performed again K-
means clustering algorithm. We considered Yale database [74], which consists in 15 subjects 
with 11 different shots per class, in different illumination and facial expression variation. 
Obvious, we considered the number of clusters to be the same as the number of subjects, and 
we represent the resulting codebook in Figure 3-17. If the person from Figure 3-14 was 
classified into many clusters by PCA representation, we observe in this case that the subject is 
clearly separated from the other classes. 

        

       

Figure 3-17: Codebook resulted from clustering the face space 
 represented by Fisherfaces 

One drawback of the LDA method is its high computational complexity and large memory 
requirements to calculate the between-class and within-class scatter matrices. Furthermore, it 
also needs many images for each class in the training process for good discrimination. 
Nevertheless, when the number of samples is large and representative for each class, LDA 
provides better recognition rates than PCA under illumination variance in [8] and in our 
experiments. We will make a more comparison between Eigenfaces and Fisherfaces methods 
in the experiments section.  

Another approach used in face recognition is Independent Component Analysis (ICA) [6] that 
is a generalization of PCA. It is a technique for extracting statistically independent variables 
from a mixture of them by separating the high-order moments of the images in addition to the 
second-order moments. 

3.4 Hybrid Methods 

The holistic methods consider the global information of images and treat them as simple 
vectors of gray level intensities, thus they do not use any knowledge about the geometry of 
the face. In fact, these methods are commonly used in computer vision for object recognition 
in general as well. 

We noticed in the previous sections that the Eigenfaces method performs badly in pose and 
illumination changes, and the Fisherfaces method improved the discrimination but it is still 
not robust enough. In order to increase the performance under the mentioned test conditions, 
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hybrid methods have been proposed to combine the strengths of the analytic and holistic 
methods by using facial features and the whole face region for recognition, at the same time.  

The Eigenface method was extended in [56] to view-based eigenspaces and modular 
eigenfaces. As we saw in Section 3.3.2, PCA will encode also the variation due to head 
positions while Eigenfaces method works well when frontal images are used. Based on this 
observation, the view-based approach tries to eliminate variation between poses by 
constructing separate eigenspaces for each different view, so that the collection of images on a 
different head position has their own eigenspace to represent only the identity variation 
(Figure 3-18).  

          

Figure 3-18: Sample images for two different eigenfaces. 

During training, all images have to be classified according to their orientation in order to 
assign them to the corresponding eigenspace. In testing phase, this can be done by 
determining the distance from each eigenspace and only the eigenspace from the same 
viewpoint will be used for recognition.  

  

Figure 3-19: Example of changes in facial expression (left) and illumination (right). 

When there is variation in images due to illumination or facial expressions, only some of the 
face regions will vary and the rest of the regions will remain the same as in the neutral 
expression and normal illumination images. For example, in Figure 3-19 we can recognize 
that person only by his nose and mouth because eyes are closed, or we can still distinguish his 
nose and eyes. As people have distinct facial features, it might be a good idea to match faces 
only by those regions under normal conditions, not by the whole faces. In other words, we 
would make a local and modular recognition of faces by using only the most discriminant 
features between people such as eyes, nose and mouth, which are not altered in the image. 
First, it detects the facial features to select the region of interest as shown in Figure 3-20, and 
then constructs eigenspaces to encode each feature from all the training set by creating 
eigeneyes, eigennoses and eigenmouths [56]. 
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Figure 3-20: Example of facial features regions for modular eigenspaces. 

After training, facial features can be detected by common geometrical methods but they can 
also be combined with the image-based methods by calculating the distance from each feature 
space. Recognition is similar to template matching from the analytic approach (Section 3.2), 
but this time they are eigentemplates [56]. Brunelli and Poggio found out in [10] the 
following discrimination power between facial features, sorted by decreasing performance: 
eyes, nose and mouth. The matching is performed for every specific feature aside that can be 
extracted from the test image. 

Different techniques can be used to integrate all the similarity scores for each features to 
obtain a global matching score. In voting, the identity is assigned to the person for whom it 
was found the most similar feature, adding all the features scores, or adding but using a 
different weight for each feature that is the same for all people.  

This method has the advantage that the recognition can be performed only on a single feature, 
even the rest are occluded, changed or altered by light conditions. It does not need so accurate 
fiducially points to be detected, and at the same time, it eliminates the difficulties from 
correlation of the analytical methods based on parameterized templates matching. 
Nevertheless, if changes are too significant in the image, facial features cannot be detected so 
the method would fail.  
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4. Face Recognition from Video Sequences 

4.1 Introduction 

Face recognition from video originated from still images. Video sequences provide for face 
recognition algorithms a large amount of faces covering a variety of pose conditions. This 
thing is benefic for the holistic and hybrid methods because they have high recognition rates 
only if geometrical and light conditions of test images match to those in the training set.  

One approach for face recognition from video is to detect first the faces and then to employ 
still-image based recognition methods for each frame separately. Confidence scores are 
calculated for each frame and then we make the overall decision from the individual 
recognition results, e.g. by majority voting (Figure 4-1). Other approaches include 
spatiotemporal methods that exploit also temporal information such as trajectories of facial 
features [81].  

Video sequences are preferred over the still images because they facilitate the face detection 
issue using motion as cue. One of the early attempts used pixel-based change detection 
procedures based on difference images [81]. This section presents only still-image methods. 

     

Face Recognition

Global 
decision

...

Decision Strategy

Decision 1 
/ score 1

Decision 2  
/ score 2

Decision n  
/ score n...

Frame 1 Frame 2 Frame n

 
Figure 4-1: Face recognition from video sequence. 

Still-image methods deal with huge amounts of frames that imply large memory requirements. 
For a MPEG sequence of 2 minutes sampled at 25 frames per second (fps), the total number 
of frames is 3,000. Moreover, there are no significant changes in the same face from two 
consecutive frames because human face motion is not so fast, so the system would be over-
trained, with a high degree of redundancy. It is therefore better to prune the video sequence by 
sampling, that is processing only every Nth frame, or by detecting only the frames that 
represent changes in facial expression and head position. For the latter, one method is based 
on pixel change detection from the difference between two consecutive frames. If the 
difference is greater than a threshold, then the frame is processed. The difference should be 
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calculated only for the face region because otherwise we will detect also the changes in the 
background. 

If the person in the video is speaking, changes in facial expression and especially in lips will 
appear, which might worsen the face recognition performance. On the other hand, lip 
movement can also characterize an individual as well as the content of the individual is 
speaking. Information inherent in lip movement has therefore been exploited by another area 
of biometrics: visual speech and speaker recognition. Here, the lips contour motion represents 
the visual features. This is also called lip-reading and it requires location estimation and 
tracking of speaker’s mouth or lips. We recommend references [26, 58, 9, 16, 44] for more 
information on this topic. 

Comparing to still image recognition, the main drawbacks of video recognition are the low 
image quality and small sizes of the faces captured from video [81]. In addition, only fast 
algorithms for detection and matching are suitable, due to the large number of frames to be 
processed. 

4.2 Face Sequence Clustering  

Pruning the video sequence still results in a redundant amount of data. By most representative 
faces from a video sequence, we understand those faces that cover all their possible variations 
along the video. This sub section deals with the selection of them.  

The face images form a manifold in the whole image space and the individual faces clusterize 
in the global face space, see Section 3.3. Based on this idea, a straightforward approach is to 
clusterize the initial set of faces in individual’s own space, similar to [21, 30, 39]. 

Let us consider a set of N=87 training faces for an individual acquired from a video sequence, 
as shown in Figure 4-2: 

� �NFFFF ,,, 21 ��  

where are the vector representations of the faces in the high dimensional image 

space. 

NjF j �1, �

The distribution of these vectors in the space is very sparse and clustering would be 
impracticable because of the large dimensionality of the vectors7. Because of this, we need to 
find a more suitable representation of the face space, as the one from the Eigenfaces method. 
PCA gives an optimal representation in terms of mean square error, by encoding the variation 
between different poses of the same person. LDA is aimed for discrimination and we cannot 
apply it here because we do not know all the possible views of the faces that the subject may 
have.  

                                                 
7 size of the vectors is the number of pixels from the image 
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Figure 4-2: Face sequence extracted from Cuave database [20]. 

 

We construct a separate low-dimensional face space (SE = self eigenspace) for each subject in 

which we map all their faces from the training video-sequence F into .  SEF

� �SE
N

SESESE FFFF ,,, 21 ��  

where are the representation of the faces in the eigenspace, much smaller size 

vectors

NjF SE
j �1, �

8. Authors of [2] call this as self-eigenspace and use the reconstruction error of the test 
image projected on the spaces of all subjects as the classifier. We do not consider this suitable 
for video-sequences recognition because of the expensive reconstruction errors computations 
(calculate MSE between each image and its reconstruction for all frames).  

We clusterize the points in the self-face space by K-Means clustering algorithm and we 
consider the face codebook as being the centers of the clusters that form in the self-
eigenspace: 

� �KCCCC �,, 21�  

where K is the number of the selected face samples for training, and Ci are the vector 
representation of images in face space. The codebook C should describe best the training set, 
by minimizing the average distortion between F and C: 

� � � ��
�

�

�
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where d is a metric defined over the face space, and usually is the Euclidean distance. They 
represent “means” of different classes of views for each individual. Furthermore, we can 
select the training set Tj as being the K closest images from the sequence that are closest to the 
codebook (Figure 4-4): 

� � KjCFdT j
SE

iNij �1,,min
...1

���
�

 

                                                 
8 size of the vectors is the number of the eigenfaces calculated from that face space 
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In this way, we train the system only with the most significant faces and we expect higher 
recognition rates. One more detail is about the dimensionality of the self-space. The longer 
the sequence it is, the bigger the maximum number of eigenfaces, thus the larger the space 
dimensionality. We do not afford clustering in such a big space and since we are not 
interested in reconstruction of the images, we consider a 25% amount of eigenfaces in our 
experiments. Thus, clustering will be performed in a space having 25% of the frames 
dimensions, but the percent of the selected eigenfaces can be reduced experimentally for no 
large variations of the faces in the set (no need to encode much variation of the faces for the 
same individual).  

Construct 
self-

eigenspace

Clustering
(K-Means)

N’ Low dimensional 
feature vectors

Get K images 
closest to the 

codebook

K Face centroids

Construct global face space 
with all repr. faces 
from all subjects

K Representative faces 
for subject

N
frames

N’ facesFace 
detection

 

Figure 4-3: Selecting the most representative faces of one subject from a video sequence by 
clustering the  self-eigenspaces. 

We mention that we cannot use the resulting centroids as a model for the user because there 
will not be any discrimination between other self-eigenspaces. We cannot use nearest 
neighbors with distances calculated in each space because that space encodes only its own 
individual variations. The distance from one face from its self-eigenspace to centre of it might 
be the same with another face from another self-eigenspace. The self-eigenspace encodes only 
the variation between different views of each individual, in contrast to the universal 
eigenspace of all subjects, where PCA represents inter-class variations of individuals and 
intra-variations across different views of the same subject [21].  

This is the reason why we need to get the representative faces and then construct a global face 
space where all subjects can discriminate. We note we do not reconstruct the centroids from 
each self-eigenspace. Due to the reduced number of the eigenfaces, the reconstruction will not 
be precise for the constructing the global face space. For the face sequence from Figure 4-2, 
for K=15 the representative faces are shown in Figure 4-4. 
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9 10 11 12 13 14 15  

Figure 4-4: Fifteen most representative faces of the face sequence from Figure 4-2. 

 

Figure 4-5: Silhouette plot for the clustered faces. 

Figure 4-5 provides a representation of the separation between the clusters. The Matlab 
silhouette function displays a measure S(i) of how close each face in one cluster is to the faces 
in the neighboring clusters.  
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where a(i) is the average distance from the ith point to the other points in its own cluster,  and 
b(i, k) is the average distance from the ith point to points in another cluster k.  

This measure ranges from +1, indicating faces that are very distant from neighboring clusters, 
through 0, indicating points that are not distinctly in one cluster or another, to -1, indicating 
points that are probably assigned to the wrong cluster. The chosen face sequence does not 
contain many frames with the rotated head so we increased the number of clusters until K-
means separated those frames. We can see that clusters 4, 11 and 15 contain only one 
significant face. The rest of the selected faces have a mean appearance of the faces from that 
cluster. 
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Face sequence clustering is a similar approach to clustering of the feature vectors extracted 
from the speech frames in speech related recognition problems. The main drawback of this 
approach is the arbitrary selection of the number of clusters K, we cannot know all possible 
variation in faces before. Randomized initialization of the codebook in K-means algorithm 
and possible local minima in the total distortion can provide wrong clusters as well. 
Randomness can be partially avoided by running clustering many times and then choose the 
codebook that gives the minimum quantization error from all the iterations. 
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5. Speaker Recognition 
Beside face cues, another natural way to recognize people is by their voices, which leads to 
the speaker recognition task. Comparing to other biometrics, face and speech are not 
intrusive, that is they do not suppose physical contact between the person and the system. 
Furthermore, they do not require dedicated sensors as for fingerprints and iris. A photographic 
sensor is required for face recognition, but for speech, we only need a microphone to acquire 
the evidence, which makes it convenient and frequently used among the other biometrics. 

Early research in face recognition date 30 years ago, but the speaker recognition technology is 
more mature, starting already from 1950’s [37]. However, even though more and more 
speaker recognition systems are started to be used in practice and much research and progress 
have been done in the area, it still does not provide exact recognition rates yet. Moreover, 
even though the technology would be errorless, speech itself is not a fully reliable biometric. 
Face is a static or passive biometric, i.e. the facial outlook of a person remains rather constant 
due to the course of time. Speech, on the other hand, is a dynamic or behavioral biometric, 
based on the speaking process, and the acoustic speech waves of the same utterance are not 
exactly the same [37].  The unreliability of speech has led to multimodal recognition, in which 
speech is integrated with other technologies [1 , 2, 11, 17 , 22 , 24, 60, 57]. 

The current section gives a short introduction to the speaker recognition technology. We 
recommend literature from [13, 37, 56] to be consulted for comprehensive information about 
this area. For classifier fusion, we consider the speaker recognition from the audio stream as a 
“black-box” (Figure 1-1), and use algorithms already implemented in our department.  

Any speaker recognition system involves either identification or identity verification, and can 
work in the enrollment and recognition modes, as any other biometric system as shown in 
Figure 1-4. We recall here the typical steps for performing these tasks: feature extraction, 
speaker modeling and matching, and decision-making.  

Speaker identification depends on the text utterance. Therefore, if the utterance is known 
beforehand and it has been modeled beforehand, then the task is called text-dependent speaker 
identification, whereas the opposite is called text-independent identification. In this work, we 
are concerned with the text-dependent case. 

5.1 Feature Extraction 

Speaker identity is correlated with the physiological and behavioral characteristics of the 
speaker [1] and these characteristics are derived both from the vocal tract and the source of 
speech (vocal chords). The feature extraction process refers to the measuring of those 
properties of the speech waveform that best characterize an individual. Thus, this step models 
the speakers by feature vectors.  
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Author of [37] suggests a possible taxonomy of the features used for speaker recognition as 
shown in Figure 5-1. Among them, the most commonly used methods are the linear 
predictive cepstral coefficients (LPCC) and the mel-frequency cepstral coefficients (MFCC).  
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Figure 5-1: Possible features used in speaker recognition. 

Different from face recognition that is based on still samples, speech is a continuous time-
dependent signal. The signal is typically divided into short time segments called frames, 
which preserve the local stationary property of the features. The frames are typically around 
10-30 milliseconds long and they overlap around 30 to 75% of their length (Figure 5-2). The 
discontinuities effect is suppressed by the window function and the most commonly used is 
the Hamming function [37].  

Framing and windowing provide a thorough analysis of the input utterance because each 
speech sound is approximately centered within the frame. Fourier analysis of the local 
waveform assumes that the signal is periodic, and the windowing function supports this 
assumption because the discontinues at the frame edges are interpreted as being part from a 
signal with an infinite period [37]. As a parenthesis, the short-term spectral analysis of the 
speech signal leads to similarities between speaker and face recognition from image sequence, 
in which each frame is processed separately, as shown in Figure 5-3. 

From the source-filter model [13, 37] of the speech production, it is generally known that the 
vocal tract acts a low-emphasis filter with -12dB/octave boost for voiced speech, while lips 
introduce a +6dB/octave boost to the spectrum. In order to cancel these side effects to 
preserve the original frequency spectrum that describes better the vocal tract characteristics, a 
pre-emphasis filter of +6dB/octave boost is selected (Figure 5-5). 

Each time window is subject to spectral analysis by Fast Fourier Transform (FFT). Usually 
only the magnitude spectrum is used. Thus, feature extraction can be done either in time or 
frequency domains. The former method analyzes the full spectrum band of each frame (Figure 
5-5a) while the latter processes each sub-band of the spectrum in a time window, making use 
of filterbanks (Figure 5-5b). These last ones provide a smoothed version of the original 
spectrum, as shown in the second example from Figure 5-4. Extracted features from every 
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sub-band can be combined using fusion techniques that we will present in the following 
section. 
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Figure 5-2: Short-term spectral analysis for speech. 
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Figure 5-3: Frame analysis for face recognition from video sequence. 

 

Figure 5-4: Examples of filterbanks [37]. 
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b) Sub-band feature extraction
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Figure 5-5: Full-band and sub-band feature extraction. 

Beside the static features that are extracted from every frame, there exists another type of 
features, which characterize dynamic information. These are so called delta-features [37] and 
they represent the time derivative of the static features calculated over a number of frames by 
differentiating or by fitting a polynomial expansion. Moreover, the time derivative of the delta 
features will represent in their turn the delta-delta features.  

5.2 Speaker Modeling and Matching 

Before calculating identity similarities between the unknown and the enrolled speakers, we 
need to create models of the speakers based on the extracted features, and then perform 
matching of them. Models are an abstraction or characterization of each individual from the 
database and represent actually an estimate of the feature probability distributions. Thus, 
matching of two models outputs a degree of similarity between them, and this represents the 
input in the decision-making module.  

We distinguish two types of modeling techniques: parametric (stochastic) and non-
parametric (templates) [37].  Perhaps the most common approaches used in text-independent 
speaker recognition are Vector Quantization (VQ) from the second class, and Gaussian 
Mixture Models (GMM), which belong to the former one.  

In the vector quantization approach, the model of the speaker is represented by the codebook 
of the clusters that form in the distribution of the all feature vectors extracted along the 
training utterances. In this way, the codebook preserves only the most representative 
information about the speakers. Matching is performed by finding the codebook C belonging 
the enrolled speakers, which minimizes the average quantization distortion function between 
these two models:  
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where  is a distance metric; the most common distance function used is the Euclidean 

metric.  An illustrative example of VQ-modeling and matching is given in Figure 5-6 and 
Figure 5-7. 
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Figure 5-6: Example of VQ modeling for 
codebook of size K=4 in a 

 two-dimensional feature space. 

Figure 5-7: Example of matching between  
T=4 features from an unknown speaker 

(circles)  and codebook of size K=6. 

In the second approach, a mixture of Gaussian functions models the distribution of the feature 
vectors, as shown in Figure 5-8. A speaker model  is given by a set of three 

parameters for all K distributions, denoted by� : 

� K���� �,, 21� �

i

� � KiP iiii �1,,, ��� ��  

where Pi are their a priori probabilities, µi are the mean vectors and Σi are the covariance 
matrices of the distributions. These parameters are typically estimated by maximum 
likelihood estimation, using the Expectation-Maximization (EM) algorithm [37]. Matching 
between two models X and �  is calculated in terms of likelihood, such as:  
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where � ��jxp  is the Gaussian mixture density:  
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and � �ji xN  is the n-variate normal probability density function [13]: 
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Figure 5-8: Example of modeling by GMM of size 4. 
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6. Fusion of Face and Speaker Recognition 

6.1 Introduction 

Although a lot of work has been done in the last years in the fields of face and speaker 
recognition, the current techniques do not provide a fully reliable recognition yet and they are 
about to reach a degree of saturation in performance in the close future. In general, the 
common drawbacks are from the incorrect modeling or from the difference between the 
training and test conditions. As much as natural they seem to be, face and speech biometric 
measures tend to vary in time [70] and thus algorithms provide decreasing recognition rates.  

While many efforts concentrate to improve the current methods, a recent trend in biometrics is 
to combine different modalities by using multiple human characteristics. The goal is to 
complement one modality with another when one of them performs poorly, so it will not 
affect the final decision. A series of research papers have already proved that the joint use of 
several biometrics provide a higher accuracy than single modalities [11, 36, 58, 70, 73]. 

Multimodality is a subject of information fusion. This area deals with combination of different 
sources of information, either to generate one representational format, or to reach a decision 
[62]. We reserved the current section to present important aspects from the theory of 
combination of classifiers and to analyze which strategy should be adopted in fusion of face 
and speaker cues for person recognition.  

An important aspect related to information fusion lies on the independence of different 
classifiers, which characterizes the amount of extra information they bring in for the global 
system. Using complementary information such as face and voice can reduce error rates, 
while using multiple sensors can increase reliability [62], by providing redundant cues. We 
admit to believe that fusion introduces also a benefit because multiple simple sensors might 
be cheaper than one multimodal sensor, and they can acquire data from multiple points of 
view.  

Fusion can be employed at three different levels: 

�� Mono-modal mono-expert fusion 
�� Mono-modal multi-expert fusion 
�� Multi-modal multi-expert fusion 

Mono-modal mono-expert fusion combines the results obtained from a single modality by a 
single expert over multiple instances of test data acquired over a period. It is also called 
temporal or horizontal fusion. This strategy offers the advantage of the availability of more 
training and test data that can reduce their variances.  

Mono-modal multi-expert fusion uses multiple experts based on the same or even different 
features extracted from a single modality. This leads to the idea that the scores from different 
experts for the same person are correlated. Suitable examples for this strategy are: the hybrid 
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methods that combine geometric and image-based approaches for face modality, and for 
speech, fusion of static and dynamic features, or fusion of features extracted from different 
sub-bands.  

Multi-modal multi-expert fusion involves multiple experts that are based on multiple 
modalities and it may include the previous levels.  

Different fusion techniques are needed for the above strategies, see Figure 6-1 [62]. In pre-
mapping fusion, the information is combined before any use of classifiers; post-mapping 
fusion combines the information after mapping from feature-space into opinion/decision 
space. The former one is also called fusion at input level or early fusion, while the latter refers 
to fusion at classifier level or late fusion. 

Fusion type

Pre-mapping Post-mapping

Feature levelSensor level Decision fusion Score Fusion

Weighted 
summation

Mosaic 
construction

Weighted 
summation

Concatenation Combination of 
ranked lists

AND

Majority voting

OR

Weighted 
product 

Post classifier

Weighted 
summation

 

Figure 6-1: Different fusion techniques. 

6.2 Sensor–level Fusion 

The sensor level fusion combines homogenous raw data acquired from multiple sensors and 
forms a new input data for the classifiers. There are two approaches: weighted summation and 
mosaic construction.  

The first uses weighted summation of signals such as two speech waveforms from two 
microphones in order to reduce noise. We note that all the measures must be first normalized 
to have values in the same range. The second approach includes in the new signal parts from 
multiple input signals, such as one new image containing different viewpoints. For our case, 
the source of information is a common sensor (audio-video camera), and the streams are 
already fused. We need to separate them in order to analyze them independently.  
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6.3 Feature–level Fusion 

Fusion at the feature level uses multiple vectors extracted from different sensors or even 
multiple vectors extracted from the same sensor but in a different way. A new classifier 
should be used then for the new training features. 

Weighted summation can be used if the features are extracted from homogenous sensors (two 
microphones) and they are commensurate. Otherwise, all the feature vectors can be 
concatenated into a single feature vector, which represent the person’s identity into a new 
feature space (Figure 6-2).  

The concatenated vector is obviously larger and the new feature space becomes much sparser 
than the individual feature spaces. More training data is needed or dimensionality reduction 
techniques such as PCA and LDA can be used. One drawback of this fusion is that it cannot 
distinguish which of the sensors contribute more or less to the final decision [62]. 

Feature 
Extraction 1

Feature 
Extraction 2

Feature 
Extraction n...

Source 1

... ... ...

... ... ...

Classifier

Final decision

Feature 
vectors i

Concatenated 
feature vector

...

Source 2 Source n

 

Figure 6-2: Fusion at feature extraction level. 

Discussion 
Fusion at feature level for stream cues prove to be the most complicated due to the frame 
synchronization issues. The sensors might be asynchronous, so not all feature vectors might 
be available at the same time. An example is the continuous recognition from audio and video 
for example, where both streams have different rate. Typically, video frame rates are between 
25fps (PAL) to 30fps (NTSC) (40-33.33ms) while the speech features are extracted in frames 
between 100fps to 33fps (10-30ms) (Figure 6-3). For synchronization, speech frames should 
be 40 ms to 33.33 ms long for PAL and NTSC respectively.  

For video streams, we remember that we perform frame sampling by selecting each Nth frame 
(Section 4.2), so the frame rate decreases more actually. Moreover, no face can be detected 
within a wide range of frames because of their variety in videos (wrong subject framing or 
tilted faces). 

We present several methods for frame synchronization in Figure 6-3. The first image shows 
the typical case between different frame rates from video and speech streams. One 
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workaround is to pad the missing features by zero values, as by considering zero features for 
the video frames corresponding to speech frames S2, S3, S4 etc.  

Buffering can be also used for synchronization. We copy always the previous existing frame, 
increasing artificially the video frame rate, as in Figure 6-3 b). The next case shows linear 
interpolation between two frames (Figure 6-3 c). When faces are not detected within a wide 
range, we consider that interpolation decreases the accuracy for significant changes in the 
faces (Figure 6-3 d).  
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Figure 6-3: Synchronization between frames from audio and video streams: a) Frames at 
different rate; b) Previuos frame copy; c) Interpolation between two adiacent video frames; d) 
Interpolation when multiple frames are missing. 

Continuous Fusion 
Feature level integration provides support for continuous fusion. If until now we considered 
the recognition after the shot was analyzed, continuous biometrics makes the recognition an 
ongoing process. It requires temporal (horizontal) integration to estimate the authenticity of 
the user at any time from the shot based on the previous estimations [3]. However, this type of 
integration preserves the temporal information between the both streams. 

We mention here one approach for continuous audio-visual speech recognition from [45]. It is 
based on cooperative HMMs for continuous fusion from asynchronous streams. The input 
streams are processed independently of each other up to certain temporal anchor points 
(Figure 6-4). Here, the models have to synchronize and recombine their partial segment-based 
likelihoods. 
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Figure 6-4: General form of a K-stream model with anchor points [45]. 

An observation sequence is assumed to be composed of K streams. The parallel HMMs 
associated to each stream do not need to have the same topology. We note that the 
recombination state from Figure 6-4 is not a regular HMM state, it just recombines the scores 
accumulated over the same temporal segment for all streams. A similar approach of fused-
HMMs is presented in [55].  

Conclusion 
In order to concatenate multiple feature vectors extracted from different sources of 
information, we need to assume the conditional dependence between them. Otherwise, the 
new vector will not have any meaning. We consider the acoustic and visual data as being 
independent, so we cannot “link” one particular phoneme to a particular face position or 
expression. In other words, it does not mean that some utterance can occur only for some 
specific faces. This is more a subject of audio-visual speech recognition when the shape of the 
lips is analyzed. 

Based on this argument, we did not include this type of fusion in our experiments. We 
propose the feature level and the continuous fusion for future research. The latter addresses 
also the problem of the missing data from different biometrics, such as fingerprints and retina. 
These sensors do not provide continuous output or they do not have similar frame rate, as 
audio or video do. They are available occasionally, as we do not expect the users to scan their 
fingerprints or retina all the time. The missing features problem regards also the face 
recognition when faces cannot be detected. 

6.4 Decision–level Fusion 

Each classifier provides a decision of acceptance or rejection based on its corresponding 
feature vector, and the decisions can be further combined by different architectures and 
methods. Possible architectures are: serial, parallel and hybrid. 

A serial architecture consists in many classifiers whose decisions are combined in series or in 
cascade [70]. This fits for the cases when each decision is trivalent, such as accept, reject or 
undecided. If one expert cannot decide about the identity, it transfers the problem together 
with the information it has about that identity to the next classifier in the chain and so on. This 
architecture assumes that the further classifiers from the sequence are more effective than the 
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previous ones and thus they can solve the decision problem. It is also possible that the final 
result to be indecision. 

In the parallel architecture, all classifiers process in parallel the feature vectors and output a 
decision. The final decision can be reached by: 

�� Majority voting 
�� Ranked list combination 
�� AND/OR fusion 

This architecture is the most commonly used and it fits when different biometrics are 
independent of each other. Thus, a stronger biometric can achieve better accuracy alone than 
combined with weaker biometric.  The hybrid architecture uses a combination of serial and 
parallel classifiers. We will refer next only to the parallel model. 

The final decision in majority voting is the decision taken by the majority of the classifiers. 
Moreover, an odd number of classifiers are necessary in order to prevent tie decision. This 
method does not suit to the bimodal system addressed in our work. 

For ranked list combination, every classifier outputs a ranked list of individuals according to 
their degree of confidence. These lists are combined considering the reliability and 
discrimination power of each classifier, and then the final decision consists in the top entry of 
the combined list. 

The final decision in AND fusion is the decision taken by all classifiers, while in an OR 
fusion, this is the decision of only one classifier that reached a conclusion about the identity. 
The former operator leads to a more restrictive decision because all the classifiers must agree 
about the same identity, so the fused system will have lower False Acceptance Rate (FA). 
Opposite, the latter operator concludes a relaxed decision, so a lower False Rejection Rate 
(FR) [62]. Moreover, the OR operator can lead to more matching decisions for one testing 
model and thus it can be used only for verification purposes. 
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6.5 Score–level Fusion 

The fusion at score level assumes that all classifiers output a matching score indicating the 
degree of confidence for an individual. Then all the scores are combined to verify the 
supposed identity (Figure 6-5).  

S1,1 S1,2 S1,3 ... S1,n S2,1 S2,2 S2,3 ... S2,n

Fuse score 
function

Classifier 1 Classifier 2

Features 
source 1

Features 
source 2

scores

S1 S2 S3 ... Sn

Classifier

Final 
decision

Fused scores

 

Figure 6-5: Fusion at score level for two classifiers and n classes. 

An important aspect for this integration is the measurement normalization. Since different 
classifiers for various traits can be employed, the individual matching scores could be non-
homogenous (different scales), expressed such as distances in their own feature space or 
likelihood ratios. So, a score normalization step shall be a prerequisite.  

A simple way to normalize scores is to convert them first to a normal distribution. Then, the 
values can be mapped into [0,1] interval by sigmoid function:  

� �� �d
dnorm

���

�

exp1
1   

where � �
�

��

�

dd�  

The parameters for the normalization function can fixed or adaptive. The former ones are 
estimated from a certain number of observations, while the latter ones are estimated from the 
distribution of scores from the current observation. Using only the mapping function is not 
enough because exp(-d) function will decrease to zero even for d being order 10e3. That is 
why a conversion to standard normal distribution by function �  is used. We need to 

estimate average values and standard deviations for scores so that distributions can be 
translated and rescaled in order to have zero average and unit variance. 

� �d
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Scores can be also in terms of probabilities. We propose the following method for mapping 
distances scores into probabilities. 

Let dnorm be a distance � [0, 1]. 

normd
p 1
�  

Normalize p to belong to [0, 1]:   

�
�
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i
ip

pp

1

'       ,  � �kpp ''' � 1�k

The term p’� [0, 1] so we raise p’ to power k in order to decrease more the smaller 
probabilities values and to separate more the smaller from the larger values. 

 

The typical approaches to combine the normalized scores are:   
�� Weighted summation (Sum rule) 
�� Weighted product (Product rule) 
�� Post-classifiers 

The first two approaches weight the opinions of each classifier considering their reliability 
and discrimination ability. This is an advantage over the feature or decision level fusion. 

In weighted summation fusion, the final score sj for the class j is given by:  
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i
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1
,  

where NC is the number of classifiers involved in the fusion, si,j are the scores of the classifier 
i for the class j, and wi are their corresponding weights in interval [0,1]. Sum of all weights is 
constrained to be equal to one: 

1
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If all the weights are equal to 1/NC, then the weighted summation represents the arithmetic 
mean of all scores.  

For weighted product fusion, if we assume that the classifiers are independent of each other, 
then the scores can be regarded as a posteriori probabilities [62]. Thus, the final decision for 
classifying class j is calculated as the product of probabilities of each expert to identify that 
class: 
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We can differentiate each classifier’s reliability by introducing weights:  
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(5)

Weights have the same constrains as for weighted summation. When all the weights are equal 
to1/NC, then the product rule becomes the geometric mean of all scores. Sometimes it is more 
convenient to work with summations, so logarithm function is used over the product. 
Equation (5) becomes: 
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The main drawback of this fusion is that a very small score of one classifier decreases the 
overall score. Comparing to feature level fusion, the temporal information between the audio 
and video streams is lost in the score and decision fusion. On the other hand, the latter two 
fusion strategies support an alternative approach for continuous fusion at feature level from 
the asynchronous streams and missing data. The solution is to perform continuous recognition 
from each individual stream and then fuse at decision or score level for the segments between 
common features, as shown in Figure 6-6.  
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Figure 6-6: Continuous fusion at decision or score level  
for asynchronous audio and video streams. 

In post-classifier fusion, the scores from NC classifiers for N classes can be concatenated to 
form one NC·N-dimensional feature vector. A new classifier, called post-classifier, makes the 
final decision. The scores do not need to be normalized. 

Commonly used approaches for post-classifiers are: Bayesian networks, Support Vector 
Machines (SVM), Multi-Layer Perceptrons (MLP), Decision Trees, Logistic Regression (LR) 
and various forms of the k-Nearest Neighbor. We do not intend to review all these methods, 
but we recommend [70]. The paper details each method and performs a comparison of them. 

Due to the large number of classes, the new dimensionality of the feature vector can be huge 
(size of training set). Thus, it makes the method more practical for verification tasks. For 
these scenarios, there can be maximum one number of target models for each classifier (N=1), 
so the combined vector is NC –dimensional only. Each classifier outputs one score that 
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classifies a given claimant as being a true claimant or an impostor. Then, the post-classifier 
employs a decision surface in NC –dimensional space, separating the impostors of the true 
claimant as in Figure 6-7, where NC=2. 
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Figure 6-7. Decision surface between true claimant and impostors 
 for post-classifiers. 

6.6 Stream Reliability 

Weighted summation or product rules from the score fusion takes into account the reliability 
of each classifier by introducing weights so each classifier will contribute more or less to the 
fusion result. There are two ways of fixing these weights: non-adaptive or adaptive.  

The non-adaptive methods assume that each contribution is fixed a priori, by calculating 
stream dependent constant weights for a particular audio-visual environment and database, 
based on the available training data. The weights can be set experimentally and based on 
preliminary information about each classifier’s results. Then, these weights are used for sum 
or product fusion rules. 

In real application scenarios, the test conditions may change significantly in time comparing 
to training. The adaptive methods vary the contribution of at least one expert according to its 
reliability and discrimination ability in the presence of some local environmental conditions 
[62] e.g. noise, face occlusion or face detection failures. If the a priori weight for the one 
classifier is dominant, then the overall result decreases, although the other classifiers involved 
in fusion could bring more information about the identity. Intuitively, the adaptive methods 
are suitable for continuous fusion, but we will not approach them in this work. 

We used in our experiments one statistical approach for a priori weight selection from [62].  
For two classifiers case, only one weight w1 is enough to calculate. The other one is  

w2 = 1- w1 

For first classifier: 
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where �  represents the standard error defined as:  i

impostor

impostori

true

truei
i NN

2
,

2
, ��

� ��  

where Ntrue and Nimpostor are the number of correct claims and impostor tests respectively, and 
 and �  are the corresponding score variances. Tests run over an arbitrary face and 

speech data set from database. 
truei ,� impostori,

We interpret the standard error as a measure of correctness of one classifier, by computing 
how much it classified wrong or right and with which scores. For example, if it classified 
impostors with big scores, then the variation is high. When the variation in true claimant and 
impostor scores is small, then the standard error is small, and the weight w is large.  
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7. Experiments 
For a comprehensive understanding of the topic covered in our work, we organized 
experiments using a couple of algorithms for integrating face and speaker recognition. We 
implemented first methods such as Eigenfaces and Fisherfaces in Matlab, and then we used 
Sprofiler for speaker recognition experiments, which is software developed at the University 
of Joensuu within PUMS project9. The last step of our experiments was to adopt the multi-
modal multi-expert fusion strategy by integrating the results of the two classifiers for both 
modalities. We implemented fusion at score level by weighted sum and product rules.  

In the first part of the section, we overview multi-modality audio-visual databases available 
for research, while in the following sub sections we detail each step from our experiments 
procedure, and present the results. 

7.1 

                                                

Audio-Visual Databases 

In contrast to the abundance of uni-modal databases, the multi-modal audio-video databases 
are very sparse for research purposes, which make algorithms difficult for testing. This is 
because the field is relatively young, but also due to the high storage requirements of the 
video shots, and for the availability of the users as well. Because of these reasons, the 
databases usually contain a small number of subjects. They have also smaller duration and do 
not cover a wide variations about subjects’ situations. In principle, multi-modality can be 
achieved simply by assigning multiple biometric evidences to one subject, but in our case 
both cues (speech and audio) comes from the same video sequences. We review next the 
audio-visual databases we are aware at the time of writing, with the focus on the database we 
are going to use in our experiments. The databases are summarized in Table 7-1. 

CUAVE 
The database included in our experiments is the Clemson University Audio Visual 
Experiments (CUAVE) [20] corpus, see Figure 7-1. It includes realistic test conditions such as 
movement and different visual features of speakers such as glasses, facial hair and hats. One 
negative aspect of this database is that the shots do not cover variation of illumination.  

The database consists of two major sections. The first one includes 36 individual speakers 
consisting of 17 females and 19 males with different skin color. The second part consists of 
20 pairs of them but we do not use this part in our experiments because we the multispeaker 
problem has not been covered in this thesis. Visual features such as glasses, facial hair and 
hats are present in the videos, and this makes the database more difficult for testing. 

 
9 http://cs.joensuu.fi/pages/pums/index.html  
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Table 7-1: Overview of audio-visual databases. 
Name Reference Subjects Video Sound 

CUAVE [20] 36 
MPEG2,  
720×480,  
NTSC DV  

Stereo, 16 bit  44 
KHz 

VidTIMIT [63] 43 
JPEG,  
384×512, 
PAL DV 

Mono,16 bit, 32 
KHz WAV 

BANCA [5] 52 
PNG, MPEG7 
720×576, 
PAL DV 

16/12 bit, 32 KHz 

XM2VTS [51] 295 
PPM,  
720×576 
DV 

16 bit 32KHz 

DAVID [50] 124 
18 SVHS video 
tapes 

- 

  

There are two kinds of recordings for the individuals. In the first one, each subject speaks 50 
connected digits while standing still. This includes only small natural movement. In the 
second task, they move on purpose while speaking 30 connected digits. Movements include 
nodding the head in different directions, moving back-and-forth and side-to-side, both profile 
views, and in some cases rotation of the head. 

The database was recorded at a resolution of 720 � 480 with a NTSC standard of 29.97 fps 
using 1-megapixel-CCD MiniDV camera in controlled conditions, such as uniform 
background of green color, uniform lighting, and noiseless sound. The data is compressed into 
individual MPEG2 files for each speaker at 5000 kbps, with stereo sound channel at 16 bit 
and 44 KHz sampling rate. The database includes also a separately extracted sound channel 
that is down sampled at 16 bit, mono, 16 KHz. The average length of one shot is 2 minutes.  

   

   

Figure 7-1: Examples from CUAVE database. 
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VidTIMIT 
The VidTIMIT database [63] includes audio-video recordings of 43 subjects divided into 19 
females and 24 males; they are speaking 10 short sentences from the NTIMIT corpus [35]. 
The recordings consist of three delayed shooting sessions with the purpose to allow for 
changes in voice, hairstyle, make-up, clothing and mood. Each session embraces head rotation 
sequences such as turn left and right for getting both profiles, up and down.  

The shots were taken in a noisy office environment (computer fans) by a PAL digital video 
camera. The video and audio signals are split into JPEG image sequences at resolution 384 � 
512 pixels (Figure 7-2), while the sound channel is stored mono at 16 bit, 32 KHz WAV files. 
The duration of each sentence is 4.25 seconds on average, which includes 106 video frames 
per each. 

 
Figure 7-2: Examples from VidTIMIT database. 

BANCA 
The BANCA database [5] includes several realistic recording scenarios such as controlled, 
degraded and adverse, using different kinds of material in four different European languages 
(English, French, Italian, and Spanish). Data was collected from 52 subjects (26 males and 26 
females) on 12 different occasions; there are 208 subjects in total. Each session contains two 
recordings, one for true client access and one for an impostor attack, in which the subject 
knew the text the claimed identity was supposed to speak.  

Recording was done in PAL DV system using a cheap analog web cam and a high quality 
digital video camera, and both poor and good quality microphones for speech. The audio is 
uncompressed at 16 and 12 bits at 32 KHz while the video was encoded at 5:1 scale. The web 
cam was used for the degraded scenario, while the better camera was used for the other two 
scenarios.  

Subjects were recorded while they say random digit numbers, their names, addresses and 
dates of birth, for about twenty seconds. Examples of shooting sessions are depicted in Figure 
7-3.  
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Figure 7-3: Examples from BANCA database in  
controlled (first row), degraded (middle) scenarios. 

XM2VTS 
One of the first and the most comprehensive audio-video database is XM2VTS [51], which is 
an extension of another multi-modal database called M2VTS [46] containing only 37 subjects. 
The number of users was not considered large enough for impostor tests, and that is why a 
new database (XM2VTS) of 295 users was collected.  

The recording scenarios include 30 seconds dialogs, in which the subjects uttered a predefined 
sentence. Extreme head movements are also included, such as from centre to the left and then 
right to extract both sides profiles, then up and down. Variations in physical condition have 
been included, such as hairstyle, dress and mood. Shooting was done in four separate sessions 
uniformly distributed over a period of 5 months. Instances of wearing or not wearing 
eyeglasses are also present.  

Equipment included a digital camcorder that provided video data compressed at 5:1 ratio in 
DV format, while a high quality microphone provided speech at 16-bit audio at a frequency of 
32 KHz. The light was placed in both left and right sides and a blue background was used to 
ease the head segmentation.   

 

 

 

Figure 7-4: Examples from XM2VTS database. 

DAVID 
DAVID [50] is another large audio-video database that consists of 124 subjects, of which 31 
were recorded during 6 months, while the rest were recorded in one session. Shots include 
full-face combined with side-view on a plain background. Lip highlighting is present in two 
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subsets of the database to aid lip segmentation. The speech material comprises isolated digits, 
the English-alphabet E-set, and some ‘VCVCV’10 nonsense utterance.  

The database was recorded on 18 SVHS video tapes and we are not aware if it is digitized yet.  
Sample from the database are show in Figure 7-5.  

    
Figure 7-5: Examples from DAVID database. 

7.2 Experimental Setup 

We selected the CUAVE database for our experiments because it is free for research purposes 
and easy to distribute. Even though it does not define any evaluation protocol to follow, we 
measure identification rates for face and speaker classifiers, when we used them individually 
and combined:  

� �%100��

total

true

N
N

IR  

where Ntrue is the number of correct matched subjects, and  Ntotal is the total number of 
subjects. We adopt the Nearest Neighbor classifier; for each tested subject, we select the 
trained model that is at the shortest distance from the model of the test subject.  

We train and test the system with different shots lengths, see Table 7-2. Due to huge 
computational and storage requirements, we selected only 29 subjects from the 36 available 
subjects in database, divided into 16 males and 13 females.   

Table 7-2: Amount of train and test shots. 

Train Test 
Average shot 

length 
Average shot 

length 
% Sec 

Average amount 
of images % Sec 

Average amount 
of images 

30 40 120 70 84 252 
90 108 324 
30 40 120 10 12 36 
1 1.2 3 

- - 1 100 120 360 

The first step was to detect, extract and normalize the faces from the video sequence for 
applying face recognition from the still images (Figure 7-6). Because we did not find support 

                                                 
10 Sequence of vocals and consonants 

 68



in Matlab 6.5 for analyzing the videos, we first extracted all the frames into JPEG format with 
the use of OneStopSoft Video Decompiler11. Although the shots are color, we converted them 
to 256 gray levels for simplicity. For computational reasons, we sampled the face images 
sequence by selecting only every 10th frame. Statistics about the number of subjects, frames 
and face detection rate are shown in Table 7-3. We consider the number of faces to be enough 
for our experiments, taking into account we ignored profile views. 

We used the already extracted speech WAV files, which we down sampled from 16 KHz to 
12 KHz for compatibility with the speaker software (original in video was at 44 KHz). We 
considered tests with different lengths for training and testing shots, and we simulated 
different test conditions for both classifiers, such as illumination changes and noise. We fused 
the results at score level by weighted sum and weighted product, using several combinations 
of test conditions and methods. 

Table 7-3: Face detection rate from image sequence. 

Number of subjects (videos) 29 
Total number of frames in all videos 127766 
Frame sampling 1:10 
Total extracted faces 9992 
Average number of faces for subject 345 
Face detection rate 78.27 % 
Image size 63 � 74 

 

      

Figure 7-6: Example of detected faces. 

We underline the importance of the face detection step. This step is mandatory for a 
successful recognition because all faces must be extracted and then normalized to have the 
same orientation and size. It is also hard to decide the accuracy of the localization of the face; 
in general, the area should contain the mouth and the eyes, and background should be reduced 
as much as possible. The normalization step highly depends on the precise localization of eyes 
for example, and involves rotating the faces to the vertical position and scaling in order to 
have the same sizes.  

Large amount of faces have been dropped in our experiments because we miss detected the 
eyes and we rotated wrong. We also had difficulties caused by wrong subject framing, 

                                                 
11 The software can be found at www.onestopsoft.com 
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eyeglasses, beard and a high degree of variability of faces (Figure 7-1). In case of false 
detection or absent faces, decision is made at this module level. 

7.3 Face Recognition 

For both the Eigenfaces and Fisherfaces methods, we used the same test conditions. As we 
saw in Section 2.2, the main drawbacks of the image-based approaches are the changes in the 
head position and variation in illumination. The face detection process normalized the faces 
by all having the same size and rotation angle in the image plane12, wherever we detected 
successfully the face outline and the eyes. Rotations in 3D were not considered. Although this 
database does not include variations in illumination, we processed the test images by 
simulating a source of light from the left, as shown in Figure 7-7  

  
Original image Processed image 

Figure 7-7: Example of original image (left),  
and an artificially generated illumination (right). 

Figure 7-8 shows the two approaches we used according to the size of the training set. When 
we consider large training set, we clusterize first the face sequence as we explained in Section 
4.2, and then we model the training faces for each subject by vector quantization. In this way, 
we extract the most significant faces to be the training set from which we build the face space 
of all subjects. However, face sequence clustering is not useful for a small training set. For 
classifying test faces, we first apply Nearest Neighbor method in terms of the distance from a 
testing face to the training model for one subject, calculated as the average quantization 
distortion. Second, we adopted majority voting strategy after we got the best match for each 
face in the testing set.  

We show the identification rates calculated over the whole shots and at frame level. By shot 
level we refer to the number of corrected identified shots, while for frame level, the overall 
correct identified frames. 

                                                 
12 Axis of eyes is horizontal 
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Figure 7-8: Different approaches for experiments on face recognition. 

We summarize the parameters used in testing as shown in Table 7-4. 

Table 7-4: Parameters used for testing face recognition. 
Percent eigenfaces:   

�� for self-space 25% from the whole sequence 
�� for global face space 25% = 29 

Train model size: 4 

Test Condition: Train normal – test normal 
Train normal – test in changes conditions 

 

We present in Table 7-5 and Table 7-6 the performance results for the Eigenfaces method 
according to the number of eigenfaces used for a train sequence equal to 10% time of the shot, 
and 30% for testing.  

 

Table 7-5: Identification rate (%) by Eigenfaces method with respect to the number of 
eigenfaces for train model size = 4, and 29 � 4 = 116 training images. 

Normal Light Light changes    Conditions 
 
Number 
of Eigenfaces 

Shot Frame Shot Frame  

2 79.31 49.42   6.90 12.61 
5 96.55 72.30 27.56 23.89 
29  (25%) 100 84.06 75.86 60.63 
58  (50%) 100 84.67 79.31 63.29 
92  (80%) 100 85.33 75.86 62.89 
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Table 7-6: Identification rate (%) by Eigenfaces method with respect to the number of 
eigenfaces for MS = 8, and 29 � 8 = 232 training images. 

Normal Light Light changes    conditions 
 
Number 
Eigenfaces 

Shot Frame Shot Frame 

2 89.66 50.12 10.34 13.04 
5 100 74.31 31.03 28.59 
29   (12.5%) 100 83.84 72.41 59.25 
58   (25%) 100 85.61 79.31 65.30 
116 (50%) 100 86.29 79.31 66.13 
185 (80%)  100 86.29 79.31 66.77 
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Figure 7-9: Identification rate related to the number of eigenfaces  

for N=4 training images for subject. 

 

We show in Table 7-7 the identification rates for Eigenfaces and Fisherfaces methods in 
different test conditions, at shot and frame level. We use for training either one image or four 
images obtained by clustering the training shot. 
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Table 7-7: Identification rate (%) for Eigenfaces and Fisherfaces methods in different test 
conditions. The first row in cells shows majority voting results and the second shows the 
results by average distances. 

Normal Light Illumination variation 
Eigenfaces Fisherfaces Eigenfaces Fisherfaces 

Train 
shot 
size 
(%) 

Test 
shot 
size 
(%) Shot  Frame Shot Frame Shot Frame Shot Frame 

1 65.51 
72.41 64.63 79.31 

82.76 80.27 48.28 
55.17 44.22 75.86 

72.41 70.07 1 face 

 30 82.76 
75.86 60.54 86.21 

93.1 67.01 34.48 
37.93 32.96 72.41 

65.51 57.97 

1 100 
100 99.32 100 

100 100 82.76 
82.76 76.2 96.55 

96.55 93.20 

30 100 
100 84.06 100 

100 86.53 75.86 
65.52 60.63 93.1 

86.21 75.35 10 

90 100 
100 78.79 100 

100 80.16 75.86 
68.97 57.00 93.1 

79.31 69.54 

30 70 100 
100 88.30 100 

100 89.56 51.72 
48.27 44.38 100 

96.55 81.16 

 

We show in Table 7-8 the running times for the Eigenfaces and Fisherfaces methods. Training 
step includes constructing the self-eigenspaces and clustering, building the global face space 
by the two methods. Testing step consists in extracting features and matching. Experiments 
ran on an AMD Athlon XP 1600+, 256MB RAM computer. 

Table 7-8: Running times for the experiments shown in Table 7-7. 
Training Test 

Time (sec) Time (sec) 
Size (%) 

Clustering Eigenfaces Fisherfaces 
Size (%) 

Eigenfaces Fisherfaces 

90 178 209 
30 58 100 10 53 6 180 
1 8 40 

30 204 7 207 70 118 179 

 

Training video shot should include face variability as much as possible so that we can get 
distinct faces by clustering the sequence. Nevertheless, rotations in the image plane are 
performed by the face detection normalization, but 3D rotations are out of discussion without 
considering a 3D model of the face. Although we modeled each subject by selecting only their 
representative faces, the testing sequence does not include all the training states and thus we 
deal with one of the biggest drawback: the non-invariance to face rotations (tilted faces).  

For clustering of face sequence one can argue that the self-space is too sparse. Despite this, 
the clustering performs well because the nearest faces to the centroids prove to be 
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representative, as shown in Figure 4-4. We conclude that small variations in face expressions 
group  together as we assumed. We could also try to reconstruct the centroids by using a small 
number of eigenfaces but we infer that reconstruction will not be so accurate to be used for 
training.  

As depicted in Table 7-5 and Table 7-6 for the same number of eigenfaces, four images for 
training prove to be enough since there are small differences in results when using eight. 
Moreover, tuning the number of eigenfaces remains one of the most sensitive aspects since it 
implies the dimensionality of the space. We showed that a smaller set of eigenfaces is suitable 
for discrimination because we are not interested in reconstruction. Moreover, we need to 
optimize the trade-off between the performance and the computational costs. Of course, we 
tend to believe that the larger the dimensionality the better precision it is, but there are no 
significant improvements of the results, so a face space spanned over 25% eigenfaces from 
the whole training set seems to be sufficient in our case. The problem remains when a very 
large training set is used and decreasing the dimensionality will affect the classification. In 
general, tuning is done by performing experiments.  

As we expected, when variations of light are present the results significantly decrease for 
Eigenfaces method but not so much for the Fisherfaces (Table 7-7). LDA proves to be much 
more accurate than PCA method in noisy conditions with the cost of computational time and 
resources for the very big dimensionality within- and between-classes scatter matrices, as 
shown in Table 7-8. 

Definitely, choosing more than one training faces for each subject improves the accuracy in 
normal and noisy conditions, by getting even perfect results in the former scenarios. We 
considered the performance calculated at frame level and over the whole shots. The latter one 
is an example of mono-modal mono-expert fusion, and we implemented it by use of Majority 
Voting and by Nearest Neighbor after we calculated the average distance from the testing to 
the train model. The latter classification criterion performs worse than the former one when 
larger training and testing set are used.  

A thorough look at majority voting results shows there are very less probable candidates 
while most of the models got zero probability, different from distances approach where all the 
models have some distances. We can see from Table 7-7 that the video sequences provide an 
advantage over recognition from only one image. 

 

 74



7.4 Speaker Recognition 

Parameters used for speaker recognition experiments are summarized in Table 7-9. We used 
the same training and testing shot sizes as for face recognition in order to fuse the results from 
the same conditions. Speech stream is noiseless but we added white noise with SNR = 20dB 
to simulate noisy conditions. The identification results are shown in Table 7-10. 

Table 7-9: Parameters used for speaker identification task. 
Features type Mel Frequency Cepstral Coefficients (MFCC) 
Window size 30 ms 
Window overlapping 33% (10 ms) 
Window function Hamming 
Feature vector size 12 
Modeling Vector Quantization 
Model size 64 
Mel filters 30 
Test conditions train normal – test normal  

Train normal – noisy test, (SNR = 20dB; white noise) 

 

Table 7-10: Identification rate (%) for speaker recognition classifier. 

Train / test length SNR=∞ SNR = 20 dB 
30% / 70% 100.00 72.41 
10% / 90% 100.00 62.07 
10% / 30%  96.55 79.31 
10% / 1%  51.72 17.24 

 

Results of the speaker recognition classifier in noiseless conditions are good (Table 7-10), 
even for test shots of 40 seconds long (30%). Shots of 1.2 seconds length (1%) prove to be too 
short due to a large number of outliers.  

Similar to the face expert, we experimented in noisy conditions so we could have several 
fusion scenarios, because it was no use to combine two reliable modalities. Results 
significantly degrade in this case. Shots of 84 (70%) and 108 (90%) seconds are too long for 
testing in noiseless speech but they even decrease the results in noise because of the many 
miss-classified features. 
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7.5 Fusion of Face and Speaker Recognition 

We fused the speaker classifier results with eigenfaces results obtained by majority voting and 
average distances. For face classifier, the former results are in terms of probabilities, while 
the latter are in terms of distances. The speaker classifier provides results only in terms of 
distances. We normalized distances scores to range [0, 1] and then we mapped into 
probabilities as described in Section 6.5. 

We used the same shot lengths in different test conditions for each biometric. We considered 
three different weights for both classifiers (Table 7-11) as well as a non-adaptive stream 
reliability function presented in Section 6.6.  

 

Table 7-11: Weights used in Sum and Product rules. 
 Face (%) Speaker (%) 
I 30 70 
II 50 50 
III 70 30 
IV Non-adaptive 

 

Table 7-12: Fusion results for 10% training and 30% testing shots. First row shows the fusion 
of the probabilities scores and the second the fusion of the distances scores. 

Noise Individual Fusion 

Weighted Sum Weighted Product 
F S FR SR 

I II III IV I II III IV 

0 0 
100 

100 

96.55 

96.55 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

0 1 
100 

100 

79.31 

79.31 

93.1 

100 

96.55 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

1 0 
75.86 

65.52 

96.55 

96.55 

100 

93.1 

93.1 

89.66 

79.31 

86.21 

100 

100 

96.55 

96.55 

93.1 

93.1 

86.21 

86.21 

96.55 

100 

1 1 
75.86 

65.52 

79.31 

79.31 

89.66 

89.66 

82.76 

86.21 

79.31 

82.76 

82.76 

89.66 

93.1 

89.66 

93.1 

89.66 

86.21 

86.21 

93.1 

86.21 
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Table 7-13: Fusion results for 1 image and 10% speech long training, and 1% testing shots. 
First row shows the fusion of the probabilities scores and the second the fusion of the 
distances scores. 

Noise Individual Fusion 

Weighted Sum Weighted Product 
F S FR SR 

I II III IV I II III IV 

0 0 
65.51 

72.41 

51.72 

51.72 

75.86 

72.41 

75.86 

72.41 

72.41 

79.31 

79.31 

75.86 

75.86 

82.76 

72.41 

86.21 

72.41 

86.21 

72.41 

86.21 

0 1 
65.51 

72.41 

17.24 

17.24 

37.93 

48.27 

72.41 

72.41 

68.97 

79.31 

72.41 

72.41 

68.97 

68.97 

68.97 

82.76 

68.97 

79.31 

68.97 

82.76 

1 0 
48.28 

55.17 

51.72 

51.72 

65.51 

62.07 

58.62 

62.07 

48.28 

68.97 

51.72 

44.82 

51.72 

72.86 

51.72 

68.97 

51.72 

62.07 

51.72 

55.17 

1 1 
48.28 

55.17 

17.24 

17.24 

65.52 

62.07 

58.62 

62.07 

48.28 

68.97 

55.17 

62.07 

51.72 

75.86 

51.72 

68.97 

51.72 

62.07 

51.72 

68.97 

 

Table 7-14: Fusion results for 1 image and 10% speech long training, and 30% testing shots. 
First row shows the fusion of the probabilities scores and the second the fusion of the 
distances scores. 

Noise Individual Fusion 

Weighted Sum Weighted Product 
F S FR SR 

I II III IV I II III IV 

0 0 
82.76 

75.86 

96.55 

96.55 

100 

100 

100 

100 

96.55 

100 

100 

100 

100 

100 

100 

100 

96.55 

100 

100 

100 

0 1 
82.76 

75.86 

76.31 

76.31 

89.66 

96.56 

89.66 

96.56 

86.21 

96.56 

86.21 

96.56 

96.56 

96.56 

96.56 

96.56 

96.56 

96.56 

96.56 

93.1 

1 0 
34.48 

37.93 

96.55 

96.55 

100 

93.1 

89.66 

86.21 

48.28 

72.41 

100 

93.1 

86.21 

96.56 

82.76 

82.76 

65.52 

75.86 

82.76 

100 

1 1 
34.48 

37.93 

76.31 

76.31 

86.21 

79.31 

72.41 

72.41 

44.82 

62.07 

44.82 

86.21 

79.31 

86.21 

75.86 

79.31 

68.97 

58.62 

68.97 

86.21 
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We chose to integrate the Eigenfaces results because this method is less reliable than 
Fisherfaces, and we wanted to show the improvements for low recognition rates of the 
classifiers. Simple rule of thumb takes its place in our results: if one stream is more reliable 
and if it contributes more to the fusion, then the result is better.  

At a first glance, when used multiple images for training, the majority voting outperforms 
average distance criterion for individual classifier, but let us see what happens after fusion. 
We observe in the case of worse results for both classifiers, fusion distance scores outperform 
the one using probabilities scores. We argue this due to the mapping from distances to 
probabilities for the speaker classifier, because post-mapping is a heuristic method in practice.  

Overall, fusion increases the performance compared to individual classifiers in most of the 
cases, even choosing equal weights for both experts. The non-adaptive weighting proved to be 
successful since it reached the maximum result from the three weights and even increased in 
some cases. Stream reliability has been calculated before fusion, over an arbitrary testing set.  
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8. Conclusions 
In this work, we have addressed the problem of a bimodal biometric system to identify people 
from audio-video shots. The key aspect consisted of the fusion of face and speaker 
recognition. We covered both modalities with the emphasis on face recognition and the fusion 
techniques. 

For face recognition, we first addressed the face detection task, which turned out to be very 
complex problem because of the high degree of variability of faces. For recognition task, we 
studied statistical methods such as Eigenfaces and Fisherfaces because they are 
straightforward to implement and we could present notions such as face space as well. The 
main drawbacks of this approach are the tilted faces and pose illumination changes. We relied 
on image sequences to increase the accuracy of the recognition and we presented an 
appropriate method for face modeling based on clustering of the video sequence. 

We briefly introduced the field of speaker recognition and performed experiments using 
software developed at the University of Joensuu. We adopted the score level fusion strategy 
and showed that the joint use of both face and voice biometrics provides higher accuracy than 
the single modalities. Moreover, every small amount of information brought by one of the 
experts still counts for the overall system. The main problem consists of choosing appropriate 
weights according to the reliability of the individual streams, but we showed that a non-
adaptive stream reliability approach performs well. 

In our work, we also encountered the problem of continuous fusion, which by our knowledge 
has not been seriously treated until now. We propose this problem as well as algorithms for 
adaptive stream reliability for further research. 
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