

Lossless image compression
using n-ary context tree

Nadezda Nechaeva

06.02.2006

University of Joensuu

Department of Computer Science

Master’s Thesis

 ii

Abstract

In this thesis various methods for lossless compression of source image data are analyzed and

discussed. The main focus in this work is lossless compression algorithms based on context

modeling using tree structure.

The central aspect in context modeling is different context templates, which are based

on discrete wavelet transform coefficients, local gradients and intensity of samples in the

image.

This work include research on how to use n -ary context tree structure, prediction

modeling and probability assignment in lossless image compression based on context

modeling technique.

The main advantage over current methods is increasing effectiveness of image

compression and developing new lossless compression methods based on context modeling

for different type grayscale images: medical, astronomical, noisy natural images.

 iii

Contents

1. Introduction ... 1

1.1 Motivation ... 1

1.2 Problem formulation .. 2

1.3 Structure of the thesis... 2

2 Basic concepts in image compression ... 4

2.1 Lossless and lossy cases ... 4

2.2 Measures of compression ... 5

2.3 Paradigm of compression ... 6

2.4 Arithmetic coding .. 9

3. Lossless compression methods... 14

3.1 JPEG2000 standard .. 14

3.2 LOCO-I ... 20

3.3 CALIC... 22

4. Context modeling ... 26

4.1 Fundamentals ... 26

4.2 Context Tree .. 28

4.2.1 Structure of context tree .. 28

4.2.2 Static and semi-adaptive approaches.. 30

4.2.3 Construction of an initial context tree .. 30

4.2.4 Pruning of context tree .. 31

5. General Context Tree based on Intensity ... 34

5.1 Context template .. 34

5.2 Compression scheme.. 35

6. General Context Tree based on DWT coefficients ... 37

6.1 Discrete Wavelet Transform... 37

6.2 Practical aspects for DWT.. 40

6.3 Pyramidal algorithm for practical realization of DWT .. 42

6.4 Context template based on DWT coefficients ... 43

6.5 Context template based on conjugate DWT coefficients ... 44

6.6 Compression scheme.. 45

7. General Context Tree based on local gradients .. 47

7.1 Prediction modeling ... 47

 iv

7.2 Definition of local gradient .. 48

7.3 Scalar quantization... 49

7.4 Context template based on local gradient.. 50

7.5 Compression scheme.. 51

8. Comparative analysis of considered methods ... 53

9. Experiments and Discussions .. 56

10. Conclusions .. 66

References .. 67

Appendix 1 ... 70

Appendix 2 ... 71

Appendix 3 ... 73

Appendix 4 ... 74

Appendix 5 ... 76

Appendix 6 ... 77

Appendix 7 ... 78

 1

1. Introduction

1.1 Motivation

In recent years, there has been a vivid interest in compression of “electronic” or digital image

data. In particular, image compression is considered very useful in multimedia applications

and in distributed information systems that operate in network environments. Especially,

lossless compression is very useful for medical images, where loss of information is

forbidden. Our main interest belongs to the lossless case, when image do not reduce any

information in compression.

However, the vast majority research and development in image compression area is

focused on lossy compression. It is agreed upon of fact that by allowing a small amount of

distortion in the reconstructed picture one can obtain much better compression than is possible

for lossless coding. From information theory it is known principle about tradeoff between the

compression performance and the amount of distortion in the restored picture. Such tradeoff

was formalized in rate-distortion theory of Shannon [Shan48]. In such case lossless

compression can only provide moderate compression performance. Nevertheless, there are

situations where only lossless (or near lossless) compression can be used, for instance, in

medical images.

One of developing direction in lossless compression methods is context modeling. In

general, basis of lossless compression schemes is paradigm applying “universal modelling

and coding” proposed by Rissanen and Langdon in 1981 [RL81]. Context modeling is one of

the varieties of modeling step. At present time compression methods are in existence, which

are based on context modeling, for instance, CALIC and LOCO-I [WM97a, WSS96]. In this

thesis different approaches of context modeling with applying different schemes for lossless

compression are considered. One of these is context tree structure, which allows convenient

storing and processing information during construction of the probabilistic model of source

image data.

For lossless compression algorithms in this thesis the wavelet analysis also is used.

Last decade a new concept known as wavelet was introduced. Currently, wavelets are widely

applied to pattern analysis, at processing and synthesis of various signals, for example speech,

medical; for studying properties of turbulent fields and in many other cases. Mallat was first,

who applied wavelet to compression of images [Mallat89].

 2

1.2 Problem formulation

The goals of this thesis can be formulated as follows:

1.Designing new context templates, which can be used for context modeling by

applying the context tree with optimal and incomplete structure, for lossless

compression algorithms;

2.To apply the context tree structure to algorithms, which realize lossless compression

by context modeling based on various templates;

3.To analyze the context modeling approach with using n -ary general context tree;

4.Investigation of lossless compression methods: JPEG2000, LOCO-I, CALIC, which

are based on paradigm of modeling and coding. Here the methods, which use

context modeling, the central interest are represented.

During investigation of known lossless compression methods try to use its strong sides

for developing new approaches of context modeling. For developing new templates to use the

discrete wavelet transform coefficients and local gradients (this term borrows from LOCO-I

method). In new methods to apply n -ary context tree with incomplete and optimal structure

[AKF05] for effective processing of statistical information during the context modeling based

on different templates.

1.3 Structure of the thesis

In Section 2, basic concepts of image compression are represented; measures for estimating

effectiveness of compression algorithm are considered. Arithmetic coding is described,

because it is a part of compression in many algorithms based on “modeling and coding”

principle, and as coding usual used arithmetic coding. In Section 3, known lossless

compression algorithms are described: JPEG2000, LOCO-I, CALIC; its schemes and

advantages here are considered. In Section 4, common concepts of context modeling

technique are described; this section contains full description of n -ary general context tree.

Section 5 contains description of General Context Tree based on Intensity algorithm, which

uses context modeling approach. Section 6 describes compression algorithm of General

Context Tree based on discrete wavelet transform (DWT) coefficients, which uses special

context template based on DWT coefficients. In Section 7, the compression algorithm of

General Context Tree based on local gradient is represented; the different point here is using

the local gradient as template for context modeling. Comparable analisys of main features for

 3

considered compression algorithms is in Section 8. In Section 9, the comparable analysis of

compression efficiency between new and known methods of lossless compression is

represented; also here are empirical experiments, which were produced during developing of

new algorithms. Conclusions of the thesis are in Section 10.

 4

2 Basic concepts in image compression

2.1 Lossless and lossy cases

The assignment of compression is to code the image data into a compact form, minimizing

both the number of bits in the representation, and the distortion caused by the compression.

The fundamental principle for all compression methods is following idea: if represent oft-

recurring elements as short codes and rare-recurring as long codes, then the block of data

needs a smaller memory size than if all elements were represented by codes of identical

length.

A compression algorithm is “lossless” (or reversible) if the decompressed image is

identical with the original. Respectively, a compression method is “lossy” (or irreversible) if

the reconstructed image is only an approximation of the original one [Fränti00].

Some loss of information can be acceptable for the following three reasons:

1. Significant loss can often be tolerated by the human visual system without

interfering with perception of the scene content.

2. In most cases, digital input to the compression algorithm itself is an imperfect

representation of the real world scene. This is certainly true when the image

sample values are quantized version of the real-valued quantities.

3. Lossless compression is usually incapable of achieving the high compression

requirements of many storage and distribution applications.

The term lossy is used in an abstract sense, and does not mean random lost pixels, but

instead means loss of a quantity such as a frequency component, or perhaps loss of noise. The

fundamental question of lossy compression methods is where to lose information.

Nevertheless, the lossless compression is often applied in medical applications,

because on such images all information has big significance and lossy compression here is

intolerable. Lossless compression is also applied in cases where it is difficult to determine

how to introduce an acceptable loss, which will increase compression. In palletized color

images, for example, a small error in the numeric sample value may have an intense effect

upon the color representation. Finally, lossless compression may be appropriate in

applications where the image is to be extensively edited and recompressed so that the

accumulation of errors from multiple lossy compression operations may become

unacceptable.

 5

In the definition of lossless and lossy compression, it is assumed that the original

image is in digital form. For compression digital images are used; but source may be in analog

view in the real world, and therefore, the loss in image quality already takes place in

digitalization of source images, when the picture is converted from analog to digital

representation. For simplicity, in compression the digitalization phase is skipped, images are

stored in digital form.

2.2 Measures of compression

The compression methods are evaluated by two main criteria: compression efficiency and

distortion. The most obvious measures of compression efficiency are “bit-rate” and

“compression ratio”. For our purposes an image is a two dimensional sequence of sample

values:

221121 0,0],,[NnNnnnx <≤<≤ , (2.1)

having finite size, 1N and 2N , in vertical and horizontal directions respectively. The sample

value],[21 nnx of source image is intensity of the location],[21 nn and can have the following

values:

{ }12...,,1,0],[21 −∈ Bnnx (2.2)

for unsigned imagery, where B is the number of bits on each sample. The purpose of image

compression is image representation with a string of binary digits or “bits”, called the

compressed “bit stream”, denoted as C. The objective is to keep the length C as small as

possible. In the absence of any compression, we require BNN 21 bits to represent the image

sample values. Let us define the compression ratio as following equation:

compression ratio =
C

BNN 21 (2.3)

Equivalently, we define the compressed bit-rate, expressed in bps (bits per sample), as

follows:

bit-rate =
21NN

C
 (2.4)

Bit-rate is the most obvious measure of compression efficiency; it shows the average number

of bits per stored pixel of the image. For lossy compression bit-rate is a more meaningful

performance for image compression systems, since the least significant bits of high bit-depth

imagery can often be excluded without significant visual distortion. The average number of

 6

bits spent in representing each image sample is often a more meaningful measure of

compression performance, because it is independent of the precision with which original

samples were represented. If the image is displayed or printed with physical size regardless

the size of samples, then more meaningful measure in such case is the size of the bit-stream.

Such situation is typical for lossy compression, the bit-rate is a meaningful measure only

when 1N and 2N are proportional to the physical dimensions with which the image is to be

printed or displayed.

Compression algorithms are also estimated by distortion measure, i.e. compression

error. The more distortion we allow, the smaller the compression representation can be. The

primary goal of lossy compression is to minimize the number of bits required to represent an

image with an allowable level of distortion. The measure of distortion is an important feature

for lossy compression.

Formally, distortion is calculated between the original image,],[21 nnxx ≡ , and the

reconstructed image,],[ˆˆ 21 nnxx ≡ . The quantitative distortion of the reconstructed image is

measured by the mean absolute error (MAE), mean square error)(MSE , or peak-to-peak

signal to noise ratio)(PSNR :

∑ ∑
−

=

−

=

−=
1

0

1

0
2121

21

1

1

2

2

],[],[ˆ1 N

n

N

n
nnxnnx

NN
MAE (2.5)

()∑ ∑
−

=

−

=

−=
1

0

1

0

2
2121

21

1

1

2

2

],[ˆ],[1 N

n

N

n
nnxnnx

NN
MSE (2.6)

MSE
PSNR

B)12(log10 10
−

= (2.7)

The PSNR is expressed in dB (decibels), good reconstructed images typically have value of

30dB.

For estimation of compression method the following measures are applied: speed of

compression, robustness against transmission errors and memory requirements of the

algorithm. For estimation efficiency of algorithms in this thesis we will use the value of bit-

rate.

2.3 Paradigm of compression

Compression methods of context modeling for data compression are based on a paradigm of

compression with applying “universal modelling and coding” proposed by Rissanen and

 7

Langdon in 1981 [RL81]. According to the given approach the compression process consists

of two separate parts:

• modeling;

• coding.

Modeling assigns probabilities to the symbols, and coding produces a bit sequence from these

probabilities. This concept is illustrated in Figure 2-1.

Figure 2-1. Principle compression scheme based on concept “universal modeling and

coding”.

Decompression scheme is symmetrical to compression scheme illustrated in

Figure 2-1. The same model for both coder and decoder is used.

For all compression methods exists following common principle: if representation of

oft-recurring elements is short codes and representation of rare-recurring elements is long

codes, then the block of data needs a smaller memory size than if all elements were

represented by codes of equal length. Exact connection between the symbol probability and

its code was first established in Shannon’s “noiseless source coding theorem” [Shan48]. The

essence of this theorem is that element is with probability)(isp is represented more

advantageous by code with length)(log2 isp− bits. If during the coding process length of

codes equals exactly)(log2 isp− bits, it means that length of coded bit-stream is minimal for

all possible compression methods. Such value is denoted as entropy:

)(log)(2 ispxH −= (2.8)

and means information content of an element is in the alphabet. Here source alphabet is a set

of all possible non-recurrent elements from source image. The entropy rate of a random

process provides a lower bound of the average number of bits that must be spent in coding

code
bits

pixel
values

Coder

Source data Modelling

Coding

Compressed
data

pixel value
+

estimated probabilities

 8

each of its outcomes, and this bound may be approached arbitrary closely as the complexity of

the coding scheme is allowed to grow without bound.

If the probability distribution { })(ispF = is invariable and probabilities)(isp are

independent, then the average code length is given by:

)(log)()(2
1

i

k

i
i spspxH ⋅−= ∑

=

 (2.9)

where k is the number of elements (or symbols) in the alphabet. This value also means

entropy of the probability distribution.

In order to achieve good compression rate, exact probability estimation is needed. The

more accurately the probabilities of symbols occurrence are estimated, the more closely

codelength correspond to the optimal, and the better compression is.

Since the model is responsible for the probability estimation of each symbol, statistical

modeling is one the most important tasks in data compression. It can be classified into the

following three categories:

• Static modeling;

• Semi-adaptive modeling;

• Adaptive (or dynamic) modeling.

Static modeling is the simplest case. In the static modelling the same model (code

table) is applyed to all input data ever to be coded. Code table with predefined alphabet is

constructed based on a test set of data used this alphabet. Unfortunately the static modelling

fails if the input data does not base on the same alphabet as model. The advantage of static

modelling, is that no side information is needed to transmit to the decoder, and that the

compression can be done by one-pass over the input data.

Semi-adaptive modeling analyzes the source data before coding. Probability

distribution for symbols coincides to source data stream because the code table is calculated

after analyzing the input stream. The main feature for semi-adaptive modeling is collection of

statistical information from the source data, and the encoding is based on the semi-adaptive

code table. Disadvantage of semi-adaptive modeling is that constructed model must be stored

in the compressed file.

Adaptive model changes the symbol probabilities during the compression process in

order to adapt the statistics during the process. Initially the compression process starts with an

initial model, so the model does not need to be transmitted. During the process, the model

adaptes by the symbols, which have been transmitted already. It is important that the model

gets adapted only by the symbols, which have been transmitted already, since the decoder

needs to be able to adapt the model in the same way later at the decompression process. Since

 9

the decoder knows the before transmitted symbols, it can adapt to the model in the same way

than the coder did.

The properties of different modeling strategies are summarized as follows [Fränti00]:

Static modelling: Semi-adaptive modelling: Dynamic modelling:

+ One-pass method - Two-pass method + One-pass method

+ No side information - Side information needed + No side information

- Non-adaptive + Adaptive + Adaptive

+ No updating of model

during compression

+ No updating of model

during compression

- Updating of model during

compression

2.4 Arithmetic coding

Arithmetic coding is known as optimal coding method. In respect to Shannon’s theorem

[Shan48], the best possible code contains a contribution of p2log− bits from the encoding of

each symbol whose probability of occurrence is p.

The most important advantage of arithmetic coding is its flexibility, which means that

it can be used in conjunction with any model that can provide a sequence of probabilities. For

example, adaptive statistical models may be used, because the coding process does not depend

on the modeling part, i.e. this great flexibility is result from the separation of the coder from

the modeling process [RL81].

In arithmetic coding, the data is represented by an interval of real numbers between 0

and 1. During the processing, the interval needed to represent the data becomes smaller, and

the number of bits needed to specify this interval grows. Successive symbols reduce the size

of the interval with accordance to the probabilities of the symbols generated by the model.

More likely symbols reduce the range by less than unlikely symbols, and hence, add fewer

bits to the compressed data.

Arithmetic coding contains the following steps:

1. The coding process begins with a “current interval”),[HL initialized to)1,0[

2. For each symbol of the source data stream two steps are performed (see Figure 2-2):

2.1 The current interval),[HL is divided into subintervals, one for each possible

alphabet symbol. The symbol’s subinterval has size that is proportional to the

estimated probability of the symbol will be the next symbol in the source data

stream, according to the model.

 10

2.2 The subinterval),[HL ′′ corresponding to the symbol that actually occurs next

will become as the new current interval.

3 Final interval is coded by enough bits to distinguish it from all other possible

intervals.

Figure 2-2. Subdivision of the current interval based on the probability of the input

symbol ia .

In step 2, subinterval corresponding to the occurred symbol ia is computed. For this

calculation following cumulative probabilities are used:

∑∑
=

−

=

==
i

k
kN

i

k
kC pPpP

1

1

1
, (2.10)

The new subinterval is given by:

))(),([LHPLLHPL NC −+−+ (2.11)

The product of the probabilities of the individual alphabet symbols is the length of the

final subinterval, which equals to the probability p of the particular sequence of symbols in

the source data stream.

Let us consider the fundamental properties of binary arithmetic. With n bits, at most
n2 different combinations can be represented, and vise versa, with n bits the code interval

)1,0[can be divided into n2 parts each having the length n−2 . This dividing process is

illustrated in Figure 2-3.

 1 0 H ′ L ′

1 0

probability of ia

 H L 1 0
Old interval

Decomposition

New interval

 11

1

0

111

110

101

100

011

010

001

000

1

0

11

10

01

00
0.125

0.25

0.375

0.5

0.625

0.75

0.875

Figure 2-3. Interval)1,0[is divided into 8 parts, each part has the length of

125.02 3 =− . Each interval can now be coded by using 3125.0log2 =− bits.

Let us denote the length of interval by A, if nA −= 2 , the interval with the length A can

be coded using A2log− bits (assuming A is a power of 2). As described above the basic idea

of arithmetic coding is to represent the source data stream as a small interval between 0 and 1.

The coding process is the binary code representation of interval, which takes A2log− bits.

Thus, the final interval is a product of the probabilities of the coded symbols:

∏
=

=
n

i
ifinal pA

1

 (2.12)

where ip is the probability of the ith alphabet symbol. The interval can be coded by:

() ∑∏
==

−=−=
n

i
i

n

i
i ppAC

1
2

1
2 loglog (2.13)

number of bits (assuming that A is a power of 2). The code length after coding by applying

the same model to the source alphabet is given by:

() ∑
=

⋅−=
m

i
ii ppAC

1
2log (2.14)

where m is the number of symbols in the alphabet, and ip is probability of a particular

symbol in the alphabet. The main conclusion here is that the code length equals to entropy,

which means that the source data can be coded optimally if A is a power of 2.

If the legth of the final interval is not exactly a power of 2, then the final interval can

be approximated by any of its subinterval thet meets the requirement nA −= 2 . Thus the

approximation can be bounded by:

AAA
≤′≤

2
 (2.15)

yelding to the upper bound of the code length:

 12

11log
2

log)(22 +=+−=−≤ HAAAC (2.16)

The upper bound of the coding deficiency thus is 1 bit for the entire file. The number of bits

used by arithmetic coding to encode a symbol with probability p is no bigger then entropy

plus one.

One of the implementations of arithmetic coder is QM-coder. The main differences

between them are as follows [Fränti00]:

• The input alphabet of QM-coder must be in binary form;

• For gaining speed, all multiplications in QM-coder has been eliminated;

• QM-coder includes its own modeling procedures.

Inspite of binary form of input alphabet QM-coder has possibility of having multi-alphabet

source. The symbols are coded by one bit at a time, using a binary decision tree. The product

of the node decisions probabilities equals to the probability of each symbol.

The multiplication operations are replaced by fast approximations or by shift-left-

operations. Let us denote the more probable symbol as MPS, and the less probable symbol as

LPS. The interval is divided so that LPS subinterval is above the MPS subinterval. If

probability of LPS equals Qe and the interval is A, then the lengths of LPS and MPS

subintervals are A·Qe and A·(1-Qe) respectively. Such subdivision process is illustrated in

Figure 2-4.

A+C

C

MPS

LPS A Qe

A (1-Qe)

C+A-Qe A

Figure 2.4. Illustration of symbol ordering and ideal interval subdivision.

Instead of operation in the scale)1,0[, the QM-coder operates in)5.1,0[.

Renormalization (or zooming) is processed every time the length of the interval gets below

half the scale 0.75. Thus the length of interval always is in the range 5.175.0 <≤ A . The row

approximation is giben by:

QeQeAA ≈⋅⇒≈1 (2.17)

 13

During coding a symbol the interval is changes as follows:

After MPS:

() QeAQeAAQeAA
C

−≈⋅−=−⋅= 1
unchanged is

 (2.18)

After LPS:

()
QeQeAA

QeACQeAACQeACC
≈⋅=

−+≈⋅−+=−⋅+= 1
 (2.19)

All multiplication operations are eliminated, except those needed for the

renormalization. Multiplications in renirmalization can be performed by bit-shifting

operations.

QM-coder has its own modeling procedure. The modeling phase determines the

context to be used and the binary decision to be coded. QM-coder then picks up the

corresponding probability, performs the actual coding and updates the probability distribution

if necessary.

 14

3. Lossless compression methods

3.1 JPEG2000 standard

The JPEG2000 standard supports both for lossy and lossless compression. This standard is

supported in most applications that process image and video data.

Modified wavelet trellis coded quantization (WTCQ) algorithm is the basis of

JPEG2000. The WCTQ algorithm has the following components: the discrete wavelet

transform (DWT), trellis coded quantization (TCQ) [MF90] (using step sizes chosen via

Langrangian rate allocation), and binary arithmetic bit-plane coding of subbands. The bit-

plane coding operates on TCQ indices (trellis quantized wavelet coefficients) in a way that

enables successive refinement. The bit-plane coding is processed in order from most to least

significant. To exploit dependencies within subbands, spatial context moles are used. In

WTCQ algorithm, vector quantization realizes based on finite set of scalar quantizers, where

optimal quantizer are found by search of all variants. Such vector quantization has big

complexity, therefore uniform scalar quantizer is used in practice with deadzone and trellis

coded quantization used optionally [MT02]. Contexts can be chosen within a subband and

across subbands. The WTCQ bit-plane coder uses inter-subband context to maximize

flexibility in scalable decoding and to facilitate parallel implementation [MF90].

In general encoding process in JPEG2000 standard can be shown as illustrated in

Figure 3-1.

Figure 3-1. The JPEG2000 encoding process

In the preprocessing step, the tiling is processed; level offset and irreversible color

transform (ICT). The image to be encoded might be larger than the amount of memory

available to the encoder. To solve this problem source image is partitioned into rectangular

and non-overlapping tiles of equal size. JPEG2000 expects its input sample data to have a

Original
Image Data

Preprocessing

DWT Uniform
quantizer

Embedded
Block Coding

Compressed
Image Data

 15

nominal dynamic range centered about zero. This expectation is necessary since current

standard uses high-pass filtering. The main motivation for the offset stage is that almost all of

the subband samples produced by DWT involve high-pass filtering, and hence, have a

symmetric distribution about zero. The level offset stage ensures that this expectation is met.

If the original B -bit image sample values are unsigned (non-negative) quantities, an offset of
12 −− B is added so that the samples have a signed representation in the following range:

11 2][2 −− <≤− BB nx (3.1)

If the data is already signed (centered about zero), no adjustment is performed.

The color transform is optional. It may be used only when three or more colour

components are available and only when the first three components all have identical size and

identical bit-depth. The assumption is that the first three components contain the rad, green

and blue sample values of a color image. ICT converts RGB data into rbCYC format with

luminance (or intensity) channel and two colour difference channels. Irreversible color

transform is performed by applying the following formula into source image sample values:

−−
−−=

B
G
R

C
C
Y

r

b

081.0419.0500.0
500.0331.0169.0
114.0586.0299.0

 (3.2)

Irreversible colour transform is applied for lossy compression, for lossless mode reversible

color transform exists, which is approximation of ICT.

Discrete wavelet transform is one of the main steps in JPEG2000 standard. By

applying DWT to each tile image are decomposed into high- and low subbands as illustrated

in Figure 3-2.

Figure 3-2. The DWT principle scheme.

The DWT is performed by filtering each column and row of the preprocessed image

tile with a high- and low-pass filters. Because this process is double the number of samples,

the output from each filter is downsampled by 2, so that the sample rate remains a constant.

DWT is performed by applying Mallat’s pyramidal algorithm [Mallat89]. At first are

][nx

high-pass

0h

1h

2

2

low-pass

low-pass output

high-pass output

 16

processed all columns and then all rows from the source image. The DWT process is

illustrated in Figure 3-3.

Figure 3-3. DWT process for the Y component.

In practice, JPEG2000 applies DWT at first to columns and then to rows, but it does not

matter if rows or columns of the component matrix are filtered first, the result is the same. In

Figure 3-3 the Stage 1 DWT for the Y component of the original preprocessed image tile is

illustrated. In Stage 2 the same scheme as on Figure 3-3 is applied into upper left subband,

which was obtained in Stage 1. This process is iterative and the number of stages is

parameter. The JPEG2000 standard supports value of DWT stages D in the range

320 ≤≤ D . Typical values are in the range 4=D through 8=D with 5=D sufficient to

obtain near optimal compression performance for the full resolution image. For reversible

DWT is applied “spline 5/3 transform”, since the low- and high-pass analysis filters have 5

and 3 taps respectively [MT02].

After DWT transform quantization is performed. The wavelet coefficients are

quantized by using uniform scalar quantizer with deadzone. For each subband b , a basic

quantizer step size denote as b∆ is used to quantize all coefficients in that subband according

to:

∆

=
b

y
ysignq)((3.3)

Stage 1 DWT

Filter rows
Downsample
columns by 2

Filter columns

Original image

Downsample rows by 2

 17

where y is the input to the quantizer (in our case it is value of DWT coefficient),)(ysign

denotes the sign of y , b∆ is size of quantization step and q is the resulting quantizer index.

Deadzone means that quantization range about 0 is b∆2 . Obviously, the quantization step is

eliminated for lossless compression.

Embedded block coding is final stage in JPEG2000 compression scheme. The basis of

this encoding is context-based adaptive binary arithmetic coder, which is used to compress

each bit-plane. Subbands with DWT coefficients are partitioned into small separate code

blocks (e.g. 6464× or 3232× samples) such that code blocks from a subband have the same

size. Each code block is coded separately. During the coding process coefficients into the

block are represented as bit-planes. One of these bit-planes is contained from sign of

coefficients, others correspond to different digits of coefficient values (position of bit in plane

corresponds to position of coefficient in the block). Coding of coefficients means coding of

bits, which form these coefficients. So, the arithmetic coding is bit-oriented. Arithmetic coder

(adopted QM-coder) here is context based, context is formed as function of bits values, which

are surround of coding bit.

Since context-based arithmetic coding is employed, it means that the context selection

is necessary. Context-based binary arithmetic coding is a key component in the JPEG2000

image compression standard. The high-compression efficiency of the JPEG2000 is in part due

to the careful selection of contexts. In JPEG2000, 18 contexts are specified to code

information.

In the context-modeling module, all quantized transform coefficients of the code-

blocks are expressed in signmagnitude representation and divided into one sign bitplane and

several magnitude bit-planes (from most significant to least significant). During coding scan,

the bit-plane can be divided into several stripes. Each stripe is composed of four row samples.

The bit-plane is scanned stripe by stripe. In order to improve the embedding of the

compressed bit-stream, each bit-plane is coded in three coding passes. Each sample in a bit-

plane is coded in only one of the three coding passes. The three coding passes and the

condition for each pass are described as follows:

1) Significant pass (SP): The coded sample is insignificant and at least one of the

neighbour samples is significant.

2) Magnitude refinement pass (MRP): The relative sample of the previous bit-plane is

set significant.

3) Cleanup pass (CP): Those samples that have not been coded by pass SP or pass

MRP in current bit-plane.

 18

The Bit-Plane Coding (BPC) works on strips of four elements along the rows. The

code block scan is carried from left to right. The BPC requires four-state information bits and

1 magnitude bit for each bit position. The state information bits determine in which pass each

bit is coded and are used in the generation of context and data bits. The four-state information

bits are as follows:

1. Significance bit (σ) – This is set whenever the magnitude bit of the corresponding

subband coefficient is 1 for the first time.

2. Visited once bit (η) – This bit is set when the bit is coded in a pass.

3.Magnitude refinement coded bit (σ') – This bit is set the first time the magnitude

refinement primitive is used.

4.Sign bit (χ) – This bit is 0 for positive numbers and 1 for negative numbers and is

obtained from sign-magnitude representation of the subband values.

All the state bits except for η bits are maintained across all the bit planes. The η bits

are reset at the end of each bit plane. It should be noted that σ and χ for the neighbors that are

outside the strip are assumed to be zero. All the three passes make use of one or more of the

following four primitives – zero coding (ZC), sign coding (SC), magnitude refinement coding

(MRC), and run length coding (RLC). All the primitives use context which is a binary

representation of the neighboring pixels. Context for the data in bit position X is formed from

the eight neighboring values in the σ matrix as illustrated in Figure 3-4.

D0 V0 D1

H0 X H1

D3 V1 D2

Figure 3-4. Template for context selection.

The 8 neighbors are classified into three groups: horizontal neighbors (H), vertical neighbors

(V), and diagonal neighbors (D).

Let us consider primitives more detail:

• ZC – uses nine (contexts 0–8) out of possible 19 contexts. The data is the magnitude

of the bit position.

• SC – uses five contexts (contexts 9–13) and is a two-step process. In the first step,

the σ and χ of the horizontal and vertical neighbors are used to form the horizontal

and vertical contributions and a XOR bit. In the second step, context is formed from

 19

the two contributions and data is formed by exclusive OR operation of the sign bit

and the XOR bit.

• MRC – uses three contexts (contexts 14–16). The contexts are formed based on

whether it is the first time the magnitude refinement is being used on a certain

position and its eight immediate neighbors. The data is the magnitude bit.

• RLC – uses the remaining two contexts (contexts 17–18). It is invoked only at the

beginning of a strip if the σ of all the eight neighbors is 0 for all the bits in a strip. If

none of the bits in the strip become significant, context 17 with data = 0 is used. On

the other hand, if any bit does become significant, context 17 with data = 1 is used.

This is followed by most significant bits and least significant bits of zero index (ZI)

of the bit position which contains the 1 bit. Context 18 is used for ZI bits.

As mentioned earlier, each bit plane is coded in three passes. The first bit plane is

coded just with the CP. In the SP, all the bits whose σ = 0 and have at least one of the

immediate eight neighbors with σ = 1 are coded using ZC primitive. If the bit becomes

significant, the SC primitive is used σ and of the bit being coded is set to 1. When ZC is

applied, the corresponding η is set. In MRC, all the bits with corresponding η =0 and σ = 1 are

coded using MR primitive. The corresponding σ' bit is set to 1. In CP, if η =0 and σ = 0 for the

first element in the strip, the RLC condition is checked. If the RLC condition (mentioned in

the RLC primitive) is satisfied, the RLC primitive is used. If one of the bits in the strip

becomes significant, then SC is used and σ is set for that bit. This is followed by application

of ZC + SC for the rest of the bits in the strip. If the RLC condition is not satisfied, then

ZC + SC is used for all the elements with η =0 and σ = 0.

After context modeling step obtained context data is coded. For encoding the

arithmetic coder is used.

Decoding process basically performs the opposite of the encoder, decoding scheme is

illustrated in Figure 3-5.

Figure 3-5. The JPEG2000 decoding process.

Representation of information, which was obtained after discrete wavelet transform,

very comfortable, because it allows perform zooming copies of the image without full reverse

transform. For obtaining of zooming copy of original image it is enough to decode part of

Compressed
Image Data

Almost
Original

Image Data

Embedded
Block

Decoding

Inverse
DWT

Dequanti-
zation

Inverse
ICT

 20

information and perform partly reverse transform. So, JPEG2000 standard supports quick and

easy zooming. Also important advantage is possibility of access to separate element from the

image without full decoding.

3.2 LOCO-I

LOw COmplexity LOssless COmpression for Images (LOCO-I) [WSS96] is the algorithm for

lossless and near lossless compression of continuous-tone images. In other words this

algorithm is a “low complexity projection” of the universal context modeling paradigm,

matching its modeling unit to a simple coding unit based on Golomb codes.

This lossless compression algorithm on a paradigm of “universal modeling and

coding” [RL81] is based. It means that compression scheme consists of two distinct and

independent components: modeling and coding (see Section 2.3). The main objective in

LOCO-I method is to systematically mapping the image modeling principles into a low

complexity plane, both from modeling and coding perspective. The key purpose in this

process is that separation between modeling and coding becomes less clean under the low

complexity coding constraint.

The modeling part can be formulated as an inductive inference problem. During the

modeling the image is observed in raster-scan order, it allows accumulate for each instant i

past data i
i xxxx ...21= , for making inference on the next sample value 1+ix based on past data

ix . The modeling stage in LOCO-I is generally broken into following steps [WSS96]:

1. A prediction step, in which a deterministic value 1ˆ +ix is guessed for the next

sample value 1+ix based on subset of the available past data sequence ix (a

causal template).

2. The determination of a context in which 1+ix occurs (again, a function of a past

subsequence).

3. Construction of a probabilistic model for the prediction residual (or error

signal) 111 ˆ +++ −= iii xxe , conditioned on the context of 1+ix .

In this scheme, the prediction step is accomplished with an adaptively optimized, context-

depend linear predictor, and the statistical modeling is performed with an optimized number

of parameters (variable-size quantized context). The modeled prediction residuals in order to

attain the ideal code length are encoded [RL81].

 21

c a d

b x

Figure 3-6. Causal template.

The prediction and modeling units are based on causal template, which is illustrated in

Figure 3-6. On this template x is current pixel, dcba ,,, are neighboring pixels in the

relative positions shown in the figure. Based on values of dcba ,,, is made guessing the

value of pixel 1+ix . Ideally, such guessing should be done by adaptively learning a model

conditioned on the local edge direction, but in practice for lower complexity another approach

for prediction is applied. The solution in LOCO-I consists on performing a primitive test to

detect vertical or horizontal edges. If an edge is not detected, then the guessed value for 1+ix is

cba −+ , if the current pixel belongs to the “plane” defined by the three adjacent samples

with “heights” ba, and c . This expressed the expected smoothness of the image in the

absence of edges. Specifically, predictor guesses [WSS96]:

−+
≤
≥

=+

otherwisecba
bacifba
bacifba

xi),min(),max(
),max(),min(

ˆ 1 (3.4)

Assuming, without loss of generality, that ba ≤ , then the predictor of (3.4) can be interpreted

as picking a in many cases where a vertical edge exists left of the current location, b in

many cases of an horizontal edge above the current location, or a plane predictor cba −+ if

no edge has been detected. This predictor do not use value of d , which will be used in

context modeling step. Such predictor (3.4) was termed as “median edge detector”.

The context, which will use for encoding of the current prediction residual, in LOCO-I

is built out on following differences [WSS00]:

acgcbgbdg −=−=−= 321 ,, (3.5)

These differences represent local gradient. After calculation these differences are quantized

into a small number of approximately equiprobable connected regions by applying the

quantizer)(⋅k . The quantization aims at maximizing the mutual information between the

current sample and its context. To keep symmetry, the regions are indexed as

4,...,1,0,1,...,4 −− with)()(gkgk −−= for a total of 729 different quantized context triplets.

For prediction residual 1+ie , if the first non-zero element of a triplet is],,[321 qqqCi = , where

3,2,1),(== jgkq jj , is negative, the encoded value is 1+− ie by using context iC− . Merging

contexts of “opposite signs” give in a total of 365 different contexts. For 8-bit per pixel

 22

alphabet (which correspond to 8-bits grayscale images), for differences 3,2,1, =jg j the

default quantization regions are { }0 , { }2,1± , { }6,5,4,3± , { }20,...,8,7± , { }21| ≥± ee , and

their corresponding negative counterparts. However, the value of boundaries is adjustable

parameter, except the central region must be { }0 .

Coding of prediction residual is based on Golomb codes [Golomb66], whose structure

enables simple calculation of the code words without recourse to the storage of code table.

Specifically, prediction residuals are encoded by using following codes:

{ } { }))((0|))((12 ⋅′≥⋅= MGkMGC k U , (3.6)

where mG denotes the Golomb code of order m ,)(xM denotes the mapping from an integer

x to its index in the interleaved sequence ...,2,2,1,1,0 +−+− (starting form index zero), and

)1()(−−=′ xMxM . The map M is often called as Rice mapping. The code parameter k is

computed by the C programming language “one-liner”:

for (k = 0; (N<<k)<A; k++); (3.7)

where N counts quantity of prediction residuals that have been coded at that context, and A

collects the magnitudes of the prediction residuals for that context. So, the adaptive symbol-

by-symbol coding has low complexity, than more complex arithmetic coders.

So, LOCO-I characterizes low complexity of compression algorithm, it is main

advantage of this method. Also to be interested of unique predictor (3.4) in this standard, it is

best possible predictor in condition of low complexity.

3.3 CALIC

The CALIC standard is context-based, adaptive, lossless image codec, which is based on

paradigm of “universal modeling and coding” [RL81]. This codec is characterized higher

lossless compression of continuous-tone images with relatively low time and space

complexity of compression algorithm. During development of CALIC standard new efficient

algorithmic techniques have been processed for context formation, quantization and

modeling.

CALIC is sequential coding scheme, which encode and decode source image in raster

scan order with a single pass through the image. For coding process only two previous

scanned lines in prediction and context modeling steps are used.

First step in CALIC scheme is prediction; this compression algorithm has GAP-

Gradient-Adjusted Prediction that utilizes priori knowledge of image smoothness. The GAP is

 23

simple, adaptive, nonlinear predictor, which can adapt itself to the intensity gradients near the

predicted pixel; it weights the neighboring pixels of current sample according to the estimated

gradients of the image [WM97a]. Let us denote value of current pixel as],[jiI . For

prediction and modeling causal template illustrated in Figure 3-7 is used.

 nn nne

 nw n ne

ww w ?

Figure 3-7. Causal template for adjacent pixels in prediction and modeling.

Let us denote adjacent samples as follows:

]2,1[
],2[],2,[],1,1[

]1,1[],,1[],1,[

−+=
−=−=−−=
−+=−=−=

jiII
jiIIjiIIjiII

jiIIjiIIjiII

nne

wwnnnw

newn

 (3.8)

Formulas (3.8) mean north, west, northeast, northwest, north-north, west-west and north-

northeast respectively. The locations of these pixels are illustrated in Figure 3-7.

The gradient of the intensity function is estimated by following quantities:

nnenennnnwwv

nennwnwwwh

IIIIIId
IIIIIId

−+−+−=
−+−+−=

 (3.9)

Clearly, hd and vd are estimates within a scaling factor of the gradients of the intensity

function near current pixel],[jiI in the horizontal and vertical directions. Values of hd and

vd for detecting magnitude and orientation of edges in the input image are used. In formulas

(3.9) the absolute values are used, the reason for using absolute differences is to prevent

cancellation of values of opposite signs. Value of hd means value of horizontal gradient, vd

means value of vertical gradient. GAP predictor uses values of gradients by following

principle. If value of vertical gradient vd bigger than value of horizontal gradient hd on some

threshold value (typical threshold value is 80), then in current part of image exists clearly

marked horizontal edge, therefore predictor value],[̂ jiI for current pixel equals value of left

pixel],1[jiII w −= . Similarly, if value of horizontal gradient bigger than value of vertical

gradient on 80, then prediction value],[̂ jiI equals value of upper pixel]1,[−= jiIIn .

Otherwise, the prediction value is obtained by following linear predictor:

4/)(2/)(],[̂ nwnewn IIIIjiI −++= (3.10)

 24

In CALIC contexts for error modeling are formed by embedding 144 texture contexts

into four energy contexts to form a total of 576 compound contexts. Texture contexts are

formed by quantization of a local neighborhood of pixel values to a binary vector:

{ }
{ }wwwnnnwwnnnenwwn IIIIIIIIII

xxxxxxxxC
−−

==
2,2,,,,,,

,,,,,,, 76543210 (3.11)

Vector C is then quantized to an 8-bit binary number 067 ...bbbB = by using the prediction

value],[̂ jiI as the threshold:

=<≤
<
≥

= 80
],[̂,1
],[̂,0 Kk

jiIxif
jiIxifb

k

k
k (3.12)

Clearly, B captures the texture pattern in the modeling context are indicated of the prediction

error behavior:

],[̂],[jiIjiIe −= (3.13)

Also note that an event ix need not be a neighboring pixel to],[jiI in current context. It can

be a function of some adjacent pixels. 6x and 7x represent the events whether the prediction

value],[̂ jiI forms concave waveform with respect to neighboring pixels in vertical and

horizontal directions.

The texture contexts are combined with quantized error energy to form compound

modeling context. Error energy contexts are obtained by using following error energy

estimator:

wvh edd 2++=∆ (3.14)

where],1[̂],1[jiIjiIew −−−= , hd and vd are horizontal and vertical gradients respectively.

Value of we is chosen in absolute because large errors tend to occur consecutively. Estimator

∆ is quantized to four levels yielding a quantized error energy context)(∆Q which is

combined with the quantized texture pattern KB 20 <≤ to form compound modeling context,

denoted as),(βδC . At a glance we have 102424 8 =× different compound contexts.

However, not all 82 binary codeword of the B quantizer defined by (3.12) are possible,

available only 144, so the total number of valid compound contexts is only 5761444 =× .

Coding step in CALIC is begun by coding of error energy estimator ∆ as defined in

(3.14). Conditioning the error distribution on ∆ leads to separation of prediction errors into

classes of different variances [WM97a]. Thus entropy coding of errors using estimated

conditional probability)|(∆ep improves coding efficiency over using)(ep . Also ∆ has to

be quantized to a small number of L levels for time and space efficiency. In practice, 8=L is

 25

sufficient. Larger L improves coding efficiency marginally. Estimating 8=L conditional

error probabilities))(|(∆Qep requires only a modest amount of memory while estimating

probabilities for entropy coding.

CALIC uses an adaptive m -ary arithmetic coder. However, CALIC does not apply an

m -ary arithmetic coder to prediction errors directly. Instead it first remaps prediction errors

into alphabet of size z2 instead of 12 +z for a z -bit image [WM97a]. Prediction errors can

potentially take on 12 +z possible values from range]12,12[−+− zz , they can be mapped into

the range]12,0[−z . Also, the tails of error distributions are truncated and an escape

mechanism to further reduce the number of code symbols is used.

So, CALIC is very efficient lossless compression algorithm of continuous-tone images

with relatively low time and space complexity. Here entropy coding step is independent of

source modeling, and it is required to all lossless image compression algorithms.

 26

4. Context modeling

4.1 Fundamentals

For compression algorithms based on paradigm of “universal modeling and coding” the first

step is modeling (see Section 2.3). Context modeling is one of the varieties of modeling step.

At present time the compression methods based on context modeling are known, for instance,

CALIC, LOCO-I (see Section 3).

The problem is probability estimation of symbols’ occurrence in each position of

source data stream. For lossless compression case we can use only the information that is

known both of encoder and decoder. It means that probability estimation of occurrence

symbol depends on properties of data block previously processed.

Let us denote the context modeling as an estimation of probability of occurrence

symbol (element, pixel, sample or set of different objects) depending on previous symbols, or

a context. In practice, term “context” is used as collection of neighboring symbols, which are

surrounding current symbol. It is a context in the broad sense. Left-side and right-side

contexts exist in practice, i.e. as left-side context is considered the set of adjoining symbols

from left side, for right-side context respectively.

If the length of the context is finite, then context modeling is denoted as finite-context

modeling. Finite context modeling is based on the fact that a symbol that has appeared

recently will appear in a near future, so the more times that it appears the higher is the

probability that it appears again, so every time it has been seen, we increment its probability.

Let us denote the maximum length of usable context as order of context N. For example,

during context modeling with order 3 for last symbol in sequence “…milk…” context with

maximum length is “mil”; as contexts here are following strings: “mil”, “il”, “i” and empty

string. All of these contexts with length from N to 0 denote as active contexts, i.e. for

estimation of symbol can be used cumulative statistics about these contexts. The entropy of an

N-order context model is given by:

() () ()()∑ ∑
= =

⋅⋅−=

N

j

k

i
jijijN cxpcxpcpH

1 1
2log (4.1)

where)|(cxp is the probability of symbol x in a context c , and N is the number of different

contexts.

In general case, the context model for each context with finite length happened in

source data stream is generated. Any context model contains counter mechanism of all

 27

symbols, which are happened in corresponding context to this model. The value of counter of

symbol x in current context increases after each happened of symbol x in this context.

The main question of context modeling is selection of optimal context for more

precise estimation. And aim of context modeling is to find such context.

Context model has an order, as was described above. Once we have different orders

the question of how to use them arises. Blending is one of the solutions, such method means

combining the probability of all the orders in a single probability for every symbol from

alphabet [BCW89]. Such combining is done by adding together the probability of the same

symbol under different contexts. However, in practice probabilities of higher orders tend to be

more reliable and thus achieve higher compression, the way we reflect this in blending is by

weighting higher orders that is multiplying them to give them more importance when they are

added together. Every context has a different weight which we can choose beforehand, or

change while compressing.

Let us consider context model with order N . Let us assume)|(oxp i is probability of

symbol ix from alphabet A in the finite context model with order o . This probability is

adaptively and will change during compression process. The blended probabilities are given

by following formula:

∑
−=

=
N

o
ii oxpowxp

1
)|()()((4.2)

where)(ow is weight of model with order o and

∑
−=

=
N

o
ow

1
1)((4.3)

As order of context model here is considered length of corresponding context. In formulas

(4.2) and (4.3) the order of context model 1− is used, context model with order 1− assumes

equal probability for all alphabet symbols. So, for context models with order 0 and 1 we have

the same probability distribution of alphabet symbols.

Probability estimation)|(oxp i is defined by following formula:

)(
)|()|(

of
oxfoxp i

i = (4.4)

where)|(oxf i is number of appearance of symbol ix in current context with order o ,)(of

is overall number of context appearance in the processed data stream. For)(of exists

following equation:

∑
∈

=
Ax

i
i

oxfof)|()((4.5)

 28

So, the simple blending can be constructed from the mechanism of choosing the

probability estimation of the context by applying formula (4.4).

If weight 0)1(>−w it is guarantee successful compression for any symbol of source

data stream, because existence of context model with order 1−=o allows to obtain nonzero

probability estimation and code with final length.

Recognize fully blended context modeling, when prediction is defined by statistics of

all usable orders in context model, and partially blended otherwise. However using blending

is slow, though it gives good compression.

In practice for image compression the context is usually the value of adjacent samples,

such neighboring pixels form context template. The main requirement is accessibility of pixels

from context template both the encoder and decoder. In Figure 4-1 typical context template

for image compression is illustrated, when as context is took pixels from the west, north,

northwest and northeast locations of the current pixel.

N
W
NW NE

Figure 4-1. Example of context template with size four.

In such example (with context template in Figure 4-1) the number of contexts equals

number of all possible combinations with adjacent four pixels and depend on number of

colors on each pixel. If we have grayscale image with 8 bits per pixel and 256 colors, for one

pixel in template the number of contexts is 25628 = , for two pixels in context this value is

655362 82 =× . So, number of contexts increases exponentially with the number of pixels in

context template. A solution of this problem is quantization of samples values and reducing

by such method possible combinations.

4.2 Context Tree

4.2.1 Structure of context tree

For storing statistical information during context modeling it is convenient to use special tree

structure. We refer to this structure as context tree. Using of such structure allows using larger

number of neighboring pixels in context template without the context dilution problem, when

 29

the statistics are distributed over too many contexts, thus affecting the accuracy of the

probability estimations. Context tree provides flexible approach for modeling the contexts

with larger number of adjacent pixels on template.

The contexts are represented as a tree, in which the context is constructed pixel by

pixel. In Figure 4-2 the example of context tree is illustrated. Each node represents single

context with its statistical information.

Figure 4-2. An example of context tree with depth of 4.

The two children of a context correspond to the parent context increased by one more pixel.

The position of this pixel is fixed in predefined order on context template. Context template

here can be different, for example as illustrated in Figure 4-3, where pixel with label “?”

means coding pixel and others positions are context pixels.

4 2 3

1 ?

Figure 4-3. Context template with size 4.

If context tree is constructed based on template from Figure 4-3, it has structure as

shown on Figure 4-2. Template defines order for adjacent pixels during context modeling; it

means that first context is pixel from west, after that context is increased by one pixel from

north location and so on based on template’s order.

Context tree is constructed based on following notations [Kopyl04]:

• The information about context is stored in the leaves.

• Every tree node has many branches as there are colors in the image in that

particular context.

 30

• The children of a node correspond to their parent by adding one more pixel at

the position defined by context template (see Figure 4-3).

• The context selection is made by traversing the context tree from root to leaf,

each time selecting the branch according to the value of pixel in the

corresponding position within context template (see Figure 4-2).

4.2.2 Static and semi-adaptive approaches

Context tree can be generated based on two alternative approaches. In the semi-adaptive

approach the context tree is optimized directly for the source image. For such constructing

additional pass is required over the image.

Another approach of context tree construction was proposed in [FA99] uses static tree,

which is optimized on a training image. It is possible, because trees of similar type images

(binary images) are similar. The main problem of static approach is control the growth of the

tree.

The difference between these methods is that first semi-adaptive model exactly

conforms to source image, but it attains more calculation time; second static model does not

require any additional calculation, but on non-binary images (grayscale or color images) it has

not good compression results, because similarity of non-binary images is worse than on

binary images.

4.2.3 Construction of an initial context tree

Constructing of initial context tree begins by processing through the image data to collecting

statistics for all potential contexts, leaves and internal nodes. Let us denote α is number of

colors in source image and the m neighboring pixels mxx ,...,1 as mx .Each node of the context

tree stores information of α counts for all symbols, generated at the current context. The

algorithm of the context tree construction is as follows [AKF05]:

Step 1: Create a root of the tree.

Step2: For all i = 1 to n (n is the number of pixels in the image), traverse the tree along the

path defined by the template pixels 1−ix , where the positions of pixels are defined

according to predefined scan order. If some positions of the pixels in 1−ix are outside

of the image, then set these pixels to zero. If some node, visited according to the

 31

correspondent symbol of 1−ix , does not have a consequent branch (for transition to the

symbol 1−ix), then create the necessary child node and process it. Each new node has

α counters, which are initially set to zero. In all visited nodes, increase the count of ix

by 1.

This completes the construction of the context tree for all possible contexts. The time

complexity of this algorithm is)(nO .

4.2.4 Pruning of context tree

Pruning is very important step in context tree construction. The context tree is optimized

according to encoded data. One of possible approaches for context tree pruning is represented

here. The main goal in pruning process is excluding of contexts with small contribution and

gets context tree with optimal structure.

The pruning is produced by comparing of the parent node and its children nodes for

finding the optimal combination of siblings. Let us denote overall tree structure as T and by

w nodes of current context tree T , i.e. Tw∈ . As)(wc the number of bits is denoted, which

are needed for storing the node w in the compressed file.)(wc is given by:

+
=

otherwise ,1
leaf a is if 1,

)(
α

w
wc (4.6)

where α equals number of colors in the source file. Denote as)(TS the set of all terminal

nodes of the context tree T,)(sni is count of the symbol i , encoded by the statistical model,

pointed by the terminal node)(TSs ∈ . By the estimated codelength, generated by a terminal

node s here we understand the value of the following expression [WR95, MF98]:

()
()

()

⋅+

+
−

====

=

∏

∏∏
−+++

=

=

−

= otherwise. , log

0)(...)()(if , 0

)(),...,(),(~
1)(...)()(

0

1

1)(

0
2

11

21
10 snsnsn

j

i

sn

j

j

j

snsnsn

snsnsnc

i

α

εα

ε
α

α

α (4.7)

The parameter ε here depends on different modeling schemes of coding [HV91]. At the start

of encoding we consider all elements as equiprobable and set ε equal to α1 . This definition

(4.7) corresponds algorithmically to one pass arithmetic coder. Cost of the context tree T has

following form [AKF05]:

()∑∑
∈∈

+=
)(

21)(),...,(),(~)()(
TSsTw

snsnsncwcTL α (4.8)

 32

Cost of context tree is sum between description of context tree and estimated code length.

The main aim of pruning process is making such modification in the of context tree,

that the cost function (4.8) will be minimized. This problem can be solved by applying

bottom-up algorithm [Norhe94], where the main principle is that the optimal tree consists of

optimal subtrees.

Let us denote vector of counts for any node Tw∈ as ())(),...,(),()(~
21 wnwnwnwn α= ,

the child nodes as iw , and the node configuration vector as),...,(1 αvvv = , }1,0{∈iv . The

node configuration vector has such structure, that define of which node branches are

considered to be remained: if 0=iv , it means that i th branch will be deleted from the node,

otherwise branch does not change. The subtree T̂ , which starts from the given node w as

from root, has following principle: the optimal cost)ˆ(TLopt for any given subtree TT ⊆ˆ can

be expressed by the following recursive equations [AKF05]:

()
{ }

+=
otherwise, ,),ˆ(min

subtrees no has ˆ if ,1)(~~
null is ˆ if,0

)ˆ(
vTL

Twnc
T

TL

vv

opt (4.9)

where

()() 1ˆ)(~)(~~),ˆ(++⋅+

−= ∑∑ α

i
iopti

i
iv TLvwnvwncvTL o (4.10)

The operation ‘ o ’ here is the Hadamard product (it other words it is the element by element

product of two vectors/matrices). The tree TTi
ˆˆ ⊂ is a subtree of T̂ , root of iT̂ is its child

node iw . So, the pruning process has following steps [AKF05]:

Step 1: If T has no child nodes, then return the accumulated codelength of its root by using

formula (4.9).

Step 2: Calculate optimal costs)(iopt TL for all subtrees TTi ⊂ , which are started from the

child nodes of T root.

Step 3: Find the optimal configuration vector),(minarg~ vTLv vv
= according to)(iopt TL , the

vectors of counts)(~ tn , and)(~),...,(~
1 Ntntn .

Step 4: Prune out the children subtrees according to the vector v~ .

Step 5: Return the value of cost function)~,(vTLv .

In Step 3 of pruning process the optimal configuration vector),(minarg~ vTLv vv
= is

constructed. It is found by using steepest descent optimization algorithm. According to

 33

formulas (4.9) and (4.10) the optimization problem for an intermediate node T̂ has following

form [AKF05]:

()()

++⋅+

−= ∑∑

∈
1ˆ)(~)(~~minarg~ α

α
i

iopti
i

i
Cv

TLvwnvwncv o (4.11)

Steepest descent algorithm for finding of optimal configuration vector has following steps

[AKF05]:

Step 1: In this step the direction and starting point of the search are found. Values of the

optimized function are calculate according to (4.11):)0,..0,0(0),ˆ(== vv vTLL and

)1,..1,1(1),ˆ(== vv vTLL . If the 10 LL < than the search direction ∆ is 1+ and starting

point is)0,...,0,0(=v , otherwise the direction is 1− and the starting point is

)1,...,1,1(=v . The left bound (LB) of search is set of 1.

Step 2: For the current starting point v , starting value),ˆ(vTLv and current left bound of

search are obtained all neighboring points kv , []α,...,LBk ∈ , where

{ }Nk
k vvvv ,...,,...,1 ∆+= , { }1,0∈∆+kv , and all values),ˆ(k

v vTL . If there is no such

neighboring points than return as the minimum search result the starting point v and

starting value),ˆ(vTLv .

Step 3: Minimal cost function is calculated as (){ }k
kk

vTLL ,ˆmin~
min = . If the found value min

~L is

bigger or equal than the starting value, then the starting point v and starting value

),ˆ(vTLv are returned as the result. Otherwise all () λ≤− min

~
,ˆ:~ LvTLk k

v are calculated

(here value λ = 0.01, this number was found experimentally). The optimization

algorithm is called for each k~ recursively, i.e. the new starting point is kv
~
, starting

value is minL , the left bound of search is k~ and go to Step 2. From all resulting points

of optimization we find those one, which gives us the minimum value of the cost

function),ˆ(vTLv . This point is the result of optimization and the estimated

codelength, achieved at this point is the resulting value of optimum search process.

The number of calculations of this quasi-optimal algorithm in the worst case is α2 ,

which is the same as in the case of the full-search approach, when all possible variants of

subtrees configurations are calculated and the best one is chosen. But in practice the quasi-

optimal approach gives us strong reducing of the tree construction time.

 34

5. General Context Tree based on Intensity

The lossless compression algorithm will consider in this section. Main feature of this

compression algorithm is using of General n -ary Context Tree (GCT) with incomplete and

optimal structure [AKF05]. Here GCT means the same as context tree, which was described

in Section 4.2 above, but we denote it as “general”, because it is non-binary tree with number

of colors more than two. Current algorithm contains effective construction of an optimal

incomplete n -ary context tree with taking into account memory and time requirements.

This algorithm has orientation to raster map images. Such class of images is

characterized by a small number of colors, a lot of structured details and big size of images.

The linear-predictive coding technique, as used at LOCO-I and CALIC (see Section 3.2 and

Section 3.3), works well on images with smooth changes of colors but if on image exists the

sharp changing of colors these methods work worse than considered algorithm.

5.1 Context template

The context modeling is based on pixels from specified region; such region is denoted as

context template, which also defines order in the context. In our case, during context

modeling the source image is observed in raster scan order. Let us consider two dimensional

template [AKF05], which is illustrated in Figure 5-1.

 28 24 27

 30 22 18 14 17 21 29

 20 12 10 6 9 11 19

26 16 8 4 2 3 7 15 25

23 13 5 1 U

Figure 5-1. Default location and order of the neighboring pixels with maximum depth 30.

Current context template is based on adjacent pixels, maximum value of neighboring

samples is 30. Obviously, big size of template increases the size of context tree and it takes

more computer memory, therefore in practice more convenient value is less then 30. In Figure

5-1 special template is illustrated, where current pixel is denoted as U, it has the m

neighboring pixels mxx ,...,1 as mx , where m denotes the values of adjacent pixels in context.

 35

5.2 Compression scheme

The compression scheme consists of two main steps: context modeling and coding. First step

corresponds to statistical modeling. During this step, GCT is constructed and pruned. In the

second step, the arithmetic coding or in other words entropy-based coding is produced. The

scheme of the proposed compression algorithm is illustrated in Figure 5-2.

Figure 5-2: The principle scheme of the GCT-I algorithm.

Let us denote the current compression algorithm as General Context Tree based on

Intensity (GCT-I), because it produce context modeling with using this GCT structure based

on special template used intensity (or value) of adjacent pixels.

Let us consider more detail this compression scheme shown in Figure 5-2. The first

step here is the construction of GCT with incomplete and optimal structure. This step consists

of the following operations:

1. Construction of context model using GCT;

2. Pruning of GCT for obtaining the optimal structure of GCT.

In Section 4.2.3, this is described as construction of initial context tree. Here we use

semi-adaptive approach for the context tree construction. This algorithm is applicable also for

context tree, when number of colors α is greater than two. As context template the region

defined as in Figure 5-1 is used (see Section 5.1). The probability of the current pixel U is

conditioned on its context mx . The probabilities of different contexts, as well as the

probabilities of the pixels generated in a given context, are usually treated as being

independent.

For constructing the context model we have to assign probabilities to each new symbol

generated at the current context)(m
i xn . So, probability of a new symbol in current context is

given by:

)()(mm
k xkUnxn == (5.1)

sample values

Compressed file

Context tree
construction

Entropy
encoding

Context tree
pruning

 36

The conditional probability of the event []α,..,1 , ∈= kkU will be as following equation:

()
)(

)(

1

m

j
j

m
km

xn

xnxkUp
∑

=

== α (5.2)

After construction, the GCT is pruned by the algorithm described in Section 4.2.4. In

the second step, the encoding of the given statistical model is performed using GCT with

optimal structure by entropy-based encoder (QM-coder). The probability estimator of

entropy-based coder operates by the following formula:

()
εα

ε

⋅+

+
==

∑
=

)(

)(

1

m
N

j
j

m
km

i

xn

xnxkxp (5.3)

The parameter ε here depends on different modeling schemes of coding [HV91]. At the start

of encoding, we consider all elements as equiprobable and set ε equal to α1 .

 37

6. General Context Tree based on DWT coefficients

The lossless compression algorithm used context modeling based on Discrete Wavelet

Transform (DWT) coefficients will reperesent in this section. The main distinction from

GCT-I method (see Section 5) is a preprocessing step before context modeling. During

preprocessing step the DWT is performed on source image, after that context modeling is

processed on DWT coefficients. This operation is motivated of using advantage of the

correlation between neighboring coefficients during the context modeling. In such notation,

DWT coefficients are used instead pixels of source image.

The idea of applying DWT as preprocessing was produced from JPEG2000 standard,

where DWT is one of the steps (see Section 3.1). For current algorithm the GCT structure (see

Section 4.2) is used for effective storing and processing the information. Also the important

feature is context templates: two different templates based on DWT coefficients for context

modeling are used in this algorithm.

6.1 Discrete Wavelet Transform

The DWT [SN96] is generally understood as a dyadic tree-structured subband transform with

the multi-resolution structure identified as on Figure 6-1. Compression schemes based on such

structure are usually known as wavelet-based schemes.

The importance of wavelet transform derives from an interest in the regularity of the

waveforms which are represented by discrete sequences of samples. The DWT is used

effectively in known compression standard JPEG2000. It is important step in this compression

algorithm (see Section 3.1).

 38

Figure 6-1. Passband structure for a two dimensional tree-structure

subband transform with D=3 levels.

Let us consider discrete signal as][kx . Also confine attention to the Hilbert space of

square-integrable functions on the real-line, L2(R). Inner products are defined by

∫
∞

∞−

= dttytxyx)()(, * , in such notation wavelet transform is concerned with functions)(tx for

regularity.

Basis for L2(R) is wavelet basis, i.e. family of functions,)()(tm
nψ , all derived by

translation)1()(+= tt ψψ and dilation)()(mtt ψψ = (expansion) of a single “mother

wavelet”)(tψ , according to

)2(2)()(ntt mmm
n −= −− ψψ (6.1)

)()(tm
nψ are linearly independent and span L2(R). That is any signal can be written as

following form:

∑ ∑
∞

−∞=

∞

−∞=

=
m n

m
n

m nyx)()(
1][ψ (6.2)

where][)(
1 ny m is a sequence of real numbers, which contain information about signal.

Increasing value of m corresponds to increasing the scale (dilation) of the wavelet

functions)()(tm
nψ . The factor m−2 from equation (6.1) ensures that the wavelet basis signals

all have identical norm or energy, i.e. mnm
n ,,)(∀= ψψ . This is important if { } Znm

m
n ∈,

)(ψ is

to form an orthonormal basis for L2(R), although wavelet basis need not necessary be

orthonormal.

 39

Let us consider following definitions in terms of “multi-resolution” analysis. Multi-

resolution analysis is defined on L2(R) as a set of sub-spaces:

......)2()1()0()1()2(⊂⊂⊂⊂⊂⊂ −− VVVVV , which are satisfying following properties:

1.)(2)(RLV
Zm

m =
∈
U .

2. { }0)(=
∈
I

Zm

mV . It means that every)(2 RLx ∈ has non-zero resolution so that its

projections,)(mx , converge to 0, as ∞→m , where convergence belongs to)(2 RL .

3.)0()(Vtx ∈ ⇔)()2(mm Vtx ∈−

4.)0()0()()(VntxVtx ∈−⇔∈

5.Exists orthonormal basis { } Znn ∈ϕ , for)0(V such that)()(nttn −= ϕϕ . The function

)(tnϕ is called the “scaling function”.

Parameter m means here “scale parameter”; since it decreases as the scale of signal

features decreases (resolution increases). The important property of basis functions is that the

basis functions for)0(V are integer translates of a single scaling function. Third and fifth

properties, together indicate that each resolution space)(mV has an orthonormal basis

{ } Zn
m

n ∈
)(ϕ , where)2(2)2()()()(ntntt mmmmm

n −=−= −− ϕϕϕ .

Let us denote)(mW the orthogonal complement of)(mV in)1(−mV , so that)()(mm VW ⊥

and)1()()(−=⊕ mmm VVW . The aim is to find orthonormal basis, { } Zn
m

n ∈
)(ψ , for each)(mW

where basis functions,)(m
nψ are translated and dilated versions of a single mother wavelet, ψ .

First and second properties ensure that { } Zmn
m

n ∈,
)(ψ is orthonormal basis for L2(R).

Since)1()0(−⊂ VV the scaling function)(tϕ may be expressed as a linear combination

of the functions:)2(2)()1(nttn −=− ϕϕ , which span)1(−V . In general,

∑
∞

−∞=

−=
n

ntnht)2(][2)(0 ϕϕ , where][0 nh is some sequence of weights.

Forward case in DWT is known as analysis, inverse case – synthesis. So, denote][0 ng

and][1 ng as filters of synthesis,][0 nh and][1 nh as filters of analysis. Between][0 nh and

][1 nh exists following relation:)]1([)1(][0
1

1 −−−= + nhnh n . Functions)(tψ and)(tϕ are

orthonormal, so for)(tψ we have following equation:

∑
∞

−∞=

−=
n

ntnht)2(][2)(1 ϕψ (6.3)

 40

So, we have scaling function: ∑
∞

−∞=

−=
n

ntnht)2(][2)(0 ϕϕ (6.4)

detail function: ∑
∞

−∞=

−=
n

ntnht)2(][2)(1 ϕψ (6.5)

Figure 6-2. Expand of signal using analysis filters.

Analysis of signal is illustrated in Figure 6-2. The input signal,)(tx , is characterized

at some resolution, say)0(V , by the discrete sequence][)0(
0 ny , such that

∑
∈

−=
Zn

ntnyx)(][)0(
0 ϕ . This sequence can be decomposed into low- and high-pass subband

sequences,][)1(
0 ny and][)1(

1 ny , using the analysis system of the two channel subband

transform.

6.2 Practical aspects for DWT

In our work we consider lossless compression schemes, so for DWT we need also lossless

mode: close approximations to spline 5/3 transform. Filters for analysis have following form:

444 3444 21

10

)0(

)(][)0(
0

hh
V

Zn
ntnyx

↓↓
∈

∈
∑ =−= φ

44 344 2144 344 21
)1(

10

)1(

)(][)(][)1()1(
1

)1()1(
0

W

Zn
n

hh
V

Zn
n tnytny

∈

∈

↓↓
∈

∈
∑∑ + ψφ

44 344 2144 344 21
)2(

10

)2(

)(][)(][)2()2(
1

)2()2(
0

W

Zn
n

hh
V

Zn
n tnytny

∈

∈

↓↓
∈

∈
∑∑ + ψφ

 41

±=−
±=

=
=

2,125.0
1,25.0

0,75.0
][0

n
n
n

nh low-pass filter

±=−
=

=
1,5.0

0,1
][1 n

n
nh high-pass filter

Applying on the signal such filters have the following form:

Low-pass filter ∑
−=

−−++− −+++−=
2

2
21120 8

1
4
1

4
3

4
1

8
1)(

k
nnnnnkn xxxxxxkh (6.6)

High-pass filter 11

1

1
1 2

1
2
1)(−+

−=
− −+−=∑ nnn

k
kn xxxxkh (6.7)

To obtain filters of synthesis we used formulas:

][)1(][1
1

0 nhng n−= −η ,][)1(][0
1

1 nhng n−= −η (6.8)

where η is subband gain factor, for reversible DWT we have to define η=1.

In practice we apply DWT on images, which are represented as two-dimensional

array, which contains value of color of each pixel. In such case, we have to process two-

dimensional DWT. Two-dimensional transform implies of consecutive applying of the

subband transform separably at first to the columns and then the rows of the two dimensional

sequence (image array). After applying DWT to initial array, x[n], we have four subbands: LL

subband, which contains scale information after applying low-pass analysis in vertical and

horizontal directions; HL (horizontally high-pass) subband and it involves the application of

the low-pass analysis in the vertical direction and the high-pass analysis in the horizontal

direction; LH (vertically high-pass) subband and it involves the application of the high-pass

analysis in the vertical direction and the low-pass analysis in the horizontal direction, and HH

subband similarly. Finite sequence with coefficients is obtained by applying the one

dimensional subband transform first to each column of x[n] and then to each row of the result.

Similarly, the reverse transformation is obtained by applying the reverse one dimensional

transform first to each row and then to each column of the result.

In practice for realizing such process Mallat’s pyramidal algorithm [Mallat89] is used,

which is described below.

 42

6.3 Pyramidal algorithm for practical realization of DWT

Let us put DWT coefficients into transformation matrices H and G applied to the data

vector. H works as a smoothening filter (low-pass filter), and G works to bring out data's

“detail” (high-pass filter). Wavelet coefficient matrix is applied to the data in hierarchical

order. The wavelet coefficients are arranged so that odd rows contain an ordering of wavelet

coefficients that act as smoothening filter, and the even rows contain an ordering of wavelet

coefficients that act to bring data's detail. The matrix is first applied to the original, full-length

data vector. Then vector is smoothed and decimated by half and the matrix applied again.

Process continues until a trivial number of data remain. That is, each matrix application brings

out higher resolution of the data while at the same time scaling the remaining data. The output

of discrete wavelet transform (DWT) consists of the remaining “scale” components, and all of

the accumulated “detail” components [Mallat89].

Mallat’s pyramidal algorithm is processed finite set nA of Nn 2= input data. Filters

H and G applied to this data and create output streams that are half of the length of the

original input. In such notations forward transform can be described by the following

equations: jj HAA =−1 (low-pass filter), jj GAB =−1 (high-pass filter), 1,..,Nj = .

Equation for inverse transform: 11* −− += jjj GBAHA

Matrices are defined as follows: jiij cH −= 22
1 , ij

j
ij cG 21

1)1(−+
+−=

Note filter matrices G and H have twice as much columns as rows. Forward wavelet

transform starts with G and H of size nn 2× . At each step of transform calculated vector
1−jA (and 1−jB) is twice as short as jA (jB). The number of columns and rows in G and H

decreases by 2 with each step, until the limit of 21× reached and the last 01 AA j =− and
01 BB j =− produced; both contain only one element or we reached predefined levels of

transform. Inverse wavelet transform reverses this process.

=

012

0

3

13

0

3

12

0

3

1

2
1

ccc
c

c
cc

c
c
cc

c
c
c

H ,

−
−−−

−−−
−−−

=

1

3

0

21

3

0

21

3

0

210

2
1

c
c

c
cc

c
c
cc

c
c
ccc

G

By their construction H and G are orthonormal: 0* =HG .

In practice no matrix multiplication performed. Rather data values if convolved with

filter coefficients.

 43

The output of low-pass filter iHf)(is: ∑
=

+− ==
n

j
ijii

nifca
1

12 2
...1,

2
1 . (6.9)

The output of high-pass filter iGf)(is: ∑
=

−+
+ =−=

n

j
iij

j
i

nifcb
1

22
1

2
...1,)1(

2
1 (6.10)

In many cases the odd, or low-pass filter has the most of the “information content” of

the original input signal. The even, or high pass output contains the difference between the

true input signal and the value of the reconstructed input if it were to be reconstructed only

from the information given by the odd output. In general higher-order wavelets tend to put

more information into the odd output and less into the even output. For reconstruction

applying reverse low-pass filter has the form:

∑
=

− ==
2/

1
2 ,..,1,

n

j
iji

L
i niacf (6.11)

Applying reverse high-pass filter has the form:

∑
=

−+
+ =−=

2/

1
21

1 ,..,1,)1(
n

j
iij

jH
i nibcf (6.12)

The perfect reconstruction is a sum of the inverse low-pass and inverse high-pass filters and

the perfectly reconstructed signal is HL fff += .

Complexity of pyramidal algorithm is)(nO . We have to perform number of steps:

nnnnn k 2
2

...
22 2 ≤++++ (6.13)

The complexity for forward and inverse DWT is)(nO .

6.4 Context template based on DWT coefficients

As a context template we use template, which is illustrated in Figure 6-3. Basis of this

template is the same as illustrated in Figure 5-1. The main concept for current context is using

DWT coefficients for context modeling; in contrast to template from Figure 5-1 here we use

DWT coefficient instead of neighboring pixels. It means that we apply template from

Figure 5-1 to DWT coefficients. The main idea for using DWT coefficient is existence strong

correlation between DWT coefficients.

 44

Figure 6-3. Context template based on DWT coefficients with context size 5.

We apply such template in raster scan order on DWT coefficients. Choosing parameter in

such case is the number of adjacent coefficients. We can take this value in range]30,1[.

6.5 Context template based on conjugate DWT coefficients

Current context template based on DWT coefficients with using one conjugate coefficient

from up-level. Such context template is illustrated in Figure 6-4.

Figure 6-4. Context template based on conjugate DWT coefficients with context size 5.

The main concept for using such template is correlation between coefficients on

different DWT levels. The idea of such approach is replacing of neighboring pixel from

context template (see Figure 6-3) on corresponding (conjugate) up-level DWT coefficient for

 45

pixel on position X (see Figure 6-4). Here we use principle that 1 coefficient from up-level has

4 conjugate coefficients from low-level. As illustrated in Figure 6-4 for coefficient from HH1

subband we take conjugate coefficient from HH2. It makes sense for reverse procedure, when

we will make decoding.

Obviously, we can make such replacement for any neighboring coefficient from

current context template. We made set of experiments, where such operation was produced

sequentially for coefficients in template with size 5.

6.6 Compression scheme

Let us denote current lossless compression algorithm as General Context tree based on DWT

coefficients (GCT-W). This compression method is lossless algorithm by context modeling

based on DWT coefficients. Our algorithm has following steps: discrete wavelet transform,

context modeling and entropy encoding. Such process is illustrated in Figure 6-5.

Figure 6-5. Scheme of compression for GCT-W.

First step here is DWT. Low-pass and high-pass filters are defined by formulas (6.6)

and (6.7). Detail description about DWT is in Section 6.1, Section 6.2 and Section 6.3.

Second step is context modeling, which applies on DWT coefficients. The main idea

for using DWT coefficients is the existence of correlation between such coefficients. For

context modeling we have two different context templates, which are described above in

Section 6.4 and Section 6.5. In other word we make GCT construction, which was described

in Section 4.2.3.

Compressed
file

Context tree
construction

Discrete
Wavelet

Transform

Context tree

pruning
Entropy
encoding

 46

Third step is pruning of GCT. Context tree is pruned for finding the optimal

combination of siblings. After this operation we have incomplete n -ary tree structure with

optimal combination of siblings, which was found by comparing the parent node and its

children nodes (see Section 4.2.4). Forth step is entropy based encoding (QM-coder

implementation) of DWT coefficients by using information stored in constructed pruned

context tree structure (see Section 2.4).

After these steps we have compressed file. Reverse process includes entropy based

decoding and reverse DWT.

 47

7. General Context Tree based on local gradients

The lossless compression algorithm used context modeling based on local gradients is

reperesented in this section. The method combines GCT approach (see Section 4.2) with a

predictor, which was proposed in LOCO-I method (see Section 3.2). Modeling step realizes

context modeling based on local gradients. Definition of local gradient is the same as for

LOCO-I, but quantization of gradient is different; here we apply uniform scalar quantizer

defined by the quantization range.

For coding process the arithmetic coder (QM-coder) is used, the feature of its process

is coding of prediction error, so in current algorithm uses statistical and predictive modeling.

This lossless compression method uses advantages from GCT approach and LOCO-I

compression algorithm.

7.1 Prediction modeling

The prediction modeling consists of the following steps:

1. Prediction of the current pixel value;

2. Calculation of prediction error;

3. Collecting the error probability distribution.

During first step the prediction is processed, it means calculation value for current

pixel based on a subset of the available past sequence (causal template). The idea about such

prediction is used in LOCO-I (see Section 3.2). The prediction is based on the causal template

illustrated in Figure 7-1, where U is current pixel and cba ,, and d are adjacent pixels in the

corresponding positions as illustrated in figure.

c a d

b U

Figure 7-1. Causal template.

Initial image is observed pixel by pixel in raster-scan order. At each time instant i ,

and after having scanned past data 121
1 ... −

− = i
i UUUU , we try to make inferences on current

 48

pixel iU . The prediction of iU is based on primitive test to detect vertical or horizontal edges.

If an edge is not detected, then the guessed value is cba −+ .Specifically, predictor guesses:

−+
≤
≥

=
otherwisecba

bacifba
bacifba

U i),min(),max(
),max(),min(

ˆ (7.1)

Assuming, without loss of generality, that ba ≤ , then the predictor of (7.1) can be

interpreted as picking a in many cases where a vertical edge exists left of the current

location, b in many cases of an horizontal edge above the current location, or a plane

predictor cba −+ if no edge has been detected. So, here the same principle for predictor as in

LOCO-I method is used.

Following step is calculation of prediction error, which is given by:

iii UUe ˆ−= (7.2)

After calculation of prediction error its probability distribution is obtained into source image,

which is observed in raster-scan order.

7.2 Definition of local gradient

Each pixel U in the image has local gradient, thus capturing the level of activity (smoothness,

edginess) surrounding a pixel, which governs the statistical behavior of prediction errors.

Local gradient is represented as the following differences:

acgcbgbdg −=−=−= 321 ,, (7.3)

where cba ,, and d are values of neighboring pixels (see causal template from Figure 7-1).

After calculating of local gradient it is quantized by applying uniform scalar quantizer

(see Section 7.3 below). We need the quantization step, because differences (7.3) have large

region of support (we will construct context tree, by using local gradient as context. In such

case we have restriction of computer memory for constructing and processing large context

tree).

In practice we use grayscale images with colors from the range]255,0[, it means that

our differences have region of support]255,255[− . In other words, for quantization the

following mapping is made:

],[]255,255[: qpg →− (7.4)

 49

by applying following equation:

2510
~ qpgpqq +

+
−

= (7.5)

where p and q are boundaries of quantization region, q~ is quantized value of g . This

uniform scalar quantizer divides initial range]255,255[− into parts with equal size.

Obviously, for context tree construction the quantized local gradient 321 ,, ggg is

applied as context template (see Section 7.4).

7.3 Scalar quantization

The scalar quantizer is very useful method for lossy compression schemes. The input of

quantizer is the original data, and the output is always one among a finite number of levels.

Quantizer can be described as a function that maps each element in a subset of the real

line to a particular value in that subset [Max60, Lloyd82]. Such function has discrete set as

output values, and this set is usually finite. Obviously, this is a process of approximation, and

a good quantizer is one which represents the original signal with minimum loss or distortion.

A quantizer can be specified by its input partitions and output levels (also called

reproduction points). If the input range is divided into parts with equal spacing, then the

quantizer is termed as a uniform quantizer, otherwise it is termed as a non-uniform quantizer.

A uniform quantizer can be easily specified by its lower bound and the step size, or its

number of output levels when range is divided into parts with equal size. Also, implementing

a uniform quantizer is easier than a non-uniform quantizer.

Let us consider scalar quantizer with output levels M in general case. Partitioning the

real line into M disjoint intervals is denoted in a following way:

1,...,1,0),,[1 −== + MqttI qqq (7.6)

with

+∞=<<<=∞− Mttt ...10 (7.7)

Within each interval, a point qx̂ is selected as the output value (or codeword) of qI . In

this case if initial range is divided into equal parts, we have uniform scalar quantizer,

otherwise, no-uniform. A scalar quantizer is following mapping:

{ }1,...,1,0: −→ MRQ (7.8)

Specifically, for a given input value x ,)(xQ is the index q of the interval qI which

contains x . Just the same way a quantizer divides its input into discrete levels of output, a

 50

dequantizer is one which receives the output levels of a quantizer and converts them into

normal data. The dequantizer is given by:

qxqQ ˆ)(1 =− (7.9)

The scheme of uniform scalar quantization is illustrated in Figure 7-2.

Figure 7-2. Graphical representation of uniform scalar quantization.

This figure shows that when),[1+=∈ qqq ttIx , that qxqQxQQ ˆ)())((11 == −− . Clearly, the qt

can be through of as thresholds, or decision boundaries for the qx̂ . For instance, if the input

value 21 txt <≤ , the quantized version of x is 1x̂ (index = 1). Specifically, 1)(=xQ and

1
11 ˆ)1())((xQxQQ == −− .

Measure of optimality for quantizer is quantization error, which is given by following

equation:

xxe ˆ−= (7.10)

where x is input value and x̂ is quantized version of x .

Optimal quantizer has to satisfy following conditions:

1. Given the output levels or partitions of the encoder, the best decoder is one that

puts the reproduction points qx̂ on the centers of mass of the partitions. This is

known as centroid condition.

2. Given the reproduction points qx̂ of the decoder, the best encoder is one that

puts the partition boundaries exactly in the middle of the reproduction points,

i.e. each input value x is translated to its nearest reproduction point. This is

known as nearest neighbour condition.

7.4 Context template based on local gradient

Current context template is based on quantized local gradient, which is defined by formulas

(7.3) and quantized by using formula (7.5), quantization range],[qp have to be smaller than

1ˆ −Mx 1−Mt 3t 2x̂ 2t 1x̂ 1t 0x̂ ...

 51

]255,255[− , because context tree will have impossible big size for computer memory for

such big initial range of local differences.

Here quantized local gradient is basis of context template, which is illustrated in

Figure 7-3. Each pixel in current image has local gradient: 321 ,, ggg (see Section 7.2). For

calculation differences 321 ,, ggg by formulas (7.3) we use causal template, which is

illustrated in Figure 7-1. Detail description about local gradient is in Section 7.2 above.

Figure 7-3. Context template based on local gradient.

Let us denote the quantized values, which are obtained by applying uniform scalar

quantizer to differences 321 ,, ggg by using formula (7.5), as 321
~,~,~ qqq . These quantized

values 321
~,~,~ qqq form the context template for current pixel U. Just as template from

Figure 5-1 we can say, that instead of first adjacent pixel we take 3
~q , second value for context

template is 2
~q and third is 1

~q respectively.

7.5 Compression scheme

Let us denote current algorithm as General Context Tree based on local gradients (GCT-G).

Current lossless compression method is proposed by context modeling based on local

gradients. The main idea of this algorithm is applying the context modeling based on local

gradients and encoding the value of prediction error by using entropy encoding. Scheme of

such algorithm is illustrated in Figure 7-4.

 52

Figure 7-4. Scheme of compression for GCT-G.

The first step is context tree constructing and prediction modeling (more detail

description about GCT construction is in Section 4.2). Prediction modeling (see Section 7.1)

is processed together with context tree construction. Prediction error is calculated for each

processed sample in the source image during the context modeling. We process image in

raster-scan order and for each pixel calculate local gradient and quantize it (see Section 7.2

and Section 7.4). After experiments we found optimal quantization region for local gradient, it

is]66,0[. Such quantized local gradient here is used as basis for context template depicted in

Figure 7-3 (see Section 7.4).

Second step is GCT pruning. After this step our context tree will have the optimal

combination of siblings. For pruning tree the comparing of parent node and its children nodes

is performed (see Section 4.2.4). Last step is entropy based encoding (see Section 2.4) of

prediction error with using context model based on quantized local gradients. After these

steps we have compressed file.

Reverse process includes entropy based decoder. After decoding we have prediction

error, by using this value and predictor (7.1) we can calculate decompressed value of pixel.

prediction errors

Compressed file

Context tree
construction and

prediction modeling

Entropy
encoding

Context tree pruning

 53

8. Comparative analysis of considered methods

Lossless compression algorithms with different approaches were considered in this

work. We took into account following methods: JPEG2000, LOCO-I, CALIC; and developed

GCT-I, GCT-W, GCT-G algorithms. All of them have common property: the context

modeling in their compression schemes. Each presented algorithm has individual features.

The important properties of these algorithms are represented in Table 8-1.

Table 8-1. Properties of lossless compression algorithms.

Lossless compression algorithms
Parameter

GCT-I GCT-W GCT-G JPEG2000 LOCO-I CALIC
Context Neighboring

pixels, i.e.
intensity of
adjacent sam-
ples

Neighboring
DWT coef-
ficients

Quantized
local gradient

Neighboring
quantized
DWT coef-
ficients

Quantized
local gradient

Quantized
local neigh-
borhood
pixel values
combined
with quan-
tized error
energy

Number
of various
contexts

430 125 208 18 365 576

Prediction
modeling
step

no no yes no yes yes

Encoding
value

Value of
sample

Value of
DWT coef-
ficient

Prediction
error

Value of
DWT coef-
ficient

Prediction
residual

Difference
between
actual pixel
and the cor-
rected
prediction

Coder Arithmetic
coder

Arithmetic
coder

Arithmetic
coder

Adaptive
binary arith-
metic coder

Golomb
codes

Adaptive
m-ary
arithmetic
coder

Statistical
modeling

Semi-
adaptive

Semi-
adaptive

Semi-
adaptive

Adaptive Adaptive Adaptive

Information
about used
contexts
stored in the
header of
compressed
file

Contains
information
about used
contexts. In
average it
equals
250 bytes

Contains
information
about used
contexts. In
average it
equals
70 bytes

Contains
information
about used
contexts. In
average it
equals
168 bytes

Contains
metadata,
which inclu-
des informa-
tion about
used contexts
of each code-
block. In ave-
rage it equals
66 bytes

No infor-
mation about
used contexts
in the header.

No infor-
mation about
used contexts
in the header.

The number of various contexts is important property of context modeling. For GCT-I,

GCT-W, GCT-G algorithms we can calculate only average value of this feature, because

 54

number of contexts here depends on processed image. These three algorithms have common

scheme for context modeling; they store statistical information about contexts in special tree

structure. For GCT-I and GCT-W algorithms the number of contexts is (number of

colors)size of context. For GCT-G number of contexts depends on quantization region],[qp of

local gradient, so the value is 3)1(+− pq . After construction such tree is pruned to find

optimal combination of siblings with excluding contexts with small contribution, therefore we

have different number of contexts for each compressed image. Number of contexts is

decreased after pruning.

Along with context modeling algorithms LOCO-I, GCT-W, and CALIC use prediction

modeling step. During this step prediction error and its probability distribution are calculated.

It is important step, because prediction value is encoding value for these three compression

algorithms.

Choosing of encoding value is important moment for context modeling. Actually,

motivation of context modeling is to take advantage of correlation between encoding value

and context. Such correlation has to exist for good compression result. As we can see from

Table 8-1 prediction residual is used as encoding value, when quantized local gradient is used

as contexts. GCT-G, LOCO-I and CALIC use such context and encoding value during context

modeling, because local gradient and prediction error correlate. In GCT-W and JPEG2000

correlation between DWT coefficients are used for this purpose. Only in GCT-I algorithm

correlation between neighboring pixels is used, it allows to achieve advantage on images,

where linear prediction methods do not work.

Most of our algorithms use the entropy-based coder, in other words arithmetic coder.

Only LOCO-I algorithm use Golomb codes to encode prediction residual. Arithmetic coder is

flexibility, which means that it can be used in conjunction with any model that can provide a

sequence of probabilities. This property allows its using for algorithms: GCT-I, GCT-W,

GCT-G, JPEG2000, and CALIC.

All our considered lossless compression methods use statistical modeling in their

compression schemes. Statistical modeling can be classified into three categories: static

modeling, semi-adaptive modeling, and adaptive modeling. Algorithms GCT-I, GCT-W,

GCT-G use the semi-adaptive modeling, i.e. they are two-pass methods, which have no

update the model during compression and need the storing of statistical model. JPEG2000,

LOCO-I, and CALIC use adaptive modeling, they are one-pass methods, which update the

statistical model during compression. Advantage of adaptive approach is that such algorithms

do not need side information.

 55

The information about used contexts in the header of compressed file for GCT-I,

GCT-W, GCT-G and JPEG2000 methods is stored. Structure of JPEG2000 compressed file

differs from others. It consists of the blocks; each of them contains the context information

and compressed stream of code block. Such structure makes conditional upon compression

scheme of JPEG2000 standard, where code-blocks separately are compressed. In average the

information about used context takes about 0.3% from compressed file size for GCT-I

method, 0.2% for GCT-W, 0.1% for GCT-G, and 0.15% for JPEG2000 standard.

All considered algorithms have special advantages. CALIC’s advantage is high coding

efficiency in accomplished with relatively low time and space complexities. Application of

DWT allows perform zooming copies if the image without full reverse transform in

JPEG2000 standard and GCT-W algorithm, which support quick and easy zooming. The main

advantage of LOCO-I is low complexity of compression algorithm. Advantage of GCT-G

algorithm is using larger quantization region for local gradient as in LOCO-I method, due to

this fact the GCT-G has improvement about 2% as compared with LOCO-I in compression

efficiency. Advantage of GCT-I algorithm is effective context modeling on class of images,

which characterize by small number and sharp changing of colors, on such images linear-

predictive techniques work ineffective.

 56

9. Experiments and Discussions

In this section the results of experiments are considered. For experiments different test sets of

images were used: natural “smooth” images (see Appendix 4), medical images (see

Appendix 5), natural noise images (see Appendix 6), and astronomical images (see

Appendix 7). Description of these test sets is in Table 9-1.

Table 9-1. Test sets information.

Test set Images
Average

image size

Top number

of colors

Bit-rate,

bits per pixel
Characteristics

Medical images 5 328 x 290 256 8
Small number of colors and
sharp changing of color on
adjacent samples

Natural smooth
images

12 430 x 425 256 8 Images with smooth color
changing

Natural noise
images

5 320 x 348 256 8 Smooth images with noise

Astronomical
images

10 665 x 466 256 8 Images with small noise

Analysis of our results is made by comparing results of following known methods: LOCO-I,

JPEG2000, CALIC (detail description about these methods is in Section 3).

Let us assign short names to our algorithms:

1. GCT-I – lossless compression algorithm, which uses approach of General Context

Tree based on Intensity. Main feature here is context modeling based on neighboring

pixels from initial image. This algorithm constructs general context tree, prune it and

makes entropy encoding (detail description of this method is in Section 5).

2. GCT-W – lossless compression algorithm, which uses approach of General

Context Tree based on DWT coefficients. During modeling step it applies context

modeling based on discrete wavelet transform coefficients with using GCT approach

(detail description of this method is in Section 6).

3. GCT-G – Context Modeling based on local gradients algorithm applies context

modeling based on local gradients with using GCT approach. In this algorithm

context tree is constructed based on quantized local gradients and encoding makes

for prediction error (detail description is in Section 7).

 57

In Table 9-2 are results of our algorithms (GCT-I, GCT-W, GCT-G) and known

algorithms (CALIC, LOCO-I, JPEG2000). Results are given in bit-rate and evaluated in bits

per pixel. Initial bit-rate for all images is 8 bits per pixel.

Table 9-2. The compression efficiency (bits per pixel).

Test set GCT-I GCT-G GCT-W CALIC LOCO-I JPEG2000

Medical images 3.261 3.492 4.088 3.415 3.530 3.917

Natural smooth images 5.146 4.797 4.858 4.422 4.541 4.653

Natural noise images 5.558 4.995 4.954 4.634 4.740 4.807

Astronomical images 3.814 3.523 3.842 3.427 3.628 3.770

These experiments were processed for comparing effectiveness between presented

algorithms. Detail results description for each image test set is in Appendix 1, Appendix 2 and

Appendix 3.

Testing produced on following test sets: natural smooth images, medical images,

astronomical and natural noise images. So, on smooth natural images (see Table 9-2) results

for algorithms, which use linear dependences between pixels, are better.

In general case results for GCT-G are comparable to JPEG2000 and LOCO-I. In

Table 9-2 we can see that on medical images we have better compression for our algorithms,

it depends on structure of images. GCT-I gives better result on such class of images, because

here we have small number and sharp changings of colors, because image has special

structure, where predictors of known methods (LOCO-I, CALIC) do not work here. Applying

context model based on DWT coefficients and local gradients also try to use linear

dependences between pixels, but sometimes structure of image does not allow it in general.

For comparing medical images and natural images we considered intensity histograms

for images.

 58

Figure 9-1. Intensity histogram of blood (medical image).

As illustrated in Figure 9-1 the number of colors in medical images is small, this

property allows to constructing of context model with small number of contexts, which will

full describe current image. For comparing we constructed intensity histogram for natural

smooth image, it is illustrated in Figure 9-2.

Figure 9-2. Intensity histogram of lena (natural smooth image).

Natural noise images have the similar intensity histograms as natural smooth images,

it means that such images have bigger number of colors as medical images.

 59

Figure 9-3. Frequency of differences between adjacent by x coordinate pixels for blood.

In Figure 9-3 and Figure 9-4 frequencies of differences between neighboring by x

coordinate pixels for medical image and for smooth natural are illustrated. For medical image

differences between adjacent pixels are in small region centered near zero. Figure 9-3 shows

that such king of images have sharp changings of colors. This property stipulates for bad work

of linear-predictive coding technique, because between pixels here we have not linear

dependences.

Figure 9-4. Frequency of differences between adjacent by x coordinate pixels for lena.

 60

After analyzing of image properties we obtained, that natural noise images have

approximately same characteristics as natural smooth images: big number of colors and linear

dependence of color changing. These properties ensured that on this test set CALIC gives

better compression result as GCT-I.

The main properties for medical images are small number and sharp changings of

colors. Small number of colors allows to constructing of context model with smaller number

of contexts, this fact gives opportunity to save computer memory for storing context model.

Sharp changing of colors shows that between pixels no linear dependences, therefore on such

images GCT-I gives better compression result.

Following experiment was produced for comparing the compression efficiency on

astronomical images.

Table 9-3. The compression efficiency for astronomical images (bits per pixel).

File name CALIC GCT-G LOCO-I JPEG2000 GCT-I GCT-W

Astr1 4.271 4.420 4.589 4.777 4.836 4.858

Astr2 5.488 5.662 5.696 6.296 5.775 6.363

Astr3 2.280 2.212 2.299 2.399 2.720 2.427

Astr4 1.245 1.282 1.370 1.356 1.445 1.403

Astr5 4.371 4.486 4.631 4.558 4.769 4.672

Astr6 0.518 0.602 0.527 0.655 0.650 0.668

Astr7 3.652 3.778 3.977 3.945 4.249 4.096

Astr8 4.982 5.144 5.269 5.647 5.441 5.723

Astr9 4.400 4.519 4.661 4.809 4.796 4.889

Astr10 3.060 3.126 3.265 3.256 3.461 3.321

Average 3.427 3.523 3.628 3.770 3.814 3.842

Comparing the results for different types of images in Table 9-2 we can see that on

astronomical images (see Appendix 7) GCT-G method produces better compression than

LOCO-I. Detail results of this experiment are in Table 9-3.

The explanation of this result is obviously, because these two algorithms use the same

predictor during modeling step (see Section 7.1 and Section 3.1). Improvement is reached by

GCT approach in context modeling based on quantized local gradients, quantization range in

GCT-G is bigger than in LOCO-I method, so in GCT-G we have bigger number of contexts

and therefore more efficient coding, it has about 2% improvement in compression efficiency.

On other test sets difference between results of LOCO-I and GCT-G is small, it is about 1-2%

on the both hands.

 61

Following experiment was produced for detecting optimal value for DWT levels,

denote such value as D. Also discrete wavelet transform is used in JPEG2000 standard (see

Section 3.1), in this standard typical values are in the range D=4 through D=8 for lossless

mode. We used the same low- and high-pass filters as JPEG2000. So, the question is to detect

optimal value for parameter D in context modeling based on DWT coefficients.

For comparing were used two types of images: smooth natural images and medical

images. For these two sets we have the same dependences. Experiment has two aims: detect D

and size of context. Size of context means number of adjacent pixels on template (see

Figure 6-3 in Section 6.4); also this value is depth of context tree, let us denote size of context

template as s . We fixed parameter D and changed depth of context tree s in range [2; 5]. The

aim was detect optimal values for these two parameters. General result of this experiment is in

Table 9-4 (more detail description of result is in Appendix 2). The best results are with D=8

and depth = 3 or depth = 4.

Table 9-4. The compression efficiency for GCT-W method with different D levels

(bits per pixel)
Natural smooth images Medical images Number

of DWT
levels s= 2 s = 3 s = 4 s = 5 s = 2 s = 3 s = 4 s = 5

D = 3 4,861 4,862 4,862 4,862 4,106 4,104 4,102 4,102

D = 4 4,861 4,861 4,861 4,861 4,102 4,099 4,099 4,098

D = 5 4,864 4,865 4,865 4,865 4,093 4,092 4,092 4,090

D = 6 4,862 4,862 4,862 4,862 4,093 4,093 4,091 4,091

D = 7 4,860 4,860 4,861 4,861 4,091 4,090 4,089 4,088

D = 8 4,857 4,858 4,858 4,858 4,091 4,090 4,088 4,088

After depth equals 3 (or 4) we have the same results for bigger size of context, because

in practice after certain depth (in our case it is 3) context tree is filled. Such occurrence is

obvious, because during pruning of context tree we are excluding contexts with small

contribution. Difference between compression efficiency for different context size is

thousandth, optimal value here is such value after that context tree is filled (i.e. context tree

contains all significant contexts). So, optimal value for contexts size approximately is 3 or 4.

Value for DWT levels has small contribution into compression. Bit-rate in bits per pixel for

compressed images with different DWT levels has thousandth differences. Optimal value for

DWT levels in such case is D = 6. After comparing results for D=6 and D=8 we can see, that

increasing value of D makes small changes in terms of context modeling (we have the same

number of colors, approximately equals number of different contexts). But applying bigger

 62

number of D requires more time for DWT, therefore we take middle value, which will be best

balance between compression quality in bits per pixel and compression time.

Following experiment was about constructing context template based on conjugate

DWT coefficients, i.e. with using conjugate coefficient from up DWT level (see Section 6.5).

The question is detecting which coefficient we can take instead of neighboring coefficient

from context template; such template is illustrated in Figure 6-4. During this experiment

templates illustrated in Figure 9-5 are used.

HH2

 4 2 3

5 1 x

HH1

HH2

 4 2 3

5 1 x

HH1

HH2

 4 2 3

5 1 x

HH1

HH2

 4 2 3

5 1 x

HH1

HH2

 4 2 3

5 1 x

HH1

Figure 9-5. Templates based on DWT coefficients with one conjugate, context size is 5.

 63

The formation concept of such tamplates is replacing of neighboring coefficient on

conjugate up-level DWT coefficient. Here we use principle, that 1 coefficient from up-level

has 4 conjugate coefficients from low-level. For replacing we use coefficient corresponded to

coding coefficient on position x.

For testing natural smooth images and medical images were used. Results are in

Table 9-5. Results are given in bit-rate and evaluated in bits per pixel.

Table 9-5. Bit-rate for algorithm GCT-W with context template with conjugate DWT

coefficient, D = 5 (bits per pixel)

GCT-W algorithm
File name

0 coef. 1 coef. 2 coef. 3 coef. 4 coef. 5 coef.

Barb 5.074 5.199 5.112 5.068 5.068 5.068

Billsface 4.194 4.290 4.206 4.205 4.205 4.205

Boat 4.621 4.690 4.624 4.622 4.621 4.621

Cman 5.261 5.329 5.256 5.247 5.251 5.251

Einstein 5.069 5.102 5.099 5.088 5.088 5.088

Elaine 5.141 5.173 5.157 5.155 5.155 5.155

Goldhill 4.992 4.985 4.986 4.984 4.985 4.985

Lena 4.492 4.584 4.512 4.508 4.507 4.508

Man 5.687 5.729 5.664 5.663 5.663 5.663

Mri 4.905 4.917 4.835 4.839 4.833 4.833

Peppers 4.799 4.859 4.810 4.806 4.806 4.806

Zelda 4.146 4.162 4.159 4.159 4.159 4.159

Average 4.865 4.918 4.868 4.862 4.862 4.862

Hip 2.648 2.697 2.674 2.648 2.645 2.644

Blood 4.853 4.969 4.869 4.857 4.857 4.857

Child 3.715 4.046 4.096 4.033 4.032 4.032

5week 4.035 3.737 3.809 3.721 3.721 3.718

Ultrasound 5.210 5.436 5.282 5.260 5.260 5.260

Average 4.090 4.177 4.146 4.104 4.103 4.102

First column contains results of GCT-W compression method, which use simple

template without replacing, it corresponds to 0 replacing pixel from template (see Figure 6-3).

Other columns contain results for templates, where some coefficient is replacing on conjugate

coefficient from up DWT level (see Figure 9-5).

 64

Results show that using of coefficient from up DWT level does not improve

compression efficiency. Bit-rate is the same as for context modeling based on DWT

coefficients without using conjugate coefficient from up-level. Reason of this event is that

correlation between coding coefficient and neighboring coefficients is approximately same as

between coding coefficient and coefficient from up-level.

During developing algorithm of context modeling based on local gradients we need to

define quantization range],[qp for differences 321 ,, ggg , which defined by formula (7.3)

(see Section 7) and notated as local gradient. All such differences need to be quantized by

applying uniform scalar quantizer (7.5). Our experiment was about detecting of optimal

quantization range],[qp . So we defined this range by using results of experiments. In our

algorithm (see Section 7) we are applying context modeling based on quantized local

gradients. Results are in Table 9-6. For experiment was used test set of natural smooth images

Table 9-6. The compression efficiency for GCT-G method in bits per pixel

GCT-G algorithm with quantized region
File name

[0, 42] [0, 66] [0, 127]

Barb 5.183 5.196 5.233

Billsface 4.141 4.131 4.111

Boat 4.500 4.487 4.495

Cman 4.974 5.004 4.972

Einstein 4.890 4.868 4.916

Elaine 5.201 5.193 5.235

Goldhill 4.923 4.914 4.918

Lena 4.504 4.485 4.496

Man 5.559 5.568 5.602

Mri 4.816 4.776 4.806

Peppers 4.770 4.752 4.761

Zelda 4.203 4.185 4.181

Average 4.805 4.797 4.810

In first column of Table 9-6 is bit-rate of compressed files, where quantized range for

differences of local gradient were [0, 42], it means 43 different values for each quantized

values 321
~,~,~ qqq of 321 ,, ggg , for second and third columns [0, 66] and [0, 127] respectively.

 65

After experiment we see that optimal range is [0, 66], it is optimal balance between

quality of compression and compression time. Context tree extended after increasing of

quantization range],[qp , it took more time for processing and more resources for storing

such structure. Difference in bit-rate for different ranges is in thousandth, so we took middle

value as optimal.

For estimation GCT-G method we made following experiment: encode of pixel value

(or intensity) in context of quantized local gradient (GCT-G-intensity), encode of prediction

error in context of image samples (GCT-I-error). Results are in Table 9-7.

Table 9-7. Comparable estimation of GCT-G method (bits per pixel)

File name GCT-G GCT-I GCT-G-intensity GCT-I-error

Barb 5.196 5.751 7.190 6.990

Billsface 4.131 4.606 6.510 7.100

Boat 4.487 4.812 6.087 6.090

Cman 5.004 5.246 6.162 6.472

Einstein 4.868 5.240 6.515 6.813

Elaine 5.193 5.423 7.229 7.423

Goldhill 4.914 5.513 6.581 6.329

Lena 4.485 4.796 7.041 7.215

Man 5.568 5.768 7.218 7.387

Mri 4.776 5.151 6.350 6.284

Peppers 4.752 4.981 7.004 7.125

Zelda 4.185 4.460 6.379 6.485

Average 4.797 5.146 6.690 6.809

Result from Table 9-7 show high bit-rate for GCT-G-intensity and GCT-I-error

versions, because between gradients and sample value, prediction error and sample values

correlation is very small. Correlation is necessary condition for context modeling. Actually, as

we can see from Table 9-7 variations of our GCT-G and GCT-I algorithms, i.e. GCT-G-

intensity and GCT-I-error methods, have higher bit-rate as results of GCT-G and GCT-I.

 66

10. Conclusions

In this thesis was considered the problem of context modeling with using n -ary context tree

structure for lossless compression. Grayscale images represent the area of interests in different

types of digital images.

We have considered and studied known lossless compression methods JPEG2000,

LOCO-I, CALIC. All of them are based on compression paradigm of “universal modeling and

coding”. Being based on this paradigm two lossless compression algorithms have been

developed during this work: General Context Tree based on DWT coefficients (GCT-W),

General Context Tree based on local gradients (GCT-G). These algorithms are modernization

of General Context Tree based on Intensity method (GCT-I).

Were developed and analyzed the different context templates based on DWT

coefficients, local gradients and intensity of adjacent pixels. For context modeling the unique

approach of n -ary context tree with incomplete and optimal structure was used.

The proposed new methods, GCT-I, GCT-W and GCT-G, were compared with other

known lossless compression methods (JPEG2000, LOCO-I, CALIC) and gave comparable

results, in general the difference is about 1-2% in compression efficiency. For testing have

been used following types of grayscale images: medical, natural smooth, noise and

astronomical images.

The empirical results show that on medical images by applying GCT-I method, here

we have 7% improvement in compression effectiveness. Also GCT-G algorithm has better

compression results about 2% improvement than LOCO-I method on medical and

astronomical test sets.

 67

References

[Adams01] M. D. Adams, “The JPEG2000 Still Image Compression Standard”, ISO/IEC JTC

1/SC 29/WG 1N 2412, September 2001.

[AKF05] A. Akimov, A. Kolesnikov, P. Fränti, “Context tree modeling of chain codes for

contour compression”, Scandinavian Conference on Image Analysis (SCIA'05), Joensuu,

Finland, LNCS vol. 3540, pp. 312-321, June 2005.

[BCW89] T. Bell, J. Cleary, I.H. Witten, “Modelling for text compression”, ACM Computing

Surveys, vol. 21 (4), pp.557-591, December 1989.

[FA99] P. Fränti, E. Ageenko, “On the use of context tree for binary image compression”,

Proc. 1999 IEEE International Conference on Image Processing "ICIP'99", vol. 3, pp. 757-

761, Kobe, Japan, 1999.

[Fränti00] P. Fränti, “Image Compression”, University of Joensuu, Department of Computer

Science, Lecture notes, 2000.

[Golomb66] S.W. Golomb, “Run-length encoding”, IEEE Transactions on Information

Theory, vol. 12 (3), pp. 399-401, July 1966.

[HV91] P. Howard, J. Vitter, “Analysis of arithmetic coding for data compression”, Proc.

1991 IEEE Data Compression Conference (DCC '91), Snowbird, Utah, pp. 3-12, April 1991.

[Kopyl04] P.Kopylov, “Processing and Compression of Raster Map Images”, University of

Joensuu, Computer Science, Dissertations 8, Joensuu, 2004.

[Lloyd82] S.P. Lloyd, “Least squares quantization in PCM”, IEEE Transactions on

Information Theory, vol. 28 (2), pp. 129-137, March 1982.

[Mallat89] S. Mallat, “A Theory of Multiresolution Signal Decomposition: The Wavelet

Representation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11

(7), pp.674-693, July 1989.

 68

[Mallat98] S. Mallat, “A Wavelet Tour of Signal Processing”, Academic Press, 1998.

[Max60] J. Max, “Quantizing for minimum distortion”, IRE Transactions on Information

Theory, vol. 6 (1), pp. 7-12, March 1960.

[MB01] M.W. Marcellin, A. Bilgin, “JPEG2000: Highly Scalable Image Compression”, Proc.

2001 International Conference on Information Technology: Coding and Computing

(ITCC2001), Las Vegas, Nevada, pp. 268-272, April 2001.

[MBGB00] M.W. Marcellin, A. Bilgin, M.J. Gormish and M.P.Boliek, “An Overview of

JPEG-2000”, Proc. 2000 Data Compression Conference, Snowbird, Utah, pp. 523-541,

March 2000.

[MF90] M.W. Marcellin and T.R. Fisher, “Trellis coded quantization of memoryless and

Gauss-Markov sources”, IEEE Transactions on Communications, vol. 38 (1), pp. 82-93,

January 1990.

[MF98] B. Martins, S. Forchhammer, “Tree coding of bi-level images”, IEEE Transactions

on Image Processing, vol. 7 (4), pp. 517-528, April 1998.

[MT02] M. W. Marcellin, D. S. Taubman, “JPEG2000: image compression fundamentals,

standards, and practice”, Kluwer Academic Publishers, 2002.

[Norhe94] R. Norhe, “Topics in descriptive complexity”, PhD Thesis, University of

Linköping, Sweden, 1994.

[Ris83] J. Rissanen, “A universal data compression system”, IEEE Transactions on

Information Theory, vol. 29 (5), pp. 656-664, September 1983.

[RL81] J. Rissanen, G. Langdon, “Universal modeling and coding”, IEEE Transactions on

Information Theory, vol. 27 (1), pp. 12-23, January 1981.

[Shan48] C.E. Shannon, “A mathematical theory of communication”, Bell System Technical

Journal, vol. 27 (3), pp. 398-403, July 1948.

 69

[SN96] G. Strang, T. Nguyen, “Wavelets and Filter Banks”, Wellesley-Cambridge Press,

1996.

[WM97a] X. Wu, N. Memon, “Context-Based, Adaptive, Lossless Image Coding”, IEEE

Transactions on Communications, vol. 45 (4), pp. 437-444, April 1997.

[WM97b] X. Wu, N. Memon “Recent Developments in Context-Based Predictive

Techniques for Lossless Image Compression”, The Computer Journal, vol. 40 (2/3), pp. 127-

136, 1997.

[WR95] M. Weinberger, J. Rissanen, “A universal finite memory source”, IEEE Transactions

on Information Theory, vol. 41 (3), pp. 643-652, May 1995.

[WRA96] M. Weinberg, J. Rissanen and R. Arps, “Applications of universal context

modeling to lossless compression of gray-scale images”, IEEE Transactions on Image

Processing, vol. 5 (4), pp. 575-586, April 1996.

[WSG00] M. Weinberger, G. Seroussi, B. Carpentieri, “Lossless Compression of Continuous-

Tone Images”, Hewlett-Packard Laboratories technical report HPL-2000-163, vol. 29,

December 2000.

[WSS96] M. Weinberger, G. Seroussi, G. Sapiro, “LOCO-I: A Low Complexity, Context-

Based, Lossless Image Compression Algorithm”, Tech. Rep. Hewlett-Packard Laboratories,

Palo Alto, CA 94304, vol. 10, April 1996.

[WSS00] M. Weinberger, G. Seroussi, G. Sapiro, “The LOCO-I Lossless Image Compression

Algorithm: Principles and Standardization into JPEG-LS”, IEEE Transactions on Image

Processing, vol. 9 (8), pp. 1309-1324, August 2000.

 70

Appendix 1

Results are given in bit-rate and evaluated in bits per pixel. Initial bit-rate for all images is

8 bits per pixel.

Table 1. Bit-rate of compression results on natural smooth images (bits per pixel).

File name CALIC LOCO-I JPEG2000 GCT-G GCT-W GCT-I

Barb 4.656 4.863 4.781 5.196 5.069 5.751
Billsface 3.800 3.914 4.021 4.131 4.185 4.606
Boat 4.156 4.250 4.406 4.487 4.607 4.812
Cman 4.650 4.740 5.000 5.004 5.254 5.246
Einstein 4.525 4.602 4.813 4.868 5.060 5.240
Elaine 4.813 4.898 4.938 5.193 5.147 5.423
Goldhill 4.625 4.712 4.844 4.914 4.987 5.513
Lena 4.094 4.237 4.313 4.485 4.490 4.796
Man 5.125 5.267 5.500 5.568 5.669 5.768
Mri 4.375 4.518 4.600 4.776 4.885 5.151
Peppers 4.375 4.489 4.625 4.752 4.789 4.981
Zelda 3.875 4.005 4.000 4.185 4.150 4.460

Average 4.422 4.541 4.653 4.797 4.858 5.146

Table 2. Bit-rate of compression results on medical images (bits per pixel).

File name CALIC LOCO-I JPEG2000 GCT-G GCT-W GCT-I

Hip 1.839 1.887 2.611 1.938 2.638 1.948
Child 3.634 3.683 3.830 3.772 3.714 3.599
5week 3.223 3.325 3.576 3.273 4.033 3.292
Blood 3.806 4.076 4.682 3.464 4.862 2.447
Ultrasound 4.573 4.679 4.886 5.015 5.192 5.019

Average 3.415 3.530 3.917 3.492 4.088 3.261

Table 3. Bit-rate of compression results on natural noise images (bits per pixel).

File name CALIC LOCO-I JPEG2000 GCT-G GCT-W GCT-I
Face 4.183 4.315 4.322 4.528 4.565 5.511
Fog 3.382 3.467 3.513 3.577 3.624 4.022
Girl 3.869 3.949 4.018 4.173 4.263 5.245
Port 6.541 6.682 6.780 7.111 6.843 7.079
Susy 5.196 5.288 5.403 5.585 5.474 5.932

Average 4.634 4.740 4.807 4.995 4.954 5.558

 71

Appendix 2

Here are results of experiment for detecting the optimal value for the number of DWT levels

and the size of context s in GCT-W algorithm. Results are given in bit-rate and evaluated in

bits per pixel. Initial bit-rate for all images is 8 bits per pixel. For experiment we used two sets

of images: smooth natural images, which were used in developing the existing ISO/IEC

10918-1 lossless JPEG standard (see Appendix 4), and medical images (see Appendix 5).

 DWT 3 levels DWT 4 levels

File name s = 2 s = 3 s = 4 s = 5 s = 2 s = 3 s = 4 s = 5

Barb 5.066 5.068 5.068 5.068 5.076 5.078 5.078 5.078
Billsface 4.205 4.205 4.205 4.205 4.199 4.199 4.199 4.199
Boat 4.621 4.621 4.621 4.621 4.607 4.607 4.607 4.607
Cman 5.247 5.251 5.251 5.251 5.253 5.253 5.253 5.253
Einstein 5.088 5.088 5.088 5.088 5.066 5.066 5.066 5.066
Elaine 5.154 5.155 5.155 5.155 5.144 5.143 5.144 5.144
Goldhill 4.984 4.985 4.985 4.985 4.980 4.980 4.980 4.980
Lena 4.508 4.507 4.508 4.509 4.493 4.494 4.494 4.495
Man 5.663 5.663 5.663 5.663 5.687 5.688 5.688 5.688
Mri 4.833 4.833 4.833 4.833 4.889 4.889 4.889 4.889
Peppers 4.806 4.806 4.806 4.806 4.787 4.786 4.786 4.786
Zelda 4.159 4.159 4.159 4.159 4.145 4.146 4.146 4.146

Average 4.861 4.862 4.862 4.862 4.861 4.861 4.861 4.861

 DWT 5 levels DWT 6 levels

File name s = 2 s = 3 s = 4 s = 5 s = 2 s = 3 s = 4 s = 5

Barb 5.066 5.074 5.074 5.074 5.063 5.071 5.071 5.071
Billsface 4.194 4.194 4.194 4.194 4.183 4.183 4.183 4.183
Boat 4.621 4.621 4.621 4.621 4.623 4.623 4.623 4.623
Cman 5.261 5.261 5.261 5.261 5.257 5.257 5.257 5.257
Einstein 5.069 5.069 5.069 5.069 5.069 5.069 5.069 5.069
Elaine 5.142 5.143 5.141 5.141 5.146 5.146 5.144 5.144
Goldhill 4.992 4.992 4.992 4.992 4.995 4.995 4.995 4.995
Lena 4.491 4.493 4.492 4.492 4.500 4.498 4.498 4.498
Man 5.686 5.687 5.687 5.687 5.675 5.673 5.673 5.673
Mri 4.905 4.905 4.905 4.905 4.895 4.895 4.895 4.895
Peppers 4.800 4.799 4.799 4.799 4.791 4.792 4.792 4.792
Zelda 4.146 4.146 4.146 4.146 4.145 4.143 4.143 4.143

Average 4.864 4.865 4.865 4.865 4.862 4.862 4.862 4.862

 72

 DWT 7 levels DWT 8 levels

File name s = 2 s = 3 s = 4 s = 5 s = 2 s = 3 s = 4 s = 5

Barb 5.073 5.083 5.083 5.083 5.059 5.069 5.069 5.069
Billsface 4.186 4.186 4.186 4.186 4.185 4.185 4.185 4.185
Boat 4.616 4.615 4.615 4.615 4.609 4.607 4.607 4.607
Cman 5.255 5.258 5.258 5.258 5.255 5.254 5.254 5.254
Einstein 5.063 5.063 5.063 5.063 5.060 5.060 5.060 5.060
Elaine 5.149 5.146 5.148 5.148 5.147 5.147 5.146 5.146
Goldhill 4.989 4.990 4.990 4.990 4.987 4.987 4.987 4.987
Lena 4.488 4.489 4.492 4.489 4.489 4.490 4.490 4.490
Man 5.669 5.668 5.668 5.668 5.672 5.669 5.669 5.669
Mri 4.885 4.885 4.885 4.885 4.885 4.885 4.885 4.885
Peppers 4.796 4.793 4.793 4.793 4.787 4.789 4.789 4.789
Zelda 4.150 4.149 4.149 4.149 4.150 4.150 4.150 4.150

Average 4.860 4.860 4.861 4.861 4.857 4.858 4.858 4.858

 DWT 3 levels DWT 4 levels

File name s = 2 s = 3 s = 4 s = 5 s = 2 s = 3 s = 4 s = 5

Hip 2.657 2.652 2.644 2.645 2.654 2.645 2.639 2.640
Child 3.723 3.721 3.718 3.718 3.728 3.722 3.722 3.724
5week 4.033 4.032 4.032 4.032 4.048 4.048 4.048 4.048
Blood 4.857 4.857 4.857 4.857 4.854 4.854 4.854 4.854
Ultrasound 5.260 5.260 5.260 5.260 5.226 5.226 5.226 5.226

Average 4.106 4.104 4.102 4.102 4.102 4.099 4.099 4.098

 DWT 5 levels DWT 6 levels

File name s = 2 s = 3 s = 4 s = 5 s = 2 s = 3 s = 4 s = 5

Hip 2.651 2.645 2.638 2.648 2.649 2.651 2.633 2.633
Child 3.718 3.718 3.718 3.715 3.722 3.722 3.722 3.722
5week 4.034 4.035 4.035 4.035 4.033 4.033 4.033 4.033
Blood 4.853 4.853 4.853 4.853 4.861 4.861 4.861 4.861
Ultrasound 5.210 5.210 5.210 5.210 5.198 5.198 5.198 5.198

Average 4.093 4.092 4.092 4.090 4.093 4.093 4.091 4.091

 DWT 7 levels DWT 8 levels

File name s = 2 s = 3 s = 4 s = 5 s = 2 s = 3 s = 4 s = 5

Hip 2.654 2.648 2.641 2.641 2.652 2.655 2.638 2.640
Child 3.714 3.718 3.715 3.714 3.717 3.718 3.716 3.716
5week 4.033 4.031 4.031 4.033 4.033 4.031 4.031 4.031
Blood 4.862 4.862 4.862 4.862 4.862 4.862 4.862 4.862
Ultrasound 5.192 5.192 5.192 5.192 5.192 5.192 5.192 5.192

Average 4.091 4.090 4.089 4.088 4.091 4.090 4.088 4.088

 73

Appendix 3

Results of experiment based on noise images (see Appendix 6). Results are given in bit-rate

and evaluated in bits per pixel. Initial bit-rate for all images is 8 bits per pixel.

Table 1. Bit-rate of compression results on natural noise images (bits per pixel)

File name CALIC LOCO-I JPEG2000 GCT-G GCT-W GCT-I

Face 4.183 4.315 4.322 4.528 4.565 5.511
Fog 3.382 3.467 3.513 3.577 3.624 4.022
Girl 3.869 3.949 4.018 4.173 4.263 5.245
Port 6.541 6.682 6.780 7.111 6.843 7.079
Susy 5.196 5.288 5.403 5.585 5.474 5.932

Average 4.634 4.740 4.807 4.995 4.954 5.558

 74

Appendix 4

Original JPEG image test set. Set of natural smooth grayscale images.

Barb.pgm, size 512x512, 256col.

Billsface.pgm, size 309x240, 256col.

Boat.pgm, size 512x512, 256col.

Cman.pgm, size 256x256, 256col.

Einstein.pgm, size 256x256, 256col.

Elaine.pgm, size 512x512, 256col.

 75

Goldhill.pgm, size 512x512, 256col.

Lena.pgm, size 512x512, 256col.

Man.pgm, size 512x512, 256col.

Mri.pgm, size 256x256, 256col.

Peppers.pgm, size 512x512, 256col.

Zelda.pgm, size 512x512, 256col.

 76

Appendix 5

Set of medical images.

Blood.pgm, size 272x265, 256col.

Hip.pgm, size 512x512, 256col.

Ultrasound.pgm, size 128x120, 256 col.

5week.pgm, size 356x270, 256col.

Child.pgm, size 378x290, 256 col.

 77

Appendix 6

Test set of natural noise images.

Face.pgm, size 211x264, 256col.

Fog.pgm, size 512x512, 256col.

Girl.pgm, size 204x264, 256col.

Port.pgm, size 320x408, 256col.

Susy.pgm, size 352x288, 256col.

 78

Appendix 7

Test set of astronomical images.

Astr1.pgm, size 827x552, 256col.

Asrt2.pgm, size 576x396, 256col.

Astr3.pgm, size 512x512, 256col.

Asrt4.pgm, size 524x364, 256col.

Astr5.pgm, size 827x552, 256col.

Astr6.pgm, size 827x552, 256col.

 79

Astr7.pgm, size 576x386, 256col.

Astr8.pgm, size 576x396, 256col.

Astr9.pgm, size 827x552, 256col.

Astr10.pgm, size 576x396, 256col.

