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Abstract

Population forecast shows how the total population number changes over time and 

this information is extremely important for planning purposes. National, regional and 

local planners all need to have some idea of likely future changes in the size and age 

distribution of the population in their particular areas. 

Any population forecast  includes  uncertainty because  human behaviour  is  quite 

unpredictable in general. Hence, it  is natural to add propagation error as a random 

component in order to model the uncertainty. 

In this thesis, the basic demographic events and measures are first reviewed. These 

include Lexis diagram, cohort and vital rates. Then the linear grows model and the 

dynamic stochastic population forecast are introduced and illustrated with numerical 

examples.  Own  stochastic  forecast  of  population  is  constructed  and  computer 

implementation  details  are  discussed.  Finnish  population  forecast  in  2004-2054 is 

simulated and the result is compared with United Nation forecast. 
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1. Introduction

Forecasting  is  an  important  part  of  decision  making  and  planing.  Webster's 

dictionary defines forecasting as an activity “to calculate or predict some future event 

or condition, usually as a result of rational study or analysis of pertinent data” [16]. 

Population forecasting is a basis of any other social prediction. In fact, if it is needed 

to  plan  evolution  of  some  products  or  services  making,  distribution  of  natural 

resources and budget receipts, and any other social processes, the population size and 

its structure should first be considered. Statistical data regarding population refer to 

the past, action and policy require knowledge of the future. The cost of an annuity 

taken into account today depends on the future not on the past mortality [13]. The 

question of the population forecast continues between past and future.

In general,  demography is a science about population.  According to the United 

Nations Multilingual Demographic Dictionary [26] demography is a scientific study 

of human populations, primarily with respect to their size, structure and  development. 

In  other  words,  it  concerns  with  the  current  size  and  characteristics  of  human 

populations, how they were attained, and how they are changing.

The purposes of the demographic forecasting concerns with the economic decision 

making,  such  as  pension,  public  health  and  education  planning.  World,  national, 

regional and local forecasts are needed to have some idea of likely future changes in 

the size of the population in a particular area.

The subject of demographic forecasting is the population size, or changing of the 

size. The population can increase via births and in-migration, and decrease via deaths 

and out-migration, see Figure 1.

Figure 1. Influences on population size.
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Thus,  births,  deaths and migration form the relevant  vital  processes.  Population 

forecasts summarize existing information about the likely future development of the 

vital rates. The mathematical model looks like this:

Population size at year t =Population size at year t−1

               Number of newborns – Number of deaths                     (1)
InMigration – OutMigration.

These data can be obtained through population censuses, special sample surveys, 

current records of demographic events and so on. This information is usually given by 

sex and age. Moreover, special demographic measures are also included, for example, 

age  specific  fertility  rate  (ASFR),  projective  mortality  rate  (PMR),  probability  of  

surviving and  scales  of  uncertainty.  Demographic  measures  characterise  different 

population  characteristics,  population  structure,  demographic  processes  and 

reproduction of population.

Since future events involve uncertainty, the forecasts are usually not perfect and 

contain errors. The objective of forecasting is to reduce the forecast error: to produce 

forecast that are seldom incorrect and that have small forecast error. It can be done by 

including randomness in the model [15]. Cohort-component book-keeping forecast is 

based on equation (1) and it includes randomness by adding error in a specific form to 

each component.

The  rest  of  the  thesis  is  structured  as  follows.  In  Chapter  2,  definitions  of 

demographic events based on Lexis diagram are presented. Chapters 3, 4 and 5 give 

detailed picture of the main factors that affect population changes: fertility, mortality 

and migration accordingly. Further linear growth and dynamic stochastic demographic 

models  are  given  in  Chapter  6,  where  the  problem  of  uncertainty  in  population 

forecasts  is  studied.  Chapter  7  is  dedicated  to  extensive  description  of  stochastic 

population forecast with a toy example model. Computer implementation is covered 

in Chapter 8 and experimental results are reported in Chapter 9. Concluding remarks 

are given in Chapter 10.
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2. Description of demographic events

Time is the variable of all events in the world, which is the case for demographic 

processes  also.  There  are  two types  of  demographic  time:  (1)  real  calendar  time, 

which is measured by the exact dates of beginning or ending of some event (such as 

dates of birth and death); and (2) the duration of an event, for example, age since the 

birth till the observation point. Both types exert influence on person's life hence on 

demographic events [31]. Probability of some event depends on calendar time (during 

wars fertility decreases), and on history (old people have higher mortality rate), which 

is duration dependence. Therefore, one should take into consideration these two times 

for  adequate  picture.  A  way to  consider  this  dual  time  nature  is  to  use  a  Lexis 

diagram.

2.1. Lexis diagram

Lexis  diagram is  one  of  the  main  instrument  of  demographic  analysis.  It  is  a 

rectangular reference grid, where horizontal axis refers to time (t) and the vertical axis 

to age (x) [28]. For each person, a life line may be drawn that starts at a time and age 

when the person enters the population and ends at the time when the person exits the 

population. Typically the entry would occur at birth and exit at death, but entries or 

exits due to other vital processes (e.g. migration) may occur at other ages.

Demographic events are shown in three-dimensional space on Lexis diagram: the 

date of enter of a given demographic event, the date of exit, and observation period (if 

we end observation before the date of exit), time in demographic event at the exit or at 

the  moment  of  observation  [5].  In such  a  way, we use  three  coordinates  in  two-

dimensional space to describe any demographic event. Demographic events are birth, 

death,  being  n-years old,  migration,  marriage and divorce.  Observation period is a 

time of our interest.

We need to have two coordinates to show any event in the Lexis diagram. The first 

one is the date of event starting (Time axis) and the second is the age of individual 

(Age axis). For example, point  A in  Figure 2 corresponds to an event that starts at 

exact time 3 when the individual is exactly 4 years old. We can call this event “being 

exact 4-years old in the 3 year”. Lexis diagram is a line BC for event “being exact 4-
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years old”, this line is called line of age 4.

Exact age is not used often as coordinate in Lexis diagram, usually age rounded to 

the  number  of  years  since  birth,  the  event  “being  4-years  old  in  the  year  3” 

corresponds to the line AD in Figure 2. 

With Lexis diagram we can localize age and year. If event occurs at age 2, it looks 

like a horizontal block restricted by lines of age 2 and 3, see rectangle E in Figure 2. If 

we are interested in event, which occurs in year 5, we should consider vertical block 

restricted by lines of years 5 and 6, see rectangle F in Figure 2. Similar to this, the line 

of age GH represents the event “being during year 5“.

Figure 2. Lexis Diagram.

2.2. Definition of  cohort

The third coordinate of Lexis diagram is  the date  of birth  or  entering date for 

example by migration. For simplicity we will use hereinafter only terms “birth” and 

“death”, but remember other alternatives. This is coordinate on horizontal axis (Time 

axis), but it is presented like an inclined line, which shows the changes of individual's 

age due to the time, see line AB in Figure 3. It is called life line. It has an angle of 

inclination, which equals to 45 degree. All events that happen with an individual are 

situated on this line. The date of birth is the intersection of the  life line and time axis, 
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this is the point A in Figure 3.

 

Figure 3. Life line.

The coordinate of event's date of enter and coordinate of individual's birthday are 

situated on the Time axis, but the first one corresponds to the life line whereas the 

second one corresponds to the Age axis. Thus, we can use the third coordinate for 

event's localization. This coordinate is the date of birth and it is represented by the life 

line. The event A in Figure 4 “being 3-years old” is supplement with “being 3-years 

old with birthday in year 1”. This event is an intersection of line of age 3 and the life 

line of the individual with the date of birth in the 1 year.

Three  demographic  coordinates  have  strong  relation  and  any  of  them  can  be 

derived from the other two. It is enough to have two coordinates for event's location, 

the third coordinate can be used for confirmation and for more full description.

In demographic analysis, a cohort is defined as a group of people who have had a 

common experience, gone through the same event during one time period [18]. For 

example, a group of people, who were born during a particular period or year is called 

a  birth  cohort. A  marriage  cohort,  on  the other  hand,  is  a  group of  people with 

common date of wedding. Life lines of birth cohort during year 1 are bounded by the 

lines AB and CD in Figure 5. 
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Figure 4. Demographic event is “being 3-years old with birthday in the year 1”.

Figure 5. Life lines of a birth cohort.

2.3. Representation of demographic event sets 

There are different possibilities to represent demographic events on Lexis diagram. 

In demographic analysis, there are three event sets according to their time orientation. 

The first even set is a set of demographic events with the common starting date for 
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all participants and ending date in a given age. For example, it can be death during 

age 2 of people who were born in a fixed year 1. This set is an intersection of life lines 

of cohort for year 1 and  the horizontal block restricted by lines of age 2 and 3, see 

section A in Figure 6. Usually the number of deaths is written near the section. For 

example, in Finland there were 7 deaths per 100 persons in age 2 for people who were 

born in 2000 [23].

Figure 6. The first type of the set of demographic events.

The second even set is a set of demographic events with the common starting dates 

and ending point. For example, it can be death during the year 4 for contemporaries. 

This set  is the intersection of the life lines of cohort  for year 1 and vertical block 

restricted by lines of year 4 and 5. See section B in Figure 7. In Finland, there were 6 

deaths per 100 persons in 2004 for people who were born in 2000 [23].

The third even set is a set of demographic events with the common ending date 

during the fixed interval of event's duration. For example, it can be deaths during the 

year 4 at the age of 2. Here participants are not necessarily contemporaries, they can 

belong  to  adjacent  cohorts  for  years  1  and  2,  called  a  hypothetical  cohort. 

Hypothetical cohort is an artificial cohort that is built according to the set of age-

specific values of vital rates usually for a specific year. In our case,  this set is an 

intersection of  horizontal  block restricted by the lines of  age of 2 and 3,  and the 

vertical block restricted by the lines of year 4 and 5. See section C in Figure 8. In 
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Finland, there were 10 deaths per 100 persons in 2004 for people who were 2 years 

old [23].

Figure 7. The second type of the set of demographic events.

Figure 8. The third type of the set of demographic events.

Three demographic processes influence to future population: fertility, mortality and 

migration, see equation (1). These will be studied next in the following sections.
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3. Fertility
Fertility is the ability to produce children. This term is often used in a comparative 

sense, with an increase in fertility referring in an increase in the number of children. 

Fertility rate refers to the actual number of children born alive in a year per 1000 

women (of child bearing age). There is no uniform definition of the term live birth in 

the world. World Health Organization [30] gives the following definition: a live birth 

of a human being occurs when a foetus is expelled and separated from the mother's 

body  and  subsequently  shows  some  sign  of  life,  such  as  voluntary  movement, 

heartbeat, or pulsation of the umbilical cord, for a brief time. In the absence of such 

sign, the event is considered a stillbirth. Different countries differ in  necessary time 

after a birth during which infant should have signs of life. It creates difficulties for 

international comparisons [10].

Usually  children  are  born  to  women  in  ages  15-45,  this  interval  is  called 

childbearing age, 15 is called the lowest age of childbearing (α ) and 45 is the highest 

age (β). Fertility rate at ages less than 15 is included into the number of births at age 

15, and similar fertility at ages over 45 is included into the number of births at age 45 

[7].

There are several indexes for fertility measuring, which are used in this work:

• Age specific fertility rate (ASFR)

• Total fertility rate (TFR)

• Net reproduction rate (NRR)

• Fraction of summary fertility

• Mean age of childbearing (MA)

Age specific fertility rate is the expected number of births to women in a given age-

group per 1000 women in that age-group.

ASFR= n Bm

n F m
1000 ,

where  nBm is the number of births to women in the age group [n,  m] and  nFm is the 

number of women in the age group [n, m], where α ≤ n < m ≤ β.
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This is  the most common way of indicating fertility and 1-year or 5-years age-

groups  are  usually  used  [20].  This  method  of  measuring  fertility  removes  the 

distortions produced by variations in the age composition of the population. We can 

think  nBm as  a  part  of  the general  number  of  births,  which can be defined in  the 

following way:

n Bm=
n Bm
×B .

Similarly, nFm is a part of women in childbearing age αFβ, in turn αFβ is a part of the 

total number of people P. Thus, the number of women in an age group [n, m] equals 

to

n Fm=
n F m
× F =

n F m
×

 F 
×P.

The final expression for the age specific fertility rate:

ASFR= n Bm

n F m
=


n Bm
×B


n F m

×
 F 
×P

.

This representation of  ASFR shows that  these rates avoid influence of the total 

number of people (since dividing by P), and age structure (since there are age-specific 

elements in numerator and  divider). Figure 9 shows three possibilities to localize nBm.

Figure 9. Localization of nBm at the beginning and at the and of year 2004 (left), 

nBm to women that were m years old at the end of 2004 (middle), and nBm to women 

that had their m-th birthday during 2004 (right).

We use the first type of localisation. Figure 10 represents ASFR in Finland in 2004 
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[22], and Figure 11 represents part of the Lexis diagram of this data.

Figure 10. Age-specific fertility rates in Finland in 2004.

       

Figure 11. Part of the Lexis Diagram for ASFR in Finland in 2004.

Total fertility rate is the  average number of live births by a woman during her 
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lifetime if she survives to the end of her childbearing years under the age-specific 

fertility rates of a given year. In simpler terms, it is an estimate of the average number 

of children a woman will have during her childbearing years:

TFR=
∑
x=



ASFRx

1000
,

where  ASFRx is the age-specific fertility rate for age  x. When 5-year age groups are 

employed, the TFR must be multiplied by 5 since it is the sum of the rates for every 

individual age:

TFR=
5×∑

x=



5 ASFRx

1000
.

Thus, the total fertility rate represents the number of children that would be born 

(ignoring mortality) to a hypothetical group of 1000 women who, as they pass through 

the reproductive ages,  experience the particular age specific birth rates,  which the 

index is based on.

TFR is a more direct measure of the level of fertility than the crude birth rate, since 

it refers to the number of births per woman. This indicator shows the potential for 

population  growth.  High  rates  will  also  place  some  limits  on  the  labour  force 

participation rates for women. Large numbers of children born to women indicate 

large family sizes that might limit the ability of the families to feed and educate their 

children. In Finland, TFR was 1.73 children born per woman in 2004 [24].

Net reproduction rate is the average number of daughters that would be born to a 

woman (or a group of women) if she passed through her lifetime conforming to the 

age-specific fertility and  mortality  rates  (see Chapter 4) of a given year. This rate 

takes into account that some women will  die before completing their  childbearing 

years. A value of NRR=1 can be interpreted that each generation of mothers is having 

exactly enough daughters to replace itself in the population. It may be considered as 

the ratio between the number of females in one generation at a given age and the 

number of their daughters at the same age, again taking mortality into account.

12



Fraction of summary fertility is a fraction of ASFR in a particular age group [n, m]:

nm=
n ASFRm

∑ n ASFRm

,

where the summation ∑nASFRm is taken over all age groups in childbearing age.

Mean age of childbearing is the average age of mother on childbearing [17]:

MA=∑
x=



x0.5nx .

It is related to the population structure. Keyfitz has shown [12] that if the ages of 

childbearing are spread out, apparently the gain through some children being born 

earlier more than offsets the loss through those born later.  The smaller  MA  values 

guarantee  higher  NRR values,  because  more  women  are  alive  at  mean  age  of 

childbearing, thus more children would be born. In Finland, MA=29.6 in 2004.
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4. Mortality

In  general  meaning  the  term  mortality  relates  to  death  as  a  component  of 

population  change  [21].  Mortality  rate  is  the  frequency  of  number  of  deaths  in 

proportion to the population. It is a mass process of individuals' life stopping. With 

fertility they form natural population evolution. Again, there are several indexes for 

mortality rate measuring:

• Age-specific mortality rate (ASMR)

• Decline mortality rate (DMR)

• Infant mortality rate (IMR)

• Survival probability (P)

Age-specific mortality rate is the mortality rate limited to a particular age group for 

males  and females  separately.  The numerator  is  the  number  of  deaths  in  that  age 

group,  and  the  denominator  is  the  number  of  persons  in  the  age  group  in  the 

population:

ASMR= n Dm

n Pm
1000 ,

where nDm is the number of death in age group [n, m], nPm is the number of individuals 

in an age group [n, m],  where x≤n<m≤y, so that  x is the lowest and y is the highest 

population age. This is the most popular index especially age-specific mortality rate 

for 5-year groups. As it was shown in Chapter 3, age-specific coefficients allow to 

avoid influence of the total number of people and age structure. Figure 12 represents 

logarithm of numbers for males' and females' ASMR in Finland during 2004 year.

14



Figure 12. Logarithm of age-specific mortality rates for males (solid) and females 

(dashed) in Finland in 2004.

Decline mortality  rate characterizes the changes of mortality rate and it  can be 

calculated as first time derivative of logarithm of ASMR:

DMRx t =

 t

log ASMRx t  ,

where ASMR's are taken for some period t ∈ [T, T+∆].

This measure is associated with the total growth of population. Historically, human 

population  has  grown  very  slowly  except  during  the  last  two  centuries.  World 

population now stands at 6 billion, and according to United Nations projections, it 

will continue to grow through this century [25], see Figure 13.
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Figure 13. World Population [25].

The cause of the initial mortality decline lies in the development of new medical 

and public health technologies based on anti-bacterial chemicals and insecticides that 

reduce  disease  vectors.  Greater  declines  in  the  early  20th  century  attributed  to 

improvements  in  medical  technology, which  led  to  the  control  of  such  infectious 

diseases  as  tuberculosis,  smallpox  and  cholera.  Further  improvements  in  life 

expectancy are anticipated in most countries [19]. Thus,  DMR  should be taken into 

account for any population growth prediction as a factor influencing on ASMR. Figure 

14 shows the prediction of average smoothed rates of mortality declines for European 

countries.  Average  value  is  taken  among  following  countries:  Austria,  Belgium, 

Denmark,  Finland,  France,  Germany,  Greece,  Iceland,  Ireland,  Italy,  Luxembourg, 

Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and United Kingdom. 

Figure 14 illustrates that number of deaths declines more in young ages and and at 

ages near 60 or 70 for males and females respectively, whereas in the middle ages and 

around 100 mortality doesn't change so much.
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Figure 14. Average decline mortality rates for males (solid) and females (dashed) 

in Europe in 2004.

Infant  mortality  rate is  the  number  of  deaths  of  infants  under  1  year  of  age 

registered in a given year per 1,000 live births registered in the same year. It can be 

calculated as:

IMR=
D0

B0
1000 ,

where  D0  is the total number of infants' deaths during the year, and  B0  is the total 

number of live births. The number of this measure for Finland in 2004 [24] is

IMR=57 758
16 089

1000=3.59.

Infant mortality rate can be represented on Lexis diagram as a rectangle ABCD in 

Figure 15.
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Figure 15. Infant mortality rate.

Infant mortality rate is a very important factor. Mortality in the age below one year 

heavily exceeds  the mortality  at  other  ages  except  the  oldest  one.  This  is  very 

informative and powerful socio-economic factor of the development of the country. 

Mortality rate for newborns is calculated differently from other ages. This is probably 

because the number of newborns' deaths is divided by the number of births but not by 

the average annual number of children. The point is that the average annual number of 

children at the age below one year difficult to identify, the level of mortality in the 

beginning and the end of the first life year differs a lot.

Survival probability is a probability of surviving from birth to age x. Let's consider 

the case when age interval becomes very short so that  x is a continuous variable. In 

that case the total number of years lived during the next  n years by those who have 

reached the age x is:

∫
x

xn

P ada=P x x , when n0.

The instantaneous rate of mortality at a certain age μ(x) called  force of mortality 

and it is calculated like this:

x= lim
 x0

Px −P x x
P x x

=−dP x
Px dx

=−d ln P x
dx

.

From this formula we can obtain the differential equation, which one can serve as 
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the definition of the survival probability P(x):

xdx=−d ln Px .

Let's integrate if 

Px =Const e
−∫

0

x

a da
.

For x=0, we obtain Const=P(0), but it is possible to assume that the probability of 

surviving from birth to age 0 is 1, because  IMR is considered separately, so  P(0)=1 

and

Px =e
−∫

0

x

 t dt
.

Let's multiply both sides of equation by eμ(x)/2 and expand the exponentials to the 

first two terms:

Px 1/2=1−/2

and we obtain so-called actual estimator [14]:

Px =2−x
2x

.
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5. Migration

Migration is movement of persons from one country, place or locality to another. 

Here  migrant  and  migration  are  different  notions,  contrary to  death  and deceased 

person. The number of migrants does not necessarily equal to the level of migration 

because one migrant is able to do several migrations during the considered period. 

The number of migrants is more than or equal to the level of migration.

Data collection about  migration is  quite difficult.  If there is a good system for 

migration fixation, then detection of the number of migrants is not so clear, and vice 

versa. Thus, indirect methods based on comparison of two population censuses should 

be used.

Migration is divided into immigration and emigration.  Net migration  (NM) is the 

difference between immigration and emigration:

NM =Immingration−Emigration .

Net migration measures the influence of space mobility to population size dynamic 

and it does not depend on the population size unlike other absolute characteristics. 

Now the main forecast equation (1) can be represented in the following way:

Population size at year t=Population size at year t−1  

               Number of newborns – Number of deaths                     (2)

Net Migration.

Age-specific net migration rate is a net migration rate limited to a particular age 

group  and  for  males  and  females  separately.  The  numerator  is  the  level  of  net 

migration in that age group, and the denominator is the number of persons in that age 

group in the population:

ASNMR= n NM m

n Pm
×1000 ,

where nNMm is the level of net migration in the age group [n, m], nPm is the number of 

individuals in the same age group [n, m], where x≤n<m≤y. Usually 1 or 5-year groups 

are used.
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We  are  interested  in  net  migration  data,  real  data  of  males'  and  females' net 

migration in Finland during 2004 are represented in Figure 16.

Figure 16. Number of net-migration for males (solid) and females (dashed) in 

Finland in 2004.
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6. Demographic forecast

Demographic  forecast  is  a  reasonable  scientific  assumption  about  future 

demographic situation: the number of population, age and sex structure, and the vital 

rates. It is needed for social and economic plans, education and health programs, for 

house-building and for retirement  insurance,  for example.  From technical  point of 

view, demographic forecast is a population calculation based on the number of present 

population, age-sex structure and assumptions about future vital rates.

Demographic forecast is calculating the number of survivors, births and migrations 

in the considered cohort in each period. Usually period of 1 year is considered. We 

should take care of three things:  the  jump-off  population from which the forecast 

starts, a set of assumptions about population changes during the period covered by the 

forecasting,  and  a  method by which  the  assumptions  are  applied  to  the  jump-off 

population. The assumptions about vital rates may be quite simple or very detailed, 

depending on the level of details required in the final forecast result.

6.1. Linear growth model

A simple model of how population changes over time is  linear growth model. It 

was  formalized  by  Leslie  in  the  1940's  [8].  It  is  based  on  age-specific  survival 

probabilities  and fertility rates,  and does not  take into account  net-migration.  The 

relevant data for each age-group are derived from the the fertility rate and the rate of 

survival from the previous age-group. 

Let's consider a simple toy-example of female population forecast for 5 years. The 

assumption here is that as females actually give birth, they are more essential to the 

forecast than males [32]. We suppose that there are 5 age-groups in some hypothetical 

country  with  female  population  distribution  as  shown  in  Figure  17.  We  define 

population size at forecast year t as a 6-dimensional vector 

Popt =Pop 0, t  ' , Pop1, t  ' ,... , Pop5, t  '  ' .

The jump-off population is the population of year t=0. Our goal is to forecast the 

population from time t to time t+1. We assume that the unit of time is the same as the 

width of age-group.
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Figure 17. Female population distribution in a hypothetical country.

The persons in age-groups 1, 2, 3, 4 and 5 at time  t+1 are the survivors of the 

previous age-group at time t, we do not consider net migration. That is,

Pop 1, t1=P0, t Pop 0, t 
Pop 2, t1=P 1, t Pop 1, t 
Pop3, t1=P 2, t Pop 2, t 
Pop 4, t1=P3, t Pop 3, t 
Pop5, t1=P4, t Pop4, t  ,

where P(x, t) is the survival probability from age-group x to the age-group x+1 at the 

time t.

The new individuals of age-group 0 are newborns and can be estimated with age-

specific fertility rates. We assume that the lowest age of childbearing is 2 and the 

highest age is 4, thus, the number of persons in age-group 0 can be calculated as:

P0, t1=F 2, t Pop 2, t F 3, t Pop 3, t F 4, t Pop 4, t  ,

where age-specific fertility rates are denoted as F(x).

Now we can calculate population size in time t+1 based on the population size in 
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the  previous  year  t and  the  values  of  age-specific  fertility  rates  and  survival 

probabilities. Figure 18 illustrates this process in a graphical way.

Figure 18. One step of linear growth model without taking migration into account.

The  equations  can  be  conveniently  written  in  a  matrix  form.  The  number  of 

population is considered as a vector and it is multiplied by a matrix which is empty 

(contains  zeros)  except  the  subdiagonal  elements  that  contain  the  survival 

probabilities, and the top row that contains the age-specific fertility rates:


Pop0, t1
Pop1, t1
Pop2, t1
Pop3, t1
Pop4, t1
Pop5, t1

=
0 0 F 2, t  F 3,t  F 4, t  0

P0, t  0 0 0 0 0
0 P 1, t  0 0 0 0
0 0 P2,t  0 0 0
0 0 0 P3, t  0 0
0 0 0 0 P 4, t  0


Pop0, t 
Pop1, t 
Pop2, t 
Pop3, t 
Pop4, t 
Pop5, t 


.

This can be  more compactly as:

                                     Popt1=Rt Popt .                                         (3)
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From this equation, we can obtain population size in time t=5 recursively form the 

jump-off population:

Pop5=R4R3R2R1R0Pop 0 .

In more general case this is:

                                PopT =RT RT −1... R0Pop0.                          (4)

The basic idea of this method is best explained by the means of a simple example. 

Consider the constant case, when R(t)=R(t +1). It is assumed that the net migration is 

zero in every age-group and can be ignored entirely. A way of taking migration  into 

account will be introduced later. We need the following data as input :

• Number of forecast years

• Lowest and highest age of childbearing

• Number of age-groups

• Jump-off population

• Survival probabilities

• Age-specific fertility rates

In our example, the number of forecast years is 5, the lowest age of childbearing is 

2,  the highest age is  4,  the number of age-groups is  6 and the distribution of the 

population size is given in Figure 17. Thus, we need to define survival probabilities 

and age-specific fertility rates. Figure 19 illustrates our assumptions.

In constant linear growth model, the equation (4) is:

PopT =RT Pop0

or in our case:


0 0 1.1 1.5 0.7 0

0.6 0 0 0 0 0
0 0.8 0 0 0 0
0 0 0.8 0 0 0
0 0 0 0.6 0 0
0 0 0 0 0.5 0


5


100
105
110
100
90
60
=

349
158
92

102
77
12


.
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Figure 19. Age-specific fertility rates (dotted line) and survival probabilities 

(dashed line) for the example.

6.2. Dynamic stochastic population forecast

The considered model is very simple and just illustrates the basic principles. The 

assumption of zero migration is also not realistic. Migration is extremely difficult to 

forecast accurately as it is affected greatly by inherently unpredictable events such as 

war,  economic  condition,  natural  catastrophe  and  changes  in  administrative 

restrictions of immigration.

Moreover, age-specific fertility rates and survival probabilities change over time. It 

should therefore be taken into account, especially when the number of forecast years 

is large. The simplest way to take migration into consideration is to make assumptions 

about the net number of migrants by age-group and sex for each forecast year. Then, 

the number of net-migration in time t is defined as N(t)=(N(0, t), N(1, t), ..., N(ω, t)) 

and the equation (3) can be replaced by

                          Popt1=Rt Popt N t .                                          (5)
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The variation of vital rates over the forecast period leads to a dynamic approach, 

where the elements of matrix R are functions of time. One of the main factor, which 

influences  the  population  size  is  human  behaviour.  We  try  to  predict  human 

behaviour, especially the behaviour of large group of people, which has a low degree 

of  predictability [11].  We consider  stochastic  variation  of  vital  rates,  or  dynamic 

stochastic process. It means that forecast error should be taken into account. Forecast 

error  is  a  degree  of  forecast  inaccuracy,  observed  uncertainty,  which  will  be 

considered in Chapter 9 more detailed. Let us analyse dynamic of age-specific fertility 

rates, survival probabilities and net-migration.

Consider  ASFRs according to two characteristics:  TFR and MA. We can consider 

ASFR's as distributions of TFR by ages related to the sum of fertility Δx(t), see Chapter 

3. Let us call Δx(t) weights for simplicity. Thus, the total fertility rate influences on the 

density of ASFR, and MA influences on the mean value. Figure 20 illustrates how TFR 

affects the linear dimensions the ASFR, preserving the outline. Figure 21 shows how 

MA changes the shape of the age-specific fertility rates but conserves the area under 

the  ASFR curve. Consequently, it is possible to control  ASFR curve behaviour with 

these two parameters.
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Figure 20. ASFR with the same weights Δx(t) and MA=29.1 but different total 

fertility rates TFR=1.72 (left) and TFR=1.03 (right).
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Figure 21. ASFR with the same TFR, but different weights Δx(t) and mean age 

MA=29.1 (left) and MA=24.09 (right).

If  we know the  initial  ASFR's in  time  t=0,  and have  some guess  for  the  total 

fertility rate TFR(T) and the mean age MA(T), it is possible to calculate age-specific 

fertility rates F(t) in time t=1, 2, ..., T, in such a way that the population will reach the 

guessed TFR(T) and MA(T) in time t=T. We can do it by changing the initial weights 

Δx(t) linearly to the weights  Δx(T), which distribute  TFR(T) to  F(t) with the guessed 

MA(T). In other words:

x T =
F x , T 
TFR T 

,

∑
x=



x0.5x T =MAT  .

We consider these assumptions in the next chapter in more details. The last step in 

the  prediction  of  the  age-specific  fertility  rates  is  to  add  the  uncertainty into  the 

equation:

FF x , t =F x , t eerror fert x ,t  ,

where FF(x, t) is the forecast age-specific fertility rate and errorfert(x, t) is the forecast 

error for the fertility rates. It is calculated according to a covariance error prediction 

model, see Chapter 7.
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In our model,  the probability of surviving  P(x, t) equals to the so-called actual 

estimator of survival, see Chapter 4:

Px ,t = 2−x , t 
2x , t 

,

where  μ(x,  t) is  age-specific  mortality  rate.  We  assume  that  ASMR's decrease 

exponentially every forecast year. Thus, if we know the initial values of  μ(x,  0) and 

decline mortality rates for each forecast year, we can estimate μ(x, t) for all t=1,..., T:

x , 1=x , 0e−DMR x ,1 ,
x , 2=x ,1e−DMR x , 2=x , 0e−DMR x ,1e−DMR x , 2=x , 0e−DMR x ,1DMR x , 2

...
x , t =x ,0e−DMR x , 1DMR x , 2... DMR x ,t .

We assume  that  DMR's change  linearly.  We  need  to  know  the  initial  decline 

mortality rates  DMR(x, 1) and ultimate  DMR(x, T). These values together with age-

specific mortality rates in time 0 μ(x, 0) allow us to calculate ASMR's for all forecast 

period. A more careful description will be presented in Chapter 7. With uncertainty 

forecast age-specific fertility rates look like this:

f x ,t =x ,t eerrormort x , t ,

where errormort(x, t) is the forecast error for mortality rates calculated according to the 

covariance error prediction model of Chapter 7.

In the case of net-migration, we assume that it changes linearly over the forecast 

period.  Thus,  we need  initial  and  ultimate  values  of  the  net-migration  number  to 

forecast the level of migration, and then add the forecast error:

FN x , t =N x , t errormirg x , t .
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7. Producing a stochastic forecast of population

In this chapter we consider dynamic stochastic population forecast described by 

equation (5) in more detailed using the extended example from Chapter 6. Forecasting 

can  never  completely  eliminate  risk,  it  is  necessary  to  consider  the  uncertainty 

remaining  subsequent  to  the  forecast.  This  implies  that  forecasting system should 

provide  also  a  description  of  uncertainty as  well  as  a  forecast.  Hence,  our  main 

equation transforms to:

          Popx , t1=Rx , t Popx , t N x , t errorx , t  ,                   (6)

where t=1, 2, ..., T is the forecast year, x=0, 1, ... ω is the age-group and error(t) is the 

forecast error. The starting point of a forecast is that error cannot be avoided, but our 

goal is to minimize this error. [4]

The goal of forecasting is to estimate the value of Pop(x, t). For this, we need the 

following the input data. The values in parentheses will be used in the example below:

1. Basic parameters:

• Number of forecast years (T=5)

• Highest age of population (ω=5)

• Lowest and the highest ages of childbearing (α=2 and β=4)

2. Jump-off population (Pop(x, 0))

3. Fertility parameters:

• Forecast  year until  which the total  fertility rate changes linearly 

(UTTFR=3)

• Ultimate total fertility rate (TFR(UTTFR)=3.8) 

• Forecast year until which the mean age at child-bearing changes 

linearly (UTMA=3)

• Ultimate mean age at child-bearing (MA(UTMA)=3.05)

• Initial age-specific fertility rates (F(x, 0)= (1.1, 1.5, 0.7))

4. Mortality parameters:
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• Forecast year until  which decline mortality rates change linearly 

(UTDMR=3)

• Initial  decline  mortality  rates  (DMR(x,  0)=(0.04,  0.037,  0.034, 

0.02, 0.017, 0.011))

• Ultimate decline mortality rates  (DMR(x,  UTDMR)=(0.038,  0.032, 

0.029, 0.02, 0.013, 0.008))

• Initial age-specific mortality rates (μ(x,  0)=(0.1, 0.4, 0.4, 0.6, 0.8, 

0.12))

5. Net-migration parameters:

• Forecast  year  until  which  the  number  of  net-migration  changes 

linearly (UTNM=3)

• Initial number of net-migration (NM(x, 0)=(4, 12, 20, 16, 2, 0))

• Ultimate number of net-migration (NM(x, UTNM)=(2, 10, 16, 10, -2, 

0))

6. Uncertainty parameters:

• Scales of uncertainty for fertility, mortality and net-migration

The next step is the definition of matrix R(x, t) and the vectors N(x, t), error(x, t) 

from equation (6). Next we describe how to forecast the fertility rates, mortality rates, 

the number of net-migration, and how the uncertainty is handled in dynamic stochastic 

population forecast.

7.1. Forecast fertility rates

The number of newborns is obtained as a product of forecast  ASFR and average 

total population for year 2. We take the average total population for more accurate 

calculation:

Pop0, t =FF x , t  Pop x , t−1Popx ,t 
2

,

where  forecast  age  specific  fertility  rates  take  into  account  the  forecast  error 

errorfert(x,t) in the following way:
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FF x , t =F x , t eerror fert x ,t .

The age-specific fertility rates are distributions of total fertility rate according to the 

weights Δx(t):

F x , t =TFRt x t .

Let's  consider  the  total  fertility  rates  calculation.  We  assume  that  it  changes 

linearly. Figure 22 illustrates the total fertility rate over the forecast years. Initial total 

fertility rate equals to the sum of all initial age-specific fertility rates:

TFR 0= ∑
x=


F x ,0=1.11.50.7=3.3

then for t=1, ..,UTTFR=1, 2, 3:

TFR t =
UTTFR−t TFR0t TFRUT TFR

UT TFR
=

3.3 3−t 3.8 t
3

.

If UTTFR < T, like in our example, then for t = UTTFR +1, UTTFR +2, ...T:

 TFR t ≡TFRUTTFR .

Figure 22. Chang of total fertility rate over the forecast years.

Furthermore, we need to calculate age-specific fertility rates in such a way that the 

mean age of childbearing will equal to its ultimate value  MA(UTMA) during the year 

t=UTMA. 
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In Chapter 3, we presented equation for mean age of child-bearing MA.  In new 

notification, initial MA can be represented as:

MA0= ∑
x=


x0.51x=

∑
x=


x F x ,0

∑
x=


F x ,0

0.5=3.4

and we should find F(x, UTMA) by solving the following equation for the ultimate MA 

relative to the age-specific fertility rates:

MAUT MA=3.05=

∑
x=


x F x , UT MA

∑
x=


F x , UT MA

0.5 .

We take the desired value in the following form:

F x ,UT MA=ex−MA0F x ,0=[e−1.41.1, e−0.41.5, e0.60.7] ,

and substitute it in the previous equation. It is possible then to find the parameter  γ 

using Newton's method [29] from the equation:

h =

∑
x=


x F x ,UT MA

∑
x=


F x , UT MA

−MAUT MA−0.5=

∑
x=


xex−MA 0F x ,UT MA

∑
x=


ex−MA 0 F x ,UT MA

−MAUT MA−0.5=0 .

We initialize the value γ  to γ(0) = 0, and the next values are calculated according to:
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i1= i−
h i

h ' i
,i=0,1, 2, ...

The stopping  criterion is of the form:

∣i1−i∣
1

1000
.

Here the derivative of h(γ) has the following view:

 ∑
x=


x x−MA 0e x−MA0F x , UT MA ∑

x=


ex−MA0F x ,UT MA

∑
x=


ex−MA0F x ,UT MA

2
−

 ∑
x=


xex−MA0F x , UT MA ∑

x=


x−MA0ex−MA0F x ,UT MA

∑
x=


ex−MA0F x ,UT MA

2
.

Solution is  the values of age-specific  fertility rates during the year  t=UTMA,  we 

calculate weights for ASFR's Δ(x, t) for all years t=1, 2, ...  UTMA – 1, assuming their 

linear growth. In such a way,

x , t = Ax , t 
UT MA

,

where

Ax , t =UT MA−t  F x , 0
F0


t F x , UT MA

F MA 
and

F0= ∑
x=


F x , 0 , F MA= ∑

x=


F x , UT MA.

If UTMA<T,  then for t=UTMA + 1,UTMA + 2, ..., T:

x , t =x ,UT MA.
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Now we are able to derive age-specific fertility rates for all forecast years:

F x , t =TFRt x ,t .

Figure 23 presents the initial ASFR(x, 0) and the predicted ASFR(x, T).

Figure 23. Initial ASFR (left) and the forecast ASFR (right).

7.2. Forecast mortality rates

Now we consider survival probability P(x, t). As we have shown in Chapter 4, it 

equals to

Px ,t = 2−x , t 
2x , t 

,

but now we take into account inaccuracy of any forecast, and thus, add the forecast 

error:

f x ,t =x ,t eerrormort x , t ,

where  fμ(x,  t) is  the  forecast  age-specific  mortality  rate,  and  errormort(x,  t) is  the 

forecast error for mortality rates. In such a way, we need to calculate age-specific 

mortality rates for each forecast year to define the survival probability P(x, t).

ASMR's  are calculated  using  input  data  for  rates  of  decline  during all  forecast 

period [1, T] and initial age-specific mortality rates μ(x, 0).

We assume that the  rates of mortality decline change linearly over the forecast 

process, thus they are calculated according to the following equation:

DMRx , t =
UT DMR−t DMRx ,0t DMRx , UT DMR

UT DMR
,
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where  DMR(x,0) and  DMR(x, UTDMR) are the initial and  ultimate rates of mortality 

decline, and UTDMR is the forecast year until which the rates of decline change linearly. 

If  UTDMR<T, a  in  our  example, then  for  t=UTDMR+1,  UTDMR+2,  ...T: 

DMT(t)≡DMR(UTDMR). Figure 24 shows linear changes of  DMR during the forecast 

period [0,5].

Figure 24. Change of decline mortality rates over the forecast years.

Rates of decline for given age indicates mortality decreasing for population group 

in  that  age  from  year  to  year  and  this  decrease  has  exponential  nature  [27]. 

Consequently, age-specific mortality rates are calculated as:

x , t =x , 0×e−DMR x ,1DMR x , 2...DMR x , t .
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Figure 25. Change of age-specific mortlity rates over the forecast years.

7.3. Forecast the number of net-migration

The next item which we consider is the net-migration:

FNM x , t =NM x , t errormigr x , t  ,

where  FNT(x, t) is the forecast  net migration number and and  errormigr(x, t) is the 

simulated error for migration.

NM(x, t) is calculated from input parameters of forecast. We assume that the net 

migration number changes linearly:

NM x , t=
UT NM−t NM x , 0t NM x ,T 

UT NM
,

where NM(x,  0) and NM(x, UTNM) are the initial and ultimate net-migration number, 

and UTNM is the forecast year until which net-migration numbers changes linearly. If 

UTNM<T, as in our toy example, then for t=UTNM+1, UTNM+2, ...T: NM(t)≡NM(UTNM). 

Figure 26 shows linear changes of NM during the forecast period [0, 5] and errormigr is 

calculated according to the covariance error prediction model.
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Figure 26. Change of net-migration number over the forecast years.

Now we have all needed information for the construction of matrix  R(x, t) except 

the uncertainty. After consideration of errors we will be able to do the forecast. Next 

chapter is dedicated to investigation of the uncertainty.

7.4. Uncertainty

Population forecast is a projection in which the assumptions are considered to yield 

a realistic picture of the probable future development of a population. The forecast is 

unconditional, i.e. based on current scientific insights, a forecaster gives best guess 

what the future population will  be.  Later there can be other opinions,  when more 

information will be available, but at the present the forecast reflects what is currently 

considered as a plausible future.

Demographic  forecasters  do  in  fact  give  statements  about  future  demographic 

developments.  The  statements  are  not  a  prior  correct,  and  even  plausible.  It  is  a 

conjecture, a guess or a strong belief based on some calculations. The statements have 

been tested successfully several  times.  They are hypotheses,  an attempt to explain 

observed phenomena, and future testing is necessary.
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Uncertainty may arise from several reasons [11]:

1. Model misspecification

2. Errors in parameter estimation

3. Errors in expert judgement

4. Random variation

In the first case, the assumed parametric model is only approximately correct. The 

expected value for variable for which a forecast is made is not correct. There is an 

error in distribution, so it is impossible to do calculation close to real situation.

In the second case, even if the assumed parametric model would be the correct one, 

its parameter estimates will be subject to error. The expected values are known, for 

example, a total number of births in some year, but not time at which an individual 

women gives birth to a child, which is a random variable. The probability distribution 

of this random variable is the same for all women involved. When the variance of the 

distribution is large, the actual number of births will most probably differ much from 

the expected value. This expected value is known and the uncertainty is expressed by 

the variance of the distribution.

In the third case, an outside observer may disagree with judgements or prior beliefs 

about the parameters of the model, or the weights of forecasting. Different forecasters 

can  make  different  forecasts,  because  of  dissimilar  views  on  the  model.  Human 

behaviour cannot be explained, the individuals have a variety of possible actions, and 

this makes processes describing human behaviour unpredictable. For example, women 

have a variety of possible actions, which is expressed by the fact that different women 

have different distribution, or the same distribution, but with different expected values 

or other parameters. It is logically impossible to infer the probability distribution of 

the time of childbearing from one single event. In practice, all types of uncertainties 

will be encountered in a given situation.

In the last case, uncertainty would be left unexplained even if the parameters of the 

process could be specified without the errors. Since any mathematical model is only 

an approximation one would expect there to be residual error.
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Alho and Spencer proposed the following model for prediction errors [4]. Let X(j,  

t) be  error processes, where  j=1, 2, ... is the age and  t>0  is the forecast year. It is 

assumed that the processes are of the form:

X  j ,t = j , 1 j , 2... j , t  ,   (7)

where the error increments are of the form:

 j , t=S  j , t  j j , t .

where S(j, t) are scales of uncertainty. It is assumed that for each age j, the variables 

δ(j, t) are independent over time t=1, 2, ... . Variables {δ(j, t)| j=1, 2, ..., ω; t=1, 2, ...} 

are also independent from the variables {ηj| j=1, 2, ... ω}. Furthermore, it is assumed 

that

 j~N 0, k j , j , t ~N 0,1−k j ,

where 0<kj<1 are known. The terms ηj and δ(j, t) are calculated as in the AR(1) model 

[1]. Since the error increments are scaled by S(j, t), this model is called a scaled model 

for error. Inasmuch as  the variables δ(j, t) are independent over time,

k j=Corr  j , t  , j , th

for all h≠0. Therefore, kj can be interpreted as a constant correlation between the error 

increments. It shows the fact that the forecast errors of vital rates in close ages have 

tendency  to be similar, but in distant ages they differ. Here the parameters S(j, t) and 

kj are input data for the forecast. S(j, t) allows to scale the value of error, and kj  allows 

to control the correlation between error increments, when  kj=0 error increments are 

independent and when  kj=1 they are perfectly correlated. 

This error model allows to produce several alternative predictions of the number of 

population.  Figures  27-28  illustrate  sets  of  forecast  population  number  for  our 

example based on the proposed error model with different values of scale.
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Figure 27. A set of predicted population numbers based on the proposed error 

model with S(t, x)fer=0.06, S(t, x)mort=0.033 and S(t, x)mig=0.84. Bold curve represents 

the forecast population number without uncertainty.

Figure 28. A set of predicted population numbers based on the proposed error 

model with S(t, x)fer=0.12, S(t, x)mort=0.066 and S(t, x)migr=1.7. Bold curve represents 

the forecast population number without uncertainty.
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8. Computer simulation implementation

Alho and Spencer proposed that population forecasts should be implemented in a 

computerized database form, where a database can be defined as a collection of data 

files and computer programs that are capable of storing, updating, and extracting data 

from the files. An important aspect of the database concept is the possibility to obtain 

answers in real time [5].

Construction of a forecast  database is  possible using  simulation techniques,  for 

example.  A simulation technique is  an experiment  run as a  model  of reality. The 

simulations in this paper are computer simulations, they are run on a computer using 

mathematical models. Simulation techniques are based on the assumption that point 

forecasts are available for the relevant vital rates, and the user is able to characterize 

the expected uncertainty of the forecast. Thus, producing new values for the number 

of population is the result of the simulation.

There is an implementation of a simulation based database forecast in a computer 

program Program for Error Propagation (PEP) [3]. The program produces different 

sets of results according to a set of assumptions introduced into the system. PEP is 

based on the described algorithm to forecast population number by sex and age. It is 

intended for users who use demographic forecasts for planning or scientific purposes, 

for example demographers, statisticians, economists and actuaries.

PEP produces  files  with  simulated  population  counts  by age and sex  for  user-

specified forecast years; such counts are called sample paths. Output files can be read 

into a statistical program (e.g.,  Minitab) or a spreadsheet program for graphical or 

statistical description. At this stage, summary information concerning age-groups or 

the total population can be obtained. Figure 29 illustrates the PEP interface for point 

forecast input settings.
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Figure 29. PEP parameters and point forecasts data import.

The main parts of the simulation techniques are the following:

• Reading the point forecast and its preprocessing, see Figure 30

• Generation  of  the  random  variables  that  serve  as  building  blocks  in  the 

forecast error simulation

• Calculation of future sample paths of the vital rates based on the point forecast 

and simulated forecast errors

• Calculation of future population counts using the future sample paths of the 

vital rates and a linear growth model, see Figure 31. Linear growth model is 

used  for  building  the  matrix  R(x,t) for  any  given  t.  The  vector  N(x,t) is 

calculated as a linear approximation between the initial and ultimate values

• Storing the simulated sample paths for population by age and sex
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Figure 30. Program interface for reading the point forecast.

Simulation  techniques  can  be  considered  as  generation  of  sample  paths  of  the 

forecast error processes for the vital rates, and combining them pathwise via the linear 

growth  model  into  sample  paths  to  predict  the  number  of  population.  Having  a 

sufficiently  large  number  of  paths  available  allows  us  to  estimate  the  underlying 

predictive distribution with high degree of accuracy [5].
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Figure 31. Calculation routine of future population counts.

We recalculate the data of the number of age- and sex-specific group every forecast 

year based on the data from the previous age group. Thus, we follow every particular 

cohort during the forecast years according to the forecast vital rates. From the first 

forecast year t=1, the number of population in every age-specific group is decreased 

according to  the forecast  ASMR.  Thus,  we subtract  the  number  of  the deaths  and 

migrations (it can be positive or negative value) and persons that survive are moved to 

the next age-specific group of the population. The number of newborns is calculated 

according to the fertility rate, infant mortality rate and net migration. We repeat the 

process for each forecast year, and the result will be the total, age-, and sex-specific 

number of population for every year of interest. This is illustrated in Table 1, where 

P(x, t) is the number of population in age x during the forecast year t.
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Table 1. Illustration of the simulation technique.

forecast year
age 1 2 3 ... T
0 P0, 1 P0, 2 P0, 3 ... P0, T 

1 P1, 1 P1, 2 P1, 3 ... P1, T 
2 P2, 1 P2, 2 P2, 3 ... P2, T 

... ... ... ... ... ...

 P , 1 P , 2 P , 3 ... P , 100

The  program  outputs  a  set  of  forecasts,  where  each  forecast  holds  a  unique 

stochastic error value. Each simulation round provides exactly one forecast. After a 

reasonably large set of forecasts has been generated, it can serve as an input for the 

various  statistical  tools  to determine the population  trends  and side flows for any 

given  forecast  interval.  Alternatively,  user  can  select  the  one  with  the  maximum 

degree of certainty.

As  an  idea  for  future  development  of  PEP,  it  would  be  possible  to  develop  a 

pluggable  architecture  for  the  seamless  integration  of  various  statistical  post-PEP 

processing tools. 
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9. Experiment with Finnish population (for 2004-2054)

Let us construct a sample forecast according to the model discussed earlier using 

the software. We choose 50 years forecast for 2004-2054. We use two programs: PEP 

and BEGIN [6]. BEGIN produces the input files in a correct way for the program PEP. 

After a BEGIN run, we start PEP without any additional information. The output files 

contain the predictive distribution of the future population by age and sex for each 

forecast year. Thus, all necessary input data can be specified via BEGIN.

Basic parameters. We set the number of forecast years equals to 50 (2004-2054). 

The other parameters are set as follow:

• Number of simulation rounds 1500

• Lowest age of child-bearing 15

• Highest age of child-bearing 49

• Highest age of population 100

• Seed for random number generation 1

Jump-off population.  The jump-off population is the Finnish population at the 

end of year 2004 as the number of people at age 0, 1, 2, ..., 99, 100+, females and 

males separated. This population is the legally resident population as enumerated in 

the  Finnish  population  register.  We  assume  that  the  accurate  is  nearly  100%.  In 

countries with less accurate registration systems, the uncertainty of the jump-off value 

can also be taken into account. Figure 32 illustrates the starting population for our 

forecast distributed by age and sex. 
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Figure 32. The number of total population (solid line), female population (dotted 

line) and male population (dashed line) in Finland in 2004.

Fertility. There are several parameters needed for fertility forecasting: 

• Initial fertility rates

• Ultimate total fertility rate

• Ultimate mean age of childbearing

• Forecast years until which TFR and MA change linearly

Figure 10 in Chapter 3 illustrates the age-specific fertility rates in Finland for the 

starting year 2004. In their forecast, United Nations [25] assumes that the fertility rate 

in Finland  over the first 5 or 10 years of the projection period will follow the recently 

observed  trend  1.73.  After  this  transition  period,  fertility  is  assumed  to  increase 

linearly at a rate of 0.07 children per woman. Thus, ultimate TFR=1.85. Current mean 

age of child bearing is 29.6 but is expected to change to about 32 by 2050. We assume 

that the mean childbearing age will also move a little bit, ultimately to MA=31.  We 

also assume that TFR and MA change linearly during the whole forecast period.
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Mortality. For mortality forecasting we need to specify:

• Mortality probability values for newborns and projective rates for people from 

age one to the highest age

• Initial and ultimate values for decline rates

• Forecast years until which the rates of decline change linearly

Figure  12  in  Chapter  4  shows  mortality  probability  values  for  newborns  and 

projective rates for people at age from one to the highest age for males a females in 

2004.  The  task  to  set  the rates  of  decline  is  not  trivial.  70  years ago  female  life 

expectancy  was  57  years,  and  nowadays  it  is  81  years  [25].  Thus,  female  life 

expectancy has increased by 81-57=24 years, which corresponds to DMR=0.34 years 

annually. However, if we observe 50 years interval 1954-2004, the increase is 78-

57=21 years, which is DMR=0.42. During the latter 30 years the increase is 81-75=6 

years, which is DMR=0.2.

Alho proposed that age-specific mortality rates continue to decline at the rate they 

have  declined  during  the  past  15  years  [2].  During the  past  15  years female  life 

expectancy  improved  only  by  81.0–78.6=2.4  years,  DMR=0.16.  This  implies  an 

improvement to 88 years by 2050. Figure 14 contains DMR for all ages for males and 

females.  We assume  that  the  same  tendency continues  during  the  whole  forecast 

period, so that the ultimate values of decline rates coincide with the initial.

Migration. The forecasting of migration differs from that of fertility or mortality 

because of its nature. We can influence to migration via different social impacts more 

than to fertility and mortality. Another difference is the data on migration are poor 

even in a country like Finland that has a well functioning population register. Because 

of these problems, migration forecasts are typically judgemental, and given in terms of 

the net number of migrants. Alho assumed that the most likely net number of migrants 

would remain at the recent level of 4,000 per year [2]. United Nations assumes that 

the  future  path  of  international  migration  should  be  set  on  the  basis  of  past 

international migration estimates and an assessment of the policy stance of countries 

with regard to future international migration flows. 

To specify the forecast for migration we need:
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• The initial and ultimate net migration numbers

• Forecast year until which the number of net migration changes linearly

The initial number of net migration can be found in Figure 16 in Chapter 5. Our 

prediction  for  the  ultimate  net  migration  in  Finland are  shown in  Figure  33.  We 

assume that the net migration changes linearly during the whole forecast period.

Figure 33. Predicted ultimate number of net-migration for males (solid) and 

females (dashed) in Finland in 2054.

Uncertainty. Uncertainty is a demanding task that requires certain experience. We 

follow [9] and set the values as follows: 

• Scales of uncertainty S(j, t) for age-specific fertility 0.06

• Scales of uncertainty S(j, t) for age-specific mortality 0.033

• Scales of uncertainty S(j, t) for age-specific net-migration 2

Eventual  value for the scales of fertility was obtained from long data series of 

Denmark,  Finland,  Iceland,  the  Netherlands and Sweden.  The  scales  for  mortality 

were estimated from long data series from Austria, Denmark, Finland, France, West 
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Germany, Italy, the Netherlands, Norway, Sweden, Switzerland and United Kingdom. 

The estimates were based on the median level of uncertainty in the past,  averaged 

across all countries.

Results. After simulation, PEP produces 50 files, one for each forecast year. Each 

file contains the predictive distribution of the future population by age and sex. The 

columns correspond to the age-groups, and the rows to the simulation rounds. The 

first row is the title row, it contains information about sex and age, the second row 

contains the future population counts of the first simulation round, the third row the 

counts of the second simulation round, and so on. In our case, a fragment of a file 

looks as following:

M0        M1 .. M100 F0 F1 ..       F100
35669     32682 17610 32050 33241          23973
15565     16068 1035 15155 14295          1404
....      ... .. ... ... ... ..       ...
30829     30851 6553 29311     29357          7935

Thus, we have 1500 alternative forecasts of the population by age and sex. We can 

summarize the results for all ages and both sexes together, and then build predictive 

distribution. Figure 34 shows a histogram for the predictive distribution of the total 

population divided into 5-years age-group. Median value equals to 5 553 000, now the 

total population is P=5 236 611. Thus, low fertility rate will be compensated by the 

increase of life expectancies and migrations.

The forecast of  United Nations is  5 329 000.  Figure 35 shows the mean value of 

United Nations population forecast and the result of the simulations perfomed in this 

thesis together, divided into 5-year age groups. Their shapes have similar structure but 

the difference in the number of newborns occures due to the relatively big  scale for 

age-specific fertility. Figure 36 illustrates the minimum, maximum and median values 

of our popularion forecast in Finland in 2050.
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Figure 34. Predictive distribution of total population in millions in Finland in 2054.

Besides the future population counts, PEP produces simulated life expectancies for 

males and females. The simulated life expectancies are stored into annual files, where 

y=1, ..., 50 refers to the forecast year. The first column contains the simulated life 

expectancies for males, and the second column the simulated life expectancies for 

females. In our case, a fragment of file a looks like the following:

85.11     89.02
     84.93     89.55
     85.04     88.97
     85.78     89.82
        ...       ...
     85.55     89.60

The mean values  for  male and female life  expectancies  are 85 and 89.  United 

Nations gives a more pessimistic forecast: 82.1 and 87.1 for the years 2040-2050. It 

can be explained  by underestimation of the mortality decline, which can be observed 

during the  last years in United Nations forecasts.
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Figure 35. Mean values of United Nations population forecast (dashed line) and 

the simulated (solid line) in Finland in 2050.

Figure 36. Forecast of total polulation by 5-years age-group: minimum, maximum 

(dashed lines) and median (solid line) values in Finland in 2050.
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10. Conclusion

Stochastic forecast of population is studied and illustrated. A short introduction to 

the basic  demographic concepts  is  first  presented.  Lexis  diagram is  used as  main 

instrument of demographic analysis. Fertility, mortality, migration and their measures 

are considered in details with real data examples for Finland in 2004. After that, we 

discuss linear growth model as a basis of our simulations.

Simulation technique is chosen as a forecast model. It is a natural to think about 

population changing over the forecast period and it is a simple and effective model, 

that can be easily implemented in a computer. We assume that the total fertility rate, 

decline mortality rate  and net  migration change linearly. Age-specific  fertility rate 

changes according to the total fertility rate with defined mean age of childbearing. 

Age-specific  mortality  rate  decreases  exponential.  Simulation  error  is  calculated 

according to the proposed error prediction model.

Experiment  with  Finnish  population  for  2004-2054  is  given.  Calculation  of 

population size is repeated 1500 times and then median values are given as output. It 

allows to achieve more realistic data, because we have every time new values for the 

simulation  errors  calculation.  Our  result  is  compared  with  the  United  Nation 

population forecast for Finland in 2050, and they have similar structure.

The current work has shown that the selected topic is of interest to be continued. A 

future improvement of studied method would be an alternative selection of the output 

among the simulated population paths.
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