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Abstract:
We address the problem of speaker age estimation. Inspired by recent positive results in

this task using i-vectors, we further analyze their application to age estimation. We cover var-
ious aspects of the age estimation process. First, we consider front-end processing, including
different i-vector extraction. We analyze effects of network architecture, training algorithm and
ensembles of several networks. Our experimental findings on the NIST 2008 and 2010 SRE cor-
pora indicate that, among all the studied setups, ANN back-end in combination with i-vectors
worked the best. This approach lead to mean absolute errors (MAEs) of 5.49 years for females
and 6.35 years for males. These correspond to 4.5% relative improvement in comparison to
our state-of-the-art baseline for both females and males.Thus, the choice of back-end was not
found to affect the final prediction accuracy much compared to choice of features used for age
estimation. Consecuently, for the future work, we propose to concentrate attention on new types
of acoustic features rather than on back-end methods.

Keywords: artificial neural networks, automatic age estimation, i-vectors, multilayer perceptron
CR Categories (ACM Computing Classification System, 1998 version): A.m, K.3.2
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1 Introduction

In everyday communication, humans use not only semantic (what is said) but also paralinguistic

information. The latter one is related to speaker characteristics, such as her gender and age.

Recognition of human age based on voice is feasible for a human listener. A listener may not

be accurate in detecting the precise age, but may guess the broad age group. But for computer

to recognize age of the speaker is a challenging task. To solve the task, a lot of speech data with

age labels is needed.

Nowadays, the internet provides a wide range of possibilities for services. In the context

when there is no direct contact with the client, information about him such as language, gender

or age can be helpful for delivering or recommending appropriate products and services [1, 2].

Human voice is a great source of information, and, since popularity of vocal user-computer in-

teraction has considerably increased within the past decades, possibility to use voice recordings

of the user for retrieving meta-information becomes easier. To exemplify, some studies were

conducted to implement age recognition system built in the TV set in order to provide targeted

advertisements for the people watching it [1]. Other examples of commercial applications of

age recognition include smart homes or car systems which can adapt to the needs of the targeted

user.

Automatic age recognition system can be useful tool in forensic applications, too [3]: it

could help to narrow down a list of suspects when a speech sample is used as an evidence. Such

a situation could take place in the cases of blackmailing calls, for instance. Another example of

automatic age recognition system is an Android mobile application, Reco Lab, developed by the

author of this thesis in cooperation with her fellow student Ivan Kukanov. This application is

aimed at recognizing the speaker’s identity, age and gender. Fig. 1 presents several screenshots

of this program. Baseline method of this thesis is used for age recognition in this project.

The problem of automatic speaker age recognition can be formally cast as follows: we are

given a training set of P speech recordings: Str = (X1, Y1), ..., (XP , YP ), where Xp and Yp are,

respectively, the pth speech utterance and its age label. The goal is to create a system, which

will predict, for an unseen utterance Xtest, its label Y test accurately.

Age recognition can be approached in two different ways. The first way is to consider it as a

classification task. This means that all the range of possible ages is divided into several bins (e.g.

5-years wide), and then for the target utterance decision Y test is the index of the bin where this

utterance will be placed or the set of probabilities for the utterance to be a member of each bin.

The second approach is to consider the task as a regression problem: for each utterance, predict

not the age group but the actual age. In this case, Y test is real-valued rather than categorical.

The first approach was widely studied in the past decade but it has some obvious drawbacks:

for example, two persons with age difference of just one year could be placed into two different
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Figure 1: Reco Lab mobile application. Main menu and report of the Age&Gender recognition
module.

age groups, but at the same time people with much greater age difference can be members of

the same class. Hence, regression seems more natural for recognizing continuous values such

as age. This thesis concentrates on regression rather than classification view of age estimation.

One of the most successful approaches for age estimation is based on so-called i-vectors. I-

vector gives a representation of speech utterance in the form of low-dimensional feature vector.

Originally introduced for the task of speaker verification [4], i-vectors have helped to increase

classification accuracy and simplify classification of variable-duration utterances. Afterwards,

i-vectors have also been applied to language [5] and accent [6] recognition. It seemed therefore

logical to apply the same technique for age estimation, which was successfully done recently

in [7, 8]. In those studies, prediction of the target speaker age was done by support vector re-

gression (SVR) — one technique for function approximation. The general idea of using SVR

for age estimation was introduced previously in [9], based on GMM supervectors [10], which is

another way of one-vector speech utterance representation (concepts of i-vectors, GMM super-

vectors and SVR will be described in detail in subsequent sections). Considerable improvement

of the age recognition accuracy was made by simple replacement of supervectors by i-vectors.

The main research direction in this thesis is further development of i-vector approach in age

estimation task. Particularly, we consider various setups for i-vector extraction.
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Artificial neural network (ANN) [11] is an approach originally built in attempts to find

mathematical representation of neural processes of the human brain. From a practical point

of view, high accuracy in representing brain information processing is not necessary; simpler

models can produce good results in practical tasks. Neural networks are frequently used in

different pattern recognition and machine learning tasks, and proved to be efficient. Thus, it

seems reasonable to study this approach in age estimation, with the hope that it can outperform

previously used methods. Thus, a core part of this thesis is to explore various neural network

architectures for the task of age recognition. Our prime hypothesis is that applying neural

network for age recognition can help outperform previous approaches utilizing SVRs. To this

end, we analyze effects of network architecture, training algorithm and ensembles of several

networks.

The remainder of the thesis is organized as follows. Section 2 describes briefly the earlier

key literature in age estimation. Section 3 is intended as a self-contained description of the

methods used in the experimental part. It is targeted for a reader who is familiar with basics of

signal processing and pattern recognition but less familiar with state-of-the-art speaker recog-

nition machinery. The next three Sections – 4, 5 and 6 – are then focused on age estimation

methods and experimentation. To ensure that our findings are comparable to results reported

earlier in literature, we have adopted the exact same set-up as used in two recent studies [7, 8].

We first replicate the baseline method (Section 4) of [7, 8] from scratch to increase confidence

that it is correctly implemented and represents state-of-the-art in age estimation. Sections 5 and

6 then seek to improve the baseline following several modifications described above. Finally,

Section 7 summarizes our findings and gives recommendations how to configure ANN back-end

for age estimation.
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2 Previous work

Although studies on influence of speaker age on speech characteristics have been conducted

since 1950s [12, 13], actual systems attempting to estimate age from human voice appeared

only in early 2000s. Partly, it may have been caused by lack of appropriate datasets. During the

past decade, such corpora were collected, including, for instance, “aGender” [14], NIST SRE

2008 and NIST SRE 2010 datasets. Since then many different age estimation approaches were

studied. Many of these methods were adopted from the field of speaker recognition.

One of the first automatic age recognition systems was studied by Minematsu et. al [15].

In their study, the authors considered it as a classification task with only two classes: elderly

people and all the rest. Having 43 speakers for each class, the authors trained Gaussian mixture

model based on acoustic features. With this approach, a correct identification rate of 91% was

reported. In later studies it was proposed to divide speakers into more age groups and combine

age recognition together with gender recognition, e.g. in [16] the task was to classify speakers

into 8 groups depending on their age and gender. The authors used high level features, such

as pitch, number of speech pauses and duration of pauses among others. They studied several

techniques for classification including naive Bayes, decision trees and support vector machines.

The best performance was achieved with artificial neural networks, leading to 65.5% accuracy

for 8-class problem and 94.6% accuracy for classification of elderly speakers and others (the

same task as in [15]).

In 2010, age sub-challenge [17] of Interspeech paralinguistic challenge was presented.

In this challenge, all speakers from the “aGender” corpus were divided into 4 age groups.

“aGender” contains around 70,000 utterances from 772 speakers, all utterances being telephone

recordings. To enhance accuracy of age recognition were suggested systems using GMM super-

vectors [18], fuzzy SVM modeling [19] and Maximum-mutual information (MMI) with GMM

and SVM [20]. The latter work became the winner of the challenge, the classification accu-

racy being 55.3%. A brief overview of the systems applied for age sub-challenge is given in

[3], which also proposed a way to combine acoustic and prosodic information yielding 52.2%

classification accuracy for the same experimental setup; that is, the fusion was unsuccesful.

Due to drawbacks of classification approach to age recognition, later it was suggested to

consider it as a regression task. Starting with [9], support vector regression (SVR) systems were

developed in combination with different types of features. Firstly, GMM supervectors were used

for age estimation in [9], involving the task of age estimation of children from preschool and

primary school. In total, 212 children were selected for the experiment, each having 99 utter-

ances and age of children varying from 5 to 11 years old. As performance measures, Pearson’s

correlation and Spearman’s correlation, which is Pearson’s correlation between two ranked vari-

ables, coefficients were used, achieving values 0.89 and 0.83, respectively. The mean deviation
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of predicted age was 10.3 months. Another study on SVR and GMM supervectors applied for

age estimation [21] studied the effect of dimensionality reduction on age prediction accuracy.

The authors reported that the proposed dimensionality reduction technique lead to 10% relative

improvement compared to the system using full-size GMM supervectors. Finally, in [7] authors

proposed using i-vectors in place of GMM supervectors, which helped to decrease mean abso-

lute error (MAE) from 8.24 to 7.95 years for telephone recordings of female speakers in NIST

2008 and 2010 speaker recognition evaluation (SRE) datasets. This result was further improved

in [8] by implementing session compensation. In that paper, the authors used two performance

measures: MAE as before and Pearson’s correlation, the reported results being 5.78 years and

0.80, respectively.
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3 Theoretical basis

This Section introduces a set of mathematical tools that are needed in the following sections.

We review the commonly used feature extraction techniques in the area of speaker recogni-

tion, which are also used for age estimation in this thesis. We further describe support vector

regression (SVR) and artificial neural network (ANN) .

3.1 Short-term spectral features

The first step of any speech or speaker recognition task is to extract features from the given

raw audio signals. Features should emphasize the relevant properties of the speech signal for a

given classification task and suppress distractive information, such as background noise. There

are a multitude of such techniques available, but the most popular one uses short-term power

spectrum to compute so-called mel-frequency cepstral coefficients (MFCCs). MFCC extraction

is straightforward and the features have proven effective in many applications [22]. MFCCs

remain widely used even if they were introduced by Davis and Mermelstein already in the

1980’s [23].

One of the main characteristics of speech signal is that it is highly nonstationary. But we can

assume that in sufficiently short time intervals the signal remains stationary (i.e. its frequency

content is constant). Consequently, for the processing of the speech signal, we usually divide it

into short frames (usually 20-30 ms long) and extract a spectral feature vector for each frame.

Illustration of MFCC extraction is shown in Fig. 2.

Hamming 
window

DFT
Mel filter 

bank

log

DCT
Deltas, 

delta-deltas

Energy

Signal

MFCC
ΔMFCC
Δ2MFCC
Energy
ΔEnergy
Δ2Energy

Figure 2: MFCC extraction workflow.

To extract spectral features, for each frame, discrete Fourier transform (DFT) is first com-
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puted [24].

X(k) =
N−1∑
n=0

x(n)h(n)e
−j2πkn

N , 0 ≤ k < N (1)

DFT decomposes any signal into its frequency components. In (1), x(n) denotes the signal at

discrete time index n and h(n) is a window function (usually Hamming window). The window

function is used to minimize discontinuities at the begining and end of each frame. Finally,
2πk
N

denotes the discretized frequency samples. Note that X(k) is complex-valued, having both

phase and magnitude information. Usually, the phase is discarded and only the magnitude (or

squared magnitude) is used. They are defined as follows.

|X(k)| =
√

Re(X(k))2 + Im(X(k))2, arg(X(k)) = tan−1

(
Im(X(k))

Re(X(k))

)
(2)

The next step is to use a set of band-pass filters to integrate spectral energy over the neigh-

bouring frequencies. The common way is to use mel-frequency filter bank (Fig. 3), where the

filters for the lower frequency range are narrower and more densely spaced than for the higher

frequency range. This enables higher precision for representing the lower frequency range,

based on the observation that human perception of the frequency contents of the sound is more

precise for lower frequencies. Thus, the purpose of this filter is to emulate the processing steps

of the human auditory system. For any given “physical” frequency f , in Hertz, the correspond-

ing mel-frequency can be approximately calculated from following equation:

Mel(f) = 1125 ln(1 + f/700)

1

C
1 C

t
C
T

Frequency

Figure 3: Mel filter bank.

Following logarithmic compression, discrete cosine transformation (DCT) is then applied
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to obtain MFCCs:

Ct =
M∑
m=1

log(νm) cos

(
πt

M
(m− 1

2
)

)
(3)

Here, Ct is the t-th cepstral coefficient (0 ≤ t ≤ T ) and νm is the output of the m-th channel of

the mel filter bank (1 ≤ m ≤M ). Typically, only the first few cepstral coefficients are retained.

The common practice is to leave only 12-20 of them. This is done because higher coefficients

represent fast changes in filter bank energies, and these fast changes can degrade performance

of final recognition system. DCT is applied for decorrelating the mel subband energies.

The log of the time-domain signal energy is often also added to the vector. To improve the

performance of speech or speaker recognition systems one can add the first and second order

time derivative estimates (also called delta and delta-delta coefficients) of the base coefficients.

They can be obtained from the following formula.

∆Ci
t =

∑Q
q=1 q(C

i+q
t − Ci−q

t )

2
∑Q

q=1 q
2

(4)

Here, ∆Ci
t is delta coefficient for frame i calculated over Ci−Q

t to Ci+Q
t . Typical value for Q

is 2. Second order derivatives can be calculated in the same way, but instead of static base

coefficients we have to use deltas. The final feature vector is the result of concatenating the

base MFCCs with their first and second order derivatives. In this case, the final feature vector of

dimentionality 3Ncep + 3, where Ncep denotes the chosen number of base MFCCs, for a single

frame takes the following form:

C1 ... CNcep E ∆C1 ... ∆CNcep ∆E ∆2C1 ... ∆2CNcep ∆2E

To compute the features for the whole utterance, we stack all the short-time features to

matrix of size l× d, where l is the number of frames in the utterance and d is the chosen dimen-

sionality of features (3Ncep +3 in example above). For utterances of different durations, the size

of the feature matrix will be different. In the following subsections, we discuss methods that en-

able representing varying duration utterances using fixed-dimentional utterance representation.

3.2 Gaussian mixture model and universal background model

In classification tasks, such as speaker recognition, every class is represented by its model. Then

the decision for a particular test utterance u (represented by a sequence of acoustic features

such as MFCCs) is often based on the likelihood p(u|Hi) of the hypotheses that the utterance

was generated by speaker Si. Here, p(u|Hi) denotes the likelihood of hypothesis Hi given a

speech segment u. Utterance is classified to the class that yields the largest likelihood. An
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important question, then, is how to model these likelihoods. The most common practice in

speaker recognition is to model each class using a Gaussian mixture model (GMM) [25], as

follows:

p(x) =
K∑
j=1

wjpj(x)

pj(x) =
1

(2π)
d
2 |Σj|

1
2

exp

(
−1

2
(x− µj)′Σ−1

j (x− µj)
) (5)

The probability density function of a GMM is a weighted sum of K multivariate Gaussian

densities whereK is a parameter that one can change depending on the problem. Each Gaussian

is described by its d-dimensional mean vector µj (d is the dimensionality of feature vectors) and

d× d covariance matrix Σj . Mean of Gaussian indicates its location in the space while covari-

ance is responsible for the orientation of the Gaussian in respect to coordinate axes. In general,

Σj is a full covariance matrix, but it is common to assume that it has nonzero elements only on

its diagonal, which helps decreasing the computational load, since there is much less parameters

to optimize. Parameters wi are the prior probabilities of the corresponding Gaussians and are

constrained as:
∑K

j=1 wj = 1 and wj ≥ 0. The parameters of the model, wj,µj,Σj , can be

optimized to maximize likelihood of the training data. This is usually done by expectation max-

imization (EM) algorithm, whose detailed description one can find in [26]. For more practical

details an interested reader is advised to look into [11].

Based on the GMM approach, Reynolds and others introduced new ideology for the speaker

verification task. The idea is based on the fact that there are only two classes in this problem:

target speaker and all the other possible speakers. To model the universe of all possible speak-

ers, so-called universal background model (UBM) was introduced in [25]. UBM is nothing but

a GMM trained on large amount of data originating from different speakers and is intended to

represent speaker-independent distribution of spectral features. The UBM can then be adapted

using maximum a posteriori (MAP) criterion to model any target speaker (Fig. 4). This is done

by first computing the following statistics:

nj =
Ξ∑
ξ=1

P (j|xξ)

Ej(x) =
1

nj

Ξ∑
ξ=1

P (j|xξ)xξ

Ej(x
2) =

1

nj

Ξ∑
ξ=1

P (j|xξ)x2
ξ , where

P (j|xξ) =
wjpj(xξ)∑K
i=1 wipi(xξ)

(6)
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These statistics are the probabilistic count and the first- and second-order moments that are used

to compute mixture weight, mean and variance. Then the adapted parameters for Gaussian j are

calculated by :
ŵj = (αwj nj/Ξ + (1− αwj )wj)γ

µ̂j = αµjEj(x) + (1− αµj )µj

σ̂2
j = ασjEj(x

2) + (1− ασj )(µ2
j + σ2

j)− µ̂j
2

(7)

Here, γ is a scale factor that ensures that all the weights sum to one. αwj , α
µ
j , α

σ
j are adaptation

coefficients calculated from the data: αj =
nj
nj+r

, where r is known as relevance factor. If

the relevance factor is extremly small, system would produce new speaker for the most of new

utterances. It happens because new model become too adapted to new data and it is not general

enough to recognize other data from the same speaker. If r = 0, then new model is trained

only on the data from current utterance. In the opposite case, when the relevance factor is large,

impact of adaptation data decreases. If we set r = ∞ then adapted model would be just the

copy of UBM. This shows that relevance factor should be carefully chosen.

Speaker data

UBM

UBM Adapted Speaker model

Figure 4: Graphical illustration of MAP adaptation process. Adopted from [25].

Although in general case means, covariances and weights should be adapted, in practice

good performance can be achieved by adapting the mean vectors only [25]. Test segment should

then be examined against UBM and the target speaker models. In further studies [10], the

following idea was developed: adapt a pretrained UBM to new speech utterance and stack

the mean vectors of resulting GMM. The result would be one supervector of length dK that

represents the whole utterance and can be used as a new feature vector. Fig. 5 illustrates the

process of creating GMM supervector in case of 2-dimensional feature vectors and UBM having

3 components.

The use of GMM supervectors has been found effective not only in speaker verification but
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UBM

(M2
1
, M2

2
)T

(M3
1
, M3

2
)T

(M1
1
, M1

2
)T

M1
1

M1
2

M2
1

M2
2

M3
1

M3
2

Features extracted from 
target utterance

Adapted GMM with coordinates 
of Gaussians’ means

GMM 
supervector

Figure 5: Illustration of retaining a GMM supervector. M i denote coordinates of mean vector
of i-th Gaussian.

also in other tasks, including age and gender recognition and fall detection [27, 28]. It has one

obvious advantage over acoustic features such as MFCCs: for any utterance the length of this

vector is fixed, although it is generally a large number. For instance, if the number of Gaussians,

K, is 1024, and we use 12 base MFCC coefficients with energy, deltas and delta-deltas, the

dimensionality of the GMM supervector will be 1024× 39 = 39936.

3.3 Joint factor analysis

One of the main challenges in the speaker recognition is the presence of so-called channel

effect. It means that every utterance contains not only information about the speaker but it is

also affected by the characteristics of the microphone and environment. When building speaker

models adapted from UBM, two utterances from the same speaker can be placed far away from

each other in feature space because of differences in the recording setups. It would be good

if some compensation would be applied to make sure that recordings of the same speaker are

recognized as the same speaker even if they were made with different handsets.

Joint factor analysis (JFA) is one of the techniques aimed to deal with channel effect and

perform channel compensation [29]. In this approach, a GMM supervector is represented as the
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sum of two components: speaker s and channel c supervectors, as follows:

M = s+ c, where c = Uφ and s = m+ V ψ +Dω (8)

Here, U is known as the eigenchannel matrix and it defines session subspace, while φ is a vec-

tor of channel factors estimated for a given speech segment. m refers to the UBM supervector

and V and D jointly define the speaker subspace. V is known as the eigenvoice matrix and

D is a diagonal residual matrix. Finally, ψ and ω are speaker-dependent factors. The matrices

U ,V and D are the hyperparameters of the JFA model and they are estimated in advance by

using labeled training utterances. Then, for each given utterance, parameters φ,ψ,ω can be

estimated. Finally, we can remove the session component and perform the scoring of test utter-

ance against channel-compensated speaker model M − Uφ. Detailed description how it can

be done is given in [29]. Also, good source of practical implementation details of JFA is matlab

tutorial made in Brno University of Technology [30].

3.4 Front-end factor analysis (i-vectors)

JFA described above is based on two different subspaces, channel and speaker, defined by ma-

trices U and V , respectively. But it was found in [4] that channel component contains some

speaker information even if it was aimed at modeling only the session factors. This provided

motivation for introducting a revised technique, front-end factor analysis [4], where factor anal-

ysis is viewed as a “feature extractor”. In this method, there is no distinction between speaker

and channel subspaces. With this assumption, GMM supervector can be rewritten as

M = m+ Tv (9)

Here, m is a speaker and session independent supervector (in practice, the UBM supervector)

and T is a low-rank matrix containing the eigenvectors with largest eigenvalues of total vari-

ability covariance matrix. The vector v defines total factors; it is a random vector with standard

normal prior distribution. The posterior mean of v is known as identity vector or simply i-

vector. This approach assumes that M has normal distribution with mean m and covariance

TT ′. Training of the matrix T is done in advance, but unlike training the hyperparameters of

JFA, the training data does not have to be labeled.

In general, the i-vector model projects speech utterance onto a low-rank subspace so that

each utterance can be presented by single a vector v, which can be seen as a new feature vector.

This representation has an obvious advantage over the supervectors: the dimensionality of i-

vectors is much lower. Usually i-vectors are chosen to be 400 to 600-dimensional, which means

that their processing requires less computation and memory.
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Usage of i-vectors lead to considerable increase of recognition accuracy compared to other

methods not only for the tasks of speaker recognition, but also tasks such as language [5] or

accent [6] recognition. Thus, application of i-vectors to the problem of age estimation can

produce good results as well.

3.5 Session compensation

An important consideration in speaker recognition is compensation effects of inter-session vari-

ability [31, 32]. Development of session compensation techniques is inspired by necessity to

remove session variability from features. Doing so helps in focusing to the essential between-

class information. Here, we discuss two widely applied techniques: within-class covariance

normalization (WCCN) and linear discriminant analysis (LDA).

WCCN [31] is a commonly used technique for session compensation. It normalizes the

average within-class covariance of feature space (e.g. i-vector space) to identity matrix. It helps

to suppress the undesired directions of large within-class variation that dominate the feature

space. WCCN transformation matrixB can be found by solving

BB′ =

 1

J

J∑
j=1

1

Nj

Nj∑
i=1

(vij − v̄j)(vij − v̄j)′
−1

(10)

In (10), vij is the i-th feature vector (e.g i-vector) of the j-th speaker, J is the total number of

speakers and Nj is the number of vectors for j-th speaker. Finally, v̄j denotes mean feature

vector of the j-th speaker. In practice, matrix B is derived through Cholesky decomposition.

After trainingB, all the training and future test vectors x are normalized by x 7→ BTx.

The second technique, LDA [32], is used for session compensation and dimensionality

reduction. It attempts to emphasize class discriminatory information by transformation of the

feature space. For this reason, two variables are introduced: between-class scatter Sb and

within-class scatter Sw (11). Here, v̄j still denotes mean feature vector for the j-th speaker and

v̄ is the mean vector of all feature vectors in the training set.

Sb =
J∑
j=1

(v̄j − v̄)(v̄j − v̄)′

Sw =
J∑
j=1

Nj∑
i=1

(vij − v̄j)(vij − v̄j)′
(11)

To train the LDA transformation matrix, eigenvalue decomposition for scatters S−1
w Sbe =λe is

first carried out. The projection matrix is then composed of the k eigenvectors corresponding to

the k largest eigenvalues λ. k is a predetermined parameter, the target dimensionality.
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3.6 Support vector machine and support vector regression

Here, we briefly introduce the support vector regression (SVR) technique. SVR is a regression

extension of the widely known support vector machine (SVM) classifier. Let us first briefly

recall the basic principles of SVM.

The core idea of SVM [33] is to find a hyperplane in the feature space that separates two

classes with maximum margin. To formalize this idea, we introduce the following notations:

we are given a training set Str = {(a1, b1), ..., (aP , bP )},ap ∈ Rd, bp ∈ R. ap is the input of

the model, bp is the desired output. In the classification task, bp is either +1 or -1. The aim

is to build a function f(a) so that it will accurately predict output. In SVM, we seek for a

linear sepator of the form f(a) = η′Φ(a) + z, where Φ(a) denotes some mapping function

to a higher-dimensional (Hilbert) space, η is a weight vector and z is a bias term. To train the

model, one finds η and z that maximize the following objective function [11]

1

‖η‖
min[bp(η

′Φ(ap) + z)] (12)

This objective function presents perpendicular distance from the separating hyperplane to the

training example ap. This problem can be transfered to the task of minimization of 1
2
‖η‖2 with

inequality constraints bp(η′Φ(ap) + z) ≥ 1, p = 1, .., P . This problem is solved by introducing

Lagrange multipliers αn. The details how it is done in practice one can find e.g. in [33]. Then,

the optimal solution can be shown to be of form f(a) =
∑N

n=1 αnbnK(a,an) + z. Here,

K(a,an) = Φ(a)Φ′(an) is known as the kernel function. A 2-dimensional illustration of SVM

classification is shown on Fig. 6.

The idea of SVMs was later generalized for regression tasks, where the goal is to build a

hyperplane for which maximum of training data points would lie no further than ε distance from

this hyperplane [34] (Fig. 7). Here, we modify the previous notation slightly. Now bp can be an

arbitrary real number not restricted to be discreate like in the case of classification. We again

seek for a linear function of the form f(a) = η′Φ(a) + z and solve optimization problem (13)

with inequality constraints (14).

1

2
‖η‖2 + C

N∑
n=1

(ξn + ξ̂n) (13)


bn − η′Φ(an)− z ≤ ε+ ξn

η′Φ(an) + z − bn ≤ ε+ ξ̂n

ξn, ξ̂n ≥ 0

(14)

Here, ξn and ξ̂n are so-called slack variables which will vanish in the optimization pro-
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Figure 6: Support vector machine classification in 2-dimensional case.

cess. Slack variables are needed to cope with possible infeasible constraints of the optimization

problem. C is positive regularization parameter determining the trade-off between cost of de-

viations of function f(a) larger than ε for training data and its flatness. The problem can be

efficiently solved by introducing Lagrange multipliers αn, α̂n, µn, µ̂n and optimizing the fol-

lowing Lagrangian L.

L = C
N∑
n=1

(ξn + ξ̂n) +
1

2
‖η‖2 −

N∑
n=1

(µnξn + µ̂nξ̂n)

−
N∑
n=1

αn(ε+ ξn − bn + η′Φ(an) + z)−
N∑
n=1

α̂n(ε+ ξ̂n − η′Φ(an)− z + bn)

It can be shown [34] that the solution to this optimization problem has the form f(a) =∑N
n=1(αn − α̂n)K(a,an) + z, where the parameters αn and α̂n can be found through solv-

ing a dual optimization problem. K(a,an) has the same meaning as in the case of SVM. More

datails on computing the parameters α and z can be found in the original paper that introduced

SVR [34]. In general, both the primal and dual problems are convex and the solution can be

efficiently found by numerical methods.

In practice, SVM and SVR are realized in various software packages, such as LibSVM

[35] and SVMTorch [36]. In the experimental part of this thesis, we use LS-SVMlab package
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Figure 7: Support vector regression.

[37], which implements modification of SVM methods known as least squares support vector

machine [38].

3.7 Neural networks

This section provides a short review of a very powerful approach used for function approxi-

mation, classification and other tasks, artificial neural network (ANN) [11]. In particular, we

examine the most popular type of networks, multilayer perceptron (MLP).

Neural network is often presented as a system of interconnected units, known as neurons.

Every such unit performs transformation of its input using some function and passes this value

with some weight to the next neuron. Formally, one neuron is described by the following

equation: b = f(η′a + z). Here, a is the input vector, η are the weights, z is a bias term (we

can drop it by adding to input vector one more value set to be 1 and to weight vector value z).

Function f() is the activation function. It is not restricted to have any specific form, but in this

thesis we use either hyperbolic tangent f(a) = tanh(a) or logistic function f(a) = 1/(1+e−a).

We can combine individual neurons in a structure shown in Fig. 8. The neurons are orga-

nized in larger units, layers. Neurons within each layer are not connected to each other in MLP

but they are connected to other neurons from other layers through their layer inputs and outputs.

The first and the last layers of network are called input and output layers, respectively, while
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Figure 8: Multilayer perceptron. Adopted from [11].

all the others are hidden layers. The network operates as follows. When it has some input, it

calculates its weighted sums and passes these sums to the corresponding neurons (every neuron

has its own set of weights) of the first layer which performs their transformation and passes the

results with new weights to the next layer and so on. The last layer provides the total output of

the network for a given input.

Neural networks can be trained to model a given set of data by modifying its weights.

Nowadays, many algorithms are available for training neural networks. The training objective

is to minimize a suitable error function by modifying the network weights. Many techniques

utilize gradient information of the error surface. The so-called backpropagation algorithm [39]

is an efficient method for calculating the error gradient in the given point. It allows evaluating

the gradients for each layer of the network iteratively.

In this thesis we consider two training methods, stochastic gradient descent (SGD) [40] and

Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) [41]. The first one is based on the fact

that the total error for the whole training set, E, is the sum of errors for individual independent

training cases, E =
∑P

p=1Ep. While the standard gradient descent algorithm would update

weights at iteration τ based on gradient for the whole data (15), SGD updates them according

to gradients of one data point at a time (16). The parameter α in both equations denotes step

size to the direction of the negative gradient. In this thesis, we divide data into several batches

and weight update is done according to gradient of the error in every batch. We still call this

algorithm SGD as opposed to basic gradient descent algorithm.

η(τ+1) = ητ − α∇E(ητ ) (15)
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η(τ+1) = ητ − α∇En(ητ ) (16)

The SGD training algorithm is based only on the information about first derivative of the

error function while BFGS requires second order derivative information as well. It belongs to

the class of so-called quasi-Newton methods [42]. BFGS does not explicitly calculate the actual

Hessian matrix of the second derivatives but makes an approximation, H , and uses this during

optimization. Weights are updates as follows. We search for the direction pτ as a solution to

equation (17), and make a step α in this direction to the next weight point η(τ+1) = ητ + αpτ .

Hτpτ = ∇Ep(ητ ) (17)

In the experimental part of this thesis we use modification of BFGS algorithm called limited

memory BFGS. Details of it can be found, for example, in [43].

One of the common problems in any machine learning task is to avoid overfitting. It means

that we want to prevent neural net to memorize training set and perform perfectly on it but to

have very poor generalization ability. There are various methods designed for neural networks

to cope with this trade-off, such as early stopping [44] and dropout [45]. In this thesis, we adopt

`2- regularization [46] which adds to the objective function an additional quadratic term that

penalizes for large weights. Then, the objective function to be minimized takes a form E +
λ
2

∑
i η

2
i , where λ is regularization parameter indicating relative importance of error depending

on the data and regularizer. This technique helps to keep weights small unless they have large

error derivatives. It leads to smoother model and helps in improving generalization since it stops

network from fitting sampling error of training data.
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4 Baseline method and experimental set-up for age estima-

tion

In this Section we describe our baseline system for age estimation. In two papers [7, 8], Ba-

hari and his co-authors introduced a method using i-vectors, method widely used in speaker

recognition field, for the task of speaker age estimation. In some previous studies SVR was

successfully used for age recognition [9]. Because of that successful experience with SVR, the

authors decided to use it again, but apply it in combination with i-vectors. We describe this

approach in more detail below.

4.1 Support vector regression

In the baseline approach, we use a modification of the standard SVM [33] method known as

least square SVM (LSSVM) [38]. It has a faster training process than the standard SVM because

it requires solving a system of linear equations instead of a quadratic programming problem.

Further, it has fewer parameters to tune. It can also be extended to regression tasks. In the

baseline paper one experiment comparing SVR and LSSVR was conducted, where the modified

approach was found more accurate in terms of mean absolute error for NIST 2008 and NIST

2010 data sets (the advantage was not significant, so it is not clear if it will still be relevant

for other experiment setups). Because of higher prediction accuracy and advantages in training

process, Bahari and his colleagues decided to use LSSVR in their system. In this thesis, we take

this approach as a baseline.

4.2 I-vector framework

For the i-vector extraction standard procedure described in Section 3.4 was used. After the train-

ing of an i-vector extractor, every speech utterance can be represented by its i-vector. Bahari and

co-authors [7] found that it can be beneficial to use i-vector session-compensation. It aims at

removing session variability from the i-vectors in order to better focus on between-class infor-

mation. In both papers, Bahari et al. applied within-class covariance normalization (WCCN)

[31]. Although experiments with WCCN are presented in both papers [7, 8] describing their

baseline approach, it was applied differently. In the first work [7], WCCN was used to normal-

ize covariance within different age classes. This approach was found unsuccessful, and in the

second paper it was reconfigured so as to normalize within-speaker covariance instead. This

strategy appeared to be more effective and helped to improve the accuracy of age estimation.
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4.3 Procedure of training and testing

The principle proposed in [8] is explained on the scheme shown in Fig.9. In the training phase,

i-vectors for each utterance are extracted, then WCCN is applied to suppress session variability

effects. Further, the normalized i-vectors are presented to SVR together with the corresponding

age labels to train it. In the run-time stage, an i-vector is extracted, WCCN transformation is

applied and the normalized vector is fed to the regression model, which produces a predicted

age (a scalar).

i-vector Extraction WCCNX1

y1

i-vector Extraction WCCNXi

yi

i-vector Extraction WCCNX1

y1

SVR i-vector ExtractionWCCN Xtest

Training Phase Testing Phase

y

Estimated age

Figure 9: Schema of baseline approach. Adopted from [8]. xi, yi denote speech utterance and
respective age label.

4.4 Performance measure

The original papers [7, 8] use two objective measures of age estimation accuracy. The first one

is mean absolute error (MAE), calculated using the following formula :

MAE =
1

N test

Ntest∑
n=1

|Ŷn − Yn|.

Here, N test denotes the number of test segments, Ŷn is the predicted age by the regression

model and Yn is the actual chronological age that serves as the ground truth. Smaller MAE is

considered better. The second measure is Pearson’s correlation coefficient between the vectors

of estimated and chronological ages:

ρ =
1

N test − 1

Ntest∑
n=1

(
Ŷn − µŶ
σŶ

)(
Yn − µY
σY

)
.
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Here, µŶ and σŶ denote, respectively, the mean and standard deviation of estimated speaker’s

age. Similarly, µY and σY correspond to the same measures of actual age. Higher ρ is consid-

ered better. Throughout this thesis, we adopt the same performance metrics as in the baseline

approach.

4.5 Data and experimental setup

The data used for experiments in the baseline approach is NIST speaker recognition evaluation

(SRE) datasets from year 2008 and 2010. These corpuses were selected because they contain

utterances from large amount of speakers and rich metadata, including speaker’s age. Some

restrictions were made for the used data: firsty, only telephone data was selected. Secondly, we

considered utterances from speakers between 20 to 70 years old only. The reasoning for these

choices are as follows. Telephone recordings were selected because in these corpora, recordings

of other type contain talk from multiple speakers, which would cause difficulties in both model

training and measuring performance. Discarding of younger and older speakers, in turn, is made

because they are too few compared to speakers of other ages. Table 2 presents summary of the

used data. Figure 10 further shows the age distribution of male and female speakers of the

selected utterances from NIST 2008 and NIST 2010 datasets.

Table 2: Summary of the data used for age estimation

NIST 2008 NIST 2010
Male Female Male Female

Number of speakers 412 742 218 224
Number of utterances 1402 2457 2560 3023
Quality Telephone
Sampling rate 8.0 kHz

For the experiments, all the data used for age estimation was divided into 15 folds so that

there is no speaker overlap across the folds. Then, 15 independent tests were run, in each

of them 14 folds were used as the training set and the 15th as an independent (held-out) test

set. The final result (MAE and ρ described before) presented is the average of those metrics

respectively for all the 15 tests. Each time, two independent age recognition systems are built

for male and female speakers and the results also are presented for male and female separately.

This thesis uses the same experimental set-up. The only difference is that for training UBM

and total variability subspace matrices, we use all the available NIST SRE corpora except the

ones used for evaluation (NIST 2008 and NIST 2010). In the original papers [7, 8], the authors

used only NIST 2004-2006 datasets. As we will see later, that did not affect final accuracy and

the results we get, when replicating the baseline approach, are very close to the results reported
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Figure 10: Age histogram of the selected speech utterances from NIST 2008 and 2010 corpuses

in the origal paper [8]. Thus, we have confidence that our baseline is correctly implemented and

represents the correct state-of-the-art of age estimation.
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5 Alternative features

I-vectors based on mel-frequency cepstral coefficient (MFCC) features were found effective for

age estimation in [7, 8]. But what if some other acoustic features are better suited for age esti-

mation? In this Section, we will try to find these new features. First of all, we will study how

different set-ups for i-vector extraction affect the recognition results. In the following two sub-

sections, we consider two other options alternative to i-vectors. In both cases, neural networks

are utilized, but the usage of the networks are different. Section 5.2 describes experiments with

MFCC features and usage of neural network as a regressor. Section 5.3, on the other hand,

demonstrates the use of neural network as a feature extractor.

5.1 I-vector extraction setups

First idea which seems worth to explore is different initial settings for i-vector extractor. The

first stage in obtaining i-vectors is extraction of acoustic features (MFCC features are one op-

tion but there are also several other techniques). The resulting i-vectors are of course strongly

dependent on the type of acoustic features used to construct them. Five differents variants of

features are studied in this thesis. Some of them are modifications of MFCCs while the others

are completely different types.

We first describe the setup for i-vector extraction used in the baseline approach.We use 60-

dimensional MFCC vectors (19 coefficients with energy, deltas and delta-deltas) as the acoustic

features. Then short-term cepstral mean and variance normalization (CMVN) [47] is applied.

CMVN is one of the most common techniques in speech and speaker recognition. CMVN is

described by equation (18).

Ĉt =
Ct − µt
σt

,

µt =
1

L

t+L
2
−1∑

n=t−L
2

Cn,

σ2
t =

1

L

t+L
2
−1∑

n=t−L
2

(Cn − µ)2

(18)

Here, µt denotes mean value of features on the given utterance segment of length L and σt is

standard deviation on the same segment. Ĉt and Ct are the original and the modified value of

the feature, respectively.

Applying this transformation produces a new set of features with zero-mean and unity vari-

ance. The length of normalization segment is not strictly specified but it can be chosen according

to the task and properties of the original signal. One must find a suitable balance, since too short

segments do not have enough information specifying mean and variance. On the other hand,

24



too long segments can result in better estimates but cause longer delays during processing: we

need to wait until the end of each segment to compute the needed statistics. Based on the nor-

malized features, we extract 400 dimensional i-vectors. Table 3 shows the baseline results we

obtained using described approach along with the results reported in [8]. The results are close

to each other and differences likely caused by differences in random division into 15 folds and

UBM/i-vector data selections. Further, when referring to baseline we addres the results of the

system that we implemented.

Table 3: MAE (in years) and ρ for baseline approach

Male Female
MAE ρ MAE ρ

Our baseline 6.65 0.73 5.75 0.80
Baseline in [8] 6.53 0.73 5.78 0.80

The first experiment looks for dependence of the i-vector dimensionality and recognition

accuracy because it is likely that vectors with higher number of elements may contain more

age-dependant information and be helpful in improving the age estimator’s performance. Here,

we compare baseline setup with 600-dimensional i-vectors based on exactly the same MFCC

vectors and trained support vector regression estimator on those. 600-dimensional i-vectors

were chosen as alternative to baseline since they are widely used in speaker and language recog-

nition systems [48] and shown good level of performance in several tasks. The other possible

Table 4: MAE (in years) and ρ for SVR age estimators trained on i-vectors of various sizes

Male Female
I-vector Setup MAE ρ MAE ρ

baseline (400-dim i-vectors) 6.65 0.73 5.75 0.80
600-dim i-vectors 6.59 0.72 5.76 0.80

option is to study how CMVN affects performance of the system. To this end, we compare

the baseline approach with i-vectors built on unnormalized MFCCs. Also, we consider another

possible transformation of the feature vectors, utterance mean normalization. It is special case

of CMVN, when normalization segment lenght L equals utterance length and variance normal-

ization is discarded. In this approach sentence utterance is subtracted from the features, which

means that new features have zero mean for each utterance.

Shifted delta cepstral coefficients (SDCs) [49] represent another option for feature selection
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and can be expressed in the following way:

siθ+j(t) = Cj(t+ iδ + χ)− Cj(t+ iδ − χ), i = 0, .., κ− 1.

Here, Cj, j = 1, .., θ − 1 are the base MFCC coefficients. We see that SDCs are defined by

four parameters. The first one, θ, defines the number of the cepstral coefficients. The second

parameter, χ, determines time difference between the frames, δ is time shift between two blocks

and κ is the number of blocks. So, SDCs are basically κ blocks of delta cepstral coefficients.

SDCs add contextual temporal information to the feature vectors which can be useful in terms

of age estimation.

The last features are so-called Perseus features. Generally, Perseus features are based on

“MMeDuSa” features [50]. Specifically, they are a combination of MFCCs and MMeDuSa

features. Several modifications in MFCC extraction procedure described in section 3.1 are

made to obtain the Perseus features. The first change is usage of gammatone filter bank [51]

instead of mel filter bank. Another modification is adding to the feature vector sub-frame energy

estimations. Finally, we replace logarithmic compression used in MFCC extraction by 1/15-th

root compression.

In the two last experiments, we built i-vectors based on these two alternative types of acous-

tic features. The results of described experiments are presented through Tables 4 to 6.

Table 5: MAE (in years) and ρ for SVR age estimators trained on i-vectors with various
normalization

Male Female
I-vector Setup MAE ρ MAE ρ

baseline (short-term CMVN) 6.65 0.73 5.75 0.80
no feature normalization 6.77 0.70 5.85 0.79
utterance CMVN 6.73 0.72 5.78 0.80

Table 6: MAE (in years) and ρ for SVR age estimators trained on i-vectors built on alternative
acoustic features

Male Female
I-vector Setup MAE ρ MAE ρ

baseline (MFCC features) 6.65 0.73 5.75 0.80
Perseus features 7.01 0.69 5.99 0.79
SDC features 6.72 0.72 6.01 0.78

The best performance, in terms of age estimation, is achived with baseline schema of i-

vector extraction. I-vectors with increased dimensionality yield almost the same results, but
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require more computation. All the other experimented ideas degrade accuracy.

5.2 MFCC as direct features of age estimator

Since different setups for i-vector extraction did not show any improvement in age estimation,

performance of other types of features is worth exploring. The first features that we examine

are MFCCs. Being low-level acoustic features, MFCCs potentially contain useful information

for age estimation. Here we conduct experiments with neural networks instead of SVR. The

common schema of these experiments is as follows. At the training phase for every utterance,

all MFCC vectors are considered independent. The network gets a single vector as an input,

and the label for it is the same as the label for the whole utterance. Neural network is trained

on those vectors. During the test phase we predict age label for every single feature vector from

one utterance and average those results across the utterance to get the final age label for it. This

schema is depictured on the Fig. 11.
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Figure 11: Schema of using MFCC features in combination with neural network for age estima-
tion. xi, yi denote speech utterance and respective age label, yti denote predicted age for frames
of test utterance, y is the final age label for the whole test utterance.
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The described procedure was repeated in two variants: the first one was exactly the same as

written above, the second one has a major modification. Instead of taking MFCC vectors sepa-

rately we stacked consecutive 9 MFCC frames together to one vector of higher dimensionality.

For each utterance, those vectors were further used for age prediction. Motivation for taking

stacked MFCCs is to add temporal information to the feature vector, similar to SDCs.

Due to large amount of data, training of the network requires time and computational re-

sources. For this reason, we conducted preliminary experiments only for female speakers. Table

7 shows the performance of neural networks trained on single and stacked MFCCs for females.

In both cases, network has a single hidden layer with 512 neurons and is trained with SGD

method [40] presented in Section 3.7.

Table 7: MAE (in years) and ρ for the neural network age predictor trained on MFCC features
for female speakers

Female
Features MAE ρ

single MFCCs 10.85 0.47
9 stacked MFCCs 9.79 0.53

Comparing Tables 4 and 7, the results on direct features are way behind the performance

of i-vector system. This might be because of high variations of single acoustic feature vectors

corresponding to the same utterance and the same age label. Stacking MFCC vectors together

helped to slightly improve performance but it is still far from the i-vector system results. We do

not develop this direction of experiments further.

5.3 Statistical feature extraction using neural networks

As another alternative to i-vectors, we examine new types of features. The core idea is that

a trained neural network nonlinearly compresses the input information. This way, the trained

neural network can be utilized for nonlinear feature extraction.

Features that we use are similar in spirit to the so-called bottleneck features [52]. Bottleneck

features are computed as follows. They are outputs of some hidden low dimensional layer

of network trained to reproduce the input vectors, called an autoencoder [52]. That is, the

lower dimensional layer compresses data but all the essential information is retained. Usage of

that compressed version can be fruitful since the input dimensionality is decreased while main

variations are retained.

In our case, instead of training a self-predicting network, we train a neural network to

predict age as in the section 5.2. MFCCs are used as input vectors to this network. But, instead
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of making prediction for the test data using this network, we apply it as a feature extractor. The

procedure to train and test the age predictor is formalized in the following procedure.

• Training

1. Train a neural network as described in Section 5.2 to predict age from MFCC

vectors and store the network

2. For each training utterance:

(a) Present all the training MFCCs for the given utterance one by one and store

the outputs of the network’s hidden layer

(b) Average outputs of hidden layer across the whole utterance

(c) Store the result of previous step as new feature vector

3. Train any regression model (e.g. neural network or SVR) on the obtained fea-

tures to predict age

• Testing

1. Present all MFCCs of the test utterance one by one to the trained network and

store the outputs of network’s hidden layer

2. Average the outputs of hidden layer across the whole utterance

3. Store the result of the previous step as a new feature vector

4. Using the regression model back-end and the new feature vector to predict the

age label for the test utterance

Table 8: MAE (in years) and ρ for the SVR age predictor trained on neural network’s statistical
features for female speakers

Female
Kernel function of SVR MAE ρ

Linear 7.06 0.70
RBF 7.53 0.66

In the following experiments, we trained a neural network with 1024 neurons in the hidden

layer with sigmoid activation functions. Then new data was fed to the trained network and 1024-

dimensional feature vectors were obtained using the process described above. As a regression
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model we examine SVR. As two alternatives we took two different kernel functions for SVR:

linear and radial basis function. The results achieved with the two types of SVRs are presented

in Table 8. Here we will see only the results for female speakers similar to the previous section.

This new type of features greatly outperforms MFCC based age estimators in Table 7. It is

still, however, behind the baseline i-vector approach (Table 4).
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6 Neural networks for i-vector based regression

Since training different features (Section 5) did not appear a promising direction, our next step

is to fix the features to i-vectors and study the role of the back-end regression method. Most

of the previous works in age estimation were using SVM in case of classification or SVR for

regression. This section studies the use of neural networks for age estimation. Here we used

only MFCC-based 400-dimensional i-vectors which were found the best i-vector setup when

using SVR (details in Section 5.1). For the majority of our experiments, we use MLP with a

single hidden layer. Penalties (details in Section 3.7) of 0.1 and 0.01 for the weights of the first

and second layers are used, respectively. The learning rate in all experiments is set to 0.5. These

values were optimized in initial experiments utilizing on MLP with 512 neurons in the hidden

layer.

6.1 Effect of the training algorithm

In the first experiment, we train a single hidden layer neural network and study the effect of

the optimisation method. Fig. 12 shows dependency of MAE and ρ on the number of neurons

in the hidden layer for two optimisation methods: stochastic gradient descent (SGD) [40] and

Broyden–Fletcher–Goldfarb–Shanno (BFGS) [41] algorithm. These results are shown for male

speakers only, for females the trends are similar.
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Figure 12: Mean average error for age estimation of male speakers.

As Fig. 12 shows, when using BFGS for training, the size of the hidden layer does not

affect performance as much as when SGD is used. When the number of neurons is low, BFGS

outperforms SGD, but for larger network, the second method yields higher accuracy and also it

is faster than BFGS.
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6.2 Effect of WCCN

As mentioned in Section 4.2, Bahari et al. found WCCN applied to i-vectors to improve SVR-

based age estimator performance. Interestingly, [8] reported that improvement was achieved

when each speaker was treated as a different class. The supposedly more meaningful strategy,

training WCCN using discrete age classes, actually decreased performance of age estimator

in [7]. For this reason, and since our baseline results (Table 3) are similar, we study WCCN

using speaker labels only for convenience. When implementing the neural network approach,

we were curious to study usefulness of WCCN, too. Tables 9 and 10 compare the impact of

WCCN for networks of various sizes. The same single hidden layer architecture for networks

is used as above (Section 6.1) and the training algorithm is SGD. For large networks (512 and

1024 hidden units), WCCN helps and will be used in all the remaining experiments.

Table 9: MAE (in years) and ρ of the neural network age estimator with and without WCCN
for female speakers.

no WCCN WCCN
Size of hidden layer MAE ρ MAE ρ

128 6.19 0.77 6.32 0.76
256 5.93 0.78 6.12 0.77
512 5.91 0.78 5.72 0.80

1024 5.66 0.80 5.49 0.81

Table 10: Same as Table 9 but for male speakers.

no WCCN WCCN
Size of hidden layer MAE ρ MAE ρ

128 7.11 0.68 7.25 0.67
256 6.90 0.69 7.06 0.69
512 6.85 0.71 6.48 0.73

1024 6.66 0.72 6.35 0.74

6.3 Neural networks ensembles

Combining results of several predictors (e.g. neural networks) can increase overall accuracy

compared to one of those predictors. The common name for these types of methods are ensem-

ble methods [53]. They are based on the assumption that there exists an ideal function, f(x),

that solving a given problem perfectly. Neural networks attempt to find a good approximation of

this function, f̂(x). If we introduce a new misfit function as a deviation of approximation from
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the true function, m(x) = f(x)− f̂(x), we can express objective of the training to be minimiza-

tion of mean squared error (MSE), MSE = E[m2]. Having a set of n approximation functions

and by assuming that their misfits are independent and have zero mean we can combine results

by simple averaging from all the functions in this set and the total MSE will be 1
n
MSE, where

MSE is mean of MSEs over all functions in the set [54]. If we consider misfits as random noise,

averaging all the misfits is averaging noise which means that we perform smoothing over the

approximations on true solution. This approach is called basic ensemble method [54].

In this section we apply the described ensemble procedure for age estimation. To introduce

diversity to our neural net ensemble,we use random initializations of networks with the exact

same architecture and change the number of hidden neurons or training method.

Table 11: Combinations of different ANNs (averaged outputs).

Male Female
System configuration MAE ρ MAE ρ

Base predictors
1. n1 = 256, SGD 7.06 0.69 6.11 0.77
2. n2 = 512, SGD 6.53 0.73 5.72 0.79

3. n3 = 1024, SGD 6.35 0.73 5.49 0.81
4. n4 = 512, BFGS 6.66 0.71 5.69 0.79

Ensembles of base predictors
1 + 2 + 3 6.42 0.75 5.56 0.81
2 + 2 + 2 6.45 0.73 5.63 0.81

2 + 4 6.58 0.72 5.59 0.80

Table 11 represents the results achieved with this ideology. For all the combined networks,

WCCN is applied. The first four lines correspond to single networks having different numbers

of hidden neurons (ni) with jointly varied training algorithm. The last three rows show per-

formance of a few combinations of these base networks. We selected these combinations to

get various sources of diversity in one combination. The first combination address to ensemble

of networks having different sizes. The second combination takes random initialization of the

network weights as a source of variability. And the last ensemle is based on different training

methods of networks. In each case, we simply average outputs of the individual networks and

compute performance measures for the result. As expected, combination of several age estima-

tors is helpful. The best improvement achieved for combinations of networks having the same

size.
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6.4 Linear discriminant analysis

In the last experiment, we investigate whether linear discriminant analysis (LDA) – as a session

compensation and dimensionality reduction tool – can improve age prediction accuracy. As in

the case of WCCN, we consider each speaker as a separate class. In Table 12, the results are

shown for different target size for reduced input vector of 512 neurons network. The training

algorithm used is SGD.

Table 12: Effect of LDA dimensionality reduction.

Male Female
Target dim. MAE ρ MAE ρ

100 6.71 0.69 5.71 0.79
200 6.70 0.69 5.72 0.79
300 6.46 0.73 5.73 0.80

400 (no LDA) 6.48 0.73 5.72 0.80

In general, dimensionality reduction does not affect performance much. For the sake of

speed and resource consumption, it can still be beneficial to use LDA.

6.5 Neural networks with two layers

After performing several experiments with single hidden layer neural networks, it is interesting

to investigate the effect of the network architecture closer. In the current architecture, the only

nonlinearity is the only hidden layer. Adding more nonlinear layers can potentially help the

estimator to fit the data better. This is where inspiration for performing experiments with deep

neural networks [55] came from. This section describes results of experiments performed for

networks with two hidden layers.

Fixing all the other design choices as they were in the case of one hidden layer (SGD

training, WCCN on), we attempt to find appropriate size for each layer of the revised network.

On the first set of graphs below (Fig. 13), MAE and ρ are shown for networks having 1024

neurons in the first hidden layer and various sizes of the second layer. Fig. 14, in turn, presents

the opposite case, when size of second layer was fixed to 512 neurons and the number of neurons

in the first layer is varied.

It is difficult to interpret the results in Fig. 13 and Fig. 14 conclusively but one observation

is that the best performance can be achieved when the sizes of two layers are equal. But even in

this case, this architecture did not outperform the results achieved by a single layer network. In

the best case, the performance remained the same as before. One problem could be that we used

parameter values optimized for single layer network. They may require re-optimization for the
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Figure 13: Performance for 2- layers network estimator of male and female speakers’ age. Size
of second layer is various.
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Figure 14: Performance for 2- layers network estimator of male and female speakers’ age. Size
of first layer is various.

2-layer structure.

Probably even more complicated architectures can provide some improvement in the age

estimator performance. But due to high computational costs this direction of research was not

developed further in this thesis.

35



7 Conclusion

This thesis was aiming at improving state-of-the-art age estimation using speech sygnals. Start-

ing with one of the most successful methods for age estimation, utilizing i-vector representation

of speech utterances, we studied a number of new systems to find out whether they could im-

prove state-of-the-art methods in the field. Our main findings can be summarized as follows:

1. Among the different feature extraction techniques, MFCCs with short-term CMVN worked

the best. Neither transformations of MFCCs nor any other features we attempted per-

formed any better.

2. Other studied features, such as using MFCCs directly or statistical features extracted by a

bottleneck neural network, were not found helpful.

3. In case of both ANN and SVR back-end, WCCN helped when treatening speakers (rather

than age groups) as the classes. This agrees with the results reported for the same data in

[8].

4. The second session compensation technique that we studied, LDA, did not improve age

estimation accuracy.

5. Among the two compared MLP training methods, BFGS was less stable against increas-

ing the number of neurons in the hidden layer. It was overfit with more than 256 hidden

neurons while SGD was stable even with 1024 neurons. Apart from this, SGD requires

less computations as it does not utilize second order derivative as opposed to BFGS.

6. A slight improvement in estimation accuracy was obtained by forming an ensemble of

several networks. The most successful combination was ensemble of networks having the

same size, as it was greatest improvent compared to a single network.

7. Attempts to extend network architecture by adding more hidden layers were not success-

ful. One possible explanation is that we used for extended networks the same network

parameters, optimized for single hidden layer ANN; they should be optimized again for

modified architecture, which was left out for time constraints and computational reasons.

In the light of the above observations, we advise to use neural network predictor trained on

i-vectors obtained from MFCC features with short-term CMVN. The recommended architecture

is MLP with one hidden layer, and the training algorithm is SGD. With this setup we managed

to get 4.5 % relative reduction in MAE over the baseline approach for both male and female

speakers. Table 7 provides results of other age estimation approaches, mentioned in Section 2,

along with result of our best system. For consistent comparison here we present results only for
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Table 13: Comparison of several approaches for age estimation. Here, indexes m and f indicate
results for male and female tests, respectively. Performance measures are mean absolute error
(MAE) and Pearson’s correlation coefficient (ρ) as detailed in Section 4.4.

Results
Study Data Methodology MAE ρ

Bocklet et al. [9] Children of age
from 5 to 11 years old

GMM-supervectors + SVR — ρ=0.89

Bahari et al. [7] NIST 2008, 2010 SRE GMM-supervectors + SVR MAEf = 7.95, MAEm = 7.79 —

Bahari et al. [8] NIST 2008, 2010 SRE i-vectors + SVR MAEf = 5.78, MAEm = 6.53 ρf = 0.80, ρm = 0.73

This thesis NIST 2008, 2010 SRE i-vectors + SVR MAEf = 5.75, MAEm = 6.65 ρf = 0.80, ρm = 0.73

This thesis NIST 2008, 2010 SRE i-vectors + ANN MAEf = 5.49, MAEm = 6.35 ρf = 0.81, ρm = 0.74

regression. The table indicates that with ANN back-end we managed not only reach but also

slightly outperform state-of-the-art method.

We propose to concentrate future work on looking of alternative ways of feature extraction

instead of i-vectors since back-end did not shown to have great effect on overall performance.

We advise to consider closer neural networks as feature extraction technique, in this thesis we

did not pay much attention to this type of features because of computational and time limits, but

it may be a promising future direction of research. Architecture and parameters of the network

used for feature extraction should be akso studied closer.
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