
High dimensional kNN-graph construction using
space filling curves

Sami Sieranoja

April 2015

UNIVERSITY OF EASTERN FINLAND, Faculty of Science and Forestry,

Joensuu

School of Computing

Computer Science

Student, Sami Sieranoja: High dimensional k nearest neighbor graph construc-

tion

Master’s Thesis, 59 p.

Supervisor of the Master’s Thesis: Pasi Fränti

April 2015

Abstract:

The k nearest neighbor (kNN) graph has an important role in many computer science

fields including machine learning and data mining. Although many fast methods exist

for constructing kNN graph for low dimensional data, it is still an open question how

to do it efficiently in high dimensional cases. We present a new method to construct

approximate kNN graph for medium to high dimensional data. Our method uses space

filling curves to construct initial graph and then continues to improve this using neigh-

borhood propagation. It is targeted for Euclidean distance metric but has potential to

be applied for general Minkowski distance metrics. Experiments show that the method

is faster than compared methods with three different benchmark data sets which di-

mensionality ranges from 14 to 544.

Keywords: kNN graph, graph construction, nearest neighbor, space filling curves,

neighborhood propagation

(ACM Computing Classification System, 1998 version): H.3.3 Information Search

and Retrieval

Acknowledgements

I would like to express my gratitude to my supervisor, professor Pasi Fränti for the

useful comments, remarks and guidance through the difficult process of writing this

master’s thesis. Additionally, I would like to thank all members of the Speech and

Image Processing Unit (SIPU) where I was working while writing this thesis. I also

thank my family for their encouragement, support and patience.

Abbreviations

NN Nearest neighbor

kNN k nearest neighbor

ANN All nearest neighbor

SFC Space filling curves

NNDES Nearest Neighbor Descent

RLB Recursive Lanczos Bisection

k-d tree k -dimensional tree

PCA Principal component analysis

Notations

P Data set of points in some multidimensional space

p point in data set P

d(p1, p2) distance between points p1 and p2

q query point

k number of nearest neighbors in kNN and k-NNG

k (in context of k-d trees) number of dimensions

N size of data set P

D dimensionality of the space

Dz Target dimensionality in dimensionality reduction

s(p) One-dimensional mapping of multidimensional point p

Nc Number of different one-dimensional mappings (curves)

Lp(x, y) =
(

∑n
i=1 |xi − yi|

p
)1/p

Contents

1 Introduction 1

2 Nearest neighbor problems 4

3 Effect of dimensionality 7

4 Solving methods 10

4.1 k-d trees . 10

4.2 Space filling curves . 14

4.3 Neighborhood propagation . 23

5 Z-order neighborhood propagation 29

5.1 Z-order search . 30

5.2 Dimensionality reduction . 35

5.3 Configuration variables . 36

6 Experiments 39

6.1 Evaluated algorithms . 39

6.2 Measurements . 39

6.3 Data sets . 40

6.4 Empirical process . 41

6.5 Recall vs. program execution time 43

6.6 Effect of dimensionality reduction 47

7 Discussion 49

8 Conclusion 52

9 References 53

Appendix 1: Source code for z-value generation 58

1 Introduction

Given a set of N points P = {p1, p2..., pN} in some multidimensional space S, the

k-nearest neighbor problem (kNN) is to find the k points in P that are closest to a

given query point q ∈ S according to some distance metric d.

When the k nearest neighbors are searched for all points in P , the result is a directed

graph called kNN graph where the vertices correspond to points in the data set and

edges are from each point to the k nearest points in the data set.

k-nearest neighbors for q, k = 3

q

kNN graph, k = 3.

Figure 1: When k nearest neighbors are searched for all points in P , the result is a

kNN graph.

Constructing a kNN graph is important for a wide range of applications including clas-

sification [1], agglomerative clustering [2], k nearest neighbor search [3], dimension-

ality reduction [4], image organization [5], outlier detection [6] and computer graphics

[7]. For many of these applications, constructing the graph is a major bottleneck [8, 2].

Trivial brute force algorithm constructs kNN graph in O(N2) time by calculating dis-

tance for all possible pairs of points and selecting the k smallest distances for every

point. This can be practical for small data sets consisting of up to tens of thousands of

points, especially when utilizing parallel computing capabilities of modern GPUs [9].

However, for larger data sets, consisting of millions of points, the brute force algorithm

becomes too slow.

Faster methods to construct the kNN graph can be roughly grouped into three cat-

1

egories: (1) Space partitioning methods construct tree shaped search indexes by re-

cursively dividing the space. (2) Space filling curves project multidimensional points

into proximity preserving one dimensional curves and perform local search along the

curve. (3) Neighborhood propagation, given an approximate or random graph, finds

neighbors of points by examining every point’s neighbors’ neighbors.

Fast methods such as k-d trees [10] and space filling curves [7] can construct an exact

kNN graph for low dimensional data sets in O(N · log(N)) time. However, with

high dimensional data these methods fail to provide speed-up over the brute force

method. Therefore recent research has focused on constructing approximate kNN

graphs [2, 11, 12, 13, 8].

Among recent research, Dong & al. [12] and Zhang & al. [8] have reported significant

improvements over previous methods. Their methods are designed to work in high

dimensions and with many types of distance measures, including non-metric distance

functions. We suspect that it might be possible to improve those methods even further

by focusing on a specific distance measure. Many different distance measures have

been developed, but the Euclidean distance is still the most widely used. In this work,

we aim therefore to develop a method specifically for the Euclidean distance, but expect

the developed method to generalize to Minkowski distance metrics as well.

Our method constructs a kNN graph by using a combination of space filling curves and

neighborhood propagation. It aims at constructing an approximate kNN graph for the

Euclidean distance metric in situations where dimensionality D ranges from medium

to high (D ≥ 10). We compare the method against two existing methods, NN-Descent

[12] and Recursive Lanczos Bisection [11]. We show that our method provides better

speed/quality ratio than the compared methods when using Euclidean distance metric

with data sets where dimensionality ranges from 14 to 544.

We analyze the effect of increasing dimensionality on previous methods k-d trees

[14, 10] and Neighborhood Propagation [11, 12, 13, 8]. We show that k-d trees be-

come less efficient in higher dimensions because a smaller portion of the data has ef-

fect on the tree structure. Our experiments show that Neighborhood Propagation fails

in higher dimensions because, at least with uniformly distributed data, the probability

of neighbor of neighbor being a neighbor decreases as dimensionality increases.

In addition to decreasing computational performance, an increase in dimensionality

2

may also cause even the exact results to become less meaningful. This happens because

in many situations, such as with uniformly distributed data, all points become almost

equidistant from the query point [15]. Additionally, choosing a right distance function

has effect on the meaningfulness of the results [16]. Minkowski distance functions

with small p have been shown to be more suitable for high dimensions than larger p

[16].

3

2 Nearest neighbor problems

Nearest neighbor

q

All nearest neighbors

k-nearest neighbors, k = 5

q

k nearest neighbors graph (k = 3)

Figure 2: Solutions for different nearest neighbor problems. Graphs for all nearest

neighbors and all k nearest neighbors are directed but drawn here as undirected for

clarity.

The problem of construction the kNN graph belongs to a larger set of problems that in-

volve finding points that are near to each other. We refer to these problems collectively

as nearest neighbor problems. They vary on how many nearest neighbors are searched

for and how many query points there are. For example, the nearest neighbor problem

(NN) is to find the nearest neighbor for a point, and the all nearest neighbor problem is

to find one nearest neighbor for all points in the data set. Solving these problems faces

4

similar computational challenges and similar solutions are used to all these problems.

We consider the following nearest neighbor problems:

1. Nearest Neighbor (NN)

2. All nearest neighbors (ANN)

3. k-nearest neighbors (kNN)

4. All k nearest neighbors (AkNN) or kNN graph

The nearest neighbor problem (NN) is to find the point p ∈ P that is closest to a given

query point q according to some distance metric d. This problem has also been called

the post office problem because one instance of the problem is to find the closest post

office for a given residence [17].

In the all nearest neighbors problem (ANN) the goal is to find the nearest neighbor for

all points [18, 19]. In mathematical ecology all nearest neighbors have been used to

study distributions of plant or animal populations [20, 18]. For example, a population

can be determined to be randomly distributed if the distribution of distances to nearest

neighbor in a population is the same as the distribution of distances from random points

to the nearest individual in the population [20].

Given a set of N points P = {p1, p2..., pN}, the k-nearest neighbor problem (kNN) is

to find the k points that are closest to a given query point q according to some distance

metric d [21]. The query point q may or may not belong to the set of data points P .

All kNN search algorithms reviewed by us [10, 22, 21, 23, 24, 3] have been developed

to work also in cases where q /∈ P . This problem is encountered in a very wide range

of practical applications. One example of this problem is a situation where a mobile

phone user wants to find the nearest restaurants to his current position (query point q).

In another variant of k nearest neighbors problem, the goal is to find k nearest neigh-

bors for all data points in the same P [25, 26]. In this thesis, we focus in this particular

problem. The difference between k nearest neighbors problem and the all k nearest

neighbors problem is the same as between the nearest neighbor problem and the all

nearest neighbor problem. The nearest neighbors problems are special cases of the k

nearest neighbor problem when k = 1.

If the results for the all k nearest neighbors problem are stored as a graph data structure,

it is called kNN graph. Given a data set P and some distance metric d, the kNN graph

5

for P is an unweighted directed graph where the vertices correspond to points in the

data set and edges are from each point to the k nearest points in the data set [13].

More formally, G = (V,E) is a directed graph, where V = P and for all pi ∈ P

there is an edge 〈pi, pj〉 ∈ E if and only if d(pi, pj) is among the k smallest elements

in {d(pi, pj)|pj ∈ P \ {pi}}. Sometimes edge weights are also stored to represent

the distance between points [27, 28]. They can be useful in estimating densities of

different areas.

A kNN graph can serve as O(1) time search structure for accessing the neighbors of

any points in P . However, kNN graph cannot be directly used for finding k neighbors

for other query points outside this set (q /∈ P) because kNN graph is constructed for

a predefined set of data points (p ∈ P) [13]. Also, in k nearest neighbor searches k is

taken as a parameter for the search [21, 24], and not for indexing, so it can be varied

per query point, whereas kNN graph is constructed so that k is same for all points.

Therefore k + 1 neighbors cannot always be efficiently found using a kNN graph.

When query point is outside the set of data points (q /∈ P) it is also possible, although

not trivial, to use kNN graph as a serch data structure [29, 3]. For example, Hajebi &

al. [3] perform approximate kNN search by repeated hill climbing. The search starts

from a random point in the kNN graph and continues by always choosing that neighbor

which is closest to the query point while maintaining a list of the k visited points that

are closest to q. The search stops when none of the neighbors are closer to the query

point than the current node. To increase accuracy, the search is repeated multiple times

by using a different random data point as a starting point.

6

3 Effect of dimensionality

There have been a great deal of theoretical studies analyzing the effect of dimension-

ality for the nearest neighbor search [15, 30, 16], but much less specifically about the

k nearest neighbor search [31]. The analysis presented in this section is exclusively

about the nearest neighbor search. Some of these results generalize to the k nearest

neighbor problem. While this may seem intuitively quite clear, the relationship of

these problems should be understood more formally.

Especially much analysis have been done on the computational efficiency of solving

the nearest neighbor problem. It is a subproblem of the k nearest neighbor search, and

the time complexity of kNN search is therefore lower bounded by the time complexity

of NN search. If it takes T (n) time to calculate NN, it will take at least T (n) time to

calculate kNN. Also, k nearest neighbors can be searched for by repeating the search

for the nearest neighbor k times while removing the found neighbor from P after each

search. Therefore, if nearest neighbor search takes T (n) time, kNN search is expected

to take at most T (k · n) time. Therefore theoretical results for the NN problem have

relevance for the kNN problem.

There are two major issues in high dimensional nearest neighbor search. One is the

performance issue where computational requirements of known exact nearest neighbor

search methods increase exponentially in D [32], and therefore, are not practical for

most high dimensional real life data sets.

The second is the quality issue where increase in dimensionality makes all points al-

most equidistant from the query point when using typical distance functions such as

L2 distance. This gives rise to the question if the concept of nearest neighbor is mean-

ingful in high dimensions [15] or if other non-conventional distance functions would

be more useful [16].

The quality issue has been investigated in [15, 30, 16]. Beyer & al. [15] discovered

that with many types of high dimensional data sets all data points are almost equidistant

from the query point. In other words, when dimensionality increases towards infinite

the relative distance between the farthest (dF) and nearest (dN) data point (contrast)

goes towards one. They also argued that the concept of nearest neighbor is no longer

meaningful when all data points are almost equidistant from the query point. Con-

7

sequently, the meaningfulness of the nearest neighbor concept would decrease when

dimensionality increases.

Low dimensional spaces

qdN

dF

High dimensional spaces

q

dN

dF

Figure 3: In high dimensional spaces ratio of the nearest and farthest data points

(dF/dN) is close to one. The example on the right (high dimensional case) represents

the distances only from query point q to data points (black circles).

contrast = dF/dN (1)

Beyer & al. proved that this loss of contrast caused by increase in dimensionality

happens in many different situations, most notably for cases when the data points are

independent and identically distributed and the query point is chosen independently of

the data points. One example of such a case is when the data and query points are

uniformly distributed random points. In this case, with one dimension the distance to

farthest point was an order of 107 times the distance to nearest point whereas with 20

dimensional data this figure was 4.

Beyer & al. also noted that there are many situations where increase in dimensionality

does not cause a loss of contrast:

• Exact match and approximate match queries. If the query point matches almost

exactly to one of the data points (dN ≈ 0), then contrast would be very large.

• Data with clusters. If the data contains clusters where groups of points are within

some small δ from the cluster centroid and the query point falls within a cluster

(dN ≈ δ), this causes a high contrast. However, if the points inside the cluster

are uniformly distributed, then they are likely to be almost equidistant from the

query point and it does not matter which of those points is returned as the result.

8

• Underlying inherent dimensionality of the data is low. For example, when all

data points are on the same line, the inherent dimensionality of the data is one

regardless of the dimensionality of the space where those points reside.

Also selecting a suitable distance function is critical in providing meaningful nearest

neighbor search results. Aggerwal & al. [16] investigated the effect of varying the

value p for Minkowski distance metric Lp for high dimensional data. The conclusion

was that fractional values (p < 1) generally provide better contrast than integral values

(p ≥ 1). They also showed with many real data sets that classification accuracy is best

with small values of p such as 0.1 or 0.5.

There is one major difference between small and large p Minkowski distances that

might explain the findings of Aggerwal & al. When p goes towards zero, the distance

measure becomes less sensitive to large differences in individual dimensions. Consider

for example a case with three 6-D vectors q = (1, 1, 1, 1, 1, 1), x = (1, 1, 1, 1, 1, 5) and

y = (1, 2, 3, 2, 3, 2). Notice that q is exactly the same as x except for the last dimension.

According to L2 -metric y would be closest to q, whereas with L0.5 -metric x would be

closest to q.

Lp(x, y) =
(

∑n
i=1 |xi − yi|

p
)1/p

L2(q, y) = 3.32 L2(q, x) = 4

L0.5(q, y) = 33.97 L0.5(q, x) = 4

9

4 Solving methods

Many solving methods exists for kNN graph construction such as Divide and Conquer

[28], Recursive Lanczos Bisection [11] and Locality Sensitive Hashing (LSH) [8]. In

this section we focus on the following three approaches:

1. k-d trees [10]

2. Space filling curves [7]

3. Neighborhood propagation [12]

4.1 k-d trees

A k-d tree (k-dimensional tree) is a tree shaped search index formed by recursive sub-

division of the data set [14]. It was first introduced for nearest neighbor searching in

[14], but the same search principle have been adapted also to other problems such as k

nearest neighbor searches [10].

According to Connor & al. [7] k-d tree is one of the best methods to construct kNN

graph for low dimensional data sets. Especially the k-d tree implementation in ANN

library1 has been widely used for low dimensional data sets.

A k-d tree is formed by recursively dividing the data set into two halves. First the

median of the points is calculated according to the first dimension and then the points

are divided into two subsets according to the median: smaller and larger. These parts

become the child nodes. The process is repeated recursively for each child, and in

each recursive step alternating the dimension used to calculate the median value. The

process is repeated until only one point is left at each child node. These are called

terminal nodes.

1Mount D. M.: ANN: A library for approximate nearest neighbor searching.

www.cs.umd.edu/ mount/ANN/

10

Step 1

ROOT

Step 2

ROOT

Step 3

ROOT

Step 4

ROOT

Figure 4: Four recursive steps to construct a k-d tree for a 2 dimensional dataset with

14 points (black circles).

The search for k nearest neighbors starts from the root node of the tree. In each iter-

ation, the child node that is on the same side of the dividing line as the query point

is chosen. This is continued downwards the tree until terminal node is reached. For

every investigated node the search calculates the exact distance and keeps record of the

k nearest points found so far. The minimum ball centered at q and containing all of the

current k nearest neighbors is referred to as kNN ball and it contains also the exact k

nearest neighbors.

After reaching terminal node, the search returns upwards towards root of the tree. In

each iteration, we check if the current kNN ball overlaps with the geometric boundaries

of the child nodes (ball-overlap-bounds). If it does, the search descends to those child

nodes (if not visited). Otherwise it returns upwards. After the ball-overlap-bounds

check has been performed for all child nodes, the search checks if the current node

contains the kNN ball within its geometric boundaries (ball-within-bounds). If it does,

11

the search ends and returns current k nearest neighbors as the exact results.

Step 1

ROOT

1

Step 2

ROOT

2

1

Step 3

ROOT

1

2

Step 4

ROOT

1

2

Step 5

ROOT

1

2

Step 6

ROOT

1

2

Step 7

ROOT

2

Figure 5: Finding exact k = 2 nearest neighbors for query point q (red rectangle)

using k-d tree. The grey circle represents the current node. Numbers 1 and 2 represent

current 1st and 2nd nearest neighbor candidates. The arrow is present in situations

when a distance calculation is performed. Search terminates at step 7 when all children

of the node have been investigated and the current kNN ball is within the geometric

boundaries of current node.

Constructing a k-d tree takes O(N · logN) time, and for low dimensional data, search

takes O(logN) time [10]. However, for higher dimensional data they do not work as

well. Sproull showed empirically that the running time increases exponentially with

dimension [33]. Experiments by Arya & al. [34] showed that it is possible to keep the

search time logarithmic, but this requires that N should be exponential with dimension.

12

To understand why k-d trees generally fail for higher number of dimensions, consider

a data set of one million (1,000,000) points. Dividing it recursively into two halves

according to each dimension, size of the child nodes is halved in each step when the

depth of the tree increases. The terminal nodes are reached in about log2(1000000) ≈

20 iterations.

If there are more than 20 dimensions, only the first 20 dimensions would effect the

structure of the k-d tree but all dimensions effect the actual distance calculations. In

general, the proportion of dimensions, and thus the proportion of data, that effect the

structure of the tree is

Edata(N,D) =

log
2
(N)

D
log2(N) ≤ D

1 log2(N) > D
(2)

With N = 1000000 and D = 1000 this proportion would be 2%. Intuitively, if the

tree represents only a small fraction of the data, then it is unlikely to be effective data

structure for nearest neighbor search. It can be seen from Equation 2 that the efficiency

of k-d trees depends both on the number of points and the number of dimensions.

More specifically, N should be O(2D) to keep Edata(N,D) constant. To the best of

our knowledge, no formal proof for this have been given, but it was empirically shown

in [34] that k-d trees perform better than brute force search only when N is larger than

2D. So, k-d trees can be effective for any dimensionality if the number of data points

is large enough.

Although single k-d trees usually perform badly for high dimensional data, it is pos-

sible to extend their use to higher dimensions by using alternative search methods on

multiple k-d trees to calculate approximate results [35, 36]. For example, Silpa & al.

[35] use priority search on multiple randomly rotated k-d trees to find nearest neighbor

on 128-dimensional SIFT image feature data set.

13

4.2 Space filling curves

A Space filling curve is a way of mapping the discrete multidimensional space into the

one dimensional space [37]. It imposes an linear order for points in multidimensional

space. This order usually preserves the proximity of points so that points that are near

to each other in the multidimensional space can be found by searching locally along

the curve.

Space filling curves have been used for many types of problems that include the no-

tion of distance between points. Such problems are range search [38, 39], searching

for nearest neighbor [40, 41], k nearest neighbor [41, 42, 43, 24] and constructing the

kNN graph [7]. Space filling curves have also been used in image compression [44],

bandwidth reduction [45], representation of quadtrees [46] and as indexing method for

faster disk reads [47].

Z-order curve Hilbert curve

Figure 6: Hilbert curve and the z-order curve are two most commonly used space filling

curves in computer science.

Properties that space filling curves may have

• Proximity preserving: Points which are close to each other in multidimensional

space are also close to each other on the curve.

• Self similar: The same pattern is repeated on different scales. For example, in

14

Figure 6a the same mirror Z -shape is repeated in three different scales.

• Non-self-crossing: Curve does do not cross itself.

• Bijective: Every point in the discrete multidimensional space is mapped to one

distinct value on the curve which can be converted back to the multidimensional

value.

Proximity preserving qualities

The most important feature that space filling curves may have is their proximity pre-

serving quality. This means that points that are close to each other in some multidi-

mensional space are also likely to be close to each other on the curve. This quality has

also been called clustering property [48] and distance preserving quality [40]. To the

best of our knowledge, no formal definition for this quality has been given.

We give the following definition for the proximity preserving quality of one dimen-

sional mappings. It is inspired by the definition given for locality sensitive hash func-

tions in [32]. Our definition is not limited to space filling curves but can be applied to

other one dimensional mappings. Let Pr denote probability, d distance function in the

multidimensional space and s a mapping of point p to the curve. Then one dimensional

mapping s is proximity preserving for a data set P if for any q, p1, p2 ∈ P

|s(q)− s(p1)| < |s(q)− s(p2)|

⇒ Pr(d(q, p1) < d(q, p2)) > Pr(d(q, p1) > d(q, p2))
(3)

In other words, if q is closer to p1 than p2 on the curve s, it implies that q is more likely

to be closer to p1 in the multidimensional space. The higher the probability that q is

closer to p1 in the multidimensional space, the more proximity preserving s is.

The amount of the proximity preserving quality (PPQ) could be defined as the

expected difference between these probabilities:

PPQ = E[Pr(d(q, p1) < d(q, p2))− Pr(d(q, p1) > d(q, p2))] (4)

Equations 3 and 4 are theoretical and not intended as practical ways to determine if a

one dimensional mapping is proximity preserving. Calculating an absolute PPQ value

15

would require considering all possible 3-tuples (q,p1,p2). However, random sampling

might provide sufficient approximation of PPQ.

Z-order curve

The z-order curve (Figure 6a) is a function which maps multidimensional points to one

dimension by interlacing the bits of the binary representation of the vector components.

This one dimensional value is referred to as z-value. When multidimensional points are

ordered by their z-values this order is called z-order and it is demonstrated in Figure 8.

The z-ordering has been independently discovered by several authors. According to

Faloutsos and Roseman [40] and also Mokbel and Aref [49] the equivalent of the z-

order curve was first introduced by Peano [50] in 1890. To the best of our knowledge,

the first use of z-values in computer science was in 1966 by Morton [51] who used

them for file sequencing of geographical data. Tropf and Herzog [38] used it for range

searches, calling it bitwise interlacing. The term z-order was first introduced by Oren-

stein [39] who used the curve for range searches. Essentially the same concept has

been also referred to as quad code [52].

The calculation of a z-value is shown in Figure 7. The vector components are first

converted to binary representation. Then the bits of the binary representation are inter-

leaved. Finally, the resulting binary string is interpreted as an integer number which

we refer to as z-value. For example, the two dimensional vector (3, 5) can be con-

verted to either z-value 27 or 39 depending on the permutation of dimensions in the bit

interleaving.

interleaved bits ↓

(3, 5) = (0112, 1012)→ 01 10 112 = 27

→ 10 01 112 = 39

↑ 2D vector z-value ↑

Figure 7: z-value calculation for a 2-dimensional vector

16

Figure 8: Two dimensional set of points ordered by their z-values.

Comparison of different curves

In the Hilbert curve (Figure 6b), consecutively ordered points are always adjacent in

space [53]. In comparison, in the Z-order curve (Figure 6a) there exists "jumps" where

the real distance between consecutively ordered points can be high. For example, in

two dimensional case the worst case real distance between two consecutive points can

be almost the width of the mapped area ((4, 1) → 01112 vs (0, 3) → 10002). These

jumps can have significant effect on quality. However, this can be compensated by

using multiple z-order curves.

Searching for k nearest neighbors using z-order

Several methods use space filling curves to find results for the k nearest neighbor prob-

lem [41, 42, 43, 24] and nearest neighbor search [40, 41]. The general principle used

in these methods is described in Figures 9-12 and in Algorithm 1.

First in a preprocessing step a search index is created. This is done by generating

z-values for all data points and sorting the points by their z-values. To improve accu-

racy of searches, multiple different z-orders can be used by first randomly shifting or

17

rotating the point set. Multiple orderings are useful because one linear ordering can

preserve proximity for some points but not for all points.

For a given query point q, the k nearest neighbor search is executed starting from the

z-value of the query point q. The position of q on the curve can be found in O(log(N))

time using binary search. For each linear ordering (Figures 9 and 10), the search finds

on both directions α · k points that are nearest to the query point q along the z-order

curve. The results from these multiple searches are combined (Figures 11) to a set S,

and the actual distance is calculated for all points in S. The k points that are closest to

the query point q are selected from S.

This search takes O(k · α ·m) distance calculations and gives approximate k nearest

neighbors. The quality of the approximation can be increased by increasing the variable

α or by increasing the number of different linear orderings m.

The z-order curve has also been used to find exact nearest neighbors [24, 7]. This

can be done using a range search method very similar to that introduced by Tropf and

Herzog [38]. The range search takes as input the query point q and range R which is

the radius of the kNN ball of the approximate results (Figure 11).

The search (Figure 12) finds all points within a box with lower left and top right corners

L = q − (R, ..., R) and T = q + (R, ..., R). The z-values of all points inside the box

(which cointains also the exact results) are guaranteed to be between the z-values of

the corners of this box. A proof for this is given in [24]. Therefore, the exact result can

be found by a search which starts from the query point and continues forward along

the curve until it finds a point pt for which z_value(pt) ≥ z_value(T). The same is

repeated to the other direction.

18

q q R

Figure 9: In this example the goal is to find k = 3 nearest points for the query point

q (red rectangle) by searching for 2 nearest points (α = 2/3) on both directions along

the curve. The orange circles on the left represent candidate points. The red circles on

the right represent the approximate results.

q q R

Figure 10: The process in Figure 9 is repeated here for the same data set after it has

been shifted by adding random vector (−2,−3) to the query point and to all data points.

19

q q

R

Figure 11: The results from Figures 9,10 are combined to provide better approximate

result.

q q

R

L

R

L

Figure 12: The exact results can be found by doing a range search for q with range (R)

set to radius of the kNN ball of the approximate results (Figure 11). The coordinates

of the lower left and top right corners of the bounding box are L = q − (R,R) and

T = q+(R,R) respectively. The exact results are guaranteed to be found by examining

all points between L and T along the curve.

20

Algorithm 1 Approximate kNN with z-order curve

1: procedure CREATEZINDEX(P ,m)

2: Calculate m different random vectors H = {h1, h2, ..., hm}

3: for all hi ∈ H do

4: for all pj ∈ P do

5: z ← Z_VALUE(pj + hi) ⊲ See Figure 7

6: Z[i][j]← (j, z)

7: end for

8: Z[i]← Sort so that ∀pj ∈ P, Z[i][j][1] ≤ Z[i][j + 1][1] ⊲ Sort based on

z-values

9: end for

10: end procedure

11:

12: procedure SEARCHZORDERKNN(q,k,α)

13: S ← ∅

14: for all hi ∈ H do

15: qz ← z_value(q + hi)

16: Using binary search, find l so that Z[i][l][1] ≤ qz ≤ Z[i][l + 1][1]

17: for all (j, z) ∈ {Z[i][l − k · α], . . . , Z[i][l + k · α]} do

18: S ← S ∪ {pj}

19: end for

20: end for

21: S ← Sort so that ∀pj ∈ S, d(q, S[j]) ≤ d(q, S[j + 1])

22: return {S[0], . . . , S[k − 1]}

23: end procedure

Faloutsos [40] used a method very similar to Algorithm 1 already in 1989 for the

nearest neighbor problem using just one curve. They also compared Hilbert and Z-

order -curves and found Hilbert to provide more accurate results.

Megiddo and Shaft [41] used Gray codes to provide distance preserving one dimen-

sional mapping for kNN search in relational databases. They used multiple different

mappings where each mapping was made different by randomly permuting the dimen-

sions and shifting points by random vector. Instead of choosing fixed number of closest

points along the curve, they selected points within a threshold δ. The δ variable was

21

then gradually increased until the search returned enough results. Their method was

tested with up to 324 dimensional data set.

The kNN graph can be constructed by executing SEARCHZORDERKNN for all points.

However, this way all distance calculations would be executed twice. For example,

if points p1 and p2 are consequtive points in the z-ordering, d(p1, p2) would be cal-

culated when running SEARCHZORDERKNN(p1, k, α), and d(p2, p1) when running

SEARCHZORDERKNN(p2, k, α). To avoid this problem, Connor & al. [7] used a

sliding window technique which selects k · α nearest points on the curve in only one

direction.

22

4.3 Neighborhood propagation

Neighborhood propagation is a method to construct (by starting from random graph)

or improve an approximate kNN graph by comparing each point of a graph with its

neighbors’ neighbors. It is based on the observation that if a point y is a neighbor of x

and point z is neighbor of y, then z is also likely to be a neighbor of x.

Neighborhood propagation has been used in many different methods to construct the

kNN graph [11, 12, 13, 8]. The Nearest Neighbor Descent (NN-Descent) [12] algo-

rithm constructs the kNN graph solely by using neighborhood propagation. Other

methods use neighborhood propagation only as a post processing step to improve the

quality of graph after main algorithm. Chen & al. [11] uses neighborhood propagation

to refine the graph after conquer step in their divide-and-conquer method. Wang & al.

[13] uses multiple random divide-and-conquer. Zhang & al. [8] uses locality sensitive

hashing (LSH).

The basic principle is shown in Algorithm 2, and a visual example is presented in Fig-

ure 13. The algorithm takes as parameter a set of points P and an initial approximation

of k nearest neighbors for each point. The initial approximation can consist of just ran-

dom points chosen from P or it can be output from some other non-exact kNN graph

algorithm.

The algorithm iteratively improves the quality of the graph. On each iteration, the

neighbors of neighbors are selected for each point p ∈ P . If any of the neighbors of

neighbors of p is closer than the current neighbors for the point, its neighbor list is

updated accordingly. The algorithm is iterated until a specified stop condition is met.

23

Algorithm 2 PropagateNeighborhood

procedure PROPAGATENEIGHBORHOOD(P , kNN)→ kNN

repeat

for all p ∈ P do

for all Neighbor ∈ kNN(p) do

for all x ∈ kNN(Neighbor) do

UPDATENEIGHBORLIST(p, x, kNN)

UPDATENEIGHBORLIST(x, p, kNN)

end for

end for

end for

until stop condition met

return kNN

end procedure

procedure UPDATENEIGHBORLIST(p, x, kNN)

if d(p, x) < max{d(p, y)|y ∈ kNN(p)} then

Insert x into kNN(p)

Remove the item with largest distance from kNN(p)

end if

end procedure

24

Random 2NN graph 1 iteration, step 1

x

x

iteration 1, step 2

NEW

NEW

iteration 1, step 3

x

iteration 1, step 4

NEW

iteration 1, step 5

x

x x

x

iteration 2, step 1

NEW

NEW

NEW

NEW

iteration 2, step 2

x

Exact graph

NEW

Figure 13: The nearest neighbor propagation creates an exact 2NN graph starting from

a random graph. Black circle represents current node. Gray nodes represents cur-

rent node’s neighborhood which consists of its neighbors and neighbors of neighbors.

White circle represents points outside current nodes neighborhood. On each step, the

exact distance is calculated between current node (black cicle) and each of the gray

circles, and the edges of those nodes are updated if the exact distance is smaller than

largest known distance for that node. Edges that are removed in current step are marked

with X. New edges created in last step are marked with NEW.

Since each point has k2 neighbors of neighbors, and distance is calculated to each of

them, the propagation requires O(k2N) distance calculations per iteration. Assuming

that the time complexity of a distance calculation is linear with respect to the number

of dimensions D, the total time complexity of the method is O(k2NID) where I is the

number of iterations.

Each of the surveyed methods differ from the previously described basic neighborhood

25

propagation method. Algorithms by Chen & al. [11] and Zhang & al. [8] use the most

simple variant with just one iteration of neighborhood propagation where kNN(x) is

updated by selecting k smallest items from kNN(x) ∪ {∪y∈kNN(x)kNN(y)}.

NN-Descent

NN-Descent algorithm [12] uses neighborhood propagation just for random points as

the initial graph. The algorithm stops when the number of changed edges with respect

to the number of all edges in the graph drops below user provided threshold parameter

δ. The algorithm can also be limited to a specific number of iterations.

In addition to using the neighbors of a point (kNN(p)), the NN-Descent algorithm also

propagates to the reverse direction by using kNNr(p) = {y ∈ P |p ∈ kNN(y)}. When

neighbors of neighbors are selected, NN-Descent uses the union of kNN and kNNr.

To allow control on the quality of resulting graph, the NN-Descent algorithm uses a

sampling factor λ ∈ [0, 1] so that only a fraction of λ randomly chosen neighbors

are considered. In effect, this reduces the time complexity of the algorithm from

O(k2NID) to O((λk)2NID). Lowering the λ -value may, in theory, also increase

the number of iterations needed for convergence, but in practice it reduces the running

time at the cost of quality.

Wang & al.’s method

The method by Wang & al. [13] differs from other methods in that it takes advantage

of the fact that a neighbor of a close neighbor is more likely to be a neighbor than a

neighbor of a more distant neighbor. This is done by constructing a priority queue for

a point p so that the nearest neighbor is at the top. Then a point is iteratively popped

from the queue and all its unvisited neighbors are pushed into the queue.

Wang & al.’s method has a different stop condition. Because it uses priority queue, the

algorithm will stop when the queue becomes empty, and a parameter T is used to limit

the propagation to a maximum number of distance calculations.

In comparison to Algorithm 2, it will omit some distance calculations to neighbors

of more distant neighbors which are less likely to be true neighbors. Therefore, it is

expected to find true neighbors of p faster. However, no empirical comparison between

this and other neighborhood propagation methods have been made, so it is unclear if it

produces actual speed or quality benefits.

26

Dimensionality

To estimate the effect of dimensionality to the performance of the neighborhood propa-

gation method we calculated the probability of a neighbor of a neighbor being a neigh-

bor using a random uniformly distributed artificial data set of size N = 10000 for each

dimension. Dimensionality was varied from 1 to 150, and neighborhood size was set

to k = 10. The experiment was repeated with four different random data sets and the

average is displayed in Figure 14.

The probabilities range from p = 66% (D = 1) to p = 1.4% (D = 150). As

dimensionality increases the empirically measured probability seems to approach

k/N = 1%, which is also the probability that a randomly chosen point p is among

the k nearest neighbors of another point q. In other words, the probability of a neigh-

bor of a neighbor being a neighbor approaches the probability of a randomly chosen

point being a neighbor when dimensionality increases.

This suggests that with uniformly distributed data, the efficiency of the neighborhood

propagation method decreases towards the efficiency of the O(n2) brute force algo-

rithm when dimensionality increases towards infinity. However, we did not test this

with non-uniformly distributed data. Real data sets are usually not uniformly dis-

tributed, so further tests would be needed to before making conclusions about real

data.

27

0 50 100 150
10

−2

10
−1

10
0

dimensionality

P
(N

 o
f N

 =
 N

)

Figure 14: Probability of a neighbor of a neighbor being a neighbor as a function of

dimensionality.

28

5 Z-order neighborhood propagation

In this chapter we present our method for constructing the k-nearest neighbor graph.

Our method is targeted for high dimensional data sets and the L2 distance metric. It

has two variants. We call the first variant Z-order nearest neighbors (ZNN). It uses a

space filling curve called the z-order curve to construct the graph. We call the second

variant Z-order neighborhood propagation (ZNP). It is a combination of the Z-order

nearest neighbors -method and neighborhood propagation.

Algorithm 3 ZNP

Input: Data set of points P

Number of nearest neighbors k

Number of different 1-D mappings Nc

Dimensionality of the z-order curve Dz

Width of sliding window W .

Output: kNN graph

1: procedure ZNP(P , k, Nc, Dz,W)

2: kNN← ZNN(P , k, Nc, Dz,W)

3: kNN← PROPAGATENEIGHBORHOOD(P , kNN)

4: end procedure

The ZNP algorithm first uses the Z-order nearest neighbors search to calculate a graph

with a modest accuracy. Neighborhood propagation is then used to improve the graph.

For this part we use the NN-Descent algorithm [12]. The NN-Descent algorithm con-

tinues iterating until the graph reaches a stable state where new iterations do not bring

any improvements on the approximation quality.

The motivation for this approach is that, the Z-order nearest neighbors search gives

rough approximation (of around 50% recall rate) very fast. However, when continuing

the search further, the quality improves slowly. On the other hand, the NN-Descent

algorithm, because it starts from random kNN graph, gives usually very bad results on

the first 2-3 iterations. But after that the quality improves very quickly. Therefore, it

makes sense to combine these two approaches so that we first execute search along the

z-order -curve and then continue with the NN-Descent algorithm.

29

5.1 Z-order search

Figures 15 and 16 give a visual example of a 2NN-graph construction for a two di-

mensional data set P with Nc = 7, N = 60 and W = 3. On the left side is a one

dimensional mapping calculated for the rotated set of points. On the right side there

is the 3NN graph created (or improved) using the one dimensional mapping. White

circles represent points which neighbors are correct, and black rectangles represent

points for which the search did not find all k nearest neighbors correctly. In this ex-

ample, there was no further improvement on iteration 6, and the exact 2NN-graph was

calculated in the seventh iteration. However, there is no guarantee that the algorithm

returns exact results on any amount of iterations.

Algorithm 4 ZNN

Input:

Data set of points P

Number of nearest neighbors k

Number of different 1-D mappings Nc

Dimensionality of the z-order curve Dz

Width of sliding window W .

Output: kNN graph

.

1: procedure ZNN(P , k, Nc, Dz,W)

2: for all i ∈ {1, . . . , Nc} do

3: S ← PROJECTTO1D(P,Dz);

4: P ← Sort so that ∀pj ∈ P, S[j] ≤ S[j + 1] ⊲ Sort based on z-values

5: for all pj ∈ P do ⊲ Scan points using a sliding window

6: for all x ∈ {pj−W , . . . , pj+W} \ pj do

7: UpdateNeighborList(pj, x, kNN)

8: end for

9: end for

10: end for

11: end procedure

12:

30

Algorithm 5 ProjectTo1D

Input:

Data set of points P

Dimensionality of the z-order curve Dz

Output:

One dimensional projection S

procedure PROJECTTO1D(P,Dz)

h← Random vector of size D

P ← Scale P to positive integer values

DP ← (0, ..., D − 1) ⊲ Create random permutation of dimensions

DP ← SHUFFLE(DP)

for i← 0, N − 1 do

p← Zero vector of size Dz

for j ← 0, D − 1 do ⊲ Reduce dimensionality from D to Dz

p[j mod Dz] += P [i][DP [j]] + h[j]

end for

S[i]← z_value(p)

end for

return S

end procedure

31

Iteration 1: Exact results for 45% of points.

Iteration 2: Exact results for 76% of points.

Iteration 3: Exact results for 93% of points.

Figure 15: 2NN-graph construction using ZNN-algorithm with parameters W = 2 and

Nc = 7 (part 1/2). On the left side is a one dimensional mapping calculated for the

rotated set of points. On the right side is the 2NN graph created or improved using the

one dimensional mapping. White circles represent points which neighbors are correct

and black rectangles depict points with some errors in the edges.

32

Iteration 4: Exact results for 95% of points.

Iteration 5: Exact results for 97% of points.

Iteration 7: Exact results for 100% of points.

Figure 16: 2NN-graph construction using ZNN-algorithm with parameters W = 2 and

Nc = 7 (part 2/2).

The z-order -curve was chosen as basis of our search method over other alternatives

such as Hilbert curve because of four reasons: (1) It provides good proximity pre-

serving qualities. (2) It generalizes trivially for higher dimensions. (3) It is simple to

33

implement (4) Generating z-values can be done fast in O(D) time.

Most methods use either the z-order or Hilbert curves because they have the best prox-

imity preserving qualities [24, 43]. Therefore, those were the main candidates for our

method. Some sources have claimed the Hilbert curve to have better proximity pre-

serving quality than the z-order -curve [40, 53]. However, it is unclear if these re-

sults generalize to higher dimensions. Also, to the best of our knowledge, no efficient

method exists for mapping high dimensional points to Hilbert curve. For example, the

state diagram method described by Lawder [54] requires at least O(D ·2D−1) memory.

By contrast, projecting points on z-order -curve can be done simply by interleaving

the bits of vector components, which takes O(D) time and memory. Because we aim

to provide solutions especially to high dimensional data sets, we therefore chose the

z-order curve in our study.

Many different methods exists for calculating z-values for multidimensional points.

We first used a simple method based on for loops where interleaving is done bit-by-bit

for each dimension. However, this is very slow and became one of the bottlenecks of

our algorithm. Different implementations for z-value generation have been compared

in [55] and by J. Baert1. We use the lookup table -method implementation presented

by J. Baert1 for 3-dimensional points as a model for our implementation of the z-value

generation. We made a more general implementation (see Appendix I) of the lookup

table -method so that it works with arbitrary number of dimensions and varying bit-

lengths. As a result, the speed of our algorithm improved considerably and z-value

calculations were no longer a bottleneck.

Other methods that have used space filling curves for kNN graph construction were

limited to a low number of dimensions [7]. Applying space filling curves for higher

number of dimensions can be problematic. One of the problems in using the z-order

curve is that the space and time constraints grow linearly with D. This is because

the z-values are calculated by interleaving the bits of the binary representations of all

vector dimensions. For example, a data set with dimensionality D = 1000, bit-length

b = 32 bits per dimension and size of N = 1000000 points, the z-values would need

to be represented by D · b = 32000 bit integers. Since modern processors can handle

up to 64 bit integers, additional multiple precision libraries are needed to handle such

1Baert, J., "Morton encoding/decoding through bit interleaving", October 2013,

http://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-

implementations/

34

large numbers.

Additionally, memory needed for generating and sorting D-dimensional z-values

would be N · D · b/8 = 4 GB. Storing the z-values for all points is not necessary

for sorting, but calculating them every time a comparison is made by the sorting algo-

rithm would increase the number of z-value calculations from N to roughly N · log(N)

(number of comparisons in sorting). Consequently, this would increase the running

time of the algorithm, especially for high dimensional data where z-value calculations

are more time-consuming.

5.2 Dimensionality reduction

We introduce next a simple but effective dimensionality reduction technique to avoid

the aforementioned problems with high dimensionality. It is inspired by the mean-

distance ordered partial search (MPS) method introduced in [56], which was used to

construct the kNN-graph in [2].

We reduce dimensionality of data points from D to Dz before projecting to z-order

curve. We do this for each curve by dividing the dimensions into Dz random subsets

with roughly equal sizes and then dividing each vector into subvectors corresponding

to the subsets of the dimensions. Each subvector is then mapped to one dimension by

projecting them to the diagonal axis. The one dimensional mappings of the subvectors

are then combined to one Dz dimensional vector for which a z-value is calculated in

the normal way of bit interleaving.

For example, given a six dimensional (D = 6) vector p = (5, 4, 7, 0, 3, 2), Dz = 3

and permutation of dimensions DP = (4, 5, 6, 1, 2, 3) coordinates of point p would be

first reordered to p′ = (0, 3, 2, 5, 4, 7) and then mapped to a three dimensional vector

(0 + 3, 2 + 5, 4 + 7) = (3, 7, 11) = (00112, 01112, 10112). After that, the bits of this

vector (00112, 01112, 10112) are interleaved to produce a z-value of 0010101111112

= 703.

An additional benefit of using this kind of dimensionality reduction is that it can be

used to avoid resorting to multiple precision arithmetic. Because single precision arith-

metic is faster than multiple precision arithmetic, the use of dimensionality reduction

can result in faster running time. Even when multiple precision arithmetic is used,

35

the dimensionality reduction can be used to keep the bit-length of the data type on

reasonable levels.

For multiple precision arithmetic we use Boost.Multiprecision C++ library. We use

1024-bit unsigned int data type (uint1024_t) to represent the z-values. This allows to

use 32-bit integers to represent vector components and to calculate z-values for up to

32 dimensional points without using dimensionality reduction (32× 32 = 1024).

The ZNN algorithm uses three kinds of randomization. First, random shifting of points

is performed by calculating a random vector for each curve and then adding this vector

to each point. Secondly, in dimensionality reduction the dividing of vectors to subvec-

tors is randomized. Thirdly, the order of dimensions in bit interleaving is randomized.

5.3 Configuration variables

The ZNN -algorithm has three different configuration variables:

Nc Number of different 1d mappings.

W Width of sliding window.

Dz Dimensionality of the z-order curve.

Suitable values for these variables depend on many factors such as targeted quality and

the characteristics of the data set. Choosing the values that give optimal performance

may not be possible without first running the algorithm. To make the task of choosing

the values easier, we propose the following simple rules.

Given a quality control parameter γ ∈]0, 1[, k, dimensionality of data set D, maximum

dimensionality allowed by implementation Dmax and number of points N , the values

for Nc, W and Dz can be chosen as follows:

Nc = ⌊log1/γ(D) + 1⌋

W = ⌊k/2 + log1/γ(N)⌋

Dz = min{D,Dmax}

As will be shown in Section 6.5, the recall rate of our method increases logarithmically

with respect to the running time of the algorithm. The quality control parameter γ was

created to provide a parameter that would increase the running time exponentially so

that the resulting recall rate would be approximately the same as γ.

36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

gamma

N
c

W

Figure 17: The effect of variable γ to Nc and W . N = 28775, k = 20, D = 544.

The rules were chosen based on random search experiments performed to find optimal

configuration parameters. For the configuration variable Dz, the optimal value was the

maximum value allowed by our implementation. The implementation was limited by

our choice of using 1024 bit integers for z-values and 32 bit unsigned int to represent

vector components. Therefore Dmax was 1024/32 = 32. With higher Dmax, it might

not be an optimal value for Dz because time and space constraints grow linearly with

Dz.

Another goal of the rules is to provide control for the ZNP method on how much the

ZNN algorithm is be applied and when to switch to use the neighborhood propagation

method. When γ is set to 0.5 the rules provide roughly those values that gave the best

performance for the ZNP algorithm in our optimal configuration parameter random

search experiment.

37

Table 1: Example values for used data sets.

Dataset N D γ Nc W Dz

Corel 662317 14 0.5 4 29 14

Shape 28775 544 0.5 10 24 32

Audio 54387 192 0.5 8 25 32

Corel 662317 14 0.9 26 137 14

Shape 28775 544 0.9 60 103 32

Audio 54387 192 0.9 50 113 32

38

6 Experiments

This section presents the methodology and results for our experiments. We evaluate the

performance of our ZNN and ZNP methods in comparison to two existing algorithms

on Euclidean distance metric and three data sets with with dimensionality ranging from

14 to 544. We use recall rate to measure the quality of the kNN graph and program

execution time to measure speed. Additionally, in Section 6.6, we study the effect of

our dimensionality reduction method on the quality of results.

6.1 Evaluated algorithms

We compare our ZNN and ZNP algorithms against two existing algorithms: NN-

Descent [12] and Recursive Lanczos Bisection [11]. We use the following abbrevi-

ations for the chosen algorithms:

ZNN Z-order -curve nearest neighbors (proposed)

ZNP ZNN + neighborhood propagation (proposed)

NNDES Nearest Neighbor Descent (NN-Descent) [12]

RLBg Recursive Lanczos Bisection, variant glue [11]

RLBo Recursive Lanczos Bisection, variant overlap [11]

We used a NNDES -implementation made available by authors2. For the neighborhood

propagation part of our ZNP algorithm we used the implementation of NNDES. The

implementation of Recursive Lanczos Bisection algorithm was also made available by

the authors3. It has two variants: glue for higher speed but lower quality and overlap

for higher guality and lower speed.

6.2 Measurements

We measure recall rate and program execution time to evaluate the performance of the

algorithms. Recall rate, or accuracy, measures the quality of the approximate kNN-

2https://code.google.com/p/nndes/
3http://www.mcs.anl.gov/ jiechen/software/knn.tar.gz

39

graph G′ in relation to accurate graph G by dividing the number of common edges

(neighbors) with the number of all edges [12, 11]. It is defined as:

recall(G′, G) =
|E(G) ∩ E(G′)|

|E(G)|
(5)

The recall rate ranges from 0 to 1 where value 1 means that the results are equal and

0 that the results are completely different. Instead of recall rate, one could also report

error rate = 1− recall.

Program execution time is measured as single thread execution time. The time needed

to load the data set and save the results to file is excluded because it mostly depends on

the system I/O performance and does not reflect the efficiency of the algorithm.

6.3 Data sets

We use three different data sets: corel, shape and audio. These data sets are used in

[12] and can be found on web 4.

Table 2: Summary of data sets.

Data set N dimensionality

Corel 662,317 14

Shape 28,775 544

Audio 54,387 192

The corel dat set consists of features from 68,040 different images, each divided into

10 segments, thus, providing a total of 680,400 data objects. Each segment consists of

14 different features. The Corel data set has been used in [43, 12].

The shape data set contains 28,775 3-D shape models collected from various sources.

Features were extracted from each 3-D model.

The audio data set contains features from the DARPA TIMIT collection. It was created

by breaking recordings of 6,300 english sentences into smaller segments and extracting

features from them. Each segment is treated as an individual object.

4https://code.google.com/p/nndes/downloads/list

40

6.4 Empirical process

We run the algorithms for varying number of k. Recursive Lanczos Bisection (RLB)

and Z-order nearest neighbors (ZNP) was run for values k = 1, 5, 10 and 20. NN-

Descent and ZNP uses neighborhood propagation which does not work for k = 1, so

they were only run for values 5, 10 and 20. Higher k-values have also been considered,

k = 50 in [13] and k = 100 in [1], but most others use k ≤ 20.

Our ZNN algorithm has the quality control parameter γ ∈]0, 1[, which is used to cal-

culate appropriate window width and number of curves. We run the experiments for

ten different γ values: (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.925).

NNDES has sampling factor λ ∈ [0, 1] and the parameter δ ∈ [0, 1]. The program stops

when the last iteration yielded less than δ amount of changes on the graph. Increasing

the δ value decreases the number of iterations. The NNDES algorithm was run for

seven different (δ, λ) values:

Table 3: NNDES parameter values selected for experiment

δ 0.82 0.684 0.547 0.411 0.274 0.137 0.001

λ 0.3 0.417 0.533 0.65 0.767 0.883 1.0

The ZNN part of our ZNP algorithm was run with a fixed quality parameter γ = 0.5.

The (δ, λ) values for the neighborhood propagation part were varied in the same way

as for the NNDES algorithm.

The RLB algorithm has quality control parameter overlap size. The RLBg and RLBo

were run for six different overlap sizes: (0.05, 0.1, 1.5, 0.2, 0.25, 0.3). Increasing the

overlap size increases both recall rate and program execution time. For the the corel

data set the program sometimes produced segfault errors with high overlap sizes and

the experiment could be run only for small values.

In our experiments, for all algorithms, both speed and quality differed between multiple

runs for the same input parameters. For NNDES, ZNN and ZNP this is clearly caused

by randomization which is an important part of the algorithms. Therefore we run all

experiments ten times for the same input parameters and report average values for the

same input.

41

Every algorithm was run for three different data sets with varying (6-10) quality pa-

rameters and for 3-4 different values of k. In addition, each algorithm was run ten

times for each distinct input parameters. These sum up to 3528 runs. The resulting

text format kNN-graph files sum up to 57 gigabytes in size and were analyzed in GNU

Octave for their correctness

All experiments were run on a computer equipped with 8-Core 4.0GHz AMD FX-

8350 CPU with 8MB of L2 cache and 8 GB of RAM. The computer was running

64-bit Ubuntu Linux 14.04. Code compilation for all tested algorithms was done using

gcc version 4.8.1 with -O3 optimization.

Remarks on algorithm implementations

Our method and the NN-Descent method have been designed for parallel processing.

The Recursive Lanczos Bisection code however, has not been parallelized. Therefore,

in order to get a fair comparison, we disabled the parallelization in those methods

where it is included and run all experiments on a single thread. Parallelization was

disabled during compilation and additionally each algorithm was restricted to a single

processing core by using taskset command of the util-linux package.

NN-Descent included an implementation of L2 distance function that was optimized

using SSE2 vector extension, which allows to run four floating point operations in

parallel. Therefore code run using SSE2 vectorization is up to 4 times faster. Distance

calculations are a major bottleneck in the algorithms, so this could cause a significant

bias in the results. We therefore disabled the SSE2 optimizations and used a non-

optimized L2 distance function instead.

The Recursive Lanczos Bisection -algorithm was run mainly for data sets SHAPE and

AUDIO. For the corel data set we managed to run the RLB algorithm only with small

values of k and low quality settings. With other settings the program produced a seg-

fault error or was killed by kernel because of high memory consumption (over 6 giga-

bytes of RAM). In [12] the Recursive Lanczos Bisection -algorithm was successfully

run on the corel data set. Therefore, we expect that there was some difference in the

running environments that caused this problem.

The Recursive Lanczos Bisection -implementation reads data sets stored as double

values. Our test data was stored as float values so we had to make small modifications

to the RLB code to make it able to read the test data. There is a small possibility

42

that these modifications contributed to the aforementioned segfault error although we

verified with a debugger that the segfault happened in a part of code that was not

directly related to the parts that we modified.

6.5 Recall vs. program execution time

This section presents the time and recall measurements of the selected algorithms and

data sets. First the results are presented in graphical plots in Figures 18 - 20. Re-

call rates and program execution times are then shown in Table 5 after which we will

provide detailed analysis of the results.

The results for RLB are blank in cases where the program did not give results with

any overlap values. The NNDES and ZNP algorithms could not be run for k = 1

and even for k = 5 the highest recall rate was not very good (recall ∈ [0.651, 0.896]).

The brute force time was only measured for k = 20 even when shown in graphs for

k ∈ {1, 5, 10}.

data set audio shape corel

time 417s 255s 18,889s

Table 4: Time taken for brute force results when k = 20.

43

10
0

10
1

10
2

10
3

10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

re
ca

ll
ra

te

ZNP
ZNN
NNDES
RLB

g
RLB

o

Brute force

k = 20

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

re
ca

ll
ra

te

ZNP
ZNN
NNDES
RLB

g
RLB

o

Brute force

k = 10

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

re
ca

ll
ra

te

ZNP
ZNN
NNDES
RLB

g
RLB

o

Brute force

k = 5

10
0

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

re
ca

ll
ra

te

ZNN
RLB

g
RLB

o

Brute force

k = 1

Figure 18: Data set audio

10
0

10
1

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

re
ca

ll
ra

te

ZNP
ZNN
NNDES
RLB

g
RLB

o

Brute force

k = 20

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

re
ca

ll
ra

te

ZNP
ZNN
NNDES
RLB

g
RLB

o

Brute force

k = 10

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

re
ca

ll
ra

te

ZNP
ZNN
NNDES
RLB

g
RLB

o

Brute force

k = 5

10
−1

10
0

10
1

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time

re
ca

ll
ra

te

ZNN
RLB

g
RLB

o

Brute force

k = 1

Figure 19: Data set shape

44

10
0

10
1

10
2

10
3

10
4

10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

re
ca

ll
ra

te

ZNP
ZNN
NNDES
Brute force

k = 20

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

re
ca

ll
ra

te

ZNP
ZNN
NNDES
Brute force

k = 10

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

re
ca

ll
ra

te

ZNP
ZNN
NNDES
RLB

g

Brute force

k = 5

10
0

10
1

10
2

10
3

10
4

10
5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

re
ca

ll
ra

te

ZNN
RLB

g
RLB

o

Brute force

k = 1

Figure 20: Data set corel

Table 5 show results with high recall rate. For NNDES and ZNP the results reflect

quality settings where sampling factor λ = 1.0, δ = 0.001, and for ZNN quality setting

γ = 0.9. For RLB overlap was 0.25 except for the data set corel, k = 1 for which

the program crashed with overlap higher than 0.05. For ZNN and RLB chosen quality

settings were not the highest tested because increasing the quality settings beyond those

points seems to give very little quality increase with quite a large increase in program

execution time.

From Figures 18 - 20 and Table 5 it can be seen that the ZNP algorithm is the fastest

in almost all tested cases. This is especially clear with k = 20, where almost the

same recall rate is achieved by both NNDES and ZNP but 36-46% faster with ZNP.

With k = 10 the results are not as clear. In that case ZNP is still faster, but there is

difference in recall. NNDES gives a noticeably better recall rate for data sets corel

(0.998 vs. 0.997) and shape (0.998 vs. 0.997) but worse for audio (0.991 vs. 0.992)

than ZNP.

With high recall rates the standard deviation σ was very small for all algorithms. For

recall > 0.9 the standard deviation was at most 0.0012.

45

k = 20 k = 10

Dataset Method Time recall σ(recall) Time recall σ(recall)

audio

ZNP 29s 0.992 0.00011 11s 0.951 0.00051

ZNN 100s 0.965 0.00112 96s 0.974 0.00045

NNDES 45s 0.991 0.00013 15s 0.939 0.00031

RLBg 153s 0.954 0.00025 37s 0.893 0.00065

RLBo 793s 0.990 0.00010 205 0.979 0.00028

shape

ZNP 29s 0.997 0.00009 11s 0.975 0.00047

ZNN 143s 0.994 0.00028 137s 0.996 0.00032

NNDES 54s 0.998 0.00005 17s 0.980 0.00020

RLBg 46s 0.983 0.00027 16s 0.954 0.00120

RLBo 187s 0.997 0.00016 62s 0.994 0.00022

corel

ZNP 95s 0.997 0.00006 38s 0.973 0.00050

ZNN 186s 0.993 0.00069 176s 0.996 0.00073

NNDES 176s 0.998 0.00001 69s 0.977 0.00007

RLBg - - - - - -

RLBo - - - - - -

k = 5 k = 1

Dataset Method Time recall σ(recall) Time recall σ(recall)

audio

ZNP 6s 0.788 0.00204 - - -

ZNN 94s 0.982 0.00054 92s 0.991 0.00054

NNDES 6s 0.651 0.00214 - - -

RLBg 16s 0.817 0.00143 9s 0.762 0.00247

RLBo 93s 0.969 0.00036 54s 0.967 0.00080

shape

ZNP 6s 0.896 0.00124 - - -

ZNN 133s 0.998 0.00018 126s 0.999 0.00029

NNDES 6s 0.833 0.00192 - - -

RLBg 10s 0.923 0.00086 8.07s 0.926 0.00105

RLBo 38s 0.992 0.00035 29s 0.994 0.00064

corel

ZNP 19s 0.816 0.00407 - - -

ZNN 170s 0.997 0.00042 165s 0.998 0.00012

NNDES 38s 0.743 0.00037 - - -

RLBg 287s 0.960 0.00017 139s 0.953 0.00020

RLBo - - - 34s 0.662 0.00092

Table 5: Results for high accuracy setting.

In addition to the main data sets (shape, corel and audio) we did an experiment with a

46

small data set called DIM0645, which has 1024 points with dimensionality 64. With

this set the running time of our algorithm was somewhat slower than that of the O(N2)

brute force algorithm even for a modest recall rate of 0.8. We therefore recommend

the method only for relatively large data sets consisting of at least 10,000 points. The

smallest data set where we successfully tested our algorithm was the shape dataset with

28,775 points. In that case our ZNP algorithm gave 0.997 recall rate with only 11% of

time in comparison to the brute force algorithm.

6.6 Effect of dimensionality reduction

0 5 10 15 20 25 30 35
0.1

0.15

0.2

0.25

0.3

0.35

re
c
a

ll
 r

a
te

Dz

Figure 21: The effect of dimensionality reduction (Dz) on recall rate with 544 dimen-

sional shape data set. Only one curve used (Nc = 1).

5http://cs.uef.fi/sipu/datasets/

47

0 5 10 15 20 25 30 35
0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
c
a

ll
 r

a
te

Dz

Figure 22: The effect of dimensionality reduction (Dz) on recall rate with 544 dimen-

sional shape data set. Seven curves used (Nc = 7).

Figures 21, 22 shows the effect of dimensionality reduction on the quality in the ZNN-

algorithm. Dz ranges from 2 to 32 because the z-order -curve is defined for a minimum

of two dimensions and 32 was the maximum value allowed by our implementation.

Window width of W = 100 was used in this experiment. In Figure 21, only one curve

was used and 7 curves in Figure 22. The experiment was repeated 50 times for each

Dz while other parameters remained constant.

It can be seen from the results that the recall rate decreases rapidly when Dz < 10, so

sufficiently large Dz is needed to provide good results. However, when Dz > 10, there

are only small differences in the quality of results. Additionally, when Dz grows, the

program execution time also grows. We therefore suspect that there is an optimal value

for Dz smaller than D, but more research is needed to determine this.

It can be also seen from Figures 21,22 that there is a significant amount of variation in

the quality of results between program runs. The variations originates from three kinds

of randomization in the algorithm: (1) random shifting of points, (2) random division

to subvectors in dimensionality reduction and (3) random ordering of dimensions in bit

interleaving.

48

7 Discussion

Constructing the kNN-graph has many important practical applications in a wide vari-

ety of fields. Many good solutions have been developed for this problem. Typical fast

solutions like k-d -trees work well in the simple cases where the number of dimensions

is relatively low (D < 10). For higher number of dimensions these methods begin

to fail and provide no significant improvements over the trivial brute force method.

Many kNN-graph construction methods have been developed specifically for higher

number of dimensions, but they can still be slow or inaccurate, and their results vary

unpredictably depending on the data set.

We introduced a new method called ZNP algorithm which uses space filling curves and

neighborhood propagation. The performance of this algorithm was compared against

two other leading fast kNN-graph construction methods using 3 different medium to

high dimensional data sets. The results show that with k ∈ {10, 20} our method out-

performs existing methods with all of the tested data sets while providing moderate

(27-46%) speed improvements for the same quality. With k ∈ {1, 5} our method also

performed well although no method outperformed the others.

Our method provides speed improvements in kNN graph construction for medium to

high dimensional data sets but the speed still remains too slow for several practical

applications especially for high dimensional (D > 500) data. Therefore, it remains an

open question whether an efficient solution exists for data sets where the number of

intrinsic dimensions is very high. We believe that the current method based on z-order

curve is not yet up to its full potential and further research could provide significant

further improvement.

Future research

Several kNN-graph construction methods use one dimensional proximity preserving

projection. Our method and [7] do this using space filling curves. Zhang & al. [8]

use vectors of locality sensitive hash values which were projected to random lines.

In all these methods, one projection can preserve the proximity well for some points

but not for others. Therefore, multiple different projections are often used. There are

major differences between these algorithms, but they all face a common problem: how

49

to generate a set of one dimensional projections that best preserve the proximity of

points.

In all of the surveyed algorithms some kind of randomization is used to produce differ-

ent proximity preserving projections. In our method, randomization was used because

it is an easy way to generate the variation for the z-order curve. However, it is not

an optimal way and some deterministic way of constructing the one dimensional map-

pings might be more efficient. Figure 21 shows that there is a large variance in the

quality of results depending on which random projection is used. This suggests that it

would be possible to improve the quality of the results if better projections could be

chosen in a computationally efficient way.

We used a combination of the z-order curve and a simple dimensionality reduction

technique to create a set of proximity preserving one dimensional mappings. The di-

mensionality reduction technique we used did not take into account properties of the

data such as data distribution. It might be possible to improve our method by using a

more advanced dimensionality reduction technique such as principal component anal-

ysis (PCA) that adapts to the internal structure of the data. The problem with PCA,

however, is that it is computationally expensive. To the best of our knowledge the

fastest exact method for PCA take O(D2h + D2N) time where h is the number of

target dimensions [57]. So doing a full principal component analysis would likely in-

crease the computation time more than it would save. For our purposes, however, the

accuracy of PCA is not very important. The axes chosen for projection need only to

provide better proximity preserving qualities than our current method which projects

sub-vectors to the diagonal axis. Therefore some approximation method might be a

good solution. For example, a trivial sampling technique for the calculation of princi-

pal axes might work.

To increase the difference between multiple proximity preserving one dimensional pro-

jections, we used random shifting of points and random permutation of dimensions.

Also rotations have been successfully used in a k-d tree based method [36] for a simi-

lar purpose. Rotation would be possible to use also with space filling curves, but it is

unclear if it would bring enough benefits to justify the O(D) → O(D · log(D)) per

point increase in time complexity.

Our algorithm ordered the data points by calculating and storing z-values for each

point and then sorting them according to the z-values. Another approach used in [7] is

50

to calculate the z-values only when the points are compared by the sorting algorithm.

This results in O(N · log(N)) z-value calculations instead of O(N) in our method.

The good point is that the memory requirements are reduced by O(ND) bytes because

the z-values are not stored. In addition, their method does not calculate the full z-

values. Instead they iteratively calculate the z-values for compared points down from

most significant bit towards least significant bit until a difference between the points is

found. In their experiments, this method was faster than calculating the full z-values.

Therefore it might be possible to use this method to provide a further speedup to our

algorithm. However, their method was tested only with low dimensional (D ≤ 3) data

sets and it is not clear if it would give the same speed benefits for high dimensional

data sets.

The recall rate we used to measure the quality of results has been used in many studies

of the same subject [11, 12, 8]. However, there are other quality factors that could be

considered. For example, for some applications it may be more important that the first

nearest neighbor in the graph is correct than the kth nearest neighbor. The recall rate

does not reflect this as it depends only on the total number of errors.

There is some evidence in our experiments that the errors in the results produced by

our ZNN algorithm are more likely to be on small number of n for nth nearest neighbor

(n ∈ [1, k]) than for the NNDES algorithm. In the NNDES algorithm, the errors were

more likely to be for large n. However, our experiments on this were not quite extensive

and more research should be done to find conclusive evidence.

51

8 Conclusion

In this thesis we have analyzed different methods for high dimensional kNN graph

construction, and introduced a new method for solving this problem by using a combi-

nation of space filling curves and neighborhood propagation. We compared our method

with two other methods called Nearest Neighbor Descent [12] and Recursive Lanczos

Bisection [11] using 14 to 544 -dimensional data sets and Euclidean distance metric.

Experiments showed that our method is, in most cases, faster than the other tested

methods. It performs well especially for large values of k and for the 14 dimensional

corel data set consisting of 662,317 points. In this case, it is 46% faster than the 2nd

best method. Our method also performs well even with higher dimensional data sets.

With 544 dimensional shape data set it was 36% faster than the 2nd best method.

However, due to lack of having code available, we were unable to compare our method

against two other methods [13, 8] which have reported similar performance increases

in comparison to Nearest Neighbor Descent, which in our experiments was the second

best method. One limitation of our method is that it has so far been confirmed to

work only with the Euclidean distance metric while other methods work with larger

variety of distance functions [12, 13, 8]. Therefore the performance of our method in

comparison to other fast methods still remains somewhat unclear. We also believe that

our current solution is not optimal and could be further improved by one of those ideas

discussed in Section 7.

52

9 References

[1] X. Zhu, J. Lafferty, and R. Rosenfeld, Semi-supervised learning with graphs. PhD

thesis, Carnegie Mellon University, Language Technologies Institute, School of

Computer Science, 2005.

[2] P. Fränti, O. Virmajoki, and V. Hautämaki, “Fast agglomerative clustering using a

k-nearest neighbor graph,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 28, no. 11, pp. 1875–1881, 2006.

[3] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang, “Fast approximate

nearest-neighbor search with k-nearest neighbor graph,” in IJCAI Proceedings-

International Joint Conference on Artificial Intelligence, vol. 22, p. 1312, 2011.

[4] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and

data representation,” Neural computation, vol. 15, no. 6, pp. 1373–1396, 2003.

[5] J. Philbin, J. Sivic, and A. Zisserman, “Geometric latent dirichlet allocation on a

matching graph for large-scale image datasets,” International journal of computer

vision, vol. 95, no. 2, pp. 138–153, 2011.

[6] V. Hautamäki, I. Kärkkäinen, and P. Fränti, “Outlier Detection Using k-Nearest

Neighbour Graph.,” in ICPR (3), pp. 430–433, 2004.

[7] M. Connor and P. Kumar, “Fast construction of k-nearest neighbor graphs for

point clouds,” IEEE Transactions on Visualization and Computer Graphics,

vol. 16, no. 4, pp. 599–608, 2010.

[8] Y.-M. Zhang, K. Huang, G. Geng, and C.-L. Liu, “Fast kNN Graph Construction

with Locality Sensitive Hashing,” in Machine Learning and Knowledge Discov-

ery in Databases, pp. 660–674, Springer, 2013.

[9] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search using

GPU,” in 2012 IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition Workshops, pp. 1–6, IEEE, 2008.

[10] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An Algorithm for Finding

Best Matches in Logarithmic Expected Time,” ACM Trans. Math. Softw., vol. 3,

pp. 209–226, Sept. 1977.

53

[11] J. Chen, H.-r. Fang, and Y. Saad, “Fast approximate k NN graph construction for

high dimensional data via recursive Lanczos bisection,” The Journal of Machine

Learning Research, vol. 10, pp. 1989–2012, 2009.

[12] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph construction

for generic similarity measures,” in Proceedings of the 20th international confer-

ence on World wide web, pp. 577–586, ACM, 2011.

[13] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, “Scalable k-NN graph

construction for visual descriptors,” in Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on, pp. 1106–1113, IEEE, 2012.

[14] J. L. Bentley, “Multidimensional binary search trees used for associative search-

ing,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[15] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When Is "Nearest Neigh-

bor" Meaningful?,” in In Int. Conf. on Database Theory, pp. 217–235, 1999.

[16] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the Surprising Behavior of

Distance Metrics in High Dimensional Spaces,” in Proceedings of the 8th Interna-

tional Conference on Database Theory, ICDT ’01, (London, UK), pp. 422–434,

Springer-Verlag, 2001.

[17] D. Dobkin and R. J. Lipton, “Multidimensional searching problems,” SIAM Jour-

nal on Computing, vol. 5, no. 2, pp. 181–186, 1976.

[18] M. I. Shamos, Computational geometry. PhD thesis, Yale University, 1978.

[19] P. M. Vaidya, “An O(n log n) algorithm for the all-nearest-neighbors problem,”

Discrete & Computational Geometry, vol. 4, no. 1, pp. 101–115, 1989.

[20] E. Pielou, “A single mechanism to account for regular, random and aggregated

populations,” The Journal of Ecology, pp. 575–584, 1960.

[21] J. McNames, “A fast nearest-neighbor algorithm based on a principal axis search

tree,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23,

no. 9, pp. 964–976, 2001.

[22] T. Seidl and H.-P. Kriegel, “Optimal multi-step k-nearest neighbor search,” in

ACM SIGMOD Record, vol. 27, pp. 154–165, ACM, 1998.

54

[23] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang, “iDistance: An Adap-

tive B+-tree Based Indexing Method for Nearest Neighbor Search,” ACM Trans.

Database Syst., vol. 30, pp. 364–397, June 2005.

[24] B. Yao, F. Li, and P. Kumar, “K nearest neighbor queries and knn-joins in large

relational databases (almost) for free,” in Data Engineering (ICDE), 2010 IEEE

26th International Conference on, pp. 4–15, IEEE, 2010.

[25] E. Chavez, K. Figueroa, and G. Navarro, “A fast algorithm for the all k nearest

neighbors problem in general metric spaces,” 1997.

[26] L. A. Piegl and W. Tiller, “Algorithm for finding all k nearest neighbors,”

Computer-Aided Design, vol. 34, no. 2, pp. 167–172, 2002.

[27] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical clustering using

dynamic modeling,” Computer, vol. 32, no. 8, pp. 68–75, 1999.

[28] O. Virmajoki and P. Fränti, “Divide-and-conquer algorithm for creating neighbor-

hood graph for clustering,” in Pattern Recognition, 2004. ICPR 2004. Proceed-

ings of the 17th International Conference on, vol. 1, pp. 264–267, IEEE, 2004.

[29] R. Paredes and E. Chávez, “Using the k-nearest neighbor graph for proxim-

ity searching in metric spaces,” in String Processing and Information Retrieval,

pp. 127–138, Springer, 2005.

[30] A. Hinneburg, C. C. Aggarwal, and D. A. Keim, “What is the nearest neighbor in

high dimensional spaces?,” in Proc. of the 26th VLDB Conference, Cario, Egypt,

2000.

[31] N. Kouiroukidis and G. Evangelidis, “The Effects of Dimensionality Curse in

High Dimensional kNN Search,” in Informatics (PCI), 2011 15th Panhellenic

Conference on, pp. 41–45, Sept 2011.

[32] P. Indyk and R. Motwani, “Approximate Nearest Neighbors: Towards Removing

the Curse of Dimensionality,” in Proceedings of the Thirtieth Annual ACM Sym-

posium on Theory of Computing, STOC ’98, (New York, NY, USA), pp. 604–613,

ACM, 1998.

[33] R. F. Sproull, “Refinements to nearest-neighbor searching in k-dimensional

trees,” Algorithmica, vol. 6, no. 1-6, pp. 579–589, 1991.

55

[34] S. Arya, D. M. Mount, and O. Narayan, “Accounting for boundary effects in

nearest-neighbor searching,” Discrete & Computational Geometry, vol. 16, no. 2,

pp. 155–176, 1996.

[35] C. Silpa-Anan and R. Hartley, “Optimised KD-trees for fast image descriptor

matching,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE

Conference on, pp. 1–8, IEEE, 2008.

[36] P. W. Jones, A. Osipov, and V. Rokhlin, “Randomized approximate nearest neigh-

bors algorithm,” Proceedings of the National Academy of Sciences, vol. 108,

no. 38, pp. 15679–15686, 2011.

[37] M. F. Mokbel and W. G. Aref, “Irregularity in high-dimensional space-filling

curves,” Distributed and Parallel Databases, vol. 29, no. 3, pp. 217–238, 2011.

[38] H. Tropf and H. Herzog, “Multidimensional Range Search in Dynamically Bal-

anced Trees.,” ANGEWANDTE INFO., no. 2, pp. 71–77, 1981.

[39] J. A. Orenstein and T. H. Merrett, “A class of data structures for associative

searching,” in Proceedings of the 3rd ACM SIGACT-SIGMOD symposium on

Principles of database systems, pp. 181–190, ACM, 1984.

[40] C. Faloutsos and S. Roseman, “Fractals for Secondary Key Retrieval,” in Pro-

ceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-

ples of Database Systems, PODS ’89, (New York, NY, USA), pp. 247–252, ACM,

1989.

[41] N. Megiddo and U. Shaft, “Efficient nearest neighbor indexing based on a collec-

tion of space filling curves,” IBM Almaden research center, San Jose, CA, Tech,

1997.

[42] J. A. Shepherd, X. Zhu, and N. Megiddo, “Fast indexing method for multidimen-

sional nearest-neighbor search,” in Electronic Imaging’99, pp. 350–355, Interna-

tional Society for Optics and Photonics, 1998.

[43] S. Liao, M. Lopez, and S. Leutenegger, “High dimensional similarity search with

space filling curves,” in Data Engineering, 2001. Proceedings. 17th International

Conference on, pp. 615–622, 2001.

[44] R. Dafner, D. Cohen-Or, and Y. Matias, “Context-based Space Filling Curves,”

in Computer Graphics Forum, vol. 19, pp. 209–218, Wiley Online Library, 2000.

56

[45] T. Bially, “Space-filling curves: Their generation and their application to band-

width reduction,” IEEE Transactions on Information Theory, vol. 15, no. 6,

pp. 658–664, 1969.

[46] I. Gargantini, “An Effective Way to Represent Quadtrees,” Commun. ACM,

vol. 25, pp. 905–910, Dec. 1982.

[47] C. Faloutsos and Y. Rong, “DOT: A Spatial Access Method Using Fractals,”

in Proceedings of the Seventh International Conference on Data Engineering,

(Washington, DC, USA), pp. 152–159, IEEE Computer Society, 1991.

[48] H.-L. Chen and Chang, “All-nearest-neighbors finding based on the Hilbert

curve,” Expert Systems with Applications, vol. 38, no. 6, 2011.

[49] M. Mokbel, W. Aref, and I. Kamel, “Analysis of Multi-Dimensional Space-

Filling Curves,” GeoInformatica, vol. 7, no. 3, pp. 179–209, 2003.

[50] G. Peano, “Sur une courbe, qui remplit toute une aire plane,” Mathematische

Annalen, vol. 36, no. 1, pp. 157–160, 1890.

[51] G. M. Morton, A computer oriented geodetic data base and a new technique in

file sequencing. International Business Machines Company, 1966.

[52] S.-X. Li and M. H. Loew, “The quadcode and its arithmetic,” Communications of

the ACM, vol. 30, no. 7, pp. 621–626, 1987.

[53] H.-L. Chen and Y.-I. Chang, “Neighbor-finding Based on Space-filling Curves,”

Information Systems, vol. 30, pp. 205–226, May 2005.

[54] J. Lawder, The application of space-filling curves to the storage and retrieval of

multi-dimensional data. PhD thesis, University of London, UK, 2000.

[55] R. Raman and D. S. Wise, “Converting to and from dilated integers,” IEEE Trans-

actions on Computers, vol. 57, no. 4, pp. 567–573, 2008.

[56] S.-W. Ra and J. Kim, “A fast mean-distance-ordered partial codebook search al-

gorithm for image vector quantization,” IEEE transactions on Circuits and Sys-

tems II: Analog and Digital Signal Processing, vol. 40, no. 9, pp. 576–579, 1993.

[57] A. Sharma and K. K. Paliwal, “Fast principal component analysis using fixed-

point algorithm,” Pattern Recognition Letters, vol. 28, no. 10, pp. 1151–1155,

2007.

57

Appendix 1: Source code for z-value generation

1 / / z v a l u e . cpp

2 # i n c l u d e < s t d i o . h>

3 # i n c l u d e < s t d l i b . h>

4 # i n c l u d e < b o o s t / m u l t i p r e c i s i o n / c p p _ i n t . hpp >

5

6

7 # d e f i n e LONG u i n t 1 0 2 4 _ t

8 # d e f i n e SIZE_LONG 1024

9 us ing namespace b o o s t : : m u l t i p r e c i s i o n ;

10 # i n c l u d e " z v a l u e . h "

11

12 / / To c o m p i l e :

13 / / g++ −O3 −Wall − s t a t i c −I . −o z v a l u e z v a l u e . cpp

14

15 / / Usage : . / z v a l u e 3 5

16 / / Ou tp u t : 39

17

18 i n t main (i n t argc , char * a rg v []) {

19

20 unsigned i n t z _ d i m e n s i o n s = unsigned (a r g c − 1) ;

21 unsigned i n t P [z _ d i m e n s i o n s] ;

22

23 LONG ** l o o k u p _ t a b l e = g e n e r a t e _ l o o k u p _ t a b l e (z _ d i m e n s i o n s) ;

24 f o r (unsigned i n t i =0 ; i < z _ d i m e n s i o n s ; i ++) {

25 P [i] = unsigned (a t o i (a rg v [i + 1])) ;

26 }

27 LONG z = z _ v a l u e (l o o k u p _ t a b l e , P , z _ d i m e n s i o n s) ;

28

29 s t d : : c o u t << " " << z << s t d : : e n d l ;

30 }

1 / / z v a l u e . h

2 # i f n d e f ZVALUE_H_

3 # d e f i n e ZVALUE_H_

4

5 # i n c l u d e < s t d i n t . h>

6 # i n c l u d e < l i m i t s . h>

7

8 # d e f i n e LOOKUP_SIZE 256

9 # d e f i n e LOOKUP_UNIT unsigned i n t

10

11 LONG ** g e n e r a t e _ l o o k u p _ t a b l e (unsigned i n t d i m e n s i o n s) {

12

13 LONG ** l o o k u p _ t a b l e ;

14

15 LONG answer = 0 ;

16 LONG one = 1 ;

17

18 unsigned i n t l i m i t = SIZE_LONG / d i m e n s i o n s ;

19 i f (l i m i t > 3 2) { l i m i t = 3 2 ; }

20

21 / / A l l o c a t e memory

58

22 l o o k u p _ t a b l e = new LONG* [d i m e n s i o n s] ;

23 f o r (unsigned i n t i = 0 ; i < d i m e n s i o n s ; ++ i)

24 l o o k u p _ t a b l e [i] = new LONG[LOOKUP_SIZE] ;

25

26 / / Gen era te lo o ku p t a b l e

27 f o r (unsigned i n t i_d im = 0 ; i_d im < d i m e n s i o n s ; ++ i_d im) {

28 f o r (unsigned i n t j = 0 ; j < LOOKUP_SIZE; ++ j) {

29 answer = 0 ;

30 f o r (unsigned i n t k = 0 ; k < l i m i t ; ++k) {

31 answer | = ((j & (one << k)) << (k * (d im en s io n s −1) +

i_d im)) ;

32 }

33 l o o k u p _ t a b l e [i_d im] [j] = answer ;

34 }

35 }

36

37 re turn l o o k u p _ t a b l e ;

38 }

39

40 i n l i n e LONG z _ v a l u e (

41 LONG ** l o o k u p _ t a b l e , unsigned i n t * p o i n t , unsigned i n t

d i m e n s i o n s) {

42

43 LONG answer = 0 ;

44 unsigned i n t r i g h t s h i f t = 3 2 ; / / == s i z e o f (u n s i g n e d i n t) *8

45

46 / / Once f o r each 8 b y t e s i n u n s i g n e d i n t

47 f o r (unsigned i n t i _ d e p t h = 1 ; i _ d e p t h <= 4 ; i _ d e p t h ++) {

48 answer = answer << d i m e n s i o n s * 8 ;

49 f o r (unsigned i n t i_d im = 0 ; i_d im < d i m e n s i o n s ; i_d im ++)

{

50 answer | = l o o k u p _ t a b l e [i_d im] [

51 (p o i n t [i_d im] >> (r i g h t s h i f t −8* i _ d e p t h)) & 0xFF

] ;

52 }

53 }

54

55 re turn answer ;

56 }

57

58 # e n d i f / / ZVALUE_H_

59

	Introduction
	Nearest neighbor problems
	 Effect of dimensionality
	Solving methods
	k-d trees
	Space filling curves
	Neighborhood propagation

	Z-order neighborhood propagation
	Z-order search
	Dimensionality reduction
	Configuration variables

	Experiments
	Evaluated algorithms
	Measurements
	Data sets
	Empirical process
	Recall vs. program execution time
	Effect of dimensionality reduction

	Discussion
	Conclusion
	References
	Appendix 1: Source code for z-value generation

