
UNIVERSITY OF JOENSUU
DEPARTMENT OF COMPUTER SCIENCE
Report Series A

Dynamic local search algorithm for the clustering problem

Ismo Kärkkäinen and Pasi Fränti

Report A-2002-6

ACM I.4.2, I.5.3
UDK 519.712
ISSN 0789-7316
ISBN 952-458-143-4

Dynamic local search algorithm for the clustering problem
Ismo Kärkkäinen and Pasi Fränti

Department of Computer Science, University of Joensuu

Box 111, FIN-80101 Joensuu, FINLAND
iak@cs.joensuu.fi, franti@cs.joensuu.fi

Tel. +358 – 13 251 7959; Fax. +358 – 13 251 7955

Abstract: Dynamic clustering problems can be solved by finding several clustering
solutions with different number of clusters, and by choosing the one that minimizes
a given evaluation function value. This kind of brute force approach is general but not
very efficient. We propose a dynamic local search that solves the number and location
of the clusters jointly. The algorithm uses a set of basic operations, such as cluster
addition, removal and swapping. The clustering is found by the combination of trial-
and-error approach of local search. The algorithm finds the result 30 times faster than
the brute force approach.

Keywords: clustering, number of clusters, algorithms, optimization, vector quantization.

1. Introduction

Clustering is an important problem that must often be solved as a part of more complicated tasks
in pattern recognition, image analysis and other fields of science and engineering (Everitt 1992,
Kaufman and Rousseeuw 1990, Jain et al. 1999). It aims at answering two main questions: how
many clusters there are in the data set and where they are located. We define the problem here as
static clustering if the number of clusters is known beforehand, and as dynamic clustering if the
number of clusters must also be solved. Clustering is also needed for designing a codebook in
vector quantization (Gersho and Gray 1992).

Static clustering problem can be solved by methods such as Generalized Lloyd algorithm (GLA)
(Linde et al, 1980), simulated annealing (Zeger and Gersho, 1986), deterministic annealing (Rose
et al. 1990, Hoffmann and Buhmann 1997), genetic algorithm (Fränti et al 1997, Fränti 2000),
agglomerative methods (Ward 1963) among many others. Randomized Local Search (RLS) is
a good choice for the clustering because of its competitive performance according to the results by
Fränti and Kivijärvi (2000) in terms of optimizing the evaluation function value. Its simplicity
makes it easy to generalize for the dynamic clustering problem, too.

The dynamic clustering problem can be solved by Brute Force (BF) approach as follows. First
a suitable evaluation function is defined, which includes the number of clusters as a parameter. Any
static clustering algorithm is then applied for all reasonable number of clusters. The resulting
solutions are compared using the evaluation function, and the final result is the clustering that
minimizes the evaluation function. Criteria such as Davies-Bouldin index (1979), and variance-
ratio F-test (Ito, 1980) can be used among many others (Bezdek and Pal, 1998). The advantage of
this kind criterion-based approach is that the existing algorithms for the static clustering can be
utilized as such.

 1

mailto:iak@cs.joensuu.fi
mailto:franti@cs.joensuu.fi

The Brute Force approach is general but inefficient. A more efficient solution is to perform
Stepwise local search, in which the previous clustering (with m clusters) is utilized when solving
the current one (with m+1 clusters), and by defining appropriate stopping criterion for the iterations
(Kärkkäinen and Fränti, 2002). The Stepwise algorithm is more efficient but still uses unnecessary
time for optimizing solutions with wrong number of clusters.

In this paper, we propose a more efficient approach called dynamic local search (DLS). It
optimizes the number and the location of the clusters jointly. The main motivation is that most of
the computation should be spent on solutions with the correct, or nearly correct number of clusters.
Time should not be wasted for optimizing clustering that has very little relevance to the final
solution. We first derive a set of basic operations: cluster addition, cluster removal and cluster
swapping, and then study how the operations should be applied in order to achieve the correct
clustering in most efficient way.

The main problem in the dynamic local search is the following. In static clustering, the RLS can
solve the correct clustering starting from any initial solution. The longer the algorithm is iterated,
the more likely the correct result is reached. In the dynamic approach, however, the optimization
function can have local minima with the changes of M. The algorithm must therefore be able to
reallocate more than one cluster at a time. This can be major source of inefficiency if not properly
designed.

We study experimentally different search strategies in the dynamic local search. We will give
a feasible solution that avoids the local minima, and is significantly faster than the Brute Force
approach. We will show by experiments, that the proposed algorithm finds the correct number of
clusters by about 30 times faster than the Brute Force approach. We also give a simple stopping
criterion that indicates when the iterations can be stopped with high confidence that the correct
clustering has been reached.

The rest of the paper is organized as follows. We first recall the solutions for the static clustering
problem in Section 2, and then present the new algorithm in Section 3. Experiments are then
performed in Section 4, and conclusions drawn in Section 5.

2. Clustering problem

The clustering problem is defined here as follows. Given a set of N data vectors
X={x1, x2, …, xN}, partition the data set into M clusters such that similar vectors are grouped
together and dissimilar vectors to different groups. Partition P={p1, p2, …, pN} defines the
clustering by giving for each data vector the index of the cluster where it is assigned to. In vector
quantization, the output of the clustering is a codebook C={c1, c2, …, cM}, which is usually the set
of cluster centroids.

We assume that the data set is normalized and the clusters are spherical, so that some standard
distance metric, e.g. Euclidean distance, can be applied. This allows us to estimate the goodness of
a solution of M clusters by calculating the mean square error (MSE) of the distances from the data
vectors to their nearest cluster centroid. After these presumptions, the clustering problem can be
formulated and solved as a combinatorial optimization problem.

2.1 Algorithms for static clustering
A well-known clustering algorithm for minimizing MSE is the Generalized Lloyd algorithm, also

known as the LBG due to Linde, Buzo and Gray (1980). It is simple to implement and it can be
applied to any initial solution. It performs iterative repartition of the data vectors and recalculation
of the cluster centroids until the solution converges, or when a predefined maximum number of

 2

iterations has been performed. The pseudocode is shown in Figure 1. The advantage of the GLA is
that it can be applied to the output of any other algorithm, either integrated or as a separate step.

Another simple clustering method is the Randomized local search (RLS) by Fränti and Kivijärvi
(2000), which has been shown to outperform most of the comparative algorithms. The method is
based on a trial-and-error approach as follows. New candidate solutions are generated by random
swap operation, which reallocates a randomly chosen cluster to another part of the vector space.
The new cluster is located to the position of a randomly drawn vector from the data set. The
partition is then modified according to the change in the clustering structure, and few iterations of
the GLA are applied as fine-tuning. The new solution replaces the previous one only if it decreased
the error value. The longer the algorithm is iterated, the better is the clustering. The pseudocode is
presented in Figure 2.

GLA(X, C, Iterations) return C, P
REPEAT Iterations TIMES

��Generate partition P by mapping all data vectors
to cluster represented by the nearest centroid
vector

��Generate C by calculating mean vector for each
partition

Return C, P;

RLS(X, C) return C, P
Cbest � C;
Generate partition Pbest using Cbest by mapping all data
vectors to cluster represented by the nearest centroid
vector
REPEAT Iterations TIMES

��C �Cbest;
��Swap randomly chosen centroid to randomly

chosen data vector
��Generate partition P using C by mapping all data

vectors to cluster represented by the nearest
centroid vector

��C, P � GLA(X, C, 2);
��Update the best solution if new solution is better:

IF MSE(X, C, P) < MSE(X, Cbest, Pbest) THEN
 Cbest � C; Pbest � P;

Return C, P;

Fig. 1: Pseudocode for the GLA. Fig. 2: Pseudocode for the RLS.

2.2 Algorithms for dynamic clustering
In many cases, the number of clusters is not known beforehand but solving the correct number of

clusters is part of the problem. The simplest approach is to generate solutions for all possible
number of clusters M in a given range [Mmin, Mmax], and then select the best clustering according to
a suitable evaluation function f. This approach is referred here as Brute Force (BF) algorithm. It
allows us to use any static clustering algorithm in the search. The pseudo code is given in Figure 3.

The choice of the evaluation function is a vital part of the clustering; several candidates were
presented by Bezdek and Pal (1998). We consider two criteria. The first is Davies-Bouldin index
(DBI) by Davies and Bouldin (1979). It has been applied by Bezdek and Pal (1998), Sarkar,
Yegnanarayana and Khemani (1997), and Kärkkäinen and Fränti (2000). The DBI measures for
each cluster the ratio of the intracluster distortion relative to the inter cluster distance of the nearest
cluster. This is denoted here as the mixture of the two clusters j and k, and is calculated as:

),(,
kj

kj
kj ccd

MAEMAE
R

�

� (1)

Here d is the distance between the cluster centroids, and MAEj and MAEk are the mean absolute
errors within the clusters j and k. The higher the intracluster distortion and the closer their centroids,
the higher is the index R.

 3

The mixture of a cluster j is defined as the maximum mixture between cluster j and all other
clusters. The overall DBI-value is then calculated as the average mixtures of the clusters:

�
�

�

�

M

j
kj

kj
R

M
DBI

1
,max1

 (2)

The second criterion we use is the Variance-ratio F-test based on a statistical ANOVA test
procedure (Ito 1980). We have modified the test so that we omit the checking of the obtained
values against F-distribution and use the values directly instead.

In principle, any other function can also be used for guiding the search. If the evaluation function
and the clustering algorithm are properly chosen, the Brute Force approach should find the correct
solution but the algorithm will be slow.

BruteForce(X, Mmin, Mmax) return C, P
Generate random solution Cbest with Mmin clusters.
Generate Cbest, Pbest with RLS(X, Cbest);
FOR m � Mmin + 1 TO Mmax DO

��Generate random solution C with m clusters
��Generate C, P with RLS(X, C);
��If new solution is better than the best one

found so far, replace the best solution by the
new one:
IF f(X, C, P) < f(X, Cbest, Pbest) THEN
 Cbest � C; Pbest � P;

END FOR
Return Cbest, Pbest;

Fig. 3: Pseudocode for the Brute Force algorithm.

The dynamic clustering problem can also be attacked by heuristic methods. For example, the
competitive agglomeration by Frigui and Krishnapuram (1997) decreases the number of clusters
until there are no clusters smaller than a predefined threshold value. The drawback is that the
threshold value must be experimentally determined. Divisive clustering uses an opposite, top-down
approach for generating the clustering. The method starts with a single cluster, and new clusters are
then created by dividing existing clusters until a predefined stopping criterion is met. The divisive
approach typically requires much less computation than the agglomerative clustering methods but
are far less used because of inferior clustering results.

3. Dynamic local search

We next generalize the RLS method so that it solves both the number and the location of the
clusters jointly. We refer this algorithm as Dynamic Local Search (DLS). The input are the data set
(X), an initial solution (C, P), and the search range for the number of clusters (Mmin, Mmax). The
algorithm applies elementary operations to the current solution and proceeds as the RLS, see
Figure 4. The algorithm, however, have two main differences to the RLS. First, we have not only
the random swap operation but also we may add or remove clusters. The second difference is that
we must use an evaluation function that is able to evaluate and compare clustering solutions with
different number of clusters.

 4

3.1 Elementary operations
The current solution is modified by two different ways. The first way is to apply an operator that

makes a radical change to the solution. This change does not necessarily result in a better solution in
itself, but it allows the search to proceed away from local minimum. The following elementary
operations are used for modifying the current solution:

�� Cluster swapping,
�� Cluster addition,
�� Cluster removal.

DLS(X, Mmin, Mmax) return C, P
Cbest � Random solution(X, Mmin);
Generate partition Pbest using Cbest by mapping all data
vectors to cluster represented by the nearest centroid
vector
REPEAT Iterations TIMES

��C �Cbest;
��Select operation randomly and apply it to the solution
��Generate partition P using C by mapping all data

vectors to cluster represented by the nearest centroid
vector

��C, P � GLA(X, C, 2);
��Update the best solution if new solution is better:

IF f(X, C, P) < f(X, Cbest, Pbest) THEN
 Cbest � C; Pbest � P;

Return C, P;

Fig. 4: Pseudocode for the DLS.

The cluster swapping replaces one cluster centroid by a randomly selected vector from the data

set. This operator is the same as the random swap in the RLS. Cluster addition creates new clusters
by randomly selecting vectors from the data set, and cluster removal removes randomly chosen
clusters centroid, see Figures 5 and 6. These operations allow the algorithm dynamically adjust the
number of clusters during the search. After any operation, two GLA-iterations are performed.

�

Fig. 5: Adding four random centroids.

�

Fig. 6: Removing four random centroids

 5

3.2 Amount of change
In the algorithm, we first select the operator to be applied, and the amount cluster centroids to be

changed. In the selection, we use the following probabilities: cluster swap 50%, cluster addition
25%, and cluster removal 25%. Next we select the number of clusters that are added or removed. In
the case of cluster swap, swapping of a single cluster is enough according to Fränti and Kivijärvi
(2000). In principle, adding or removing only one cluster would also be enough to reach solution of
any number of clusters. The evaluation function, however, may include local minima and, therefore,
it is important to allow bigger changes take place during the search.

A simple approach to control the amount of change is to select the number of clusters to be added
or removed (�M) randomly so that smaller changes have a higher probability to appear than bigger
changes. This is because if we add several clusters at a time, the new solution can be practically
random and we can loose all gain from the previous work made for improving the solution. Let M
be the current number of clusters, and L the limit (Mmin or Mmax) that bounds the number of clusters,
the amount of changes is:

� �LMrM �����
�1 (3)

where r is an random number evenly distributed in the range [0, 1[. The power � is a control
parameter of the process. In the case of � = 1 it gives even distribution. For larger values of �, the
distribution is skewed towards small values. Figure 7 gives examples of the probability distribution
for a few different values of � for maximum change of 20.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Change in the number of clusters

Se
le

ct
io

n
pr

ob
ab

ili
ty

1.0
1.5
2.0
2.5
3.0

Fig. 7: Probability function for selecting the number

of changes for the values �=1.0, 1.5, 2.0, 2.5, 3.0.

3.3 Stopping criterion
There still remains the question of how many iterations we must perform in order to find the

correct number of clusters. If we iterate long enough we can expect to find the correct solution
eventually. The necessary amount of iterations, however, is not known and it can vary from one
data set to another.

Heuristic stopping criteria were designed by Kärkkäinen and Fränti (2002) for the static
clustering. A criterion referred as 50-50 ratio terminates the search when the improvement for the
latter 50% of the iterations divided by the improvement made during the first 50% of the
improvements drops below a given threshold value, and a given minimum number of iterations has
been performed. This criterion worked well for the static clustering, and can also be applied in the
DLS. We refer this as the static 50-50 ratio.

 6

When applied with the DLS, we make a small modification to the 50-50 ratio as follows. We let
the algorithm iterate as long as the number of clusters keeps changing. When it settles, we start to
monitor the improvement using the 50-50 ratio as described above. The number of clusters is
defined to be settled when it has not changed for a predefined number of iterations (e.g. 200). If the
number of clusters changes later, we again wait for the number of cluster to settle before start to
monitor the stopping criterion again. We refer this as the dynamic 50-50 ratio.

4. Test results

We study the proposed algorithm with the following data sets:

�� Data sets A1, A2 and A3 (varying the number of clusters),
�� Data sets S1, S2, S3 and S4 (varying spatial complexity),
�� Data sets D2, D3, …, D15 (varying dimensionality).

The data sets A1, A2 and A3 are two-dimensional sets with varying number of circular clusters
(M=20, 35, 50) as illustrated in Fig. 8. The optimized evaluation function values for these data sets
are shown in Figure 9. The data sets S1 to S4 are two-dimensional sets with varying complexity in
terms of spatial data distributions, as shown in Figure 10. All have 15 clusters. The data sets D2 to
D15 have slightly less spatial complexity but higher dimensionality (varying from 2 to 15) and 9
clusters. The S and D data sets are the same as described earlier by Kärkkäinen and Fränti (2002).

Data set A1, 3000 vectors Data set A2, 5250 vectors Data set A3, 7500 vectors

Fig. 8: Sample data sets A1, A2 and A3.

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

2 12 22 32 42 52 62 72

Number of clusters

F-
te

st

Data set A3

Data set A2

Data set A1

0

0.2

0.4

0.6

0.8

1

1.2

2 6 10 14 18 22 26 30

Number of clusters

D
B

I

Data set S1

Data set S2

Data set S4

Fig. 9: Evaluation function values for the optimized clustering solutions for the data sets A1, A2 and A3 using

F-test (left), and for data sets S1, S2 and S4 using DBI (right).

 7

Data set S1 Data set S2 Data set S3 Data set S4

Fig. 10: Two-dimensional data sets with varying complexity in terms of spatial data distributions. The
data sets have 5000 vectors scattered around 15 predefined clusters with a varying degree of overlap.

4.1 Comparison with Brute Force algorithm
We first study how much faster the DLS can find the correct solution than the Brute Force. For

this purpose, we perform both the Brute Force and the DLS algorithms using a predefined search
range from Mmin=2 to Mmax=75. The general test procedure was to fix the parameter setup and then
repeat both algorithms 100 times starting from a different random solutions. The number of
iterations in the Brute Force was varied from 100 to 500 per cluster count, corresponding to 7400 to
37000 number of iterations in total. The DLS algorithm was tested with 1000 and 2000 iterations,
and by varying the control parameter from �=1.0 to 3.0. The number of GLA-iterations were fixed
to two in both algorithms.

The results with the data sets A1 to A3 are summarized in Table 1 for the Brute Force, and in
Table 2 for the DLS. As the number of clusters is known beforehand, we can calculate how many
times the algorithms found the correct number of clusters. Comparison to the Brute Force shows
that the DLS (with 1000 iterations) achieves similar success rate with approximately 3% of the
amount of work needed by the Brute Force (37000 iterations). Moreover, the DLS obtains 100%
success rate if the control parameter is set high enough (�=3.0), and is iterated sufficiently long
(2000 iterations). Figure 11 gives three examples of how the best solution develops as the search
proceeds in the DLS.

Table 1. Number of times (%) the correct clustering is found by Brute Force. The heading
numbers are the number of iterations per each value of M (the total number of iterations).

Iterations:
(total)

100
(7400)

200
(14800)

300
(22200)

500
(37000)

Data set A1 83 100 100 100
Data set A2 26 65 83 98
Data set A3 9 22 43 73

Table 2. Number of times (%) the correct clustering is found by DLS.

1000 iterations
 �=1.0 �=1.5 �=2.0 �=2.5 �=3.0

Data set A1 80 99 100 100 100
Data set A2 3 37 77 92 98
Data set A3 0 4 26 49 75

2000 iterations
 �=1.0 �=1.5 �=2.0 �=2.5 �=3.0

Data set A1 98 100 100 100 100
Data set A2 26 87 99 100 100
Data set A3 2 36 88 95 100

 8

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0 10 20 30 40 50 6

Number of clusters

Ev
al

ua
tio

n
fu

nc
tio

n
0

Run 1
Run 2
Run 3

Fig. 11: Development of search for the data set A1.

The results are for three different runs of the DLS algorithm.

4.2 Stopping criterion
From the previous results we can see that the DLS will find the correct number of clusters when

iterated long enough. It would be useful for the algorithm to stop when the solution has stabilized.
We test next whether the stopping criterion introduced in Section 3.3 can be reliably used with
DLS. We set the minimal number of iterations to 400, and then apply the static 50-50 ratio with the
threshold value of 10-5. Results are shown in table 3.

We see that the static 50-50 ratio can be reliably used in the case of the first data set. In the case
of the other two data sets, the results are slightly worse although the algorithm keeps iterating
longer. It seems that the static 50-50 ratio works quite well but the optimal choice for the
parameters is not trivial.

Table 3. Percentage the correct clustering is found by DLS.

The numbers in parentheses are the average number of iterations performed.

 �=2.0 �=2.5 �=3.0
Data set A1 98 (861) 98 (670) 99 (626)
Data set A2 93 (1932) 94 (1422) 90 (1295)
Data set A3 91 (3479) 89 (2488) 98 (1906)

4.3 Comparison with other approaches
We next compare the proposed DLS algorithm with the following approaches:

�� Stepwise with the GLA (Linde, Buzo and Gray, 1980)
�� Stepwise with the LBG-U (Frizke, 1997)
�� Competitive agglomeration ((Frigui and Krishnapuram, 1997)

The first two approaches integrates the GLA and the LBG-U with the Stepwise algorithm as
described by Fränti and Kärkkäinen (2002). The LBG-U is also similar to that of the RLS but it uses
deterministic choice for replacing the location of the cluster, whereas the RLS uses random choice.
The competitive agglomeration was implanted so that it starts with 100 initial clusters, and then
removes all clusters that are smaller than a predefined threshold value �. The threshold value was
experimentally optimized by varying it from 10-6 to 10-1.

 9

The results for the data sets A1 to A3, and S1 to S4 are summarized in Table 4 using both the
F-test, and the DBI criteria. The proposed method (DLS) finds the correct clustering when F-test is
used. The Stepwise with LBG-U works fine sometimes whereas the Stepwise GLA gives
significantly worse success rate with all data sets. When DBI is used as the criterion, the results are
worse with all variants. The relative performance of the different methods is similar to that of the
F-test. The CA, on the other hand, consistently fails to find the correct clustering except in the case
of easiest test set (S1). It tends to remove too many clusters no matter of the parameter setup.

Table 4: The number of times the correct clustering was found (among 100 repeats).

 F-test DBI
 DLS Stepwise

GLA
Stepwise
LBG-U

DLS Stepwise
GLA

Stepwise
LBG-U

CA

Data set S1 100 % 22 % 94 % 100 % 14 % 94 % 70 %
Data set S2 100 % 30 % 74 % 99 % 19 % 53 % 8 %
Data set S3 100 % 39 % 80 % 81 % 28 % 72 % 0 %
Data set S4 100 % 51 % 92 % 29 % 31 % 36 % 0 %
Data set A1 100 % 8 % 44 % 73 % 4 % 54 % 1 %
Data set A2 100 % 2 % 2 % 0 % 2 % 8 % 0 %
Data set A3 100 % 0 % 2 % 0 % 0 % 0 % 0 %

The methods are also compared using the data sets D2 to D15. The results are summarized in

Fig. 12. The main observation is that DLS clearly outperforms the other approaches, of which CA
works also reasonably well for these data sets. The DLS results are independent of the
dimensionality. The result of the CA, on the other hand, seems to have slight improvement when
the dimensionality increases. This is most likely due to the fact that the clusters become more
separable and thus, the spatial complexity decreases.

0
10
20
30
40
50
60
70
80
90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data dimensionality

%

DLS
CA
Stepwise/LBGU
Stepwise/GLA

Figure 12. The number of times (%) the correct clustering is found by different

algorithms as function of the dimensionality for the data sets D2 to D15.

5. Conclusions

Dynamic local search algorithm was proposed for finding optimizing both the number and
location of the clusters jointly. The algorithm uses a set of basic operations, such as cluster addition,
removal and swapping. The algorithm is significantly faster than a simple brute force approach, and
it outperforms comparative methods in quality.

 10

References

Bezdek JC, Pal NR, 1998. Some new indexes of cluster validity. IEEE Transactions on Systems,
Man and Cybernetics 28(3): 302-315.

Davies DL, Bouldin DW 1979. A cluster separation measure. IEEE Transactions on Pattern
Analysis and Machine Intelligence 1(2): 224-227.

Everitt BS, 1992. Cluster Analysis, 3rd Edition. Edward Arnold / Halsted Press, London.

Frigui H, Krishnapuram R, Clustering by Competitive Agglomeration. Pattern Recognition 1997;
30(7): 1109-1119.

Fritzke B, 1997. The LBG-U method for vector quantization � an improvement over LBG inspired
from neural networks. Neural Processing Letters 5(1), 35-45.

Fränti P, 2000. Genetic algorithm with deterministic crossover for vector quantization. Pattern
Recognition Letters 21(1), 61-68.

Fränti P, Kivijärvi J, 2000. Randomized local search algorithm for the clustering problem, Pattern
Analysis and Applications 3(4): 358-369.

Fränti P, Kivijärvi J, Kaukoranta T, Nevalainen O, 1997. Genetic algorithms for large scale
clustering problems. The Computer Journal 40(9), 547-554.

Gersho A, Gray RM, 1992, Vector Quantization and Signal Compression. Kluwer Academic
Publishers, Dordrecht.

Hoffmann T, Buhmann J, 1997. Pairwise Data Clustering by Deterministic Annealing. IEEE
Transactions on Pattern Analysis and Machine Intelligence 19(1), 1-14.

Ito PK, 1980. Robustness of ANOVA and MANOVA Test Procedures. In: Krishnaiah PR (ed).
Handbook of Statistics 1: Analysis of Variance. North-Holland Publishing Company, pp 199-236.

Jain A.K., Murty M.N., P.J. Flynn, 1999. Data Clustering: A Review. ACM Computing Surveys
31(3), 264-323.

Kaufman L. and P.J. Rousseeuw, 1990. Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley Sons, New York.

Kärkkäinen I, Fränti P, 2000. Minimization of the value of Davies-Bouldin index. In Proceedings of
the IASTED International Conference on Signal Processing and Communications (SPC’2000),
2000, pp 426-432.

Kärkkäinen I, Fränti P, 2002. Stepwise clustering algorithm for unknown number of clusters,
University of Joensuu, Department of Computer Science, Technical Report, Series A, Report
A-2002-5. (submitted)

Linde Y, Buzo A, Gray RM, 1980. An algorithm for vector quantizer design, IEEE Transactions
on Communications 28(1), 84-95.

Rose K, Gurewitz E, Fox G, 1990. A deterministic annealing approach to clustering. Pattern
Recognition Letters 11, 589-594.

Sarkar M, Yegnanarayana B, Khemani D, 1997. A clustering algorithm using an evolutionary
programming-based approach. Pattern Recognition Letters; 18(10): 975-986.

Zeger K, Gersho A, 1989. Stochastic relaxation algorithm for improved vector quantiser design.
Electronics Letters 25(14), 896-898.

 11

	1. Introduction
	2. Clustering problem
	2.1 Algorithms for static clustering
	2.2 Algorithms for dynamic clustering

	3. Dynamic local search
	3.1 Elementary operations
	3.2 Amount of change
	3.3 Stopping criterion

	4. Test results
	4.1 Comparison with Brute Force algorithm
	4.2 Stopping criterion
	4.3 Comparison with other approaches

	5. Conclusions
	References

