
UNIVERSITY OF JOENSUU
DEPARTMENT OF COMPUTER SCIENCE
Report Series A

Data reduction of large vector graphics

Alexander Kolesnikov and Pasi Fränti

Report A-2003-2

ACM G.1.2
ISSN 0789-7316
ISBN 952-458-311-9

Data reduction of large vector graphics

Alexander Kolesnikov and Pasi Fränti

Department of Computer Science, University of Joensuu, Joensuu, Finland
koles@cs.joensuu.fi, franti@cs.joensuu.fi

Abstract

Fast algorithm for joint near-optimal approximation of multiple polygonal curves is
proposed. It is based on iterative reduced search dynamic programming introduced
earlier for the min-� problem of a single polygonal curve. The proposed algorithm
jointly optimizes the number of line segments allocated to the different individual
curves, and the approximation of the curves by the given number of segments. Trade-
off between time and optimality is controlled by the breadth of the search, and by the
numbers of iterations applied.

Keywords: polygonal approximation, multi-object, dynamic programming, min-�
problem, data reduction, compression.

Statistics: 19 pages, 10 figures, 2 tables, 6700 words, 35000 characters.

1. Introduction
Approximation of polygonal curves is classical problem in image processing, pattern
recognition, computer graphics, digital cartography, and vector data processing.
Optimal approximation of a single polygonal curve can be solved by methods from
graph theory [1-5], dynamic programming [6-12], or A*-search [13,14] in O(N2)–
O(N3) time where N is the number of vertices in the input curve.

A faster but sub-optimal heuristics also exist with time complexities of O(N)–O(N2)
[15, 16]. Heuristic approaches for the approximation problem includes split [17-19],
merge [20, 21], split-and-merge [22, 23], dominant points detection [23-27],
sequential tracing [28-30], genetic algorithms [31-34], tabu search [34, 35], ant
colony methods [36, 37]. The case of closed contours includes also the optimal
selection of the starting point. This can be solved by considering all input points and
choosing the one with minimal error [8], by algorithm for all shortest paths in graph
[3] or by heuristic approaches [2, 9, 38-40].

The polygonal approximation of a single curve can be extended to the case of multiple
curves:

a) Multiple object min-# problem: Given K polygonal curves P1, P2, …, PK,
approximate it by K another polygonal curves Q1, Q2, …, QK with the
minimum total number of segments M so that the approximation error does not
exceed a given maximum tolerance �.

b) Multiple object min-� problem: Given K polygonal curves P1, P2, …, PK,
approximate it by K another polygonal curves Q1, Q2, …, QK with a given
total number of segments M so that the total approximation error is minimized.

Solution for the multiple-object min-# problem depends on the error measure in use.
In the case of L� error measure, the problem reduces to the single-object min-#

 1

mailto:koles@cs.joensuu.fi
mailto:franti@cs.joensuu.fi

problem as the optimization can be solved for every object independently [41]. In the
case of additive error measures (L1, L2, etc.), on the other hand, the problem is not
trivial [41]. Fortunately, in practical applications we mostly have to deal with error
measure L� in the case of min-# problem.

The case of min-� approximation of multiple objects (with any error measure) is more
complicated. The optimal approximation cannot be obtained by solving the
approximation of each individual objects separately because the given total number of
approximation segments should be optimally distributed among all objects. For
example, uniform allocation of the segments can assign too many segments to the less
complicated objects and, respectively, lacking the segments for more complicated
objects. This situation is illustrated in Fig. 1.

In literature, relatively little attention has been paid to the case of multi-object min-�
approximation even though it is far from trivial to solve it efficiently. The optimal
solution have been introduced by Schuster and Katsaggelos [41] but the algorithm has
time complexity of O(N2)–O(N3) depending on the number of segments. This can be
suitable for the encoding of object contours for MPEG-4 standard [42] but it can be
too slow in the case of large vector maps.

Figure 1. Example of multiple object approximation with uniform allocation of the segments
number (Mk�NkM/N) (left), and with optimal allocation of the segments number (right). The
number of points in the objects are ND = 3×121 (“Diamond”), and NL = 82 (“Leaf”). The
corresponding number of segments are MD=3×9 and ML=6 with uniform allocation of the
segments number, and MD=3×4 and ML=21 with the optimal allocation of the segments
number.

In this paper, we first generalize the dynamic programming approach of single object
min-� problem for the case of multiple objects. We then introduce a fast iterative
reduced search algorithm based on the near-optimal approximation algorithm for the
case of single object [43]. The proposed algorithm solves the approximation of the
individual objects and the allocation of the segments jointly. Although the optimality
of the algorithm cannot be guaranteed in general, the experiments indicate that the
method is capable of finding the optimal solution even in the case of very large data
sets. Moreover, the algorithm is significantly faster than the optimal counterpart; the
time complexity is between O(N)–O(N2).

 2

The rest of the paper is organized as follows. In Section 2, we recall the full search
and the reduced search dynamic programming algorithms for the single-object
problem. In Section 3, we generalize the dynamic programming approach for the case
of multiple objects, and then introduce the iterative reduced search algorithm.
Experiments and discussions are made in Section 4, and conclusions are drawn in
Section 5.

2. Min-� problem for single curve
Let us at first consider the optimal solution of the min-� problem for single curve by
dynamic programming algorithm proposed by Perez and Vidal [8]. We then recall the
iterative reduced search approach introduced earlier in [43]. The proposed approach
algorithm will then be generalized in the next sections for the approximation of
multiple objects.

2.1 Problem formulation
An open N-vertex polygonal curve P in 2-dimensional space is represented as the
ordered set of vertices P={p1, …, pN} = {(x1, y1), …, (xN, yN)}. The single object min-
� problem is stated as follows: approximate the polygonal curve P by another
polygonal curve Q with a given number of linear segments M so that total
approximation error E(P, M) is minimized. The output curve Q consists of (M+1)
vertices: Q={q1, …, qM+1}, where the set of vertices qm is a subset of P. The end
points of Q are the end points of P: q1 = p1, qM+1 = pN. The approximation linear
segment (qm, qm+1) of Q for curve segment {pi, …, pj} of P is defined by the end
points pi and pj: qm = pi and qm+1 = pj.

The error of approximation of curve segment {pi, ..., pj} with the corresponding linear
segment (qm, qm+1) is defined here as the sum of the square Euclidian distances from
each vertex of {pi, ..., pj} to the correspondent line segment (qm, qm+1):

 (1) �
�

��

�
����

1

1

22
1

2),1/()(),(
j

ik
ijijkijkmm abxayqqe

where the coefficients aij and bij are defined from the linear equation y = aijx+bij of the
linear segment (pi, pj). The error e2(qm, qm+1) with measure L2 can be calculated in
O(1) time with five arrays of cumulatives of x, y, x2, y2, xy coordinates [8].

The total approximation error E(P, M) of the input polygonal curve P by the output
polygonal curve Q is the sum of the approximation errors of the curve segments
{pi, …, pj} by the linear segments (qm, qm+1) for m = 1, …, M:

 (2)).,(),(1
1

2
�

�

�� mm

M

m
qqeMPE

To obtain optimal approximation we have to find the set of vertices {q2, …, qM} of Q
that minimizes the cost function E(P, M) for a given M:

 (3)
.)1,(min),(

1

2

}{ �
��
�

mqmqeMPE
M

mmq

To solve the optimization task we first recall the dynamic programming algorithm [8].

 3

2.2 Full search dynamic programming

Let us define two-dimensional discrete state space � = {(n, m): n = 1, …, N;
m = 0, …, M} as shown in Fig. 2. Every point (n, m) in the space � represents the
sub-problem of the approximation of n-vertex polygonal curve (p1, …, pn) by m linear
segments. The complete problem is represented by the goal state (N, M).

An approximation polygonal curve Q can be represented as a path H(m) in the state
space � from the start state �(1,0) to the goal state (N, M). In the state space, we also
define a function D(n, m) of the state �(n, m) as the cost function value of the optimal
approximation for the n-vertex polygonal curve (p1, …, pn) by m linear segments.

The state space � is bounded by left L(m), right R(m), bottom B(n) and top T(n)
borders in the following way [43]:

�
�
�

���

�
�

�
�
�

�

���
�

....,,2,1;
;0;1

)(

;;
;1...,,1,0;1

)(

MmmMN
m

mR

MmN
Mmm

mL

�
�

�
�

�

�

����

��

�

�
�

�
�

�

����

���

�

�

.;
;1,...,1;1

;,...,1;1
)(

;,...,;
;1...,,2;1

;1;0
)(

NnM
NMnM

Mnn
nT

NMNnMNn
MNn

n
nB

 (4)

The optimization problem can be solved by dynamic programming [8] in the bounded
space (see Fig. 3) with the following recurrent equations:

� � � � � �� �

� � � �� �,,1,minarg),(

,,1,min,

2

)1(

2

)1(

nj
njmL

njnjmL

ppemjDmnA

ppemjDmnD

���

���

���

���

(5)

where n = 1, …, N and m = B(n), …, T(n). Here A(n, m) is the parent state that
provides the minimum value for the cost function D(n, m) at the state (n, m). The time
complexity of the algorithm is O(MN2), and the space complexity is O(MN).

Figure 2: Illustration of the single-goal state space �, and the dependencies of
the calculation of the cost D for state (n, m) from the previous states.

 4

2.3 Iterative reduced search algorithm
Based on the dynamic programming we have introduced an iterative reduced search
method [43]. This algorithm was intended to bridge the gap between slow but optimal,
and fast but non-optimal heuristic algorithms. The algorithm includes the following
three basic steps:

Step 1: Find reference solution with any fast heuristic algorithm. The obtained
solution defines a reference path H0(m) in the state space �.
Step 2: Construct a single-goal bounding corridor of a fixed width W in the state
space � along the reference path H0(m). The left L(m), right R(m), bottom B(n), and
top T(n) bounds of the corridor (bounded state space) are defined in respect to the
reference solution as follows:

 (6)

�
�
�

���

����
�

�
�
�

����

��
�

,...,,1;
,...,,0};1)(,min{

)(

,...,,1};)(,1max{
,...,,0;1

)(

2

22

11

1

McMmN
cMmcmHN

mR

McmcmHm
cmm

mL

�
�
�

�

�����
�

�
�
�

���

�
�

.;
;1)1(,),...(};1,{min

)(

);(,...,1)1(;
,0;0

)(

NnM
mLmLnWmM

nT

mRmRnm
n

nB

where c1 = �W/2�, and c2 = W – c1 are the bounds of the corridor.

Step 3: Apply dynamic programming limited to the bounding corridor as shown in
Fig. 2 with the recursive equations in Eq. 5.

These three steps are then iterated using the output solution H1(m) as a reference
solution in the next iteration. Instead of the time consuming search in the full state
space � the algorithm performs the search iteratively in the most relevant part of it.
Trade-off between quality and time can be controlled by setting up the corridor width
(W) appropriately, and by limiting the number of iterations (ni). In [43], the optimal
solutions were always found by setting up W=6, and by iterating the algorithm until it
converged. The pseudo code of the algorithm is given in Fig. 3.

The time complexity of the algorithm with ni iterations is O(niW2N2/M), which varies
between O(N)–O(N2). The lower bound appears when M is large (proportional to N)
and the upper bound when M is small (considered as constant). The speed-up in
comparison to the full search is proportional to (W/M)2. The space complexity of the
algorithm is O(WN).

 5

IterativeReducedSearchDP(P, M);
REPEAT
 Q � ReducedSearchDP(P, M);
UNTIL good enough

ReducedSearchDP(P, M);
D(1,0) �0
FOR n = 2 TO N DO
 // a) Calculation of approximation errors
 FOR j = L(B(n) � 1) TO n�1 DO
 �(n�j) � e2(pj,pn)
 ENDFOR

 // b)Minimum search
 FOR m = B(n) TO T(n) DO
 dmin � �
 FOR j= L(m�1) TO n–1 DO
 d � D(j, m�1�B(n)) + �(n�j)
 IF(d<dmin)
 dmin � d;
 jmin � j
 ENDIF
 ENDFOR
 D(n, m�B(n)) � dmin
 A(n, m�B(n)) � jmin
 ENDFOR

 // Restoration of the solution H1(m)
 H1(M) = N
 FOR M TO 1 DO
 H1(m�1) = A(H1(m), m � B(H1(m)))
 ENFOR
 E � D(N,M�B(N))

Figure 3. General scheme of the iterative reduced search DP in the bounded state space.

3. Min-� problem for multiple objects
We first formulate the multiple-objects min-� problem, and then generalize the full
search dynamic programming from the single object to the case of multiple objects.
The iterative reduced search approach is then described.

3.1 Problem formulation
Consider the problem of joint approximation of multiple polygonal curves (objects),
where we have K polygonal curves P1, …, PK. The total number of vertices is
N = �Nk, where Nk is the number of vertices in the object Pk. We have to approximate
the set of polygonal curves by another set of polygonal curves Q1, …, QK. The total
number of approximation line segments is �Mk, where Mk is the number of segments
allocated to the approximation of a single polygonal curve Qk.

The approximation min-� problem for multiple objects can be formulated as follows:
find the optimal approximation of the curves P1, …, PK by polygonal curves
Q1, …, QK with minimum error E under the given constraint on the total number of
segments: �Mk � M.

 6

The approximation error E = Ek(Pk, Mk) of the input polygonal curve Pk by the output
polygonal curve Qk is the sum of the errors of the approximation of curve segments
{ pk,i, …, pk, j} of Pk by the line segments (qk,m, qk,m+1) of Qk (see Eq.2):

 (7)).,(),(1,,
1

2
�

�

�� mkmk

kM

m
kkk qqeMPE

The total approximation error E(P1, …, PK, M) with measure L2 is defined here as the
sum of approximation errors for all objects Pk:

 (8) .),(),,...,(
1

1 �
�

�

K

k
kkkK MPEMPPE

To obtain the optimal approximation of K objects we have to solve the following
optimization task:

 (9) �� �
�

�

�

�
�

K

k

M

m
mkmkK

k

mk

qqeMPPE
qM 1

1

1
1,,

2
1 ,minmin),,...,(

}{}{
�

 .:subject to
1

MM
K

k
k ��

�

Two approaches have been proposed in [41] for the problem. The first approach is
based on the Lagrangian multipliers method, which uses the DP algorithm for the
shortest path in a directed acyclic graph. The second one is based on a tree-pruning
algorithm. The complexity of the first algorithm is O(N2 log N) because it is defined
by the complexity of the shortest path algorithm and the number of bisection
iterations. The pruning-based approach is a one pass variant algorithm with the
complexity of O(N2), but the efficiency of the pruning scheme cannot be guaranteed
in general.

Algorithms with the complexity of higher than O(N2) can be used when N is relatively
small. In the case of vector maps and digitized drawings, however, we have to process
a large number of curves, and therefore, O(N2) can be too slow in practice.

Figure 4. Illustration of the multiple-goal state space �k for sample problem of Nk=34 (left),
and the multiple-goal bounding corridor for sample problem of Nk=34 and Mk=12 using
corridor width W=3 (right). The reference path H(m) is marked with dark gray circles, and the
goal states with gray squares.

 7

3.2. Full search algorithm
Let us consider the cost (rate-distortion) function gk(Mk), which represents the
approximation error for object Pk as a function of the number segments Mk:

 (10) }.1,min{,...,1,)1,,(
1

1
2

},{
min)(where ��

�
�

�

�

� kk

k

kk NMMmk,qmkq
M

m
e

mkq
Mg

The optimization task for the approximation error can be rewritten using the cost
functions gk(Mk) as follows:

 (11) .:tosubject)(min),...,,(
11}{1 MMMgMPPE

K

k
k

K

k
kk

kMK �� ��
��

The approximation problem for multiple objects differs from that of the single object
problem in the following: in addition to the minimization of the individual objects we
have to find the optimal numbers of segments Mk allocated to the objects {P1, …, PK}.

The joint optimization problem can be solved by three step dynamic programming
approach as follows:

Step 1. Solve the optimal approximation of every object by multiple-goal
dynamic programming in order to obtain the cost functions {gk(Mk)};

Step 2. Solve the optimal allocation of the number of segments among the
objects using the cost functions given by Step 1;

Step 3. Re-solve the optimal approximation of every object using the number of
segments given by Step 2.

In step 1, we solve the optimal approximation of every object Pk using multiple-goal
state space �k as shown in Fig. 4 (left). In other words, we solve rate-distortion
function gk(Mk) as the minimum approximation error of the object Pk with all possible
number of segments Mk in the range [1, min{M, Nk–1}]. The bounds of the state space
are defined as follows:

 (12)

��

�
�
�

�

�
�

��

�
�
�

�

���
�

....,,1;
;0;1

)(

;;

;1...,,0;1
)(

kMmkN
m

mkR

kMmkN
kMmm

mkL

��

�
�
�

��

�
�

�
�

�

�
�

�

�

��

����

���

�

.1...,,1;1
;0;0

)(

;1;

;2,...,1;1

;2...,,0;1

)(

kNn
n

mkB

kNnkM
kNkMnkM

kMnm

mkT

In step 2, the optimal allocation of the segments Mk

(opt) is found in order to minimize
the total approximation error E(P1, …, PK, M). Let us consider the function Gk(m) as
the minimum approximation error of k objects with the total number of m segments:

 (13)).,,...,()(1 mPPEmG kk �

 8

The problem of the optimal allocation of the constrained resource {Mk} among the K
objects can be solved by dynamic programming method with the following recursive
equations [44] for the given functions {gk(Mk)}:

 (14))}.1(,min{,...,1where)},()({min)(
1

1
11

����� �
�

�

�
��

k

i
ikkNxk NMmxmGxgmG

k

The function G1(m) for one object (k=1) is given as follows: G1(m)=g1(m), where
m=1, …, min{M, N1�1}. The error of the optimal approximation of K objects with M
segments is given as E(P1, …, PK, M)=GK(M).

In step 3, we solve the optimal solution Hk(m) for every object Pk with the found
optimal number of segments Mk

(opt). The optimal solutions are solved by the same DP
algorithm as applied in the first step but now with the fixed numbers of segments
Mk

(opt) given by the second step.

The time complexity of the first step is O(Nk
3) for one object, and O(�Nk

3) for all
objects. This sums up to O(N3) in the worst case. The time complexity of the second
step is O(KM2). The time complexity of the third step is O(Mk

(opt)Nk
2) for one object,

and O(�Mk
(opt)Nk

2) for all objects. This sums up to O(MN2) in the worst case. The time
complexity of the whole algorithm is dominated by the complexity of the first step,
and is therefore O(N3).

The space complexity of the first step is determined by the memory requirement of
the full search DP algorithm for the approximation of the biggest object: max{Nk�Nk},
which is O(N2) in the worst case. The space complexity of the second step with
dynamic programming procedure is O(K�M). The memory requirement of the third
step is defined by the memory needed for approximating the biggest object with the
found optimal number of segments: max{Mk

(opt)�Nk}. The total space complexity of
the algorithm is therefore determined by the complexity of the first step, which is
O(N2).

3.3. Iterative reduced search algorithm
The full search DP algorithm introduced in Section 3.2 has the following drawbacks:

�� The time complexity of the algorithm is O(N3), which can be too much for
vector data with long curves of thousands of vertices.

�� The memory requirements of the algorithm is O(N2). This can also be a limiting
factor for processing of large vector maps with long curves.

We next generalize the iterative reduced search to the problem under consideration.
We follow the main idea of the reduced search by reducing the search space by
a given preliminary solution for the approximation, and then perform the search in the
reduced space iteratively. The main difference to the full search is that a smaller
search area is needed, which makes the algorithm faster. It also eliminates the need of
the third step because of smaller memory requirements.

The algorithm for multiple-object min-� problem with reduced search consists of the
following steps:

Step 1: Find preliminary approximation of every object for given initial
number of segments;

 9

Step 2: Iterate the following:
a) Apply multiple-goal reduced search dynamic programming for the
previous solution to define the cost functions gk(Mk);
b) Solve the optimal allocation of the number of segments among the
objects using the cost functions gk(Mk).

In step 1, we find a set of reference solutions {Hk(m)} for every object Pk using any
fast sub-optimal approximation algorithm. In this work, we use the Douglas-Peucker
algorithm [18]. Initial values for the number of segments Mk

(0) are then calculated by
distributing the total number of segments uniformly proportional to the number of
vertices in each object Nk: Mk

(0)�NkM/N.

In step 2a, multiple-goal state space �k is constructed for each object with the
following goal states: Mk	[ak, bk], where ak = max{1, Mk

(0)–c1},
bk = min{Mk

(0)+c2, M(0), Nk–1}, and c1=
W/2�, c2=W–c1. Each state space �k is then
processed by the reduced search algorithm using revised bounding corridor of width
Wk = bk–ak+1�W. The result of the search is Wk solutions {Hk(m)} with the
corresponding rate-distortion function gk(Mk) in the range Mk	[ak, bk]. If the corridor
width Wk is small (W � 32), the found paths {Hk

(1)(m)} are stored in one-dimensional
array of size Nk in order to avoid recalculation of the solutions later.

The left Lk(m), right Rk(m), bottom Bk(n) and top Tk(n) bounds of the multiple-goal
bounding corridor are defined as follows:

�
�
�

���

����
�

�
�
�

����

��
�

,...,,1;
,...,,0};1)(,min{

)(

,...,,1};)(,1max{
,...,,0;1

)(

2

22

11

1

kkk

kkk
k

kk
k

McMmN
cMmcmHN

mR

McmcmHm
cmm

mL
 (15)

�
�
�

���

�����
�

�
�
�

���

�
�

.;1
;1)1(,),...(;1

)(

),(,...,1)1(;
,0;0

)(

kkk

kkk
k

kk
k

NnWM
mLmLnWm

nB

mRmRnm
n

nB

In step 2b, we find for every object Pk the optimal number of segments Mk in the
range [ak, bk]. The optimal allocation of the constrained resource {Mk} among the K
objects P1, …, PK with the given cost functions {gk(Mk)} can be solved by dynamic
programming with the following recursive expression (k=1, …, K):

....,,where)},()({min)(
1

1

1

1
1 ��

�

�

�

�

�
��

����

k

i
i

k

i
ikk

kbxkak bamxmGxgmG (16)

The required value of the approximation error for K objects by M linear segments is
defined from the cost function Gk(m) as follows: E(P1, …, PK, M) = GK(M). Finally,
for every object Pk we restore the optimal solution Hk(m) with the found number of
segments Mk

(1) from the stored paths {Hk(m)}.

The found numbers of segments {Mk
(1)} are restricted to the range [ak, bk], and they

can provide only local minimum of the approximation error E(P1, …, PK, M). To find
the global optimal allocation of the resource {Mk

(opt)} for the whole range of segments
number, the iterations are necessary. The output solution of the previous iteration is
used as the reference solution in the next iteration. The steps 2a and 2b are repeated
until no changes appear in the approximation error values GK(M). The number of

 10

iterations depends on the bounding corridor width and how close the initial
distribution of segments number {Mk

(0)} is to the optimal distribution {Mk
(opt)}.

Algorithm for multiple-objects min-e problem

// Step 1: Preliminary approximation
FOR k = 1 TO K DO
 Mk

(0) �NkM/N;
 {Qk} � FindPreliminaryApproximation(Pk, Mk

(0));
ENDFOR

// Step 2: Iterative search
i � 1;
REPEAT
 // Approximation of the objects
 FOR k = 1 TO K DO
 ReducedSearchDP(Pk, Mk

(i));
 gk

(i) � CostFunction(Pk, Mk
(i));

 ENDFOR

 // Allocate resource
 {Mk

(i+1)} � ResourceAllocation({gk
(i)(m)}, {Mk

(i)});
 Qk � H(Mk

(j))
 i � i+1;
UNTIL no changes

Figure 5. Iterative reduced search algorithm for the multiple object min-� problem.

While we iterate the algorithm to find the optimal distribution of the segments number
Mk, we simultaneously optimize the location of the approximation vertices {qk,m} for
the current number of segments Mk. Finally, the algorithm converges to
approximation solution for all objects P1, …, PK.

The time complexity of the algorithm is dominated by the first step. The processing
time is �(Wk

2Nk
2/Mk) in comparison to �(Nk

3) of the full search. This can be roughly
estimated as O(W2N2/M), which varies from O(N) to O(N2) depending on M. The
processing time for the second step is reduced by a factor of O(W/M)2 from the full
search because the search range is reduced from M to W. The time complexity of the
second step is O(KW2) in comparison to O(KM2) of the full search. At the third step,
we restore the optimal solutions for the found number of segments from the stored
paths. The time complexity of this simple procedure is O(N).

To sum up, the time complexity of the reduced search algorithm for multiple-object
min-� problem is defined by the first step, and it is between O(N) and O(N2). This is
better than the O(N3) of the full search, and the O(N2logN) of the method proposed
in [41].

The space complexity of the first step is reduced to max{W�Nk} from max{N2
k} of

the full search as W<<Nk. The memory requirement of the second step is also reduced
from K�M to K�W. In the third step, no additional memory is needed for restoring the
optimal paths. The total space complexity of the proposed algorithm is defined by the
complexity of the first step, which is O(WN).

 11

3.4. Approximation of closed contours
In the case of closed contours, we have to optimize the selection of the starting points
as well. It can be done with the near-optimal algorithm we introduced recently in [40].
The proposed algorithm is based on reduced search dynamic programming algorithm
for open curves [43]. It performs approximation of a cyclically extended input contour
of double-size and then makes analysis of the state space to select the best starting
point.

The processing time is double to that of the approximation of the corresponding open
curve. The efficiency of the approach depends on the characteristics of the contours to
be approximated, the number of segments, and the initial location of the starting
points. For smooth curves with big number of approximation segments and
a reasonably good initial selection for the starting points the improvement of the
approximation can be negligible. In the case of contours with sharp corners and small
number of segments, however, it can be worth to reduce the approximation error at
the cost of double processing time. The selection of the relevant strategy depends on
task in the question, the properties of the vector data, and the time resources.

4. Results and Discussion

In order to evaluate the quality of sub-optimal algorithms, Rosin [15] introduced
a measure known as fidelity (F). It measures how good a given sub-optimal solution is
in respect to the optimal approximation in terms of the approximation error:

 100min
��

E
EF . (17)

We test the proposed methods using the shapes shown in Fig. 6. The first and second
shapes are didactic examples of the single and multi-object cases. The third shape
contains geographic elevation lines from a sample map somewhere in Finland [45],
and the fourth one is a large-scale vector map of Europe.

N=5004K=1

N=445
K=4

N=38924
K=569

N=169673
K=365

Figure 6. Test data from left to right: Shape #1 is a digitized curve from [13]; #2: “Diamond”
and “Leaf”; #3: Elevation vector map; #4: Vector map of Europe. Here N is the total number
of points, and K is the number of objects.

4.1. Iterative reduced search for single object
The iterative reduced search is first illustrated for the test shape #1 in Fig. 7. The
preliminary approximation with M=100 is made by the Douglas-Peucker method [18],
which is then improved by iterative reduced search DP algorithm with corridor width

 12

W=10. The fidelity of the initial solution is F0=42%, fidelity of the solution after the
1st iteration is F1=99%. The corresponding running times are T = 0.2 s for the
preliminary approximation and T = 2.3 s for one iteration of the reduced search for
Pentium-430 [43].

With the full search DP algorithm of Perez and Vidal [8] the optimal result for the
same test shape is achieved in T=500 s, and with fast optimal algorithm of Salotti
optimal result is achieved in T=190 s [13, 43].

Figure 7. Result of the approximation of test data #1 with M = 100 segments using Douglas-
Peucker algorithm (left), the iterative reduced search after the first iteration (middle), and the
corresponding state space and the bounding corridor of width W=10 (right).

4.2. Full search for multiple objects
The full search DP for the test data #2 was illustrated already in Fig. 1, which contains
N=445 vertices, and M=33 linear approximation segments. In this and the following
tests, we use Pentium-733 MHz. The number of segments is uniformly distributed
among the objects using the data reduction ratio of 445:33, so that the number of
segments is MD=3�9 for the “Diamonds”, and ML=6 for the “Leaf”. It can be observed
from Fig. 1 that this number of segments for “Leaf” is too small for adequate
representation of the shape. Meanwhile, the shape “Diamond” is over-sampled. With
optimal allocation of the resources using the full search algorithm, the number of
segments is reduced from 27 (3�9) to 12 (3�4) in “Diamond”, and extended from 6 to
21 in “Leaf”. The corresponding approximation error is reduced from E=17729 to
E=356.

The test data #3 contains N=38924 vertices in K=569 objects, and the approximation
data M=7784 linear segments (N:M = 5:1). The processing time for the first step is
124.1 s; the time for the resource allocation is 7.3 s, and the time for restoration of the
optimal solutions is 27.2 s. In total, the processing time of the full search algorithm is
156.6 s.

The test data #4 consist of K=365 shapes with N=169673 number of points. The data
include several long curves up to 10,000 vertices. The approximation data contain
M=8483 linear segments corresponding to the reduction ratio of N:M =20:1.
Calculation of the result even for one 10,000-vertex object (finding of 10,000 optimal
solutions) with full search algorithm takes hours of computation. The memory
requirements are also very high (about 600 Mbytes for the single 10,000-vertex
curve). With the current hardware, we cannot perform the approximation of this data.

 13

4.3. Iterative reduced search for multiple objects
At first we find approximation for the test data #3 (see Fig. 9). The initial number of
segments is proportional to the number of vertices: Mk�NkM/N. After one run of the
optimization procedure with W=10 the vector data is approximated with fidelity
F1 = 50.3% in T1=1.7 s. Fidelity of F15 = 99% is reached after 15 iterations in
T15 = 18.7 seconds, and the optimal result after 20 iterations in T20 = 22.3 seconds.

Fig. 9: Approximation results for test data #3: a) Douglas-Peucker algorithm (E0 = 892158);
b) result after the 1st iteration (E1 = 246903); c) final result (E20 = 124093); d) Fidelity of the
approximation as a function of time.

Next we find approximation of the test data #4 with iterative reduced search using
corridor width W=10 (see Fig. 10). After the first iteration the fidelity F1=89.5% was
achieved (T1=23.1 s). Near-optimal result with fidelity F8=99% was achieved after
8 iterations (T8=110 s). The solution of fidelity F22�100% was obtained after 22
iterations (T22=159 s). Since the solution of the full search algorithm is not available,
the fidelity is calculated in this case relative to the best solution found. As the
algorithm converged to the same result with all parameter values W=8-32, we expect
that it is also the optimal solution.

 14

Fig. 10: Fragment of test data #4: a) Douglas-Peucker algorithm (E0 = 58.4); b) result after
the 1st iteration (E1 = 22,1); c) the final result (E22=19.76); d) fidelity of the approximation as
a function of time.

The effect of the corridor width is reported in Table 1 as the number of iterations (and
running time respectively) needed to obtain approximation with fidelity of 90%, 99%
and 100%, respectively. The use of a wider corridor increases the processing time of
a single iteration but, at the same time, decreases the total number of iterations
needed. The overall results are roughly equal for most of the parameter values tested
in respect to the time-distortion performance. The exceptions are the smallest
parameter values (W=4-6), which do not always result in the optimal solution
although quite close anyway (�99% fidelity). On the basis of the results, we
recommend parameter value W=10 and conclude, that the exact choice of the
parameter is not crucial for the performance of the algorithm.

Table 1: The minimum number of iterations and the corresponding run times in which the
algorithm reaches certain fidelity level with the test data #3 and #4.

90 % fidelity 99 % fidelity Final result
#3 Iterations Time (s) Iteration Time (s) Iterations

(Fidelity, %)
Time (s)

W=4 36 17.4 58 26.5 58 (99.95) 31.1
W=6 18 13.3 29 19.7 29 (100) 23.5
W=8 12 12.0 19 18.2 19 (100) 22.1
W=10 9 11.8 14 18.7 14 (100) 22.2
W=12 7 11.3 12 18.8 12 (100) 24.5
W=14 6 11.7 10 19.0 10 (100) 26.4
W=16 5 11.6 9 20.2 9 (100) 26.6
W=20 4 12.1 7 30.8 7 (100) 30.8

 15

90 % fidelity 99 % fidelity Final result

#4 Iterations Time (s) Iterations Time (s) Iterations
(Fidelity, %)

Time (s)

W=4 4 24 44 118 67 (99.2) 140
W=6 3 28 17 89 36 (99.4) 114
W=8 3 29 12 107 28 (100) 145
W=10 2 38 8 106 22 (100) 159
W=12 1 26 7 119 19 (100) 174
W=14 1 32 6 135 16 (100) 192
W=16 1 37 5 144 14 (100) 210
W=20 1 50 4 165 12 (100) 254

The main results of the reduced search are summarized in Table 2, and compared to
that of the full search. Vector data with a moderate number of objects and vertices
(Sets #1, #2 and #3) can also be processed with the full search but the reduced search
is significantly faster. In the case of a very large data set, however, the memory
requirements were too large and the approximation would have taken hours. In such
case, the reduced search should be used.

Table 2: Summary of the fidelity and the processing times (seconds) for the iterative
reduced search.

Initial Full search Reduced search Set N K M
Fidelity Time Fidelity Time Fidelity Time

#1 5004 1 100 42% 0.20 100% 500 100% 7.5
#2 445 4 33 5% 0.04 100% 0.06 100% 0.07
#3 38924 569 7784 14% 0.45 100% 157 100% 22.3
#4 169673 365 8483 34% 4.30 N/A N/A �100% 159

5. Conclusions
In the paper, the min-� problem of optimal approximation of multiple-object vector
data was considered. We introduced two algorithms for solving the problem based on
dynamic programming: full search and iterative reduced search. The algorithms
optimize the number of segments and the approximation of the individual objects
jointly. Experimental results indicate that the proposed algorithm reaches the optimal
solution in all cases tested even though the optimality cannot be guaranteed in
general.

The iterative reduced search algorithm has time complexity of O(N)–O(N2) depending
on the number of segments. This is significantly smaller than the O(N3) of the full
search, or the O(N2log(N)) of [41]. The reduced search approach is also applicable for
very large data sets with reasonable memory requirements. The algorithm can also be
tuned for obtaining very fast sub-optimal solutions by reducing the number of
iterations and corridor width.

 16

References

[1] H. Imai, M. Iri, Computational-geometric methods for polygonal approximations of a
curve, Computer Vision and Image Processing 36 (1986) 31-41.

[2] A. Pikaz, I. Dinstein, Optimal polygonal approximation of digital curves, Pattern
Recognition 28(3) (1995) 371-379.

[3] W.S. Chan, F. Chin, On approximation of polygonal curves with minimum number of
line segments or minimum error, Int. J. Comput. Geometry and Applications 6 (1996)
59-77.

[4] D.Z. Chen, O. Daescu, Space-efficient algorithms for approximating polygonal curves in
two-dimensional space, Int. J. Comput. Geometry and Applications 13(2) (2003) 95-111.

[5] G. Barequet, D.Z. Chen, O. Daescu, M.T. Goodrich, J. Snoeyink, Efficiently
approximating polygonal paths in three and higher dimensions, Algorithmica 33(2)
(2002) 150-167.

[6] G. Papakonstantinou, Optimal polygonal approximation of digital curves, Signal
Processing 8 (1985) 131-135.

[7] J.G. Dunham, Optimum uniform piecewise linear approximation of planar curves, IEEE
Trans. Pattern Anal. Mach. Intell. 8(1) (1986) 67-75.

[8] J.C. Perez, E. Vidal, Optimum polygonal approximation of digitized curves, Pattern
Recognition Lett. 15 (1994) 743-750.

[9] Y. Zhu, L.D. Seneviratne, Optimal polygonal approximation of digitized curves, IEE
Proc.-Vis. Image Signal Processing 144 (1) (1997) 8-14.

[10] C.-C. Tseng, C.-J. Juan, H.-C. Chang, and J.-F. Lin, An optimal line segment extraction
algorithm for online Chinese character recognition using dynamic programming, Pattern
Recognition Lett. 19 (1998) 953-961.

[11] R. Nygaard, J. Husøy, D. Haugland, Compression of image contours using combinatorial
optimization, Proc Int. Conf. Image Processing-ICIP’98, 1998, vol. 1, pp. 266-270.

[12] M. Salotti, Un algorithme efficiace pour l’approximation polygonale optimale, 13ème
Congrès Francophone AFRIF-AFIA de Reconnaissance des Formes et Intelligence
Artificielle-RFIA’2002, Angers, France, 2002, vol. 1 pp. 11-18.

[13] M. Salotti, An efficient algorithm for the optimal polygonal approximation of digitized
curves, Pattern Recognition Lett. 22 (2001) 215-221.

[14] M. Salotti, Optimal polygonal approximation of digitized curves using the sum of square
deviations criterion, Pattern Recognition 35(2) (2002) 435-443.

[15] P.L. Rosin, Techniques for assessing polygonal approximations of curves, IEEE Trans.
Pattern Anal. Mach. Intell. 14(6) (1997) 659-666.

[16] P.L. Rosin, Techniques for assessing of behaviour of polygonal approximations of
curves, Pattern Recognition 36(6) (2003) 505-518.

[17] U. Ramer, An iterative procedure for polygonal approximation of plane curves,
Computer Graphics and Image Processing 1 (1972) 244-256.

[18] D.H. Douglas, T.K. Peucker, Algorithm for the reduction of the number of points
required to represent a line or its caricature, The Canadian Cartographer 10 (2) (1973)
112-122.

[19] J. Hershberger, J. Snoeyink, Cartografic line simplification and polygon CSG formulæ in
O(n log*n) time, Computational Geometry: Theory and Applications 11(3-4) (1998) 175-
185.

[20] J.-S. Wu, J.-J. Leou, New polygonal approximation schemes for object shape
representation, Pattern Recognition 26 (1993) 471-484.

[21] A. Pikaz, I. Dinstein. An algorithm for polygonal approximation based on iterative point
elimination, Pattern Recognition Lett. 16(6) (1995) 557-563.

 17

[22] T. Pavlidis, S.L. Horovitz, Segmentation of plane curves, IEEE Trans. on Comput. 23(8)
(1974) 860-870.

[23] Y. Xiao, J.J. Zou, H. Yan, An adaptive split-and-merge method for binary image contour
data compression, Pattern Recognition Lett. 22 (2001) 299-307.

[24] C.-H. Teh, R.T. Chin, On the detection of dominant points on digital curves, IEEE Trans.
Pattern Anal. Mach. Intell. 11(8) (1989) 859-872.

[25] P. Zhu, P.M. Chirlian, On critical point detection of digital shapes, IEEE Trans. Pattern
Anal. Mach. Intell. 17 (1995) 737-748.

[26] J.M. Iñesta, M. Buendia, M.A. Sarti, Reliable polygonal approximations of imaged real
objects through dominant point detection, Pattern Recognition 31 (1998) 685-697.

[27] A. Garrido, N.P. de la Blanca, M. Garcia-Silvente, Boundary simplification using a
multiscale dominant-point detection algorithm, Pattern Recognition 31 (1998) 791-804.

[28] J. Sklansky, V. Gonzalez, Fast polygonal approximation of digitized curves, Pattern
Recognition 12 (1980) 327-331.

[29] Y. Kurozumi, W.A. Davis, Polygonal approximation by the minimax method, Computer
Vision, Graphics and Image Processing 19 (1982) 248-264.

[30] B.K. Ray, K.S. Ray, A non-parametric sequential method for polygonal approximation
of digital curves, Pattern Recognition Letters 15 (1994) 161-167.

[31] P.-Y. Yin, A new method for polygonal approximation using genetic algorithms, Pattern
Recognition Lett. 19 (1998) 1017-1026.

[32] S.-C. Huang, Y.-N. Sun, Polygonal approximation using genetic algorithms, Pattern
Recognition 32 (1999) 1017-1026.

[33] S.-Y. Ho, Y.-C. Chen, An efficient evolutionary algorithm for accurate polygonal
approximation, Pattern Recognition 34 (2001) 2305-2317.

[34] H. Zhang, J. Guo, Optimal polygonal approximation of digital planar curves using meta-
heuristics, Pattern Recognition 34 (2001) 1429-1436.

[35] P.-Y. Yin, A tabu search approach to the approximation of digital curves, Int. J. of
Pattern Recognition and Artificial Intelligence 14 (2000) 243-255.

[36] U.Vallone, Bidemensional shapes polygonalization by ACO, Proc. 3rd Int. Workshop on
Ants Algorithms, Brussels, Belgium (2002) pp. 296-297.

[37] P.-Y.Yin, Ant colony search algorithms for optimal approximation of plane curve,
Pattern Recognition 36 (2003) 1783-1797.

[38] K. Schroeder, P. Laurent, Efficient polygon approximations for shape signatures, Proc.
Int. Conf. on Image Processing-ICIP’99, 1999, vol. 2, pp. 811-814.

[39] J.-H. Horng, J.T. Li, An automatic and efficient dynamic programming algorithm for
polygonal approximation of digital curves, Pattern Recognition Lett. 23 (2002) 171-182.

[40] A. Kolesnikov, P. Fränti, Polygonal approximation of closed curves, 12th Scandinavian
Conf. on Image Analysis-SCIA’2003, Göteborg, Sweden (2003) pp. 778-785.

[41] G.M. Schuster, A.K. Katsaggelos, An optimal polygonal boundary encoding scheme in
the rate distortion sense, IEEE Trans. on Image Processing 7(1) (1998) 13-26.

[42] A.K. Katsaggelos, L.P. Kondi, F.W. Meier, J. Osterman, G.M. Schuster, MPEG-4 and
rate-distortion-based shape-coding techniques, Proc. of IEEE 86(6) (1998) 1126-1154.

[43] A. Kolesnikov, P. Fränti, Reduced search dynamic programming for approximation of
polygonal curves, Pattern Recognition Letters 24(14) (2003) 2243-2254.

[44] R. Bellman, Dynamic Programming, Princeton University Press, New Jersey, 1957.
[45] National Land Survey of Finland, Opastinsilta 12 C, P.O.Box 84, 00521 Helsinki,

Finland. (http://www.maanmittauslaitos.fi/)

 18

http://www.nls.fi/index_e.html

	Figure 1. Example of multiple object approximati�
	2. Min-(problem for single curve
	2.1 Problem formulation
	We first formulate the multiple-objects min-(problem, and then generalize the full search dynamic programming from the single object to the case of multiple objects. The iterative reduced search approach is then described.
	3.1 Problem formulation
	Consider the problem of joint approximation of mu
	
	
	
	
	
	Figure 5. Iterative reduced search algorithm for�
	Fig. 9: Approximation results for test data #3: �
	Fig. 10: Fragment of test data #4: a\) Douglas-P

	N
	K
	M

	Time

