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Abstract: We propose a method for compressing color map images by 
context tree modeling and arithmetic coding. We consider multi-component 
map images with semantic layer separation, and images that are divided into 
binary layers by color separation. The key issue in the compression method 
is the utilization of inter-layer correlations, and to solve the optimal ordering 
of the layers. The inter-layer dependencies are acquired by optimizing the 
context tree for every pair of image layers. The resulting cost matrix of the 
inter-layer dependencies is considered as a directed spanning tree problem, 
and solved by algorithm based on the Edmond’s algorithm for optimum 
branching, and by the optimal selection and removal of the background 
color. The proposed method gives 50:1 compression on a set of map images, 
which is about 50% better than JBIG, and 16% better than the best 
comparative method. 

Keywords: Image compression, lossless, context modeling, map images, 
layer ordering, spanning tree. 
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1. Introduction 

Digital maps are usually stored as vector graphics in a database for retrieving the data 
using spatial location as the search key. The visual outlook of maps representing the 
same region varies depending on the type of the map (topographic or road map), and on 
the desired scale (local or regional map). Vector representation is convenient for 
zooming as the maps can be displayed in any resolution defined by the user. The maps 
can be converted to raster images for data transmission, distribution via internet, or 
simply because of incompatibility of the vector representations of different systems. 
A compressed raster image format provides a reasonable solution in the form of 
compact storage size and compatible format.  

Typical map images have high spatial resolution for representing fine details such as 
text and graphics objects but not so much color tones as photographic images. Thus, 
suitable compression method could be found among the lossless palette image 
compression methods such as GIF and PNG. The CompuServe Graphics Interchange 
Format (GIF) is based on LZW dictionary compressor [1]. Portable Network Graphics 
(PNG) provides a patent-free replacement for GIF. It encodes the image using the 
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deflate [2] algorithm, which is a combination of LZ77 dictionary compression [3] and 
Huffman coding.  

On the other hand, lossy compression methods such as JPEG [4] are efficient for 
photographic images but do not apply well to palletized images and maps. The lossless 
JPEG-LS [5] uses linear predictive modeling, which also works well on natural images 
where adjacent pixels tend to have similar values. The predictive coding, however, is 
not efficient for images that contain only few colors. 

It is also possible to divide the maps into separate color layers and to apply lossless 
binary image compression such as JBIG and JBIG2 [6][7]. They use context-based 
statistical modeling and arithmetic coding in the same manner as originally proposed in 
[8]. The probability of each pixel is estimated on the basis of context, which is defined 
as the combination of a set of already processed neighboring pixels. Each context is 
assigned with its own statistical model that is adaptively updated during the 
compression process. Decompression is a synchronous process with the compression. 

Embedded image-domain adaptive compression of simple images (EIDAC) [9] uses 
three dimensional context model tailored for the compression of grayscale images. The 
algorithm divides the image into bit planes and compresses them separately but context 
pixels are selected not only from the current bit plane but also from the already 
processed layers. 

Another approach which utilizes three-dimensional dependencies is called SKIP pixel 
coding [10]. Binary layers are acquired by color decomposition, and the coding 
sequence proceeds layer by layer. In a particular layer, if a given pixel has already been 
coded in a layer of higher priority, it does not need to be coded in the current layer or 
any of the lower layers. Thus, the coding of large amount of redundant information 
around blank areas could be “skipped”. 

Statistical context-based compression such as the prediction by partial matching (PPM) 
[11] has also been applied to the compression of map images [12]. The method is a 2-D 
version of the PPM method by combining a 2-D template with the standard PPM 
coding. The method has been applied to palette images and street maps. A simple 
scheme for resolution reduction has also been given and the proposed scheme was 
extended to resolution progressive coding, too.  

The piecewise-constant image model (PWC) [13] is a technique designed for lossless 
compression of palette images, which uses two-pass object-based modeling. In the first 
pass, the boundaries between constant color pieces are established. The color of the 
pieces are determined and coded in the second pass. The method was reported to give 
similar to or better compression than the JBIG but with a much faster implementation. 

Among the alternative approaches, context-based statistical compression of the color 
layers is the most efficient in terms of compression. The location of the context pixels 
can be optimized for each layer separately as proposed in [14]. The method optimizes 
the location of the template pixels within a limited neighborhood area, and produces the 
ordered template as the result. The ordering can then be used to derive the context 
template for any given template size. The method was then applied for generating 
optimized multi-level context template for map images [15].  

Theoretically, better probability estimation can be obtained using a larger context 
template. The number of contexts, however, grows exponentially with the size of 
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template; adding one more pixel to the template doubles the size of the model. This can 
lead to context dilution problem where the statistics are distributed over too many 
contexts, thus affecting the accuracy of the probability estimates. The use of context tree 
[16] provides a more efficient approach for the context modeling so that a larger number 
of neighbor pixels can be taken into account without the context dilution problem. 

In this paper, we propose a method for compressing multi-component map images 
based on layer separation and context tree modeling. The main structure of the method 
is shown in Figure 1. The paper is based on the ideas and results presented in two recent 
conference papers: the use of multi-level context tree model as proposed in [17], and the 
algorithm for obtaining optimal ordering of the layers as proposed in [18]. The 
acquiring of the optimal layer ordering is related to the directed spanning tree problem, 
and is solved by an algorithm derived from the Edmond’s algorithm for optimum 
branching. The proposed method gives about 50% better compression than the JBIG. 

The rest of the paper is organized as follows. Context-based compression and context 
tree modeling are recalled in Section 2. Compression of map images is then considered 
in Section 3 for semantic and color separated layers. Both multi-level template fixed-
size template and multi-level context tree models are studied. The problem of obtaining 
optimal ordering of the layers is studied In Section 4. Experiments are given in 
Section 5, and conclusions are drawn in Section 6. 

 
Input Image

Compressed
image

Layers

Layer
Separation

Context based
compression

Statistical
model

 
Figure 1: System diagram to illustrate the compression method. 

 

2. Context based compression 

Statistical image compression consists of two distinct phases: statistical modeling and 
coding [19]. In the modeling phase, we estimate the probability distribution of the 
symbols to be compressed. The coding process assigns variable length code words to 
the symbols according to the probability model so that shorter codes are assigned to 
more probable symbols, and vice versa. The coding can be performed using arithmetic 
coding, which provides optimal coding for the given probability model [20]. 
 
2.1. Statistical modeling 
Binary image can be considered as a message generated by an information source. The 
idea of statistical modeling is to describe the message symbols (pixels) according to the 
probability distribution of the source alphabet (binary alphabet, in our case). Shannon 
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has shown in [21] that the information content of a single symbol (pixel) in the message 
(image) can be measured by its entropy. The entropy of the entire image can be 
calculated as the average entropy of all pixels: 

 �
�
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n
H

1
2log1  

where is the probability of ith pixel and n is the total number of pixels in the image. ip

 
2.2. Context modeling 
The pixels in an image form geometrical structures with appropriate spatial 
dependencies that can be described by context-based statistical model [8]. The 
probability of a pixel is conditioned on a context C, which is defined as the black-white 
configuration of the neighboring pixels within a local template, see Figure 2. 
 

?

8 3 2

5 1

9 6 10

4 7 832 51 96 104 7

011 01 11 00 0

Context template: Context:

 
Figure 2: An example of a 10-pixel context. 

 
In principle, better probability estimation can be achieved using larger context template. 
Large template, however, does not always result in compression improvement because 
the number of contexts grows exponentially with the size of template; adding one more 
pixel to the template doubles the size of the model. This leads to the context dilution 
problem, in which the statistics are distributed over too many contexts, and thus, affects 
the accuracy of the probability estimates. 

Nevertheless, only a small fraction of all contexts are really important. For example, in 
the case of sample binary images with 10-pixel context template, about 50 % of the 
code bits originate from the few most important contexts as illustrated in Figure 3. 
Furthermore, 99 % of the code bits originate from 183 contexts, and 429 out of the 1024 
contexts are never used at all. 
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total= 19497933
pw=   99,73%
bits=  18,08%  

total= 383952
pw=   11,68%
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bits=  3,56%
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bits=  3,03%
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pw=   45,06%
bits=  2,48%  

?  ?  ?  ?  ?  
total= 121745
pw=   86,99%
bits=  2,32%  

total= 69926
pw=   61,99%
bits=  2,29%  

total= 67055
pw=   52,79%
bits=  2,29%  

total= 82643
pw=   77,58%
bits=  2,17%  

total= 65772
pw=   37,63%
bits=  2,15%  

 Figure 3: The most important contexts with the 10-pixel template of JBIG. 

 
2.3. Context tree 
Context tree provides a more flexible approach for modeling the contexts so that larger 
number of neighbor pixels can be taken into account without the context dilution 
problem [16]. The contexts are represented by a binary tree, in which the context is 
constructed pixel by pixel. The context selection is deterministic and only the leaves of 
the tree are used. The location of the next neighbor pixels and the depth of the 
individual branches of the tree depend on the combination of the already coded 
neighbor pixel values. Once the tree has been created, it is fully static and can be used in 
the compression as any other fixed-size template. 

Context tree is applied in the compression in a similar manner as the fixed-size context 
templates; only the context selection is different. The context selection is made by 
traversing the context tree from the root to leaf, each time selecting the branch 
according to the corresponding neighbor pixel value. The leaf has a pointer (index) to 
the statistical model that is to be used. Each node in the tree represents a single context, 
as illustrated in Figure 4. The two children of a context correspond to the parent context 
augmented by one more pixel. The position of this pixel can be fixed in a predefined 
order, or optimized within a limited search area, relative to the compressed pixel 
position. 

There are different ways for utilizing the context tree. Martins and Forchhammer [16] 
apply full k-level tree that corresponds to a complete collection of all possible contexts 
up to the order k. The context is dynamically chosen along the path from root to leaf 
using predictive minimum description length principle (PMDL) [22]. Only one context 
is used at a time but statistics are updated for all contexts along the path. The two-level 
context model of [23] is a special case of this approach. Improvement of about 8 % was 
reported in [16] but at the cost of high running time because several contexts must be 
considered for each input pixel to be compressed. 

The tree can be optimized beforehand using a training image (static approach) [24], or 
optimized directly to the image to be compressed (semi-adaptive approach) [16]. In the 
latter case, an additional pass over the image is required to collect the statistics, and the 
tree must also be stored in the compressed file. The cost of storing the tree structure is 
one bit per node. The static approach is possible because of the similarity of the trees 
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with images of the same type. On the negative side, the resulting tree would be more 
dependent on the choice of the training image. 
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Figure 4: Illustration of a Context tree. 

 
 
2.4. Construction of the tree 
To construct a context tree, the image is processed and statistics are calculated for every 
context in the full tree including the internal nodes. The tree is then pruned by 
comparing the parent node and its two sub trees at every level. If compression gain is 
not achieved by using the two sub trees instead of the parent node, the sub trees are 
removed and the parent node will become a leaf. The compression gain is calculated as: 

 � � � � � � � � SplitCostClClClCGain rightleft ����  (1) 

where C is the parent node, and Cleft and Cright are the two sub trees. The code length l 
denotes the total number of output bits from the pixels coded using the context in the 
particular node. The cost of storing the tree is integrated into the SplitCost. The code 
length can be calculated by summing up the self-entropies of the pixels as they occur in 
the image: 
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The probability of the pixel is calculated on the basis of the observed frequencies using 
a Bayesian sequential estimator: 
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where nW and nB are the number of times, and pw and pB are the probabilities for white 
and black colors respectively, and � = 0.45, as in [6]. 
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The construction of the context tree consists of two parts [25]: choosing an order of the 
context pixels, and constructing optimal context tree for the given order. The following 
construction strategies have been considered: 

�� Optimal bottom-up: The approach constructs a full tree of k levels, which is 
then pruned one level at a time using the criterion of (1). The bottom-up 
approach provides optimal context tree [26] for the given order but at the cost 
O(2k) time and space. 

�� Optimal top-down: The tree is constructed by recursively expanding the tree 
starting from the root using the algorithm in Figure 5. The advantage is that 
only linear time and space complexity is needed [25]. 

�� Free-tree: The tree is constructed stepwise by expanding the tree one level at 
a time using a local pruning criterion. The location of the context pixel is 
optimized for each node separately [16]. However, it is possible that the tree 
terminates too early as in the example in Figure 6. Delayed pruning has 
therefore been proposed to restrain this problem [24]. 

In a static approach, there is no overhead from storing the tree and the SplitCost is 0. In 
semi-adaptive approach, the cost for storing the tree is 1 bit per node when fixed context 
order is used. In the case of free-tree, the position of the next context pixel must also be 
stored for each context. The additional cost of storing the location of this split pixel 
tends to reduce the overall size of the tree. 

 

ConstructOptimalTree(C) 
{ 

CreateChildrenNodes(C); 
Lleft � ConstructOptimalTree(C.left); 
Lright � ConstructOptimalTree(C.right); 
Lroot � H(C); 
Gain � Lroot -Lleft -Lright - SplitCost; 
IF Gain > 0 THEN 

L � Lleft +Lright + SplitCost; 
ELSE 

C.left � NIL; 
C.right � NIL; 
L � Lroot; 

RETURN L; 
} 

Figure 5: Recursive algorithm for optimal construction of the context tree. 
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Figure 6: Example of tree pruning with local pruning criterion. 

 

3. Map image compression 

Map images can be a result of rasterization of vector map format such as Simple Vector 
Format (SVF), Scalable Vector Graphics (SVG) or ERSI ArcShape [27]. The map 
server can provide the maps as a set of layers with different semantic meaning. For 
example, the topographic map series 1 : 20 000 of National Land Survey of Finland 
(NLS) [28] divides the information into four logical layers: basic (topographic data and 
contours), elevation lines, fields and water. The size of each layer is  pixels, 
and represents a 10  km2 area. The map image then can be easily reconstructed by 
combining the binary layers, and displayed to the user as a color image. 

50005000�
10�

 

3.1. Representation of map image 
In order to utilize the context-based compression, the map must be divided into binary 
layers. Each layer is compressed separately, and the compressed layers are stored into 
the same file as proposed in [29]. There are three alternative approaches to do this: 
semantic separation, color separation and bit-level separation. 

This first approach, semantic separation, means that the map is output into a set of 
binary layers each containing different semantic meaning. This representation is 
possible if the maps are obtained directly from a map database. The advantages of 
semantic separation are better compressibility, and that the layers to be shown can be 
selected at the time of viewing. 

On the other hand, the map image could be provided as a raster color image without any 
additional information about the semantics of the image. In this case, color separation 
must be used to divide the image into binary layers so that each layer represents one 
color of the original image. The drawback of the color separation is that information of 
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the original semantic separation cannot be recovered. Furthermore, the color separation 
can fragment the binary layers as shown in Figure 7. For example, overlapping text 
elements break the continuation of fields and lakes. This does not decrease the quality 
of the image but it increases the complexity of these layers, and thus, the compressed 
file size. Moreover, the color separation results into one additional layer – the 
background color.  

The third approach, bit-level separation, must be applied when we have the original 
map only as a raster image, and the number of colors is too high for efficient color 
separation. For example, the image might have been digitized from a paper copy and 
stored using lossy compression method, such as JPEG [4]. In the bit-level separation, 
the number of colors is first reduced by quantizing the image into a limited size color 
palette, or to 256 gray-scales. The resulting image is then separated into bit planes using 
Gray coding [30], and represented as a sequence of binary images. In this paper, we 
consider only the first two approaches (semantic and color separation). 

 
Multi-component map image 

 
 

Basic 

 

Water 

 

Contours 

 

Fields 

 

 

Layer 1 (black) 

 

Layer 2 (blue) 

 

Layer 3 (brown) 

 

Layer 4 (yellow) 

 

Layer 5 (white) 

 
Figure 7: Illustration of a multi-component map image. The shown fragment has the 

dimensions of 1000 � 1000 pixels. 
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3.2. Independent compression of layers 
Straightforward solution is to compress the layers separately by fixed-size template 
defined by the standard 1-norm and 2-norm distance functions, see Figure 9. The 
optimal template size depends on the size of the image. The location of the template 
pixels, on the other hand, has no direct effect on the learning cost but, if properly 
designed, may greatly improve the accuracy of the model. It is therefore feasible to 
optimize the location of the template pixels for the compressed images. 

It is possible to optimize the size and shape of the template for the given image layer to 
be compressed at the cost of longer compression time [14]. The optimal context 
template can be solved by compressing the image using all possible templates and 
selecting the one with the most compression. However, there are an exponential number 
of different template configurations as a function of the template size. A more practical 
approach is to optimize the location of the template pixels one pixel at a time as outlined 
in Figure 8. 

 
Given: 
  Search template T=array[0.. kMAX] 
  Input image I 
 
Construct_Template(T,I) 
{ 
  while (T != occupied) 
  { 
    L = FindMinCodeLenghtPosition(T,I); 
    AddPositionPermanentely(L,T); 
  } 
} 

Figure 8: Algorithm for optimizing the context template. 

 

The optimization starts with an empty context template and expands it by one pixel at 
a time. A new pixel is added to each unoccupied location in the neighborhood area. For 
each candidate pixel location, we calculate the statistics of the image and compare the 
entropies of the model with different location of the candidate pixel. We then select the 
pixel location providing minimum entropy, and add it permanently to the context 
template. The process is continued until the context template size reaches a predefined 
maximum context size kmax.  

The optimization can be applied in two alternative manners: static and semi-adaptive. In 
the static approach, we optimize the template using a priori knowledge of the image 
type. This is possible, as we know the type of the images to be compressed. The 
advantage is that the time-consuming optimization can be done off-line. In the semi-
adaptive approach, the template is optimized for the compressed image and is stored in 
the compressed file. This is a better solution if the image type is not known beforehand. 
The compression process, however, would be very slow, which makes this approach not 
suitable for real-time applications. 
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Figure 9: Alternative orderings for the context templates. 

 
3.3. Optimized multi-level template 
The idea of multi-layer context template is to utilize the information from additional 
image layer, referred here as the reference image. The restriction on the use of the 
reference image is that it must have already been coded so that both encoder and 
decoder have the same information. The main difference in the construction of single-
layer and multi-layer context templates is in additional neighborhood mask used for 
selection of the pixels from the reference image. The pixels in the current layer must be 
already coded pixels, but in the reference layer the pixels can be anywhere in the image. 

The idea of utilizing inter-layer dependencies have been used in JBIG2 [7] where 
pattern matching technique is applied to enhance the compression of document images. 
The image is divided into separate segments (typically text symbols), which are each 
coded as an index to a similar segment in a dictionary, and the compression of the pixels 
in the segment. Two-layer context template is applied for utilizing the information of 
the matching of the symbol when compressing the pixels in the segment. The same idea 
was then applied for generating multi-level context template for map images [15]. 

In [31] gray-scale images are divided into binary layers by Gray coding and bit plane 
separation. The bit planes are then compressed as binary images using context template 
including pixels both from the current level, and from the pixels in the previously coded 
(higher level) bit planes. 

In the following, we use the combined neighborhood area of 77 pixels as shown in 
Figure 10. Optimized sample context templates for the map images are shown in Figure 
11. The two-level context template of JBIG2 is shown for comparison.  

 

?  

x

 
Figure 10: The neighborhood area for optimizing the location of the template pixels.  

The area in the current layer is shown left, and in the reference layer right. 

 

 11



Current – Reference Fields – Basic Water – Basic 

?  
 
 
 

 7 6 11

94 5

8

2 ?

1 3 10

 7 4 5

11 8

9 6

2 ?

1 3

10

 
Figure 11: Sample two-level context templates for JBIG-2 (left), optimized for fields 

layer when using (middle), and optimized for water layer (right) when the basic layer is 
used as the reference layer. 

 
3.4. Multi-level context tree 
The idea of utilizing multi-layer dependencies can be extended also to the context tree 
modeling. The multi-level context tree is constructed as follows. The tree starts from 
scratch and the branches are expanded one pixel at a time. The location of the template 
pixels are optimized and fixed beforehand and then applied for every branch. Another 
approach is to optimize the location separately for every branch (Free Tree approach). 
The context pixels are chosen from the same joint 77 pixels neighborhood as shown in 
Figure 10. 

 
Layer1 

 

Layer2 

 

Figure 12: Example of two layers obtained by color separation. 

 
The use of the information from the reference layer will allow us in some cases to 
increase the compression ratio of the single layer up to 50% according to [17]. In fact, if 
we will consider the compression of sample images in Figure 12, the compression of 
these two images separately using single-level context trees would result in 
4854+1330=6184 bytes. On the other hand, if we use the information from the first 
layer when compressing the second layer, the tree structure of the second layer would 
be simpler. All information would be concentrated only in the first branch of the tree, as 
shown in Figure 13. Thus the compression of the second layer would be only 146 bytes, 
and the final size of the compressed file 4854+146=5000 bytes. 

The map images usually have inter-layer dependencies. For example, the same pixel is 
usually not set in the water layer and in the field layers at the same time although it is 
possible as the layers are generated from map database independently from each other. 
Another observation is that the basic and the water layers have redundant information 
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along the rivers and lake boundaries. In general, anything is possible, and it is not easy 
to observe the existing dependencies by the eye. The dependencies, however, can be 
automatically captured by the statistical modeling. 
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Figure 13: Example of a two-level context tree, in which two context pixels are taken 

from the current layer and one from the reference layer (shown below the current pixel). 

 

4. Optimal ordering of the layers 

The existing dependencies are demonstrated in Figure 14, in the case of the NLS map 
images. There are significant inter-layer dependencies between the basic layer and the 
two other layers (water, field). The contour layer, on the other hand, is independent 
from all other layers. The main observation is that we cannot utilize all the existing 
dependencies as the order of processing restricts which layers we can use as the 
reference layer. 

For example, if we compress the basic layer first, we can then improve the compression 
of the water layer by 52% (118705 bytes). The opposite order would improve the 
compression of the basic layer by 35% (345061 bytes). It is easy to see that the best 
order of these layers would be to compress first the water layer, second the basic layer, 
and then the fields layer last. The contours layer should be processed independently. 

In general, we can select any predefined order on the basis of known (or assumed) 
dependencies. If the image source is not known beforehand, we should find the optimal 
order of the layers for maximal utilization of the inter-layer dependencies. The selected 
processing order can be saved in the compressed file using a few bits. The problem of 
finding the optimal order is studied in the following subsections. 
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Figure 14: The arrows show the inter-layer dependencies as the number of saved bits 

when compressing the second image using the first one as reference image. 

 
4.1. Construction of the cost matrix 
Suppose that we have k layers. In order to determine the optimal layer ordering we have 
to consider all pairwise dependencies by tentatively compressing every layer using all 
other layers as reference. This results into a k�k cost matrix consisting of the absolute 
bit rates for every layer-reference layer pairing, see Table 1. On the basis of the cost 
matrix, we can generate all  possible permutations for the processing order and 
calculate the total saving achieved by the given layer ordering. If the number of layers is 
small enough (with the NLS images k=4), this is not a problem. With larger values of k, 
however, this could be computationally too expensive. 

!k

On the other hand, not all information in the matrix is relevant to us. In the case when 
there are no dependencies between the layers, the corresponding compression result 
would be the same (or worse) with or without the use of inter-layer context model. We 
can therefore reduce the amount of information in the cost matrix by subtracting the 
original values (Table 2) by the values obtained by layer-independent compression 
(Table 1), and eliminate values smaller than or equal to zero. The resulting cost matrix 
is shown in Table 3. 

The reduced cost matrix can be considered as a directed graph with k nodes as shown in 
Figure 15. The problem of finding the optimal order is closely related (but not exactly) 
to the minimum spanning tree problem. We will next give graph-based algorithm to 
solve the optimal ordering. We follow the approach taken by Tate for optimal band 
ordering in the compression of multi-spectral images [32]. 
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Table 1: Example of the cost matrix for a sample image. 
0 1 2 3 4 5 6 7 8 9 10 11

0 7564 13013 6189 1792 10448 16472 28477 1619 13683 13360 23976
1 17158 16041 5871 1731 9997 15713 27988 1557 11994 11377 22000
2 13488 8594 6029 1834 10461 16488 27318 1946 13671 13105 23760
3 23390 12116 20700 1636 9931 12333 28093 2055 13567 12735 22189
4 23471 12789 21348 6091 11011 18168 30445 2239 13683 12682 23713
5 23293 12116 21144 5385 1751 15506 26732 1834 13214 12102 22548
6 23536 12269 21423 3934 1681 10134 27405 2111 13674 13385 20479
7 20197 10149 17117 4889 1646 7007 12446 1737 11075 10612 13574
8 22810 11956 22493 6780 1834 10617 16899 29489 13256 13097 23976
9 26015 12029 20013 6467 1834 10329 16494 29514 2239 9401 22764
10 23036 11617 19305 5628 1722 10154 15797 27815 2013 7344 22038
11 26169 12561 21008 5933 1829 10660 14706 23261 1963 12231 12515  

 

Table 2: The original compression values obtained without the use of dependencies. 
0 1 2 3 4 5 6 7 8 9 10 11

23451 11847 20123 5504 1734 10256 15341 29206 1845 12328 11495 23049  
 

Table 3: Example of the cost matrix after reduction. 
0 1 2 3 4 5 6 7 8 9 10 11

0 4283 7110 0 0 0 0 729 226 0 0 0
1 6293 4082 0 3 259 0 1218 288 334 118 1049
2 9963 3253 0 0 0 0 1888 0 0 0 0
3 61 0 0 98 325 3008 1113 0 0 0 860
4 0 0 0 0 0 0 0 0 0 0 0
5 158 0 0 119 0 0 2474 11 0 0 501
6 0 0 0 1570 53 122 1801 0 0 0 2570
7 3254 1698 3006 615 88 3249 2895 108 1253 883 9475
8 641 0 0 0 0 0 0 0 0 0 0
9 0 0 110 0 0 0 0 0 0 2094 285
10 415 230 818 0 12 102 0 1391 0 4984 1011
11 0 0 0 0 0 0 635 5945 0 97 0  
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Given: 
  Connected graph G=[V,E] 
  Solution set S=[V,E] 

MST_For_Directed_Graph(G,S) 

  FOR (each Vi) DO 
    Ei = FindMaxEnteringEdge(Vi,G); 
    AddEdgeAndItsEndpoints(S,Ei); 
   
  C=LocateCycles(S); 
  IF (C != empty) THEN 
    FOR (each Ci) 
      Ee=FindEnteringEdges(G,Ci); 
      CalculateModifiedCost(Ee); 
      Eem=FindMaxEdge(Ee); 
      ReplaceEdge(Ec,Eem); 
        

Figure 15: Graph representation of Table 3 Figure 16: Edmond’s algorithm. 
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Figure 17: The resulting spanning tree after Edmonds’ algorithm. 

 
 
4.2. Maximum spanning tree 
A spanning tree of a graph is a subset of the edges so that all nodes of the graph are 
included in the set but there are no cycles. Minimum spanning tree (MST) is a spanning 
tree with the minimum sum of the weights of the edges included in the given graph [33].  

The minimum weighted tree can be solved in polynomial time using Prim’s algorithm 
[34], for example. The algorithm begins by adding the lowest weighted edge into the 
solution. It then loops by adding the next lowest weighted edge that connects a node 
inside the set to another node outside of the set. The algorithm terminates when n-1 
edges have been chosen and, thus, all nodes covered. 

However, there are few differences that separate our problem of obtaining the optimal 
order from the minimum spanning tree problem: 

�� We have a directed graph whereas the MST is defined with undirected graph. 
�� We can have only one incoming edge for any node. 
�� We can have several separate spanning trees instead of only one. 
�� We have maximization problem. 

The first two differences make the problem as a directed spanning tree problem. The 
directed spanning tree is defined as a spanning tree where all nodes (except the root) 
have exactly one incoming edge. This is also known as the optimum branching problem 
[35], and can be solved in O(n2) time [36]. 

In the optimal ordering, it is not necessary to have a single spanning tree but we can 
have separate sub graphs, see Figure 14. This means that we should actually find 
spanning forest instead of a single tree. The problem was considered as the maximum 
spanning forest problem in [32]. However, we have eliminated all negative weights in 
the cost matrix (Table 3), and the inclusion of a zero-edge can be considered as 
independent compression of the corresponding layers. Thus, we can still consider the 
optimal ordering as directed spanning tree problem. 

We apply Edmond’s algorithm [35] as shown in Figure 16. The algorithm begins by 
selecting the maximum incoming edge for every node except the root. If no cycles are 
formed the resulting graph is MST. Otherwise, the algorithm detects and removes 
existing cycles by removing an edge in the cycle and replacing it by another edge 
incoming from outside. The edges are chosen so that maximal saving is achieved. We 
also note that the Edmond’s algorithm requires that one node is selected as the root. We 
therefore repeat the algorithm using every node as potential root and select the one 
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resulting to most saving. The time complexity of the algorithm for single root is O(n2), 
and for considering all nodes as a root O(n3). 

The optimal branching for the data in Table 1 is shown in Figure 17. This ordering of 
the layers sums up to 124977 bytes, which corresponds to the improvement of 24.79 % 
in comparison to the original result. The process of the algorithm in detail is illustrated 
in Figure 18 using node 10 as the root. The initial solution contains three cycles (0�2, 
3�6, 7�11). The first cycle (0�2) is eliminated by replacing the edge 0�2 by the 
edge 1�2. This creates a new cycle (0�1�2), which is then resolved in the second 
step by replacing the edge 1�2 by the edge 7�2. The rest of the cycles are resolved 
accordingly. 

 
Initial solution: Detected cycle: Cycle removed:  
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Second cycle: Cycle removed: Final solution: 
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Figure 18: The process of Edmond’s algorithm. The first graph is the result of selecting 
maximum incoming edge except the root (initially node 10). The following steps illustrate the 
removal of cycles, and the final result. 

 
4.3. Selection of the background color 
In the case of color separation, we can eliminate one layer completely and consider it as 
the background color. The background color is usually white but this is not necessarily 
the case always. In fact, we can set any layer as the background color. The advantage is 
that the chosen layer is not stored in the compressed file at all. There are two obvious 
choices for selecting the background color: 

�� Greedy: The layer with the maximal compressed size.  
�� Optimal: The layer of whose removal gives most improvement in compression. 
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The greedy choice is not necessary the best choice because the layer with most 
information can also include most inter-layer dependencies with other layers. In other 
words, the background layer cannot be used as a reference layer, and therefore, the 
removal of the dependent layer can increase the compressed size of other layers.  

The optimal choice can be obtained by considering all layers as the background color, 
and selecting the one that result in the best overall compression. In principle, this is 
computationally demanding as the problem of finding the optimal ordering takes O(n3), 
and thus, O(n4) time for finding the optimal choice for the background color. In 
practice, however, the number of layers is small (here n=4..16). Therefore, the 
bottleneck of the optimization is not the solving of the spanning tree but the calculation 
of the cost matrix at the first place. 

5. Experiments 
We evaluate the proposed method by compressing the sets of map images listed in 
Table 4, and illustrated in Figure 19. The sets #1 to #4 are from the map database of the 
National Land Survey of Finland (NLS) [28]. In the case of the detailed road maps (Sea 
and City), the number of colors was reduced to 16 before the compression. 

Two different image representations are considered: (1) semantic representation and 
(2) color separation. Semantic representation was available for four randomly selected 
map sheets of scale 1 : 20 000. These images are further denoted as 124101, 201401, 
263112 and 431204 according to their map sheet number in the NLS database. The rest 
of the images were passed trough color separation. The obtained binary layers (semantic 
or color separation) were compressed using context tree modeling and arithmetic 
coding. The optimal ordering and the choice of background color were solved for every 
image separately. 

 

Table 4: Set of test images. 
 Scale Type Images Image size No. of colors

Semantic: 1 : 20 000 Topographic 4 5000�5000 5 
Set #1: 1 : 20 000 Topographic 5 5000�5000 6 
Set #2: 1 : 8 000 Topographic 4 1024�1024 7 
Set #3: 1 : 100 000 Road map 4 1024�1024 16 
Set #4: 1 : 800 000 Road map 4 1024�1024 16 
Set #5: 1 : 250 000 Road map (detailed) 2 800�800 16 

 
 

1 2 3 4 5 
Topographic map 

1 : 20 000 
Topographic map 

1 : 8 000 
Road map 
1 : 100 000 

Road map 
1 : 800 000 

Detailed – Sea  
1 : 250 000 

Detailed – City 
1 : 250 000 

   

Figure 19: Sample 256�256 pixel fragments of the test images. 
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We first study the effect of the multi-layer context tree modeling by compressing the set 
of images by the following variants: 

�� CT: Context tree modeling of each layer separately. 
�� MCT (single): Multi-level context tree using single conditioning layer. 
�� MCT (optimized): Multi-level context tree using optimal layer ordering. 

All variants are considered with and without optimal selection of the background color. 
In the semantic separation the background is excluded by default as it was never 
included. The results show that the multi-level context tree (MCT) produces file sizes of 
about 24% less than the single level context tree (CT), see Table 5. The optimal 
ordering is about 12% better than the use of a single conditioning layer. 

The compression performance is illustrated as a function of the number of contexts in 
Figure 20, and compared to the fixed size context modeling (JBIG), single-level context 
tree (CT), and fixed multi-level context (Fixed multi-layer). In this experiment, the 
number of contexts was explicitly forced to given value for the sake of comparison. The 
results indicate that better compression can be obtained by increasing the context size 
(JBIG curve), by using context tree modeling (CT vs. JBIG), and by using multi-level 
contexts (Fixed multi-layer vs. JBIG). Nevertheless, the joint application of them with 
the optimized layer ordering gives significantly better compression than any of the ideas 
alone. 

 

Table 5: Average compression results (kilobytes) for the set of test images. 
With background Background removed Semantic 

separation 
CT 

MCT  
single 

MCT 
optimized CT 

MCT  
single 

MCT 
optimized 

124101 314 218 189 205 174 162 
201401 1531 1064 965 1159 823 727 
263112 556 317 316 310 270 184 
431204 1207 715 707 712 592 590 
431306 1192 744 705 696 617 343 

Average 960 612 577 616 495 401 
 

With background Background removed Color 
separation 

CT 
MCT  
single 

MCT 
optimized CT 

MCT  
single 

MCT 
optimized 

1:20000 960 612 577 616 495 401 
1:8000 64 37 36 34 32 30 

1:100000 243 211 194 185 173 155 
1:800000 268 240 219 240 217 198 

Sea 181 134 124 125 113 106 
Vantaa 215 196 186 190 173 164 

Average 322 238 223 232 201 176 
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Figure 20: Compression result (for semantic decomposition) as the function of the 

number of contexts. 

 
The improved compression, however, does not come without a price. In this case, the 
drawback is a significantly increased compression time, see Table 6. Most of the time is 
spent for calculating the cost matrix, i.e. tentatively compressing the image layers using 
all possible current-reference layer pairs. Finding the optimal ordering does not take 
much time at all although the algorithm itself has the time complexity of O(n4). The 
actual compression is somewhat slower than that of the CT but the difference is 
tolerable. In comparison to the JBIG, both the CT and MCT are somewhat slower also 
in the decompression. 

 

Table 6: Compression and decompression times using 500 MHz Pentium III. 
JBIG CT MCT 

 
Comp. Decomp. Tree + 

Comp Decomp. Cost 
matrix 

Optimal 
ordering Comp. Decomp. 

Semantic 0:02:23 0:02:09 0:45:02 0:05:38 61:34:00 0:00:04 0:03:10 0:05:39 
Set #1 0:03:44 0:03:37 1:39:27 0:11:05 111:59:00 0:00:05 0:06:23 0:11:05 
Set #2 0:00:09 0:00:10 0:02:35 0:00:18 2:46:00 0:00:04 0:00:10 0:00:18 
Set #3 0:00:22 0:00:23 0:08:58 0:01:03 28:16:00 0:00:04 0:00:45 0:01:03 
Set #4 0:00:22 0:00:24 0:09:23 0:01:07 33:02:00 0:00:04 0:00:38 0:01:07 
Set #5 0:00:08 0:00:08 0:02:51 0:00:21 22:48:00 0:00:02 0:00:12 0:00:21 
Sum 0:07:06 0:06:50 2:45:28 0:19:29 260:25:00 0:00:23 0:11:18 0:19:31 
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For illustrating the performance of the CT and MCT in detail, we have collected four 
most used contexts and their statistics in Figure 21. In the case of independent 
compression, the optimized context trees can be remarkably different for different 
layers. For example, the contexts in Fields layer contain much fewer pixels than the 
contexts in Contours layer. Pixels are also taken further away and only a few nearby 
pixels are needed to model the probability distribution. The Contours layer does not 
contain large convex shapes as the Fields layers but more complex thin lines that need 
more context pixels to be modeled accurately. 

In the case of multi-layer context tree, the selection of the context pixels depends on the 
layers in question. The general tendency is the same as in the case of independent 
compression so that Fields and Water layers need fewer context pixels. The Basic layer 
uses significantly more pixels although the number of pixels depends on the particular 
pixel combination. The number of the context pixels in the reference layer is typically 
much smaller. When Basic layer is used as reference, only a few nearby pixels are used. 
In the case of Water, on the other hand, the context pixels are scattered from wider area. 

Finally, the result of the proposed method (MCT) is compared with the following 
methods: 

�� GIF: CompuServe graphics interchange format [1], 
�� PNG: portable network graphics [2][3], 
�� JBIG: Joint bi-level image group [6], 
�� PPM: prediction by partial matching [11][12], 
�� PWC: Piecewise-constant image model [13], 
�� SKIP: Explicit skipping of pixels set in previous layer [10], 
�� CT: Single level context tree [16][24]. 

 
The results are summarized in Table 7 (semantic layers) and Table 8 (color separation). 
Note that the results of GIF, PNG, PPM and PWC are applied to the color images, and 
the JBIG, SKIP, CT and MCT for the binary layers. Note also that SKIP applies only to 
color separation where the exclusion of certain pixels can be concluded from the 
existence of the pixel in another layer. In semantic separation, however, the same pixel 
may be set into several layers although only one color is printed in the output image. 

The result show that the MCT is gives the best compression with all test sets. In the case 
of color separation, the SKIP method is rather effective in comparison to JBIG despite 
of its simplicity. Also PWC and CT perform rather well. In the case of semantic 
separation, the binary image coding methods (JBIG, CT, MCT) are clearly better than 
the others, of which the MCT gives most compression. 
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Independent compression / fixed order: 

?  ?  
?  ?  

total=  17156635
pw=    99,86 %
bits=   12,77 %  

total=  276541
pw=    5,84 %
bits=   4,38 %  

total=  52158
pw=    53,54 %
bits=   2,56 %  

total=  47169
pw=    35,27 %
bits=   2,18 %  

Independent compression / optimized order: 
(Fields layer) 

?  ?  ?  ?  
total=  23233236
pw=    99,99 %
bits=   8,99 %  

total=  11349
pw=    60,81 %
bits=   8,17 %  

total=  10185
pw=    38,33 %
bits=   7,29 %  

total=  7611
pw=    65,37 %
bits=   5,28 %  

Independent compression / optimized order: 
(Contours layer) 

?  ?  ?  ?  
total=  16510318
pw=    99,88 %
bits=   12,76 %  

total=  69665
pw=    62,57 %
bits=   7,37 %  

total=  68230
pw=    32,93 %
bits=   3,50 %  

total=  51081
pw=    57,14 %
bits=   2,82 %  

Multi-layer compression: 
(Water layer – Basic as reference layer) 

?

 

?

 

?

 

?

 
total= 29358
pw=   54,43%
bits=  12,07%  

total= 13073
pw=   59,92%
bits=  5,25%  

total= 63806
pw=   2,43%
bits=  4,36%  

total= 10507
pw=   16,35%
bits=  2,79%  

Multi-layer compression: 
(Basic layer – Water as reference layer) 

?

 

?

 

?

 

?

 
total=  15245805
pw=    99,88 %
bits=   15,10 %  

total=  220419
pw=    5,12 %
bits=   4,90 %  

total=  220419
pw=    5,12 %
bits=   4,90 %  

total=  91420
pw=    97,27 %
bits=   1,26 %  

Figure 21: Most used contexts in various context tree modeling strategies. 
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Table 7: Compression results (kilobytes) for the methods in comparison for semantic 
separation. 

Semantic GIF PNG  JBIG  PPM  PWC SKIP CT MCT 
124101 622 962 145 370 153 --- 130 106 
201401 2633 3599 702 1846 829 --- 611 528 
263112 1170 1691 277 801 320 --- 246 223 
431204 2567 3648 618 1889 707 --- 544 443 

Average 1748 2475 435 1226 502 --- 383 325 
 

Table 8: Compression results (kilobytes) for the methods in comparison for color 
separation. 

Color 
separation GIF PNG JBIG PPM PWC SKIP CT MCT 

1:20000 1801 1854 1017 1449 777 532 960 401 
1:8000 86 90 62 81 35 34 64 30 

1:100000 288 278 283 203 198 202 243 155 
1:800000 303 287 274 211 197 198 268 198 

Sea 150 155 181 113 124 117 181 106 
Vantaa 225 212 238 172 155 172 215 164 

Average 475 479 343 372 247 209 322 176 
 

6. Conclusions  

We have proposed a method for compressing map images by multi-level context tree 
modeling and by optimizing the order of the processing of the binary layers. Solutions 
are given for the context modeling, utilization of the multi-level dependencies, and for 
the optimal ordering of the layers. The proposed method gives about 30 % improvement 
over previous methods on average, in comparison to the compression of binary layers 
without utilizing the inter-layer dependencies. The optimal order of processing the 
layers was considered as directed spanning tree problem and solved by an algorithm 
derived from the Edmond’s algorithm. 

There are ideas not dealt in this paper that could be considered in the future. For 
example, the two-level context modeling could be generalized to 3-D by conditioning 
the probability of the pixel on several layers instead of only one. However, it is not 
obvious how the optimal order of layers should be solved, and whether this modification 
would result additional compression worth the trouble. Another idea would be to model 
the image as a color image instead of dividing it into binary layers. In this case, the 
context modeling would become significantly more complex. A third idea worth further 
studies might be to develop the method towards real-time compression by designing 
faster heuristic for estimating the inter-layer dependencies instead of the brute force 
approach. 
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