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Abstract: The search for nearest neighbor is the main source of computation in most 
clustering algorithms. A common solution is to calculate distance to all candidates (full 
search) and select the one with the smallest distance. In this paper, we propose the use 
of nearest neighbor graph for reducing the number of candidates to be considered. The 
number of distance calculations per search can be reduced from O(N) to O(k) where N 
is the number of clusters, and k is the number of neighbors in the graph. We apply the 
proposed scheme within agglomerative clustering algorithm known as the PNN 
algorithm, and show that remarkable reduction is obtained in the running time at the 
cost of slight increase in the distortion.  
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1. Introduction 

Clustering is an important problem that must often be solved as a part of more complicated 
tasks in pattern recognition, image analysis and other fields of science and engineering 
[1, 2, 3, 4]. The clustering task is formalized here as a combinatorial optimization problem, in 
which the goal is to find the partition that minimizes a given distortion function. 

Agglomerative clustering is popular method for generating the clustering hierarchically by a 
sequence of merge operations. The clustering starts by initializing each data vector as its own 
cluster. Two clusters are merged at each step and the process is repeated until the desired 
number of clusters is obtained. Ward’s method [5] selects the cluster pair to be merged that 
minimizes the increase in the distortion function value. In the vector quantization context, this 
method is known as the pairwise nearest neighbor (PNN) method due to [6]. In the rest of 
this paper, we denote it as the PNN method. 

The PNN is interesting method for the clustering task because of its conceptual simplicity and 
good results [7]. The PNN can also be combined with the K-means clustering such as the 
Generalized Lloyd algorithm (GLA) [8] as proposed in [9], or used as a component in more 
sophisticated optimization methods. For example, the PNN has been used in the merge phase 
in the split-and-merge algorithm [10] resulting in to a good time-distortion performance, and 
as the crossover method in genetic algorithm [11], which has turned out to be the best 
clustering method among a wide variety of algorithms in terms of the quality of the codebook 
[12]. 

The main drawback of the PNN is its slowness. The original implementation requires O(N3) 
distance calculations [13]. An order of magnitude faster algorithm has been introduced in [7] 
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but the method is still lower bounded by �(N2). The main source of computation originates 
from the search of the nearest neighbor cluster because the PNN always calculates distance to 
all candidates when finding the nearest cluster. 

Another approach for clustering is to use graph theoretical methods [14]. For example, by 
first creating a complete undirected graph where the nodes correspond to the data vectors and 
the edges correspond to vector distances according to a given similarity or dissimilarity 
measure. The resulting graph can be trimmed to a minimal spanning tree, which can be 
interpreted as one large cluster. The clustering can then be generated by iteratively dividing 
the cluster by removing longest edges from the graph. In the final graph, clusters can be 
determined by finding the separate components in the graph. This algorithm can be seen as a 
variation of split-based methods with similar criterion as in the single-linkage agglomerative 
clustering. 

In this paper, we introduce fast agglomerative clustering algorithm motivated by the graph-
based approaches. In our approach, we process the data at the cluster level so that every node 
in the graph represents a cluster and not as a single vector as in the previous approaches. The 
edges of the graph represent inter cluster connections between nearby clusters. The graph is 
used merely as a search structure for reducing the number of distance calculations. We can 
therefore choose the distortion function freely instead of the previous approach, which can be 
interpreted as a heuristic implementation of the classical single-linkage clustering.  

The proposed approach has two specific problems to solve: how to generate the graph 
efficiently, and how to utilize it. For example, standard solutions for solving minimum 
spanning tree takes O(N2) time, which would prevent any speed-up. We propose solutions for 
the first problem by considering the mean-distance ordered partial search [15], and by 
divide-and-conquer approach [16]. We study the second sub-problem and find out how much 
speed-up can be gained by using the graph for reducing the number of calculations in the 
PNN. We will show by experiments that a relatively small neighborhood size is sufficient for 
preserving the good quality clustering results. It is also possible that the idea could be 
generalized to other clustering algorithms that include large number of nearest neighbor 
searches. 

The rest of the paper is organized as follows. In Section 2, we define the clustering problem 
considered here, and recall the PNN method. In section 3, we propose the new graph-based 
PNN algorithm. Two solutions for creating the nearest neighbor graph are introduced in 
Section 4. Experimental results are reported in Section 5, and conclusions drawn in Section 6. 

 

2. Agglomerative clustering 

The clustering problem is defined here as a combinatorial optimization problem. Given a set 
of N data vectors X={x1, x2, …, xN}, partition the data set into M clusters so that a given 
distortion function is minimized. Partition P={p1, p2, …, pN} defines the clustering by giving 
for each data vector the index of the cluster where it is assigned to. A cluster sa is defined as 
the set of data vectors that belong to the same partition a. 

 �s x p aa i i� � �  (1) 

The clustering is then represented as the set S={s1, s2, ..., sM}. In vector quantization, the 
output of the clustering is a codebook C={c1, c2, …, cM}, which is usually the set of cluster 

 3



centroids. We assume that the vectors belong to Euclidean space, and use the mean square 
error (MSE) as the distortion function: 
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The pairwise nearest neighbor (PNN) method [5, 6] generates the clustering hierarchically 
using a sequence of merge operations. At each step two nearby clusters are merged: 

  (3) baa sss ��

The cost of merging two clusters sa and sb is the increase in the MSE-value caused by the 
merge. It can be calculated using the following formula [5, 6]: 
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where na and nb are the corresponding cluster sizes. The PNN applies local optimization 
strategy: all possible cluster pairs are considered and the one increasing MSE least is chosen: 
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where m is the current number of clusters. There exist many variants of the PNN method. 
Straightforward implementation recalculates all distances at each step of the algorithm. This 
takes O(N3) time because there are O(N) steps in total, and O(N2) cluster pairs to be checked 
at each step. 

Another approach is to maintain an N�N matrix of the merge cost values. The merge cost 
values are needed to be updated only for the newly merged cluster. Nevertheless, the 
algorithm still requires O(N3) because the search of the minimum cluster pair takes O(N2) 
time [13]. Kurita’s method maintains an N�N matrix but it also utilizes a heap structure for 
searching the minimum distance [17]. The method runs in O(N2 log N) time. The storage of 
the matrix, however, requires O(N2) memory, which makes these variants impractical for 
large data sets. 

A fast implementation of the PNN with linear memory consumption has been obtained by 
maintaining a pointer from each cluster to its nearest neighbor, and the corresponding merge 
cost value [7]. The cluster pair to be merged can be found in O(N) time, and only a small 
number (denoted by �) of the nearest neighbor needs to be updated after each merge. The 
implementation takes O(�N2) time in total. Further speed-up can be achieved by using lazy 
update of the merge cost values [18], and by reducing the amount of work caused by the 
distance calculations [19]. 

 

3. Graph-based PNN 

The proposed Graph-PNN is based on the exact PNN method, but we utilize the graph 
structure in the search of nearest neighbor clusters. In the PNN, the search of nearest neighbor 
cluster is repeated many times, and every search requires O(N) distance calculations. The 
graph is utilized so that the search is limited only to the clusters that are directly connected by 
the graph structure. This reduces the time complexity of every search from O(N) to O(k). If 
the number of edges k is small, significant speed-up is obtained. 
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3.1 Simple implementation 
The main structure of the algorithm is given in Fig. 1. The algorithm starts by initializing 
every data vector as its own clusters, and by constructing the neighborhood graph. The 
algorithm then iterates by removing nodes from the graph until the desired number of clusters 
has been reached. The graph stores the merge costs, i.e. the amount of distortion if the two 
neighbor clusters are merged. The edge cost values are stored in a heap structure. 

At first, the edge with smallest weight is found, and the nodes (sa and sb) are merged. The 
algorithm creates a new node sab from the clusters sa and sb, which are removed from the 
graph. The corresponding edges are updated by calculating new cost values between the 
nodes that were connected to the merged nodes. The algorithm must also calculate cost values 
for the outgoing edges from the newly created node sab. The k nearest neighbors is found 
among the 2k neighbors of the previously merged nodes sa and sb. 

We illustrate the merge procedure in Fig. 2 for a sample 2NN graph (k=2). The nearest 
neighbors for the merged cluster is found among the neighbors of a and b: the clusters c and 
e. We also update the links that pointed to a or b to point to the new cluster and update the 
associated cost values. In practice, the new cluster replaces a, and b is removed. The pointers 
c�b and d�b are replaced by pointers c�a and d�a. A sample graph is shown in Fig. 3. 

 
GraphPNN(X, M) � S 

FOR i�1 to N DO 
si � {xi}; 

      FOR �  DO  � �),1;( Nisi �

Find k nearest neighbors; 

REPEAT 
(sa, sb) � SearchNearestClustersInGraph(S); 
sab � Merge(sa, sb); 
Find the k nearest neighbors for sab; 
Update the nodes that had sa and sb as 
neighbors; 

UNTIL |S|=M; 

Fig. 1. Structure of the Graph-PNN. 
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Fig. 2. Illustration of the graph (k=2) where 

a and b are to be merged. 
Fig. 3. Sample data set (black dots) and the 

corresponding graph (k=4). 
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3.3 Double linked list 
To sum up, one step requires O(kN) time, which sums up to O(�N2). The number � denotes 
the number of the incoming pointers to the merged cluster. In general, this is too much and 
we therefore consider the double linked list (Fig. 4), in which we maintain for every node two 
lists: the first list points to the neighbor clusters, and the second list contains so called “back 
pointers” to clusters that have the node as their nearest neighbors. In this way, we can 
eliminate O(kN) time loops, and the time complexity becomes O(�N logN /k), see Tables 1, 2, 
3 and 4. 

 

a
b

c

�

insert to head

k

fe

 
Fig. 4. Illustration of the update of the linked list in the merge procedure of the clusters a and 

b in the neighborhood graph. 

 
Table 1: Estimated number of steps and distance calculations of the PNN iterations. 
Steps: Fast PNN Graph PNN (simple) Graph PNN (double-linked) 
 Steps Distances Steps Dists Steps Dists 
SearchNearest( ) N - 1 - 1 - 
Merge(a, b) N - 2 k2 + log N 2 k 2 k2 + �k + log N 2 k 
FindNeighbors(a, b) N - kN - �k - 
RemoveLast( ) N - k + 2log N - log N - 
UpdateDistances( ) N (1+�) �N kN + �logN /k  � �k + �log N /k � 
 
Table 2: Observed number of the steps and distance calculations of the PNN iterations for 
Bridge (k = 3). 
 Fast PNN Graph PNN  

(simple) 
Graph PNN  
(double-linked) 

 Steps Distances Steps Distances Steps Distances 
SearchNearests( ) 8 357 760 - 3 840 - 3 840 - 
Merge(a, b) 8 357 760 - 100 636 13 302 181 159 13 316 
FindNeighbors(a, b) 8 357 760 - 25 078 280 - 63 765 - 
RemoveLast( ) 8 349 185 - 94 779 - 45 514 - 
UpdateDistances( ) 48 538 136 40 166 328 25 196 128 34 068 223 627 34 097 
Total 81 960 601 40 166 328 50 468 663 47 370 517 905 47 413 
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Table 3: Observed number of the steps and distance calculations of the PNN iterations for 
House (k = 3). 
 Fast PNN Graph PNN  

(simple) 
Graph PNN  
(double-linked) 

 Steps Distances Steps Distances Steps Distances 
SearchNearests( ) 581 798 432 - 33 856 - 33 856 - 
Merge(a, b) 581 798 432 - 960 410 112 923 1 245 180 112 942 
FindNeighbors(a, b) 581 798 432 - 1 745 395 

296 
- 255 519 - 

RemoveLast( ) 580 354 971 - 1 026 580 - 497 511 - 
UpdateDistances( ) 2 237 529 292 1 655 663 

346 
1 746 170 
412 

162 850 1 313 939 163 757 

Total 4 563 279 559 1 655 663 
346 

3 493 586 
554 

275 773 3 346 005 276 699 

 

Table 4: Observed number of the steps and distance calculations of the PNN iterations for 
Miss America (k = 3). 
 Fast PNN Graph PNN  

(simple) 
Graph PNN  
(double-linked) 

 Steps Distances Steps Distances Steps Distances 
SearchNearests( ) 20 965 544 - 6 224 - 6 224 - 
Merge(a, b) 20 965 544 - 172 616 25 797 273 994 25 819 
FindNeighbors(a, b) 20 965 544 - 62 896 632 - 81 537 - 
RemoveLast( ) 20 955 451 - 160 544 - 77 194 - 
UpdateDistances( ) 128 322 309 107 331 

780 
63 078 024 44 418 326 677 44 331 

Total 212 174 392 107 331 
780 

126 314 
040 

70 215 765 626 70 150 

 
 
 
4. Creation of the neighborhood graph 

We define k-nearest neighbor graph (kNN graph) as a weighted directed graph, in which 
every node represents a single cluster, and the edges correspond to pointers to neighbor 
clusters. Every node has exactly k edges to the k nearest clusters according to a given distance 
function. The distance of clusters is defined by the merge distortion function of the PNN of 
Eq. (4). Note that this is not the only possible definition of the graph: other definitions have 
been given in [20, 21]. 

The graph can be constructed by brute force by considering all pairwise distances but at the 
cost of O(N2) time. We therefore consider two faster methods: the mean-distance ordered 
partial search (MPS) [15], and a new divide-and-conquer technique [16]. 

4.1 MPS for searching nearest neighbor 
We propose to use the mean-distance ordered partial search (MPS) as was originally 
proposed to be used with the k-means clustering (GLA) in [15] but then generalized to the 
PNN distance function in [19]. The method stores the component sums of each cluster 
centroid (code vector). Let sa be the one, for which we seek its nearest neighbors, and sj the 
candidate to be considered. The distance of their corresponding code vectors ca and cj can be 
approximated by the squared distance of their component sums: 
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The component sums correspond to the projections of the vectors to the diagonal axis of the 
vector space. In typical data sets, the code vectors are highly concentrated along the diagonal 
axis, and therefore, the distance of their component sums highly correlate to their real 
distance. Then, given the cost function value of the best candidate found so far, vectors 
outside the radius defined by a given pre-condition can be excluded in the calculations, see 
Fig. 5. 

In the PNN, the cost function (4) consists of the squared Euclidean distance (ea,j) of the code 
vectors and the weighting factor (wa,j), which can be calculated separately. The following 
inequality holds true: 

   (7)
 

w e K w ea j a j a j a j, , ,�� � � � ,

It was originally shown to hold in Euclidean distances in [15], which we have then 
generalized to the cluster distances in [13]. Given the cost function value dmin of the best 
candidate found so far, the inequality (7) can be utilized in the search of nearest neighbor by 
using the following pre-condition: 

  (8) jaja ewdK ,,min ˆ���

In other words, if the squared Euclidean distance of the component sums (multiplied by the 
weighting factor) exceeds the distance to the best candidate found so far (multiplied by K), 
the value cannot be smaller than dmin, according to (7). This is illustrated in Fig. 2, where the 
distance from A to B is the current minimum. All potential candidates and their projections 
must therefore lie inside the circle. 

The pre-condition is utilized as follows. The vectors are sorted according to their component 
sums, and then proceed in the order given by the sorting. The search starts from the cluster sa 
and proceeds bi-directionally along the projection axis. The weighting factor wa,j and the 
distance of the component sums (êa,j) are first calculated, and the pre-condition (8) is 
evaluated. If it holds true, the calculation of the actual cost function value can be omitted and 
the candidate cluster sj rejected. The pre-condition can be calculated fast in O(1) time as the 
component sums and weights are known. 

In k-means clustering, the search in any of the two directions can be terminated immediately 
when the pre-condition is met first time. In the PNN, however, this is not possible because of 
the weighting factor. Even in the initialization, there may be weighted vectors as the data set 
can be a result of preprocessing step where duplicate vectors have been merged and weighted 
by their frequency. The search is therefore terminated only if the weight of the candidate 
cluster equals to 1. See [19] for details. 

The pseudo code of the algorithm is given in Fig. 6. For simplicity, we assume that the 
clusters have already been sorted before the call of the routine. 
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A '
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B '
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C  

Fig. 5. Vectors (black dots) and their projections (empty dots)  
according to the component sums. 

 

SearchNearestNeighborUsingMPS(ca, cj, dmin) � nna, da; 
dmin � �; 
up � TRUE; 
down � TRUE; 
j1 � a; 
j2 � a; 
 
WHILE (up OR down) DO 

IF up THEN 
j1 � j1 + 1; 
IF j1 > N  THEN up � FALSE 
ELSE CheckCandidate(sa, sj1, na, dmin, nn, up);

 

IF down THEN 
j2 � j2 - 1; 
IF j2 < 1 THEN down � FALSE 
ELSE CheckCandidate(sa, sj2, na, dmin, nn, down);

 

END-WHILE; 

RETURN nn, dmin; 

CheckCandidate(sa, sj, na, dmin, nn, direction); 
IF PreCondition(sa, sj, dmin) THEN 

IF na = 1 THEN direction � FALSE 
ELSE 

d � MergeCost(sa, sj, dmin); 
IF d < dmin THEN 

dmin � d; 
nn � j; 

RETURN; 

PreCondition(sa, sj, dmin) � BOOLEAN; 
w � na� nj / (na + nj); 
ê � (suma- sumj)2; 
RETURN( K�dmin < w � ê );

  
  

Fig. 6. Pseudo code of the MPS method used for the graph creation in Graph-PNN. 
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4.2 MPS for searching k neighbors 
We apply the MPS method for finding the k nearest clusters as follows. We relax the 
condition of the graph and find any k neighbors instead of the nearest ones. This is 
a reasonable modification because the optimality of the graph cannot be guaranteed during the 
process of the PNN algorithm. Thus, by relaxing the definition of the k-nearest neighbor 
graph, additional speed-up can be obtained at a slight increase in the distortion function value. 

In particular, we use the exact MPS method for finding the nearest neighbor but stop the 
search immediately when it has been found. In addition to this, we maintain ordered list of the 
k best candidates found so far. The rest of the neighbors are then chosen simply from the list 
of the candidates no matter whether they are actually the k-1 nearest or not. It is expected that 
the rest of the candidates are nearby vectors although not necessarily the nearest ones. Even if 
some links were missing, vectors in the same cluster are most likely to be connected anyhow. 

Another way to limit the search is to set up a fixed search range. In this case, the limit must 
be set up experimentally. We will study these two alternatives (full search and limited search) 
later in Section 5. 

The advantages of the MPS method are its simplicity and that it is expected to be fast on data 
sets with correlated vectors. The main disadvantage of the method is that the worst case time 
complexity is still O(N2), which is not any better than that of the Brute force. The actual 
speed-up is expected to be smaller on data sets with uncorrelated vectors. 

4.3 Closest pair problem 
Even though the MPS method is faster than the brute force, it still dominates the running time 
according to the experiments made in [22]. We therefore consider another approach based on 
the closest pair problem [16], which is stated as follows: given N points in d-dimensional 
space, find the two whose mutual distance is the smallest. The problem can be solved by 
recursive algorithm: 

1. Divide X into X1 and X2 by the median hyper plane H normal to some axis. 
2. Recursively solve the problem for X1 and X2. 
3. Compute δ = min(δ1, δ2), where δ1 and δ2 are the found distances in X1 and X2. 
4. Let X3 be the set of points that are within δ of H. 
5. Use the δ –sparsity condition to recursively examine all pairs in X3. 

It has been shown that, in the case of 2-dimensional vector space, only a constant number of 
points can be neighbor in any cell in the set X3 [23]. Assuming that the same primary axis is 
used in the division, the points can be pre-sorted and the analysis step can be performed in 
linear time. It has been proven that the algorithm takes O(N log N) time and the algorithm 
generalizes to multi-dimensional spaces but at the cost O(N logd-1N) time [24], where d is the 
number of dimensions. 

4.4 Divide-and-conquer method 
We consider next an algorithm applicable for finding k-near neighbors based on the above 
divide-and-conquer approach with the following differences [25]. Firstly, we search several 
closest pairs for every vector in the data set. Secondly, we use principle component analysis 
(PCA) for calculating the projection axis with the maximum deviation. Thirdly, we use a 
distance-based heuristic for selecting the vectors to be included in the third sub set. 
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The pseudo code of the algorithm is given in Fig. 7. At each step of the recursion, we divide 
the data set X into two sub sets X1 and X2 of equal sizes as follows. We first calculate the 
principle axis of the data vectors in X, and then select (d-1)-dimensional hyper plane H 
perpendicular to the principal axis. The hyper plane is selected so that approximately half of 
the vectors belong to one side of the space, and the rest to the other side. Once the dividing 
procedure has been done, the two sub problems X1 and X2 are solved recursively. Sub 
problems smaller than ck are solved by brute force search.  

After the sub problems have been solved, we generate a third sub set X3 consisting of vectors 
that are closer to the dividing hyper plane H than to its nearest neighbor in the corresponding 
sub set (X1 or X2). By using the control parameter c we can control the number of vectors 
chosen in the sub set. Once the sub set is created, the algorithm is recursively applied for X3. 
Finally, the results of the three sub problems are combined. In Fig. 8 we illustrate the division 
of the set X to three overlapping sub sets (X1, X2, X3) according to the dividing hyper plane H. 
The arrows indicate the nearest neighbors of the vectors. 

 

Divide-and-Conquer(X, k, ck ) � kNN 
IF ( |X|  > ck ) THEN 

X1, X2, proj � Divide(X); 
KNN1 � Divide-and-conquer(X1, k, ck); 
KNN2 � Divide-and-conquer(X2, k, ck); 
KNN � KNN1 � KNN2; 
X3 � GenerateThirdSet(X, kNN, proj); 
kNN3 � Divide-and-conquer(S3, k, ck); 
kNN � CombineResults(kNN, kNN3); 

ELSE 
kNN � BruteForce(X, kNN, k); 

END-IF 
RETURN kNN; 

GenerateThirdSet(X, kNN, proj) � X3 
X3 � �; 
FOR i � 1 TO |X| DO 

� � ProjectionDistance(X[i], proj); 
IF c� < kNN[i,1] THEN 

X3 � X3 � X[i]; 
RETURN X3; 

Fig. 7. Sketch of the divide-and-conquer algorithm. 
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Fig. 8. Division to three overlapping sub sets (X1, X2, X3) according to the dividing hyper 
plane H. The arrows indicate the nearest neighbors of the vectors. 

 

The time complexity of the proposed divide-and-conquer algorithm is estimated here by a 
recurrence T(N) = 3�T(N/2) + O(N�d2) assuming that the size of the third sub set is less than 
equal to that of the other sub sets X1 and  X2. The second term originate from the calculation 
of the principal axis. The rest of the calculations can be performed in linear time. The 
recurrence solves to O(d2

�N1.58
�logN). It might be possible to squeeze the complexity to 

O(N�logN) by selecting the dividing hyper plane by some simpler method, and by making 
tighter bounds for the third sub set. Note that the size of the X3 can be controlled by the 
parameter c. 

 
5. Experiments 

We consider three image data sets (Fig. 9), four synthetically generated data sets (Fig. 10), 
and the BIRCH data sets [26]. The vectors in the first set (Bridge) are 4�4 blocks taken from 
gray-scale image, and in the second set (Miss America) 4�4 difference blocks of two 
subsequent frames in video sequence. The third data set (House) consists of color values of 
the RGB image. The number of clusters is fixed to M=256. The data sets S1 to S4 are two-
dimensional sets with varying complexity in terms of spatial data distributions with M=15 
clusters.  

 

 12



Spatial vectors: Spatial residual vectors: Color vectors: 

   
Bridge  (256�256) 

K=16, N=4096 
Miss America  (360�288) 

K=16, N=6480 
House  (256�256) 

K=3, N=34112* 

Fig. 9. Image data sets. *Duplicate training vectors are combined and frequency information 
is stored. Note that when duplicates vectors are merged, all distance and merge cost 

calculations must always be multiplied by the frequency of the data vectors representing 
multiple instances of the original data set. 

 

Data set S1 Data set S2 Data set S3 Data set S4 

Fig. 10: Two-dimensional data sets with varying complexity in terms of spatial data 
distributions. The data sets have 5000 vectors scattered around 15 predefined clusters with 

a varying degree of overlap. 
 

  

The effect of the neighborhood size (parameter k) on the running time and quality is shown in 
Fig. 11 with the data sets Bridge and BIRCH1. The results indicate that a very small 
neighborhood size such as k=3 is sufficient for obtaining high quality clustering for the image 
data sets, and larger neighborhood sizes would give only slight improvement. In the case two-
dimensional data sets, however, too small neighborhood size can cause problems in the form 
of isolated sub clusters and somewhat larger (k=4 or k=5) neighborhood size is therefore 
recommended. The running time has linear dependency with the parameter k but the growing 
rate is relatively small. 
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Fig. 11. The run time and quality of the graph PNN algorithm as a function of k.  

The MPS algorithm is used for graph creation and double linked list in the PNN iterations. 
The results are (from top to down) for Bridge and BIRCH1. 

 
 

The running time consists of two parts: graph creation and the PNN iterations. The run times 
of four variants (Brute force, Brute force fast, MPS, Divide-and-conquer) for the graph 
creation are shown in Table 5. The first two variants (Brute force) calculate all pairwise 
distances in order to create the graph. The Brute force fast variant considers only half of the 
distances and is therefore about 50% faster than the Brute force itself.  

The MPS variant, however, is clearly faster than the Brute force fast especially in the case of 
Bridge and House. In the case of Miss America, the MPS does not provide improvement. The 
divide-and-conquer technique is faster than the MPS with the 16-D image data sets (Bridge 
and Miss America) but slower with the 3-D data set (House). The small differences in the 
MSE-values are due to the different order of processing in the case of ties, and are reported 
merely to show the difference in quality between the Graph-PNN and the Fast PNN. 

The running times of the PNN iterations are shown in Table 6 for the simple algorithm, and 
for the double linked algorithm. The results show that the simple algorithm is useful with 
Bridge and Miss America, but the double linked algorithm is significantly more efficient with 
House. The illustrations in Fig. 11 show that the PNN iterations can be performed efficiently 
and that the graph creation is still the bottleneck of the algorithm. 

The overall running times and the corresponding number of distance calculations are 
summarized in Table 7. Comparative results are given for the fast exact PNN [7], and the fast 
exact PNN with several speed-up methods as proposed in [19]. The results show that the 
graph PNN is significantly faster than the fast exact PNN with all data sets. The results are 
most remarkable with the largest data set (House), for which the running time was reduced 
down to 9 % from that of the fastest comparative variant. The corresponding numbers for 
Bridge and Miss America are 33 % and 43 %. 
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Table 5. Running times of the graph creation. 
Bridge House Miss America  

Time MSE Time MSE Time MSE 
Brute Force 34 171.17 881 6.43 89 5.44 

Brute Force /fast 16 172.20 446 6.33 43 5.48 
MPS 3 171.11 18 6.37 44 5.44 

Graph 
PNN 

Divide-and-conquer 2 171.80 49 6.58 7 5.44 
 

Table 6. Running times of the PNN iterations. 
  Bridge House Miss America 
  Time MSE Time MSE Time MSE 

Simple 4 171.12 542 6.40 12 5.45 Graph 
PNN Double linked < 1 171.11 1 6.37 < 1 5.44 

 

Table 7. Summary of the running times and the number of distance calculations of the MPS 
method in comparison to the full search PNN. 

Bridge House Miss America  
Distance 

calculations 
Run  
time 

Distance 
calculations 

Run 
time 

Distance 
calculations 

Run time 

F a s  48 552 888 79 2 237 460 562 1574 128 323 740 229 

Fa st
 

PN N +MPS+PDS 
+lazy 6 167 439 9 37 752 863 190 83 323 889 106 

Graph creation 2 341 547 3 19 017 163 18 32 440 442 44 
Iterations 47 413 < 1 276 699 1 70 150 < 1 

Graph 
PNN 

Total 2 388 960 3 19 293 862 19 32 510 592 44 
 

 

The graph creation is evidently a bottleneck in the Graph-PNN. We therefore consider also 
the faster but sub-optimal variants: limited-search MPS, and divide-and-conquer with the 
control parameter. The search is performed as discussed in Sections 4.2 and 4.4. The 
corresponding time-distortion performance is illustrated in Fig. 12 for Miss America. Even 
though the results favor the divide-and-conquer method, it has much narrower operative time 
marginal, and the limited-search MPS is better for all other sets. 

Comparisons of the different algorithms are summarized in Table 8 with the following 
methods included: 

�� Fast PNN 
�� Graph-PNN 
�� Graph-PNN + GLA 
�� GLA 

The Fast PNN has two variants: the fast implementation as proposed in [7] and the improved 
variant [19]. The latter one uses three speed-up techniques: the PDS, MPS and Lazy 
evaluation of the distances. The GLA has two variants: the original method [8], and a faster 
variant that uses PDS, MPS and activity detection for speed-up [27]. Results are given also 
for Graph-PNN + GLA, in which the data is first processed by the Graph-PNN and the result 
is input to the GLA. The results show that the Graph-PNN produces better result with an 
algorithm that is competitive to the GLA in speed. 
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The final clustering and the neighborhood graph of the Graph-PNN (k=5) are illustrated in 
Fig. 13. It shows that the Graph PNN achieves the correct clustering. The final graph does not 
have k=5 outgoing edges for every node although every cluster is still connected to the same 
graph. With a smaller number of neighbors (k=3), however, there would have been isolated 
components and in some cases, the algorithm degenerated to situation where there were not 
enough edges to achieve the optimal clustering. 
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Fig. 12. The time-distortion performance of the Graph-PNN. 
 

 
Fig. 13. Illustration of the final results of the Graph-PNN for set S2. 
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Table 8. Comparison of the Graph-PNN (k=5) with other methods. 
Bridge House Miss America Image data sets Time MSE Time MSE Time MSE 

Full search 79 168.92 1574 6.27 229 5.36 Fast PNN 
+PDS+MPS+Lazy 9 168.92 190 6.26 106 5.37 

Full MPS 3 170.28 19 6.33 45 5.11 
Limited search MPS  3 170.56 14 6.51 6 5.58 

Graph PNN 

Divide-and-conquer 2 170.69 51 6.37 8 5.43 
Full MPS 4 166.23 20 6.14 47 5.30 

Limited search MPS 4 166.38 15 6.18 9 5.34 
Graph PNN + 

GLA 
Divide-and-conquer 2 165.81 52 6.14 10 5.30 

Standard 13 179.95 23 7.77 20 5.95 GLA 
+PDS+MPS+Activity 2 180.02 3 7.80 8 5.95 

 
BIRCH 1 BIRCH 2 BIRCH 3 Birch data sets Time MSE Time MSE Time MSE 

Full search N/A 4.73 N/A 2.28 N/A 1.96 Fast PNN 
+PDS+MPS+Lazy 2397 4.73 2115 2.28 2316 1.96 

Full MPS 40 4.71 16 2.28 34 1.96 
Limited search MPS  37 4.73 15 2.28 28 2.02 

Graph PNN 

Divide-and-conquer N/A N/A N/A N/A N/A N/A 
Full MPS 44 4.64 17 2.28 51 1.87 

Limited search MPS 41 4.64 16 2.88 44 1.90 
Graph PNN + 

GLA 
Divide-and-conquer N/A N/A N/A N/A N/A N/A 

Standard 209 5.51 43 7.42 171 2.41 GLA 
+PDS+MPS+Activity 29 5.34 8 7.85 35 2.50 

 
S1 S2 S3 S4 Synthetic data sets Time MSE Time MSE Time MSE Time MSE 

Full search 25 8.93 25 13.44 25 17.70 25 17.52 Fast PNN 
+PDS+MPS+Lazy 3 8.93 3 13.44 3 17.70 3 17.52 

Full MPS < 1 9.07 < 1 13.41 < 1 17.21 < 1 16.69 
Limited search MPS  < 1 9.07 < 1 13.41 < 1 17.21 < 1 16.69 

Graph PNN 

Divide-and-conquer N/A N/A N/A N/A N/A N/A N/A N/A 
Full MPS < 1 8.92 < 1 13.28 < 1 16.89 < 1 15.71 

Limited search MPS < 1 8.92 < 1 13.28 < 1 16.89 < 1 15.71 
Graph PNN + 

GLA 
Divide-and-conquer N/A N/A N/A N/A N/A N/A N/A N/A 

Standard < 1 19.02 < 1 18.78 < 1 19.78 < 1 16.72 GLA 
+PDS+MPS+Activity <  1 18.07 < 1 16.69 < 1 18.53 < 1 16.71 
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6. Conclusions 

Graph-based agglomerative clustering algorithm was proposed. We found out that a relatively 
small neighborhood size (k=3-5) is sufficient to produce clustering with similar quality to that 
of the full search. At the same time, significantly fewer distance calculations were needed 
and, thus, remarkable speed-up was achieved.  
Two graph creation algorithms were considered: the mean-distance ordered partial search 
(MPS), and a divide-and-conquer technique. The latter one is faster in the case of the high 
dimensional data sets. In the 2-dimensional or 3-dimensional color clustering, on the other 
hand, it was slower than the MPS method.  
We conclude that the improvement due to the neighborhood graph is significant. The graph 
creation, however, is the bottleneck of the algorithm. It remains an open question whether 
faster method could be invented with better time-distortion performance than the proposed 
divide-and-conquer and the limited-search MPS algorithm.  
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